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ABSTRACT

We directly constrain the non-linear alignment (NLA) model of intrinsic galaxy alignments, analysing the most representative and
complete flux-limited sample of spectroscopic galaxies available for cosmic shear surveys. We measure the projected galaxy position-
intrinsic shear correlations and the projected galaxy clustering signal using high-resolution imaging from the Kilo Degree Survey
(KiDS) overlapping with the GAMA spectroscopic survey, and data from the Sloan Digital Sky Survey. Separating samples by
colour, we make no significant detection of blue galaxy alignments, constraining the blue galaxy NLA amplitude AB

IA = 0.21+0.37
−0.36

to be consistent with zero. We make robust detections (∼9σ) for red galaxies, with AR
IA = 3.18+0.47

−0.46, corresponding to a net radial
alignment with the galaxy density field, and we find no evidence for any scaling of alignments with galaxy luminosity. We provide
informative priors for current and future weak lensing surveys, an improvement over de facto wide priors that allow for unrealistic
levels of intrinsic alignment contamination. For a colour-split cosmic shear analysis of the final KiDS survey area, we forecast that our
priors will improve the constraining power on S 8 and the dark energy equation of state w0, by up to 62% and 51%, respectively. Our
results indicate, however, that the modelling of red/blue-split galaxy alignments may be insufficient to describe samples with variable
central/satellite galaxy fractions.
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1. Introduction

Light travelling towards Earth passes through the inhomoge-
neous universe, and consequent tidal gravitational field. In
accordance with General Relativity, the light is differentially
deflected, producing coherent distortions in the apparent shapes
of source galaxies. This weak cosmological lensing – or cos-
mic shear – signal encodes information pertaining to the total
matter distribution, universal geometry, and cosmic expansion
and acceleration, as each evolves with redshift. Thus cosmic
shear is one of the vital probes in the challenge to de-shroud the
dark energy and dark matter species of the Λ cold dark matter
(ΛCDM) cosmological model.

Since its first detections around the turn of the century
(Bacon et al. 2000; Kaiser et al. 2000; Wittman et al. 2000;
Van Waerbeke et al. 2000), cosmic shear has matured into a
powerful tool for cosmology (Heymans et al. 2013; Jee et al.
2016; Hildebrandt et al. 2018; Köhlinger et al. 2017; Troxel et al.
2018; Hikage et al. 2019), been combined with complemen-
tary probes to great effect (Abbott et al. 2018; Joudaki et al.
2018; van Uitert et al. 2018) and formed the basis of design
for many next-generation wide-field sky surveys (LSST;
LSST Science Collaboration 2009, Euclid; Laureijs et al. 2011,
WFIRST; Spergel et al. 2013).

The primary astrophysical systematic effect for cosmic shear
is the intrinsic alignment of galaxies (Heavens et al. 2000;
Croft & Metzler 2000; Catelan et al. 2001; Hirata & Seljak
2004). Cosmic shear relies upon picking up coherent, percent-
level shape distortions (shears) over a statistical ensemble of
galaxies. However, galaxies may interact with the gravitational
field during formation, becoming aligned with their local envi-
ronment. The same environment/structure also contributes to
the lensing distortions observed in background galaxies. Both
processes contaminate cosmic shear signals by sourcing non-
random shear correlations in imaging data; between the intrinsic
shapes of locally aligned galaxies (II), and between those intrin-
sic shapes and the gravitational shear field (GI). II correlations
are restricted to physically close pairs, and are subdominant to
the latter GI term, which can operate over wide separations in
redshift, posing a greater threat of contamination for deep cos-
mic shear studies.

Tidal alignments, as they apply to galaxies, are thought to
manifest through two principal mechanisms; galaxy halos are
tidally (i) stretched (see Catelan et al. 2001), and (ii) torqued
(see Schäfer 2009 for a review of the latter) by the interaction
of the tidal shear quadrupole with the moment of inertia of the
halo. Pressure-supported, red elliptical galaxies equilibrate their
stellar distributions according to the ellipsoidal halo potential.
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Rotationally supported, blue spirals align their spin axes with the
halo angular momentum (see Kiessling et al. 2015). Each type is
thus imprinted with the alignments of the halo. The former effect
is linear, and the latter quadratic in the matter density contrast,
suggesting strong tidal alignment of blue galaxy spin axes at small
scales, which quickly dissipate with increasing separation. These
contrast with the further-reaching shape alignments of red galax-
ies. Both types of alignments should be stronger around more pro-
nounced peaks of the matter distribution (Piras et al. 2018).

This picture is supported by observations; many studies
show strong alignments out to 100 h−1 Mpc for SDSS galax-
ies, with luminous red galaxies (LRGs) and bright subsamples
showing the largest alignment amplitudes (Mandelbaum et al.
2006; Hirata et al. 2007; Joachimi et al. 2011; Li et al. 2013;
Singh et al. 2015). Significant (>3σ) alignments of nearby
spiral galaxy spin axes, with reconstructed tidal fields,
have been reported on scales .3 h−1 Mpc (Lee & Pen 2002;
Lee & Erdogdu 2007; Lee 2011), but attempted measure-
ments of large-scale intrinsic ellipticity correlations of spirals
have thus far been consistent with zero (Hirata et al. 2007;
Mandelbaum et al. 2011; Tonegawa et al. 2018). Hydrodynam-
ical simulations corroborate these observational findings for red
galaxies, but exhibit disagreements as to the form and amplitude
of blue galaxy alignments (Chisari et al. 2015; Velliscig et al.
2015; Tenneti et al. 2016; Hilbert et al. 2017).

The risk of shear contamination by intrinsic alignment (IA)
of galaxies, and the associated threat posed to cosmological
parameter inference, has long been known (Heavens et al. 2000;
Heymans et al. 2004; Hirata & Seljak 2004). Much work has
been devoted to measuring the strength of IA and forecasting
its impact under various scenarios of modelling or lack thereof
(Joachimi & Bridle 2010; Joachimi et al. 2011; Kirk et al. 2012;
Krause et al. 2016; Blazek et al. 2017). Broadly summarised, the
findings suggest (i) significant biasing of cosmological param-
eters if IA are not accounted for; (ii) IA mitigation schemes,
involving nuisance parameters for marginalisation, which will
degrade cosmological constraints but can effectively mitigate
biasing of parameter inference; (iii) joint analyses of shear
probes with positional information and cross-correlations, to aid
with degeneracy-breaking and self-calibration of IA models; (iv)
the need for increasingly detailed modelling of IA – particularly
with respect to non-linearities – accompanied by simulations
(for model-testing and predictions) and observational constraints
upon IA parameters over a long redshift baseline.

Recent, dedicated studies of cosmic shear have allowed
for the effects of intrinsic alignments with nuisance parame-
terisations (Heymans et al. 2013; Jee et al. 2016; Joudaki et al.
2016; Hildebrandt et al. 2018; Troxel et al. 2018; Samuroff et al.
2018). The currently preferred models, with wide prior ranges,
wield great power to modulate lensing observables – this has
resulted in heavy degradation of cosmological constraining
power. Moreover, we cannot be certain that other systematic
effects, known (e.g. photo-z errors – see Efstathiou & Lemos
2018; van Uitert et al. 2018) or otherwise, are not leaking into the
IA parameterisations. Informative priors for the models are the
first step to assuaging these concerns, and they must be derived
from galaxy samples representative of cosmic shear datasets.

This work aims to motivate such a prior for current and future
studies by constraining the alignment amplitudes exhibited
by the flux-limited GAMA spectroscopic sample (Driver et al.
2011), with high-resolution KiDS (de Jong et al. 2013) imag-
ing and shapes. We supplement our GAMA data with galax-
ies from the SDSS Main sample (York et al. 2000; Strauss et al.
2002) – the only other readily available, wide-area, flux-limited,

spectroscopic dataset. This study is made unique by the lack of
selection a priori, high completeness (>98%) and spectroscopic
redshifts of GAMA and SDSS Main, and so yields a set of con-
straints which are uniquely instructive for future shear studies.
With the aforementioned dependencies of alignments in mind,
we also split our samples by colour and redshift, and fit to them
with colour-specific parameters, in an effort to more comprehen-
sively describe the contributions of the two galaxy populations.

We measure galaxy position-intrinsic shear correlations in
our samples, using galaxies as a proxy to the total matter den-
sity field and measuring their tendency to align with that field
over a range of scales. We simultaneously fit to clustering mea-
surements in the same samples for self-calibration of the galaxy
bias, elsewise degenerate with the intrinsic alignment amplitude.
We fit to our signals with the non-linear alignment (NLA) model
(Hirata & Seljak 2004; Bridle & King 2007), with and without
a luminosity power-law. We forecast, via Fisher matrix analysis,
the improvement in cosmological parameter constraints for a fin-
ished KiDS survey, when adopting our derived IA constraints as
informative priors.

The structure of this paper is as follows; we describe our
galaxy survey data in Sect. 2, along with our measurement
pipeline. Section 3 details our models and methods of fitting, and
we summarise the results of fitting in Sect. 4. Section 5 outlines
our forecasting for a future shear analysis, and our concluding
remarks are presented in Sect.6.

Throughout our intrinsic alignment analysis, we work with
rest-frame AB magnitudes, k-corrected to z = 0, and assume a
flat ΛCDM cosmology with Ωm = 0.25, h = 0.7, Ωb = 0.044,
ns = 0.95, σ8 = 0.8, w0 = −1 and wa = 0. This is the cosmology
adopted by the MICE1 simulations, whose mocks we make use
of in our analysis (see Appendix A.2). It is also similar to that
assumed by Joachimi et al. (2011), allowing for direct compari-
son of intrinsic alignment constraints.

2. Data

2.1. KiDS +GAMA

The ongoing Kilo Degree Survey (KiDS; de Jong et al. 2017) is
a wide-field optical imaging survey, taking data in four pass-
bands (ugri) with the OmegaCAM camera at the VLT Survey
Telescope (VST). The VST-OmegaCAM system is optimised for
producing 1 deg2 images of exceptional quality, facilitating accu-
rate galaxy shape measurements for the primary science driver of
KiDS: weak lensing studies.

KiDS aims to image 1350 deg2 of sky in 2 rougly equal-sized
strips. KiDS-North, centered on the celestial equator, shares
complete overlap with the Galaxy and Mass Assembly (GAMA;
Driver et al. 2011) equatorial fields – a total 180 deg2, split
equally between G9, G12 and G15. GAMA is a now-complete
spectroscopic survey which operated on the Anglo-Australian
Telescope, with the AAOmega spectrograph. GAMA galaxies
possess thoroughly tested spectroscopic redshifts and are highly
complete (>98%) in the r-band limit r < 19.8.

Our KiDS+GAMA dataset consists of the final release
(Liske et al. 2015), equatorial GAMA spectroscopic sample,
with shapes measured from KiDS-4502 imaging. Galaxy shapes
are measured from r-band images, for which the best dark-time
seeing conditions are reserved in KiDS. Singh & Mandelbaum
(2016) analysed the SDSS-III BOSS LOWZ luminous red
galaxy (LRG) sample (Alam et al. 2015) with different shape
1 Publicly available through CosmoHub: http://cosmohub.pic.es
2 http://kids.strw.leidenuniv.nl/DR3/
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Fig. 1. Left panel: galaxy rest-frame colour–magnitude diagram, where we choose a cut in g − r to isolate the red sequence in GAMA and
SDSS. Right panel: sample absolute r-band magnitude-redshift diagram. The total distribution of GAMA and SDSS galaxies is shown, binned
in hexagonal cells with a colour scale corresponding to the counts in cells. Coloured contours indicate 75% and 95% of galaxies in a sample.
Colour/redshift cuts are shown as dashed green lines, and the apparent leakage of contours is due to the grid-size used in kernel density estimation.

measurement methods, finding variability in ellipticities, intrin-
sic alignment conclusions and the impacts of observational sys-
tematics. The connection between such variabilities and the
radial weighting employed in shape estimation is explored in our
companion paper: Georgiou et al. (2019).

We measure shapes using the moments-based DEIMOS
(DEconvolution In MOments Space) method introduced by
Melchior et al. (2011). We briefly describe the DEIMOS method
here, as applied to KiDS+GAMA, and refer the reader to
Georgiou et al. (2019) for details of the production of our ellip-
ticity catalogue. The moments Q of the distribution of brightness
(flux) G(x) across an image, where x = (x , y) is a coordinate
vector, are expressed in Cartesian coordinates as

Qi j =

∫
G(x) xiy j dx dy, (1)

where n = i + j gives the order of the moment. One recovers
the complex ellipticity of an object from 2nd-order brightness
moments as

ε ≡ ε1 + iε2 =
Q20 − Q02 + 2i Q11

Q20 + Q02 + 2
√

Q20 Q02 − Q2
11

, (2)

which relates to the semi-major a and semi-minor b axes as |ε| =
(a − b)(a + b)−1.

Observed galaxy flux profiles G∗(x) are distorted by con-
volution with the point spread function P(x) – determined by
observing conditions, telescope optics and detector properties,
the PSF describes the blurring of point-like sources in imaging.
The PSF-convolved flux profile is

G∗(x) =

∫
G(x′) P(x − x′) dx′. (3)

Melchior et al. (2011) transform the flux profile into Fourier
space and show, with the convolution theorem, that the moments

of the observed flux distribution Q∗i j are

Q∗i j =

i∑
k

j∑
l

(
i
k

) (
j
l

)
Qkl{P}i−k, j−l, (4)

where {P}i j denotes the moments of the PSF. Thus the nth-order
deconvolved moments Qi j of the image can be recovered from
the image- and PSF-moments up to the same order. In practice,
one must also account for noise in the image, from sky back-
ground, pixel noise etc. The pixel signal-to-noise ratio (SNR)
is lowest at large distances from the galaxy centroid, which
would tend to dominate the measurement of 2nd-order bright-
ness moments (Eq. (1)). We suppress pixel noise using Gaussian
elliptical weight functions W(x), and recover an approximation
to the unweighted brightness profile by computing a truncated
Taylor expansion of W−1(x) (see Georgiou et al. 2019).

Galaxy shapes can be obscured by overlapping objects in
images. These shapes can still be measured by applying masks
to the nuisance objects, but the loss of information could have
an impact upon the quality of the shape measurement. We verify
that excluding blended galaxies – where isophotal radii overlap
– does not significantly change our measurements of alignment
correlation functions, and continue to include these galaxies in
our analysis. We refer the reader to Georgiou et al. (2019) for
further details on our use of weight functions and associated bias
considerations, deblending, and any other details of the shape
measurements.

We choose a rest-frame colour cut of g − r > 0.66 on
inspection of the colour-r-band absolute magnitude diagram, in
order to cleanly isolate the red sequence (Fig. 1), and we define
2 redshift bins with edges [ 0.02 , 0.26 , 0.5 ] (see Appendix A
for more detail on this choice). These cuts yield colour/redshift
samples (Z1B, Z1R, Z2B, Z2R) of roughly equal size, and
we apply the same colour cut to SDSS galaxies. For mea-
suring position-intrinsic shear correlations in each sample, we
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define a “shapes” subset of galaxies residing in unmasked3 pix-
els (for details of the masking procedure, see Kuijken et al.
(2015) We further exclude any galaxies flagged as having a
bad shape measurement (see Georgiou et al. 2019), and cor-
relate the remaining (∼85−87%) shapes against the positions
of all galaxies in the same colour/redshift bin – the “density”
sample. We also measure correlations against randomly dis-
tributed points, using random catalogues specifically designed
for GAMA (Farrow et al. 2015), and randomly downsampled to
retain at least 10× the number of galaxies in a corresponding
galaxy sample. Where used in additional, demonstrative sample
selections, stellar-mass estimates for GAMA galaxies are taken
from StellarMassesLambdarv20 (Wright et al. 2017).

2.2. SDSS Main

The Sloan Digital Sky Survey (SDSS; York et al. 2000) imaged
about π steradians of the sky, drift-scanning in five bands (ugriz),
with the purpose-built, wide-field SDSS photometric camera
(Gunn et al. 1998). Of the ∼1 million objects followed up spec-
troscopically, the Main galaxy sample (Strauss et al. 2002) was
designed to be flux-limited and highly complete (>99%) to r <
17.77, thus forming a complementary dataset to GAMA, shal-
lower and over a wider area of ∼3340 deg2. These are the same
SDSS Main samples measured for IA by Mandelbaum et al.
(2006), Hirata et al. (2007) and Joachimi et al. (2011), where the
latter two works also included LRG-selected samples in their
analysis. We make no magnitude selections, and employ a dif-
ferent colour-cut in our analysis, hence we re-measure the align-
ment signals. We use PSF-corrected ellipticity measurements
made by Mandelbaum et al. (2005) with the Reglens pipeline
– Reglens measures galaxy shapes via “re-Gaussianisation”
(Hirata & Seljak 2003). This is a moments-based method, which
assumes Gaussianity in the PSF and galaxy profiles, treating
non-Gaussianities with perturbative corrections. We refer the
reader to Hirata & Seljak (2003); Mandelbaum et al. (2005) for
further details.

We define red and blue SDSS samples (SR, SB) with the
same rest-frame cut at g − r = 0.66. The SDSS density sam-
ples retain galaxies with bad shapes flags, which are excluded
from the shapes samples. Figure 1 illustrates the colour-redshift-
magnitude spaces of our selected samples, which are detailed in
Table 1.

2.3. Estimators

We adapt the notation of Schneider et al. (2002), defining a bin
filter ∆rp,Π(x) = 1 for a pair separation vector x = (x‖ , x⊥)
where the (absolute) comoving radial component x‖ is less
than the maximum under consideration Πmax, and the comov-
ing transverse component x⊥ satisfies rp/10∆log(rp)/2 < x⊥ 6 rp ×

10∆log(rp)/2 for a transverse bin centred on rp (log-space bin width
∆log(rp) is constant). For any other separation vector, ∆rp,Π(x) =

0. We adopt the estimator defined by Mandelbaum et al. (2006)4,

3 Our mask excludes galaxies in pixels subject to readout spikes, sat-
uration cores, diffraction spikes, primary halos of foreground objects,
bad pixels and manually masked regions.
4 For ease of computation, we actually normalise by the density-
randoms vs. shapes paircount Nrs(rp,Π), as opposed to the density-
randoms vs. shapes-randoms paircount Nrrs (rp,Π). We verify that
resulting estimates differ negligibly with respect to the noise level.

Table 1. Details of our density (bracketed numbers) and intrinsic shape
field tracer samples, composed of GAMA and SDSS galaxies split by
redshift and/or colour.

Sample 〈z〉 〈L/Lpiv〉 N shapes (density)

GAMA z > 0.26, 0.33 1.06 31447 (36791)
blue (Z2B)
GAMA z < 0.26, 0.15 0.21 60634 (52273)
blue (Z1B)
SDSS blue (SB) 0.09 0.14 110557 (114054)
GAMA z > 0.26, 0.33 1.47 31368 (36087)
red (Z2R)
GAMA z < 0.26, 0.17 0.50 38011 (42078)
red (Z1R)
SDSS red (SR) 0.12 0.29 166198 (171565)

Notes. Lpiv ∼ 4.6 × 1010 L� corresponds to an absolute r-band mag-
nitude of −22. For purposes of clustering covariance estimation (see
Appendix A.2), we impose a faint limit Mr 6 −18.9 on our GAMA
density samples – hence Z1B has fewer density galaxies than shapes.

and given as

ξ̂g+(rp,Π) =
1

Nrrs (rp,Π)
×∑

sd

γ+,sd ∆rp,Π(xs − xd) −
∑

sr

γ+,sr ∆rp,Π(xs − xr)

 , (5)

where we use subscripts to denote and index shape (s), density
(d) and density-/shapes-random (r , rs) galaxy samples, and

Ni j(rp,Π) =
∑

i j

∆rp,Π(xi − x j), (6)

gives the paircount between samples i and j, which is then nor-
malised according to the relative sample populations5. The tan-
gential shear component6 γ+,i j of a galaxy i relative to the vector
connecting it to a galaxy j is given as

γ+,i j =
1
R
<e

[
εi exp

(
−2iϕi j

)]
, (7)

where, for galaxy i, the ellipticity εi = εi1+iεi2 (see Sect. 2.1) and
ϕi j is the polar angle of the pair separation vector. Note that the
sign convention here is γ+ > 0 for radial alignments, in contrast
with the standard for galaxy-galaxy lensing. The shear respon-
sivity R ≈ 1 − σ2

ε in Eq. (7) quantifies the response of galaxy
ellipticities to gravitational shearing, for a given galaxy sample.
The responsivity is doubled when ellipticities are measured via
polarisation (see Mandelbaum et al. 2006), as is the case for our
SDSS samples. The resulting shear corrections are then .8% for
GAMA, and .35% for SDSS, respectively.

We consider our measurements in line-of-sight projection

wg+(rp) =

∫ Πmax

−Πmax

ξg+(rp,Π) dΠ, (8)

5 The normalisation is by nin j when i , j, or else by ni(ni − 1), i.e. the
total possible number of galaxy pairs with unlimited separations.
6 In practice, one could affix weights ws to the shear components, to
allow for down-weighting of noisier shapes – we do not apply any
weights in our analysis (nor do previous direct-measurement studies
of IA), as our use of elliptical weight functions in shape estimation
poses problems for the estimation of ellipticity errors (see Sect. 2.3 of
Georgiou et al. 2019).
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thus compressing the measurement into fewer data points, with
generally higher signal-to-noise ratios (S/N).

We test for alignment systematics by measuring (i) the
position-intrinsic correlation cross-component wg× (replacing
γ+ with γ× in Eq. (5), where γ× is the imaginary analogue to
Eq. (7); equivalent to γ+ after a 45 degree rotation of the elliptic-
ity), which must vanish on average since galaxy formation does
not break parity. We also measure (ii) wg+ for galaxy pairs with
large line-of-sight separations 60 6 |Π| 6 90 h−1 Mpc. Spec-
troscopic redshifts allow us to choose a narrower range for this
test, relative to previous works (e.g. Joachimi et al. 2011), start-
ing at 60 h−1 Mpc given recent detections of alignments on large
transverse scales (Singh et al. 2015). One expects astrophysi-
cally induced alignment signals to be dominated by short-range
correlations, and consistent with zero over much larger scales,
providing the second, “large-Π” systematics test.

We measure galaxy clustering with the standard
Landy & Szalay (1993) estimator

ξgg(rp,Π) =
Ndd − 2Ndr + Nrr

Nrr
, (9)

where the rp,Π binning of paircounts is implicit. Equation (9)
is well known to improve the bias and covariance properties of
the galaxy auto-correlation through subtraction of the random
field from the density field, and this concept carries over to our
alignment estimator (Eq. (5)).

Singh et al. (2017) demonstrated that the subtraction of the
galaxy-galaxy lensing signal measured around random points
(i.e. a randomly distributed lens sample) also holds advantages
in reducing the impact of systematics and correlated shape
noise, especially on large transverse scales. This is done in
the context of galaxy-galaxy lensing; long-range lens cluster-
ing introduces noise through lensed, and therefore correlated,
background shapes. The GI analogy would suppose that intrin-
sic shears of the shape sample are correlated over super-sample
scales – e.g. galaxies aligning with filaments/knots etc. This cor-
related shape noise would show in the random-intrinsic correla-
tion, and be subtracted by our estimator (Eq. (5)).

We compute the total projected correlation functions by sum-
ming over line-of-sight separations −60 6 Π 6 +60 h−1 Mpc, in
bins of ∆Π = 4 h−1 Mpc (Eq. (8) and analogous for wgg) and
consider the results in 11 log-spaced bins between 0.1 6 rp 6
60 h−1 Mpc.

We compute all intrinsic alignment correlations using our
own code, and make use of the public swot7 (Coupon et al.
2012) kd-tree code for clustering correlations, which we verify
against our own (brute-force) code and against external cluster-
ing measurements in GAMA (Farrow et al. 2015).

2.4. Covariances

We estimate signal covariances with delete-one jackknife meth-
ods, which we describe briefly here, referring the reader to
Appendix A for more detail.

Jackknife samples are defined by the consecutive exclusions
and replacements of many “patches” within the survey foot-
print, such that each sample constitutes most of the galaxy data.
The covariance is thus estimated by considering the deviation
from the mean signal upon removal of independent subsets of
the data. Each subset must then correctly and independently
sample the signal of interest; each patch must be larger than

7 https://github.com/jcoupon/swot

the largest scales under examination. Simultaneously, the num-
ber of patches must be much greater than the size of the data
vector, or else estimates of the inverse covariance will suffer
from excessive noise. Attempting to satisfy both requirements,
we implement a 3D jackknife routine, slicing patches in red-
shift and multiplying the available number of independent sub-
sets. We remain, however, unable to reliably sample large pair
separations at low-redshift in GAMA (see Fig. A.1), thus we
discard the largest scales (∼40−60 h−1 Mpc) for GAMA sam-
ples with a significant proportion of low-redshift galaxies – see
Appendix A for more detail, and for assessments of the jackknife
performance.

3. Modelling

We observe the weak lensing angular power spectrum as the sum
of shear-shear (GG), intrinsic-intrinsic (II) and shear-intrinsic
(GI) contributions, such that

Ci j(`) = CGG
i j (`) + CII

i j(`) + CGI
i j (`), (10)

for correlations between samples i and j. The cosmic shear
GG term encodes the average coherent gravitational shearing
of galaxies’ light by structure along the line-of-sight, and is the
statistic of interest for cosmological analyses. Intrinsically cor-
related orientations of galaxies result in the extra intrinsic shear
correlation II and interference GI terms. These angular power
spectra are theoretically determined for a flat universe, by Lim-
ber projection of the matter Pδ, intrinsic PII and matter-intrinsic
PδI power spectra, as

CGG
i j (`) =

∫ χh

0
dχ

q (i)(χ)q ( j)(χ)
χ2 Pδ

(
`

χ
, χ

)
(11)

CII
i j(`) =

∫ χh

0
dχ

p (i)(χ)p ( j)(χ)
χ2 PII

(
`

χ
, χ

)
(12)

CGI
i j (`) =

∫ χh

0
dχ

q (i)(χ)p ( j)(χ) + p (i)(χ)q ( j)(χ)
χ2 PδI

(
`

χ
, χ

)
, (13)

each weighted by an efficiency kernel describing the coincidence
of sample redshift (comoving distance) distributions p(χ) and/or
lensing efficiencies q(χ), where p(χ) dχ = p(z) dz and

q(χ) =
3H2

0Ωm

2c2

∫ χh

χ

dχ′ p(χ′)
χ′ − χ

χ′
, (14)

for present-day Hubble parameter H0, matter energy-density
fraction Ωm and comoving distances χ, with χh denoting the
horizon distance. The redshift distributions of our galaxy sam-
ples are shown in Fig. A.1 as dashed red/blue histograms.

We constrain models for PδI by fitting to the real-space align-
ment and clustering correlation functions described in Sect. 2.3.

3.1. Tidal alignments

The linear alignment (LA) model assumes a linear relation
between the tidal shearing of galaxies and the gravitational
potential quadrupole at their epoch of formation. This form is
motivated as follows: fluctuations in the large-scale potential
govern the perturbation of halo ellipticites, within which galaxy
ellipticities follow suit. With the large-scale fluctuations neces-
sarily small, higher-order terms dwindle and the intrinsic shear-
ing of galaxies by large-scale structure is thus assumed to be a
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localised, linear function of the potential. In the simplest case,
this leads to intrinsic shear PII and cross matter-intrinsic shear
PδI power spectra (Hirata & Seljak 2004)

PII(k, z) =

(
AIAC1

a2ρ̄(z)
D(z)

)2

Pδ(k, z) (15)

and

PδI(k, z) = −AIAC1
a2ρ̄(z)
D(z)

Pδ(k, z), (16)

respectively, where AIA is a free, dimensionless amplitude
parameter, normalised to unity by the constant C1 = 5 ×
10−14 M−1

� h−2 Mpc3 – this factor is derived by comparing to the
work of Brown et al. (2002) who measured II correlations in
the low-redshift (z ∼ 0.1) SuperCOSMOS survey (Hambly et al.
2001), where cosmic shear is negligible. ρ̄(z) is the mean density
of the universe and D(z) is the growth factor.

In the original LA model, Pδ(k, z) is the linear matter power
spectrum. Hirata et al. (2007) and Bridle & King (2007) sug-
gested and implemented a substitution of the non-linear cor-
rected spectrum P nl.

δ (k, z), birthing the non-linear alignment
(NLA) model. Whilst without theoretical motivation, this model
was seen to provide a better description of the alignments mea-
sured in LRG samples on scales approaching the non-linear. We
conduct and present our analysis with both the LA and NLA
models, choosing to focus on the NLA given its widespread use
in the literature. Results between the N/LA models will differ
only mildly for this work, since meaningful fits of these models
must be restricted to quasi-linear scales – neither model provides
a true consideration of non-linear evolution/dependence or of
intra-halo baryonic physics (e.g. stellar/AGN feedback). How-
ever, the choice of model is expected to levy significant changes
in cosmic shear analyses that extract a large fraction of their con-
straining power from highly non-linear scales. The development
of appropriate models for IA remains an active topic of research.

We make fits of the NLA and also a luminosity-dependent
analogue, henceforth NLA-β, including a power-law scaling β
on the average luminosity L of samples, such that

AIA −→ Aβ

〈
L

Lpiv

〉β
, (17)

where Lpiv ∼ 4.6×1010 L� is an arbitrary pivot luminosity, corre-
sponding to an absolute r-band magnitude of −22 (see Table 1).

We note that fitting linear models to spiral galaxy align-
ments is at best an approximation to lowest order8, and that
next-stage lensing studies should consider splitting the mod-
elling of alignments to include a quadratic alignment prescrip-
tion for blue galaxies – such an analysis was recently completed
by Samuroff et al. (2018); applying the mixed alignment model
of Blazek et al. (2017) to DESY1 data (Abbott et al. 2018), they
find the first marginal evidence for quadratic alignments of both
late- and early-type galaxies.

3.2. Line-of-sight projection

We project matter and matter-intrinsic power spectra along the
line-of-sight using Hankel transformations

wg+(rp) = −bg

∫
dzW(z)

∫ ∞

0

dk⊥k⊥
2π

J2(k⊥rp)PδI(k⊥, z) (18)

8 Hui & Zhang (2008) and Blazek et al. (2017) theorise linear align-
ment scaling for all galaxies on sufficiently large scales, arising from
non-Gaussian structure fluctuations.

wgg(rp) = b2
g

∫
dzW(z)

∫ ∞

0

dk⊥k⊥
2π

J0(k⊥rp)Pδ(k⊥, z), (19)

and jointly model position-intrinsic alignments and clustering,
thereby self-calibrating for galaxy bias. Jn denotes an nth-order
Bessel function of the first kind, and bg is the linear, assumed
scale-independent galaxy bias. The weight function W(z), as
derived by Mandelbaum et al. (2011), is given by

W(z) =
pi(z)p j(z)
χ2(z)χ′(z)

[∫
dz

pi(z)p j(z)
χ2(z)χ′(z)

]−1

, (20)

where p(z)’s are the normalised redshift probability distributions
of the galaxy samples being correlated, i.e. a density and a shapes
sample for alignments, or two density samples for clustering.
The galaxy samples we analyse in this work are flux-limited,
therefore p(z) does not increase as dVcom/dz – the gain in comov-
ing volume with respect to redshift. χ(z) , χ′(z) are the comoving
radial coordinate and its derivative with respect to z, such that
χ2(z)χ′(z) is proportional to dVcom/dz. Thus, W(z) is inversely
proportional to dVcom/dz and acts to down-weight higher red-
shifts, where flux-limited samples miss faint galaxies.

3.3. Likelihoods

We constrain the N/LA models, fitting to wg+ and wgg (see
Sect. 2.3) by sampling multi-dimensional parameter posterior
distributions, using the CosmoSIS9 (Zuntz et al. 2015) imple-
mentation of the affine-invariant emcee (Foreman-Mackey et al.
2013) Monte Carlo Markov chain sampler. The CosmoSIS
framework supports the flexible construction of a pipeline to
compute theoretical power spectra and other statistics, and to
calculate likelihoods against a data vector whilst sampling over
parameters. We exclude the first 30% of samples for a burn-in
phase.

The non-linear processes unaccounted for by the N/LA mod-
els include non-linear density evolution and galaxy biasing,
quadratic tidal torquing, and any other higher-order effects con-
tributing to alignment signatures. The galaxy density-weighted
sampling of the intrinsic alignment field is included at low-
est order in the original derivation by Hirata & Seljak (2004),
however Blazek et al. (2015) highlight additional, linear-scale,
galaxy bias-dependent contributions in a perturbative expansion.
In light of the models’ limitations, and inline with previous anal-
yses, we limit our NLA (and LA) fits to transverse scales above
6 h−1 Mpc.

Our parameter vectors for the NLA/NLA-β (and LA/-β)
models are then

λNLA = { bg , IC }i + { AIA }R,B

λNLA−β = { bg , IC }i + { Aβ , β }R,B,
(21)

where we fit a galaxy bias and “integral constraint” (IC) to the
galaxy clustering measured in each sample i. The integral con-
straint is a free parameter, taking the form of a small additive
scalar applied to the clustering correlation function, to correct
for the effects of a partial-sky survey window (Roche & Eales
1999). Subscripts R,B denote a red and blue version of each
parameter, which are fit to all relevant samples. This brings the
total number of parameters to 14 (16) for the NLA (NLA-β)10.

9 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
10 6 colour and redshift samples i gives 12 clustering parameters
(galaxy biases and integral constraints), plus a red and a blue amplitude
for 14 in total. Another 2 luminosity scaling parameters makes 16.
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Fig. 2. Measured galaxy clustering for our blue (top panel) and red
(bottom panel) galaxy samples. Solid curves illustrate the best-fit lin-
ear clustering per sample (Eq. (19)). The vertical dashed line indi-
cates rp = 6 h−1 Mpc, below which scales are excluded from fitting
(Sect. 3.3).

Previous dedicated IA studies have used galaxy clustering to
fit and fix galaxy bias (e.g. Joachimi et al. 2011) – we instead
opt to marginalise over galaxy biases and integral constraints,
thereby propagating our uncertainty in these parameters into
our IA model constraints. Since our samples form independent
datasets, by virtue of colour separation and disjoint areas, we can
reduce the dimensionality of the problem by fitting our models
to red and blue samples separately.

We choose not to include a redshift power-law scaling ηother
in our models, as has been done in previous works (Hirata et al.
2007; Joachimi et al. 2011; Mandelbaum et al. 2011), since the
redshift baseline of our measurements is short – GAMA starts
to become sparse after z ∼ 0.4. While the results of previous
work do not preclude the possibility of a significant redshift evo-
lution, we argue that there is good reason to expect it to be small.
Tidal torque theories suggest angular momentum generation as
the source of spiral galaxy alignments. Since the spinning-up
of a proto-galaxy halo is a perturbative effect, these alignments
exist in the initial conditions of the matter field. After collapse
of the overdense region, the angular momentum of the galaxy
dominates over tidal torquing effects, and the galaxy orientation
should be “frozen-in”. Subsequently, only merger events should
change the orientation of the galaxy.

Mergers would be expected to erase the memory of previ-
ous alignments, disrupt galaxy and halo angular momenta and
prompt a relaxation phase. The system should relax into a con-
figuration with a reduced spin magnitude, diluting the quadratic
alignment signature (Cervantes-Sodi et al. 2010). However, with
merger timescales much shorter than relaxation, the spiral
quickly transitions to a pressure-supported elliptical. The stellar
distribution will then gradually re-equilibrate according to the
ellipsoidal halo potential, itself moulded by the tidal field.

Therefore we might expect to observe “fixed” blue galaxy
alignments, opposite red galaxy alignments with their evolution
tied to the tidal field (and divided out of our models by the
growth factor), or some diluted middling alignment for transi-
tioning galaxies, where the change of sign takes the amplitude
close to zero. Joachimi et al. (2011) constrain ηother to be con-
sistent with zero for early-type galaxies over a long redshift
baseline. Mandelbaum et al. (2011) analysed late-type galaxy
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Fig. 3. Measured galaxy position-intrinsic shear correlations for our
blue (top panel) and red (bottom panel) galaxy samples. Best-fit NLA
models are shown as solid curves, and the vertical dashed line indicates
rp = 6 h−1 Mpc, below which scales are excluded from fitting (Sect. 3.3).
The best-fit LA model to SR is shown as a dot-dashed line.

alignments in the WiggleZ survey (Drinkwater et al. 2010),
with SDSS shapes, and also found ηother to be consistent with
zero. Furthermore, their null detection at a mean redshift z̄ ∼
0.6 was recently matched by a null detection from the Fast-
Sound galaxy redshift survey (Tonegawa et al. 2015) at z ∼ 1.4
(Tonegawa et al. 2018), suggesting no strong evolution of spi-
ral galaxy alignments. Considering all of the above, we suggest
that a physically motivated prior on ηother should be narrow and
centred on zero.

4. IA constraints for flux-limited samples

With our aim to motivate tighter, more realistic priors for intrin-
sic alignment parameters, we fit the standard and the luminosity-
dependent N/LA models to galaxy position-intrinsic shear and
clustering correlations in KiDS+GAMA and SDSS Main. We
compute signal detection significances across all scales, and
restrict fits of the models to transverse scales > h−1 Mpc. Our
various measurements are shown in Figs. 2–4. The results of fit-
ting are shown in Figs. 5, 6 and Table 2.

4.1. Clustering

Relating the matter-intrinsic power spectrum PδI to wg+ requires
estimations of the galaxy bias bg of our density tracers. Hence
we measure galaxy clustering in our density samples and per-
form fits of a linear, scale-independent bias with the full matter
power spectrum (Eq. (19)). We verify that our clustering pipeline
reproduces the GAMA measurements of Farrow et al. (2015) for
their sample selection.

Figure 2 shows our measurements of wgg in GAMA and
SDSS, with best-fit linear clustering overlaid. Our fits include
the integral constraint correction (Sect. 3.3), which is small
(|IC| . 3 h−1 Mpc) and therefore negligible on small scales. Fits
of the linear clustering model are restricted to scales >6 h−1 Mpc,
indicated by vertical dashed lines. Our sample galaxy bias fits
are summarised in Table 2. The biases form a consistent and
expected picture – more luminous samples are more biased at
the same redshifts.
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Fig. 4. Galaxy clustering (top panel) and position-intrinsic shear cor-
relations (bottom panel) measured in the full KiDS+GAMA and SDSS
Main datasets. Solid lines illustrate the best-fit NLA model, and dot-
dashed lines the LA. The vertical dashed line indicates rp = 6 h−1 Mpc,
below which scales are excluded from fitting (Sect. 3.3).

4.2. Alignments

Figure 3 shows our colour-split measurements of wg+, overlaid
with the best-fitting NLA (solid lines). We also perform fits to
our data with the LA model, shown as dot-dashed lines in Fig. 3
(to SR only) and Fig. 4. Table 3 lists signal detection signifi-
cances for the alignment signals and systematics tests (described
in Sect. 2.3).

4.2.1. Signals and NLA results

We find blue galaxy alignments to be consistent with
zero, in agreement with previous studies of this population
(Mandelbaum et al. 2011; Tonegawa et al. 2018). The NLA-β
amplitude Aβ and power-law β are also consistent with zero,
at 95% confidence. For blue galaxies on the whole, or for indi-
vidual blue samples, we make no significant detections of wg+,
whether restricting to linear scales, or considering the full range
in rp (Table 3). Fits to GAMA-only: AIA = 0.04+0.44

−0.42 , and SDSS-
only: AIA = 1.03+0.90

−0.85, are consistent with each other, and the
total-fit, at 68% confidence.

In agreement with previous work (Hirata et al. 2007;
Joachimi et al. 2011), we measure a significantly positive ampli-
tude of alignments for red galaxies, in both modes of fitting and
at >95% confidence. The total significance of detection we find
for red galaxy alignments is close to 9σ over the full range
in rp, and 6.79σ when limited to linear scales (>6 h−1 Mpc).
The β luminosity-scaling is found to be comfortably consis-
tent with zero, and thus results in a poorer fit (owing to a lost
degree of freedom) than for the 1-parameter NLA. This is in
contrast with previous observations of near-linear scalings of
red galaxy/LRG alignments with luminosity (e.g. Hirata et al.
2007; Joachimi et al. 2011; Singh et al. 2015). The perturbative
IA model of Blazek et al. (2015) uncovered additional contribu-
tions to the observed large-scale intrinsic shape correlation, aris-
ing from source density weighting (Hirata & Seljak 2004) – as
galaxies preferentially exist in overdense space, our sampling of
the intrinsic ellipticity field is necessarily biased, as briefly dis-
cussed in Sect. 3.3. This contribution was found to be galaxy

bias-dependent, and mooted as responsible for such observed
luminosity-scalings – indeed we measure SDSS red to have the
weakest alignment signature (see Sect. 4.2.2) of our red samples,
although the significance of this is questionable. A GAMA-only
fit results in a slightly higher red galaxy alignment amplitude of
AIA = 3.52+0.60

−0.56, whilst SDSS-only returns AIA = 2.50+0.77
−0.73, again

comfortably consistent with each other and the total fit.
For the “full” (all-galaxy) samples, we measure a positive

NLA amplitude at just over 95% confidence, whilst the NLA-β
is poorly constrained, owing to a sparse luminosity baseline. A
point of interest is the apparently larger amplitude of wg+ mea-
sured for SDSS, compared with GAMA, for which the N/LA
models are unable to account – the green and purple curves
in Fig. 4 differ only by their dependence on the (subdominant)
weight functionW(z) and the fitted galaxy bias per sample. Indi-
vidual fits to these samples yield AIA = 0.26+0.63

−0.62, and AIA =

2.01+0.79
−0.71, for GAMA and SDSS, respectively – mildly discrepant

at ∼1.8σ. GAMA is brighter, and constrained to be more biased,
than SDSS, seemingly ruling-out luminosity/bias-dependences
as explanations. It must, however, be noted that these all-galaxy
signals constitute muddy combinations of clearly dichotomous
alignment signatures, and that GAMA and SDSS sample differ-
ent environments – something we explore in the next section.

A primary motive for this work was to take advantage of
highly complete, flux-limited data in order to constrain IA as
it pertains to cosmic shear contamination. The only comparable
analyses to date are the SDSS Main studies of Mandelbaum et al.
(2006) – M06, and Hirata et al. (2007)11 – H07, each of which
was conducted slightly differently to this work. For example,
neither study made use of the N/LA models as they are typi-
cally formulated today, allowing for no easy comparison of fit-
ted alignment amplitudes AIA. In any case, our sample selections
are also quite different – both M06 & H07 made use of the long
luminosity baseline in SDSS to create subsamples, and whilst
H07 also split their samples into red/blue galaxies, their cut was
performed using observer-frame magnitudes. Nevertheless, we
make some broadly similar findings; H07 made robust detections
of IA in red galaxies, as did M06 for their brightest sample, itself
dominated by red galaxies. Additionally, H07 also failed to make
a significant detection for blue galaxies.

We do however seem to find some indirect disagreement in
the alignment amplitude vs. sample luminosity trend inferred
from the data. Each of M06 & H07 saw trends of increasing
signal amplitudes with sample luminosity, whilst we find no evi-
dence for luminosity evolution in our model fits. Furthermore,
the far brighter Z2R sample exhibits an amplitude of alignment
entirely consistent with the Z1R fit, and as mentioned above, we
measure a larger amplitude of alignment for the fainter (uncut)
SDSS sample than for GAMA. We explore these individual fits,
and how they correlate with sample properties, in Sect. 4.2.2.

4.2.2. Individual sample fits

We make additional, individual fits of AIA to each of our galaxy
samples, to gain further insight into trends with colour, lumi-
nosity and redshift. Fig. 6 illustrates the results of fitting indi-
vidual amplitudes to (i, squares in top left panel) red and blue
signals, (ii, filled points in right panels) signals from each
of our colour/redshift-split samples in GAMA and SDSS, (iii,
unfilled triangles/circles) individual signals from uncut GAMA
and SDSS, (iv, pentagon in top left panel) all signals from the

11 Hirata et al. (2007) also studied LRGs – we only discuss their work
on the flux-limited SDSS Main sample.
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Fig. 5. Posterior probability contours of our fitted galaxy bias bg, NLA amplitude A and luminosity power-law β parameters, for red (left panel)
and blue (right panel) galaxies. The filled (unfilled) contours are for the NLA (NLA-β) models. Dashed grey lines mark values of zero for IA
parameters.

uncut samples, and (v, stars in right panels) signals from GAMA
galaxies with stellar-mass M∗ > 1011 M�. Only the filled data
points are independent of each other, as the unfilled points are
each fitted to some collection/subset of the independent samples
– Table B.1 details the constraints from each sample, with inde-
pendent samples denoted by †.

In each panel of the figure, there is a clear dichotomy in the
fitted amplitudes for red and blue galaxies, highlighted in the
right-hand panels by dashed lines and shading. The top right
panel shows AIA vs. sample luminosity, and reveals a vaguely
positive correlation in the filled data points, but at very low sig-
nificance, especially if one (i) considers blue and red separately,
and (ii) notes that the Z1B fitted amplitude is anomalously low
with respect to the other blue sample amplitudes12.

The bottom right panel shows AIA vs. sample mean-redshifts,
with any correlation even less pronounced. To date, no direct
IA analyses have found evidence for redshift evolution of intrin-
sic alignments (Joachimi et al. 2011; Mandelbaum et al. 2011;

12 We note that the Z1B amplitude is consistent with zero at 95% con-
fidence, and that this signal (downward cyan triangles in the top panel
of Fig. 3) is not found to be a particularly significant detection, at <2σ
(Table 3). Additionally, the signal becomes comfortably consistent with
zero upon removal of the faint-limit we apply to our GAMA density
samples (explained in Appendix A.2), which affects the Z1B sample far
more significantly than each of the others combined. This could be inter-
preted as follows; the Z1B sample shows a net tangential alignment at
∼1.7σ, but only when excluding the faintest (∼27% here) galaxies from
the density sample. However, the faint-limit is part of our clustering
covariance estimation (see Appendix A.2) – removing it may invalidate
the clustering fits which anchor the galaxy bias, so this interpretation
must be taken with moderation. A linear-scale tangential alignment of
blue galaxies, dependent on the bias of the density tracer, is an inter-
esting result which would call for further work. However, it should be
noted that (i) tidal torquing mechanisms ought to be weak on these
scales, so this signal is not expected, (ii) the significance of the neg-
ative amplitude is low, and (iii) the signal itself lacks a clear detection.

Tonegawa et al. 2018), and our results seem to agree – although
it should be noted that our baseline is short, and limited to the
relatively near universe. Some works have reported evidence
for scaling of IA with sample luminosity (Hirata et al. 2007;
Joachimi et al. 2011; Singh et al. 2015), findings unsupported by
our measurements – we do make a clean detection for massive,
red GAMA galaxies (red stars), at 9.1σ and with a large fit-
ted amplitude of alignment, but these galaxies are effectively a
subset of (primarily) the Z2R sample. Thus the large-M∗ points
are highly correlated with their high-redshift counterparts; these
points (upward triangles) disagree with the notion of luminosity
dependence. As discussed above, it may be that such an observed
dependence is due to environmental properties which correlate
with luminosity. Our data points might weakly support this asser-
tion for red galaxies, given that we constrain SDSS red to be less
biased than the red GAMA samples (see Table 2), however the
significance is extremely low; more work is needed for a con-
crete answer to this question.

In the top left panel, we interpolate between the fitted red and
blue alignment amplitudes according to

AIA = AR
IA fred + AB

IA(1 − fred) (22)

where fred ∈ [ 0 , 1 ] is the sample red fraction, and we assume
that the red and blue galaxy populations contribute linearly to
the measurable alignment of the full sample. Thus we provide
predictions13 for the AIA one might measure in a flux-limited
sample of mixed galaxy-type, given the red galaxy fraction, and
provided that the red/blue dichotomy is the dominant driver of
the alignment profile.

Shown also in the top-left panel are the two AIA fitted to
the total GAMA (green triangle) and total SDSS (pink circle)

13 Inserting our IA model constraints from Tables 2 or C.1 into the func-
tional form of Eq. (22), one can derive an expected confidence interval
on AIA, for the NLA or LA, given a sample red-fraction.
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Fig. 6. Constraints on the NLA model alignment amplitude AIA, from various subsamples of GAMA and SDSS (Table 1), plotted against sample
properties. The constraints illustrated here are also given in Table B.1. Top left panel: AIA vs. shape sample red galaxy fraction. We interpolate
(green line/shading) between our fits to blue (blue square) and red (red square) galaxy samples, according to AIA = AR

IA fred +AB
IA(1− fred), where fred

is the red fraction and we assume linearity in the contributions of galaxy populations to the total alignment signal/amplitude. The inconsistency of
mixed-sample signals (open points) with this interpolation is due to variable contributions of satellite galaxies – this is discussed in Sect. 4.2.2. Top
right panel: AIA vs. shape sample luminosity (as a ratio to the pivot Lpiv ∼ 4.6 × 1010 L�, corresponding to absolute r-band magnitude Mr = −22).
Bottom right panel: AIA vs. shape sample mean redshift. All plotted data points illustrate the mean and 68% confidence interval of 1D marginalised
posterior distributions on AIA, after fitting to relevant alignment/clustering signals. Only the filled points are independent of each other; each of the
open points is in some way correlated with the others. Dashed lines and shading indicate the mean and 68% CI of the total-colour fits, highlighting
the type-dependence of alignments.

signals (shown in the bottom panel of Fig. 4), and the sin-
gle amplitude fitted to both signals (gold pentagon). One
clearly sees that GAMA galaxies are less radially aligned
than is predicted by the interpolation. We find this discrep-
ancy to be driven by a significant fraction of satellite galax-
ies in GAMA, with differing alignment behaviour – previous
work has found satellite galaxy alignments to be weaker than
those of central galaxies, or altogether non-existent (Sifón et al.
2015; Singh et al. 2015; Huang et al. 2018), in particular when
considering larger pair-separations as we do when fitting our
models.

Figure 7 breaks down the central14 and satellite, red and blue
contributions to the total GAMA alignment signature. The low

14 We count field galaxies as centrals, assuming that their satellites are
simply too faint to be detected.

amplitude fitted to GAMA is simply understood in this context –
the left-hand panels demonstrate linear-scale (& a few h−1 Mpc)
alignments to be sourced entirely by red central galaxy shapes.
All other galaxy shapes – red satellites, blue centrals and blue
satellites – are unaligned on these scales (seen in all panels),
and thus dampen the overall alignment signature with zero-mean
white noise. Thus the linear-scale alignment correlation can be
thought of as “set” by the red central galaxies, and then repeat-
edly damped upon the inclusion of other species; blue galaxies
have zero-signal, and so force an effective rescaling of wg+ by a
factor ∼ fred; red satellites do source a strong signal (bottom-left
panel) through the inclusion of their positions (which are highly
correlated with centrals on these scales), but this is slashed by
their own lack of alignment (right-panels), making the overall
dampening a more complicated function of red central/satellite
fractions.
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Table 2. NLA model parameter and galaxy bias 1D marginalised constraints for our samples, with 68% confidence intervals and the reduced χ2

(χ2
ν = χ2 per degree of freedom) statistics for the global fit.

Sample 〈z〉 〈L/Lpiv〉 bg AIA χ2
ν p(> χ2) Aβ β χ2

ν p(> χ2)

GAMA full 0.23 (0.24) 0.51 (0.70) 1.57+0.08
−0.09

}
1.06+0.47

−0.46 1.32 0.21 0.87+4.00
−1.43 2.06+2.20

−2.82 1.12 0.34
SDSS Main full 0.11 (0.11) 0.22 (0.22) 0.94+0.10

−0.11
G: z > 0.26, blue 0.33 (0.33) 1.06 (1.09) 1.10+0.07

−0.07
 0.21+0.37

−0.36 1.37 0.14 0.65+0.50
−0.51 2.47+1.68

−1.59 1.34 0.17G: z < 0.26, blue 0.15 (0.17) 0.21 (0.36) 1.55+0.09
−0.08

S: blue 0.09 (0.09) 0.14 (0.14) 0.88+0.12
−0.14

G: z > 0.26, red 0.33 (0.33) 1.47 (1.48) 1.52+0.11
−0.11

 3.18+0.46
−0.45 1.28 0.20 3.40+0.59

−0.56 0.18+0.20
−0.22 1.34 0.17G: z < 0.26, red 0.17 (0.18) 0.50 (0.56) 1.84+0.12

−0.12
S: red 0.12 (0.12) 0.29 (0.29) 1.19+0.11

−0.11

Notes. Aβ denotes the alignment amplitude parameter of the NLA-β model (Eq. (17)). The mean galaxy biases shift slightly with the NLA-β –
these changes are insignificant within statistical errors on these parameters, and are not shown in the table. Bracketed numbers indicate properties
of density samples, as opposed to shapes samples. “G” and “S” denote GAMA and SDSS samples, respectively.

Table 3. Reduced χ2 statistics to assess the significance of signal detec-
tions against the null hypothesis (i.e. a zero-signal), for wg+ and for
systematics tests; wg× and wg+ limited to large line-of-sight separations
(60 6 |Π| 6 90 h−1 Mpc), denoted Π+.

Sample Signal χ2
ν ,null p(> χ2) σ

Blue total wg+ 0.85 (1.24) 0.71 (0.25) 0.37 (1.14)
GAMA, wg+ 0.31 (0.38) 0.98 (0.82) 0.02 (0.22)
z > 0.26, wg+(Π+) 0.20 (0.00) 0.98 (1.00) 0.03 (0.00)
blue wg× 0.93 (1.66) 0.51 (0.16) 0.66 (1.42)
GAMA, wg+ 0.85 (2.55) 0.58 (0.05) 0.56 (1.93)
z < 0.26, wg+(Π+) 0.41 (1.27) 0.87 (0.28) 0.16 (1.08)
blue wg× 0.44 (0.22) 0.94 (0.93) 0.08 (0.09)
SDSS Main, wg+ 1.38 (1.12) 0.17 (0.34) 1.36 (0.95)
blue wg+(Π+) 0.44 (0.78) 0.85 (0.46) 0.19 (0.74)

wg× 1.14 (1.30) 0.33 (0.27) 0.98 (1.11)
Red total wg+ 5.03 (6.86) 0.00 (0.00) 8.93 (6.79)
GAMA, wg+ 4.03 (4.37) 0.00 (0.00) 4.51 (3.17)
z > 0.26, wg+(Π+) 0.74 (2.97) 0.62 (0.05) 0.50 (1.95)
red wg× 0.31 (0.42) 0.98 (0.79) 0.02 (0.26)
GAMA, wg+ 6.27 (8.85) 0.00 (0.00) 6.09 (4.48)
z < 0.26, wg+(Π+) 0.32 (0.30) 0.93 (0.74) 0.09 (0.33)
red wg× 0.75 (1.20) 0.69 (0.31) 0.40 (1.02)
SDSS Main, wg+ 4.90 (7.86) 0.00 (0.00) 5.29 (4.71)
red wg+(Π+) 0.84 (0.87) 0.54 (0.42) 0.61 (0.81)

wg× 0.28 (0.20) 0.99 (0.94) 0.01 (0.08)

Notes. Bracketed numbers indicate the statistics when restricting to the
rp-scales >6 h−1 Mpc which are fitted in the analysis.

Being ∼2 magnitudes shallower than GAMA, and at less
than a tenth of the on-sky density, SDSS is comparatively defi-
cient in fainter satellite galaxies at low redshift (see right-
panel of Fig. 1). Thus the linear-scale alignment dampening
described above is more severe for GAMA than for SDSS,
explaining the behaviour seen in Figs. 4 and 6. Indeed, we find
an alignment amplitude fit to the mixed central galaxy signal in
GAMA (Fig. 7, top-left panel, green curve) to sit comfortably
atop the interpolation of Fig. 6, with an almost unchanged red
fraction.

Inspecting the signals themselves, we note first that blue
galaxies exhibit null signals under every division of the data. We
also see that red central galaxies align radially with each other
at large-rp (top-left), and with satellites at small-rp (bottom-
left) – we re-measure this signal with |Πmax| = 12 h−1 Mpc to

confirm that these centrals are aligning with their own satel-
lite distribution. In comparison, red satellites align strongly,
but more noisily, with each other on smaller scales (bottom-
right), and are elsewise unaligned. With these measurements we
can make the following statements about red galaxies: satellite
galaxies exist preferentially along the semi-major axis direction
of the central galaxy, and the satellite galaxies are, on average,
aligned with this direction. These are interesting considerations
for future work, given that the satellite distribution is thought to
trace that of the underlying dark matter.

Satellite considerations thus explain the discordance
between the blue-to-red amplitude interpolation in Fig. 6 and the
amplitudes fitted to GAMA signals, and call for additional work;
a motivated prior for the amplitude of intrinsic alignments in a
cosmic shear study may need to consider not only the red frac-
tion of the galaxy sample, but also the satellite fraction. Such
population fractions will correlate with each other to an extent,
with redshift as the universal galaxy population evolves, and
with spatially variable limiting magnitudes for any given survey.
To complicate matters further, Georgiou et al. (2019) find these
influential red satellite galaxies to drive variation in measurable
alignment signatures as a function of the passband of observa-
tion; cosmic shear studies in different bands can expect differ-
ent contributions of alignments to shear signals. Thus predicting
the IA contamination of shear in a galaxy survey is highly non-
trivial.

4.2.3. LA results

Linear alignment model fits to the data (fully detailed in
Table C.1) result in consistency with analogous parameters from
the NLA/NLA-β at 68% in all cases. The slightly larger ampli-
tudes seen for red galaxies reflect the smaller amplitude of fluc-
tuations in the linear matter power spectrum (see Sect. 3.1). This
can be seen most clearly in the bottom panel of Fig. 3, where the
LA fit to SR (brown dot-dashed line) happens to closely match
the NLA-Z1R fit (orange solid line) in amplitude. The linear
model shows a clear deficit in power at scales .20 h−1 Mpc, rel-
ative to the NLA. Consistency between the blue LA and NLA
models is even stronger, as expected for null-signals.

The χ2 statistics in Tables 2 and C.1 purport the LA model
to describe these data almost as well as the NLA on scales
>6 h−1 Mpc, though it is clear from the N/LA illustrations in
Figs. 3 and 4 that (i) neither model is sufficient to capture the
complex variation of alignments as a function of galaxy sam-
ple properties and (ii) only the red GAMA signals would seem
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Fig. 7. Various position-intrinsic shear correlations measured between GAMA samples of exclusively central or satellite galaxies, with errors
estimated via jackknife. The title of each panel indicates the central/satellite composition of the position-shear (i.e. density-shape) samples, and
we measure correlations in the mixed samples, and for red- (red dashed) and blue-only (blue dashed) subsets.

to explicitly prefer the enhancement offered by the NLA on
scales of a few h−1 Mpc. The inclusion of blue galaxies effi-
ciently washes out the wg+ signal on those scales (green points
in Fig. 4), such that something in-between the N/LA models
would appear closer to the truth. This result reaffirms the need
for more complex modelling of IA in cosmic shear, highlighting
the non-trivial contributions of various (i.e. colour, environment)
sub-samples to overall alignment signatures.

4.3. Systematics tests

Table 3 lists the detection significances of our measured signals –
wg+ , wg+{60 < |Π| < 90 h−1 Mpc} and wg× – across all rp-scales,
and when limited to the scales of fitting (>6 h−1 Mpc; bracketed
numbers). We make no significant (>2σ) detections of any sys-
tematic signals (see Sect. 2.3) in our samples.

5. Impact on cosmology

Here we forecast the impact of our informative IA priors upon a
colour-split cosmic shear analysis over a completed KiDS sur-
vey. We assume that the alignments in the data are perfectly
described by the N/LA models – something we will investigate
in future work. This assumption is questionable for the NLA,
but given its widespread use in current surveys, and since we
are not concerned with biasing of parameters here, but rather the

pure impact of priors, we continue as such. The model survey
is described by an area of 1, 350 deg2 with a total galaxy num-
ber density of 9 arcmin−2 (Hildebrandt et al. 2017), and a total
shape dispersion of 0.41. We model the n(z), over z ∈ [ 0.1 , 1.2 ] ,
according to (Smail et al. 1995)

ntotal(z) ∝ zα exp
{
−

(
z
z0

)γ}
, (23)

where α = 2, γ = 1.5 and z0 = 0.375. We define 5
tomographic bins in redshift, with edges (KiDS+VIKING-450;
Hildebrandt et al. 2018): [ 0.1 , 0.3 , 0.5 , 0.7 , 0.9 , 1.2 ], each
scattered about the bin centre with σz = 0.05(1 + z) and
with no catastrophic outliers. Using KV450 galaxies, we esti-
mate

〈
L/Lpiv

〉
for each colour/redshift bin, with the unchanged

pivot Lpiv ∼ 4.6 × 1010 L�. We also assume the KV450 red
galaxy fraction per redshift bin for our toy survey; approx.
[ 0.13 , 0.23 , 0.27 , 0.26 , 0.26 ] (Wright et al. 2018). Splitting the
model survey by colour more than doubles the available informa-
tion when computing auto- and cross-correlations – our data vec-
tor d consists of shear angular power spectra C(`) with intrinsic
contributions (Eqs. (10)–(13)), for all colour/redshift bin combi-
nations, in 10 logarithmic bins ` ∈ [50, 2000]

d = {CiB jB (`) ∀ i , j ∈ [1 , 5] ∩ i 6 j,
CiB jR (`) ∀ i , j ∈ [1 , 5],
CiR jR (`) ∀ i , j ∈ [1 , 5] ∩ i 6 j }, (24)
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Table 4. Gaussian priors on cosmological and IA/photo-z nuisance
parameters adopted for our Fisher forecasts.

Parameter Centre Width

h 0.7 0.15
ns 0.95 0.01
AB
β 0.58 20

βB 3.15 5
Modest:
az1 0 0.05
az2 0 0.055
az3 0 0.06
az4 0 0.065
az5 0 0.07
Informative:
az1 0 0.036
az2 0 0.042
az3 0 0.048
az4 0 0.054
az5 0 0.062

Notes. Centres are those of the fiducial cosmology, which includes the
maximum likelihood points (not the 1D marginals) of our IA analysis.
The “Informative” set of priors for photo-z bias parameters are approx-
imations of constraints on equivalent parameters from the KiDS joint-
probe analysis by van Uitert et al. (2018), with an extension for a fifth
redshift bin.

for a total of 550 data points. We compute a full analytical
covariance matrix (see Hildebrandt et al. 2017, Sect. 5), with
non-Gaussian and super-sample contributions, for computation
of the Fisher information (see Tegmark et al. 1997, and refer-
ences therein). Our cosmological parameter vector is

λFisher = {Ωm ,Ωb , h , σ8 , ns , w0}, (25)

and we fix Ωk = 0. We append the parameter vector with nui-
sance parameters for the NLA/NLA-β, and for characterising the
impact of additive photometric redshift biases – modern shear
surveys rely upon photo-z, and as such are prone to systematic
bias in redshift distributions and resultant constraints. We param-
eterise the additive photo-z bias per colour/redshift bin, such that
nx(z) → nx(z − azx ), where nx(z) is the redshift distribution of
bin x ∈ [ 1, 5 ]R,B. Our nuisance parameters are then

{AIA , β , az1 , az2 , az3 , az4 , az5 }R,B, (26)

giving a total of 18 (20) parameters with NLA (NLA-β) align-
ments in the data. We take the MICE cosmology from our IA
analysis as the fiducial cosmology about which Fisher deriva-
tives are computed, and apply Gaussian priors as listed in
Table 4. Adding a Gaussian prior to the Fisher information is
necessary in the case of AB

β and βB, as small-amplitude sig-
nals result in a total degeneracy between these parameters. We
limit their variability – in the NLA-β forecast, only – in order
to demonstrate a meaningful application of our derived IA pri-
ors. The results of our forecasts are shown in Figs. 8 and 9,
and condensed in Fig. 10 to show the IA prior impacts on the
S 8 ≡ σ8

√
Ωm/0.3 parameter, and dark energy equation of state

w0. We note that the Fisher approximation – the mean curva-
ture of the likelihood function about the fiducial cosmology – is
inexact in the case of non-Gaussian posterior probability distri-
butions, such that the banana-like Ωm −σ8 degeneracy observed
in cosmic shear analyses (Hildebrandt et al. 2017; Abbott et al.

2018) is not exactly captured. Thus our forecasts are demonstra-
tive in purpose, and may differ from analogous full, simulated
likelihood forecasts (e.g. Krause et al. 2016).

Figures 8 and 9 depict forecasted constraints for final KiDS-
like colour-split cosmic shear, with NLA and NLA-β alignments
in the modelled data, respectively. Clear improvements are seen
in Ωm , σ8 , w0 constraining power when applying our 68% confi-
dence intervals as informative priors on the IA parameters (grey
vs. cyan contours). This demonstrates the degrading influence
of free-to-roam IA nuisance parameters in cosmic shear analy-
ses – the application of our priors results in up to ∼50% reduc-
tions in the size of errorbars on S 8 and w0 for the NLA forecast,
and 20% for the LA whose weaker contribution levies smaller
gains when constrained. The gains in constraints upon crucial
parameters are illustrated in Fig. 10 (circles vs. stars) and fully
detailed in Table 5, for each of the photo-z bias prior setups
detailed in Table 4. The “Modest” case features a rough estimate
for a monotonically increasing uncertainty in the real positions
of tomographic bin-centres, and serves as a yard-stick between
the case without any priors and the “Informative” case, where we
adapt the constraints of van Uitert et al. (2018) for use as priors.

Figures 8–10 also plot some idealised cases – assuming per-
fect knowledge of both intrinsic alignments and photometric red-
shift distributions we plot navy, unfilled contours in Figs. 8,9,
and cyan/grey diamonds in Fig. 10. For perfect photo-z alone,
we include red, unfilled contours (Figs. 8 and 9) and mauve/red
diamonds (Fig. 10). In the latter case, our analysis priors are
not applied, as they have a negligible effect upon the constrain-
ing power of the model survey – i.e. with perfect knowledge of
source redshifts, such a survey could self-calibrate for intrinsic
alignments beyond the precision of our direct analysis. The dif-
ference between the red/blue unfilled contours in Figs. 8 and 9 is
then the potential gain in precision from even tighter IA model
constraints, which is seen to be particularly large for the dark
energy equation of state w0.

The advantages of informative priors on intrinsic align-
ment model parameters are clearly demonstrated here, espe-
cially when considering that the current modes of modelling are
too simple – our colour-split analysis is already more complex
than most. Alignment models with additional freedoms must
be used, in order to characterise the variable contributions of
galaxies of different types and in different environments – e.g.
the mixed alignment perturbative model of Blazek et al. (2017),
recently applied to DES Y1 data (Troxel et al. 2018) and accom-
panied by losses in constraining power. The mitigation of such
losses demands dedicated IA studies, producing reliable priors
for model parameters.

6. Conclusions

We have measured the galaxy position-intrinsic shear and
position-position correlations in the GAMA and SDSS Main
galaxy samples, selecting subsamples by colour and redshift. We
undertook a detailed consideration of reliable subsample covari-
ance estimation, implementing a 3-dimensional jackknife rou-
tine for the relatively small-area GAMA samples. We jointly fit
to our intrinsic alignment and clustering measurements with sev-
eral models; the non-linear and linear alignment models (N/LA),
and luminosity-dependent analogues (N/LA-β).

Our NLA fits yield constraints (quoted to 1σ) upon the
intrinsic alignment amplitude AIA for 3 cases; unselected, early-
type and late-type galaxies, each representing a step forward in
precision for constraints of their type from dedicated, spectro-
scopic studies of intrinsic alignments. Our findings agree with
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Fig. 8. Fisher forecasted cosmological constraints for a KiDS-like survey, with (cyan) and without (grey) the application of our derived IA priors,
assuming intrinsic alignments obey the non-linear alignment (NLA) model. Filled contours correspond to forecasts without any priors upon photo-
z bias parameters (cf. the “Modest” and “Informative” prior cases in Table 4). Forecasts with photo-z bias fixed to zero are represented by navy and
red unfilled contours, where navy also assumes perfect knowledge of IA model parameters. Dashed grey lines mark values of zero for nuisance
parameters.

the literature, wherein red galaxies exhibit significant, positive
(radial) alignments, and blue galaxy alignments are thus far
undetectable. We also fit the LA model to our data, finding com-
fortable consistency with each of our results for the NLA. As
noted in the text, this is largely due to our restriction to linear
scales >6 h−1 Mpc where the N/LA difference is minimal.

Our red galaxy alignment constraint AIA = 3.18+0.46
−0.45

appears to demonstrate that fainter, non-LRG galaxies are still
privy to a radial alignment mechanism on large scales (up to
60 h−1 Mpc in this analysis), although not as strongly as LRGs

(e.g. Joachimi et al. 2011, Singh et al. 2015). We are able to
improve constraints upon the blue galaxy alignment amplitude to
AIA = 0.21+0.37

−0.36, consistent with the work of Mandelbaum et al.
(2011), and still consistent with a null signal. This result, from
scales >6 h−1 Mpc15, supports the quadratic alignment picture of
weak spiral galaxy alignments on linear scales. Fitting jointly

15 The small scales neglected in fitting are similarly discarded in most
3× 2pt analyses, due to uncertainties in the modelling of non-linearities
and baryonic contributions.
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Fig. 9. The same as Fig. 8, but assuming luminosity-dependent non-linear alignments (NLA-β) in the data.

to the wg+ (and wgg) signals measured in GAMA and SDSS,
without any colour or redshift selections, yields AIA = 1.06+0.47

−0.46,
signifying a net radial alignment of galaxies in the combined
dataset.

In the context of contaminations to weak lensing, the result
for blue galaxies may be the most pertinent – whilst our flux-
limited samples offer the most representative dataset we can
muster, the difficulties of spectroscopy limit them to relatively
bright galaxies at low redshifts. Thus our model constraints
for the unselected case are likely to over-predict red galaxy
contributions – photometric cosmic shear datasets extend to
greater depths and hence higher redshifts, where faint, blue
galaxies dominate samples. While the results of our fitting to

individual galaxy samples reveal weak/non-existent correlations
between IA and galaxy luminosity/redshift, we also find signif-
icant, scale-dependent variability of IA when separating cen-
tral/satellite contributions. In GAMA, red central and satellite
galaxies align with their local galaxy distribution, i.e. that of
the group halo, whilst red central shapes are solely responsi-
ble for the linear-scale correlation. Any blue central/satellite
galaxy alignments remain undetectable. A full consideration is
beyond the scope of this work, however our derived IA con-
straints remain the most representative for shear-like samples,
and should be instructive for future studies.

We recommend the use of our colour-specific alignment
constraints, and our interpolation between them (Eq. (22)), in
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Fig. 10. Comparison of marginalised 68% confidence intervals on S 8 ≡ σ8
√

Ωm/0.3 and w0, forecasted for varied sets of nuisance parameters, with
(stars) and without (circles) the application of our intrinsic alignment parameter priors. Diamonds illustrate cases with perfect knowledge of the
alignments in the simulated data. The intervals are plotted as ratios to the fiducial case (cyan), where NLA parameters and photo-z distributions are
perfectly known. Dotted lines denote cases with the “Informative” photo-z bias priors (Table 4), and solid lines those without any prior. Nuisance
(free) parameters are denoted for each case by curly brackets {} in the legend.

Table 5. Forecasted improvements in constraining power for key cosmological parameters when employing IA model constraints as informative
prior ranges on IA nuisance parameters.

{Nuisance} Parameters Ωm σ8 S 8 ≡ σ8
√

Ωm/0.3 w0

Linear alignments (LA)
{AR

IA, A
B
IA}, photo-z known 2% 1% 1% 1%

{AR
IA, A

B
IA, βR, βB}, photo-z known 6% 2% 4% 7%

{AR
IA, A

B
IA, az1−5,R,B} 3%, 4%, 3% 2%, 1%, 1% 2%, 2%, 2% 2%, 1%, 1%

{AR
IA, A

B
IA, βR, βB, az1−5,R,B} 27%, 24%, 20% 22%, 17%, 14% 25%, 21%, 17% 17%, 22%, 20%

Non-linear alignments (NLA)
{AR

IA, A
B
IA}, photo-z known 7% 1% 4% 14%

{AR
IA, A

B
IA, βR, βB}, photo-z known 2% 0% 1% 15%

{AR
IA, A

B
IA, az1−5,R,B} 38%, 28%, 25% 27%, 18%, 14% 36%, 25%, 21% 20%, 27%, 26%

{AR
IA, A

B
IA, βR, βB, az1−5,R,B} 64%, 38%, 32% 56%, 23%, 17% 62%, 36%, 27% 51%, 43%, 39%

Notes. The variable parameters for each mode of an N/LA forecast are indicated by curly brackets {} in the left-most column. Improvements are
given as the percentage reductions in the sizes of 1σ confidence intervals on respective parameters, for the no-prior, modest-prior and informative-
prior photo-z bias prior setups (see Table 4), hence we only display a single reduction for the cases without any photo-z bias.

formulating a prior range on AIA for future cosmic shear signal
fitting. An average of our constraints, weighted by the relative
red/blue galaxy populations, is likely to provide a more realis-
tic description of the alignments present in a dataset – noting
the GAMA satellite fraction of ∼27%, one can consider the AIA
interpolation to serve as a conservative upper-limit for similarly
satellite-heavy samples.

Our fits of the luminosity-dependent NLA resulted in null
detections for the β power-law, at 95% confidence. The blue
galaxy β parameter is poorly constrained by the data, as the
luminosity baseline of the samples is sparse and ineffectual, and
the signals are close to zero. The red galaxy result is interest-
ing, as it seems to contradict previous works which have found

a roughly linear scaling of alignments with sample luminosity
(Joachimi et al. 2011; Singh et al. 2015). The reason for this is
that the red galaxy alignments show little/no evolution over a
luminosity baseline of (rescaled to start at unity) ∼[1, 1.67, 5].
This observation might be partly explained by the density
weighting and consequent bias-dependent signal enhancement
described by Blazek et al. (2015), and certainly lends support to
the notion that the current methods of modelling for IA are insuf-
ficient to grasp the complexity of contributions from galaxies in
different environments.

We forecasted the cosmological parameter constraining
capabilities of red/blue-split cosmic shear in a completed KiDS
survey, assuming that alignments in the simulated data were
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described by the NLA or LA models. Applying our IA nuisance
parameter constraints as informative priors, we find reductions
of up to ∼50% (or ∼20% for the LA) in the size of confidence
intervals for the S 8 parameter and w0, dependent on the freedoms
of photometric redshift bias parameters. Our forecasts demon-
strate the potential utility of independent intrinsic alignment
model constraints as informative priors in cosmic shear analy-
ses, particularly as IA parameterisations become more complex
and impactful.

In the era of LSST, Euclid and WFIRST, our current prescrip-
tions for the intrinsic alignment contamination of cosmic shear
would lag behind greatly increased statistical power – one fears
that the limit of cosmological inference could be determined by
the uncertainty in models for IA (and other systematics), and open
to strong biases as a result. Our work has attempted to characterise
the alignment signatures of a purely flux-limited sample, finding
complexity beyond the divergent behaviour of elliptical and spiral
galaxies, extending to the non-trivial contributions of red centrals
and satellites. These findings motivate us to explore IA models
with galaxy red- and satellite-fraction considerations, and to con-
strain such models with representative spectroscopic data – such
work will aid in the maximisation of potential for the next gener-
ation of lensing surveys.

Looking forward, we hope to perform this analysis with a
halo model for intrinsic alignments, adapted from the formal-
ism of Schneider & Bridle (2010), fitting to all scales, includ-
ing a satellite-alignment prescription, and taking full advantage
of the high completeness of these data (Fortuna et al., in prep.).
In the meantime, our derived NLA model constraints will pro-
vide useful priors for current and future shear surveys, improving
cosmological constraints and blocking the influence of unknown
systematics on IA parameterisations. New, narrow-band photo-
metric datasets are currently being amassed (PAUS; Benítez et al.
2009, J-PAS; Benítez et al. 2014), with the potential for the pro-
duction of unprecedented IA model constraints, for use in future
weak lensing analyses. Furthermore, the statistical power and
associated precision of these datasets will enable the use of
intrinsic-intrinsic shear (II) correlations in studying the type- and
environment-dependence of galaxy alignment mechanisms. Pow-
erful and additional statistics, cross-correlations between galaxy
types, and increased depths in these analyses will shed new light
on the intrinsic alignment contamination of cosmic shear, and on
the physics of galaxy formation and evolution.
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Appendix A: Covariances

To quantify sample variance, one would ideally prefer to use
many realisations of simulated data in estimating errors on a
statistic. Unfortunately, there remain qualitative disagreements
between the latest hydrodynamical simulations with respect to
the form of late-type galaxy intrinsic alignments (Tenneti et al.
2016). More fundamental road-blocks are small volumes and a
lack of multiple realisations of these simulations, making them
unsuitable for covariance purposes, as yet. We prefer our IA
measurement errors to come from the data.

With an eye to include the largest possible transverse scales
in our analysis, we implement a 3-dimensional delete-one jack-
knife. The jackknife covariance is estimated as

Ĉjack =
N − 1

N

N∑
α=1

(wα − w̄)(wα − w̄)T, (A.1)

where wα is the signal of interest, as measured from jackknife
sample α, and w̄ is the average over N samples. T denotes
the conjugate transpose of the mean-subtracted signal vector.
N jackknife samples are defined by dividing the survey into N
subvolumes and excluding one at a time, measuring wα in the
rest of the survey. The performance of jackknife covariance esti-
mation relies on a balance between (i) the number of jackknife
subvolumes N, and (ii) the angular scale of their corresponding
“patches” in the RA−Dec plane, where one always compromises
the other. N should be � the size of the data vector, or else the
covariance becomes noisy and eventually singular. And yet, the
scale of the subvolumes must be greater than the largest scales
of interest, or the variance over those scales will not be captured
and errors will be underestimated.

Figure A.1 illustrates the mapping from an angular scale on
the sky to a comoving transverse scale at a given redshift, with
our log-spaced rp-bin edges shown as horizontal black lines.
This plot is interpreted as follows: coloured lines give the max-
imum comoving separations captured by an angular scale, thus
anything below each line is correctly sampled by a sky-patch
of that size, at that redshift. Normalised redshift distributions of
GAMA and SDSS Main are overlaid, along with the redshift
boundary defining our high- and low-z GAMA samples (verti-
cal red line). At high redshift, the GAMA jackknife demands
patches of scale &4.5 degrees for all rp scales to be captured,
whilst the lower redshifts, which include all of the SDSS sample,
are significantly hamstrung by the jackknife requirement. Con-
tiguous regions of equatorial GAMA are 12 deg × 5 deg in size,
rendering ideal patches too few in number. SDSS Main covers a
much larger area, but requires even larger patches at lower red-
shift. Thus we define a series of redshift slices, each with compa-
rable numbers of galaxies, and subdivide jackknife patches into
“cubes”. We take care to ensure that the resulting cubes are of
more than sufficient depth to be considered statistically inde-
pendent, and to accomodate the largest line-of-sight separations
under consideration – |Πmax| = 60 h−1 Mpc, so we ensure that
all cubes are deeper than 150 h−1 Mpc. This requirement, along
with the need for many jackknife regions of roughly equal galaxy
numbers, is what informs our GAMA samples’ shared redshift
boundary at z = 0.26. The large-Π systematics test extends to
|Πmax| = 90 h−1 Mpc, and we opt for a standard 2D jackknife in
this case, reducing the binning of the measured signal in order to
stabilise the covariance matrix.

We note that by slicing subvolumes in redshift, we are
assuming that we can approximate the variance over a redshift
bin by the combined variance of its sub-bins, and thus that
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Fig. A.1. As a function of redshift, the comoving transverse vs. on-sky
angular scale relation, for a range of scales in degrees. The rp bin edges
we employ are plotted as horizontal black lines, highlighting the limi-
tations of too-small patches to sample larger rp pairs, esp. at lower red-
shifts. The vertical dotted line indicates the z = 0.26 redshift division for
our GAMA samples, and redshift distributions of red and blue galaxies
in SDSS (z ∼ [ 0.02 , 0.3 ]) and GAMA (z ∼ [ 0.02 , 0.5 ]) are overlaid
as coloured, dashed histograms. Grey shading indicates z < 0.02, which
we exclude from our analysis.

any redshift evolution is subdominant to the variance over dif-
ferent pointings. Since previous studies (Joachimi et al. 2011;
Mandelbaum et al. 2011; Tonegawa et al. 2018) support weakly-
or non-evolving alignments – albeit for differently selected
samples – and our redshift baseline is short, we believe this
assumption is reasonable.

Figure A.2 compares the performance of various 2D and
3D jackknife configurations. For our GAMA intrinsic alignment
measurements we choose to work with (3 × 5) deg2 patches,
sliced into cubes – the performance of this configuration is indi-
cated by solid lines in the top-middle-right panel of Fig. A.2.
Subvolumes of this size combat the noise evident for (6×5) deg2

patches (top-right panel), and remain large enough to sample all
but the largest transverse scales at low redshifts – we opt to drop
only the largest-rp data point for low-redshift measurements.
We describe our method for estimating clustering covariances
in GAMA in Appendix A.2. For SDSS, we estimate both IA
and clustering covariances with a (10 × 10) deg2 jackknife cube
configuration (Fig. A.2, bottom-right, solid lines) – the largest
scales allowing for acceptable numbers of patches in the irregu-
lar SDSS footprint. We choose to retain all data points for SDSS
measurements.

Our chosen configurations yield 36 , 24 and 74 jackknife
cubes per low-redshift GAMA, high-redshift GAMA and SDSS
sample, respectively. Large-Π test jackknife errors are derived
from 12 and 37 patches (2D) for GAMA and SDSS, respectively.

A.1. Masking

While patches are chosen to be roughly equal in area, this is
not always achieved due to masking and irregular survey edges.
A patch covering less area translates into a less variant jack-
knife sample upon deletion. Thus when estimating the covari-
ance from jackknife measurements, the noise at large scales is
spuriously lowered, and inter-bin correlations are biased.
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Fig. A.2. Performance of the 3D (solid lines) and 2D (dashed lines) jackknife in various configurations, plotted as ratios to analytical (shot-noise)
errors estimated for the wg+ statistic. GAMA configurations are plotted on the top row, with SDSS on the bottom. Colour/redshift sample error
ratios are vertically offset by increments of 0.5 (equivalent to a 50% difference in the error on wg+ ) for clarity, and σjack./σshot. = 1 is indicated for
each sample by a dotted horizontal line. Also shown are the Z2R and SR samples’ 2D (left-in-panel) and 3D (right-in-panel) jackknife estimates of
absolute correlation matrices |Ri j| = |Ci j| /

√
CiiC j j, for covariance Ci j, with i , j ∈ [ 1 , 11 ] for 11 bins in rp. The angular dimensions (RA×Dec) of

jackknife patches, in degrees, are indicated. Clearly visible trends are increasingly noisy covariances from larger/fewer patches, and the tendency
of the 3D jackknife to smooth this noise. The jackknife configurations we employ in our likelihood analysis are (3× 5) deg2 and (10× 10) deg2 for
GAMA and SDSS, respectively.

We quantify this effect using data from the MICE Sim-
ulation. The Marenostrum Institut de Ciéncies de l’Espai
(MICE) Grand Challenge galaxy catalogue (Carretero et al.
2015, Hoffmann et al. 2015) was assembled from a 7 × 1010

dark matter particle, ∼(3 h−1 Gpc)3 comoving volume simula-
tion (Fosalba et al. 2015), with halo occupation and abundance
matching techniques (Crocce et al. 2015). The resulting cata-
logue spans a 5000 deg2 octant, complete down to an absolute
r-band magnitude of Mr < −18.9.

For a GAMA-sized patch of MICE, we generate a random
ellipticity distribution and mask-out chunks of area in a simi-
lar fashion to the real masking in our KiDS images, estimat-
ing the jackknife alignment covariance before and after mask-
ing. We find that, whilst off-diagonal covariance elements can
be severely mis-estimated, on-diagonal elements are recovered
at ∼23% or better. We can lower this margin of error – with a
particular impact on the larger scales we use in fitting – to ∼18%
or better by applying weights to jackknife samples, equal to the
relative areas of their respective deleted subvolumes (we apply
an approximate re-normalisation incorporating the weights).

To test whether the more serious mis-estimation of off-
diagonal covariance elements biases our results significantly,
we set them all to zero and repeat our likelihood analysis. In

comparison with our results quoted in Table 2, we find consis-
tency at 68% confidence in all cases, with our fitted LA param-
eter values shifting as follows; {AB

IA: − 1.2σ, AR
IA: + 0.33σ, Afull

IA :
+0.30σ}. Whilst red- and all-galaxy amplitude shifts are small at
just ∼0.3σ, the larger, negative shift of ∼1.2σ in the blue-galaxy
amplitude fit acts to strengthen consistency with zero. For the LA-
β, the red- and all-galaxy β parameters shift to centre on zero, with
small shifts taking the amplitudes toward the 1-parameter LA cen-
tres. The blue-galaxyβparameter is relatively unchanged, with the
amplitude centre shifting close to zero. Since none of these shifts
contradict our original findings, the omission of inter-bin corre-
lations can be said not to affect the conclusions of this work. We
know that the worst biases of the off-diagonal covariance in our
MICE test were equivalent to shifts in correlation coefficients of
.0.2, thus we further conclude that biases of the signal covari-
ance due to survey masking are subdominant to statistical errors
for these data.

A.2. GAMA clustering covariance

We make further use of MICE in estimating clustering covari-
ances for GAMA – for consistency, we impose the MICE faint-
limit (Mr 6 −18.9) on our GAMA density samples, for losses of
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Fig. A.3. Clustering measurements from our defined GAMA galaxy samples (open circles) overlaid with corresponding measurements from indi-
vidual, ∼180 deg2 MICE subvolumes (dotted lines). Filled triangles show the means of the MICE clustering signals. We see significant differences
between MICE and GAMA, particularly at low redshift and large scales, and so choose not to estimate covariances directly from MICE – see
Appendix A.2 for details.
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Fig. A.4. A comparison of clustering covariance elements (columns), estimated for each redshift/colour galaxy sample (rows) with the swot internal
jackknife per MICE patch (X, green) and the total jackknife over all patches (Y , solid coloured lines), plotted as X/Y − 1. The 0.16 , 0.5 , 0.84
percentiles over the patch estimates are indicated by dashed lines and shading. Pink solid lines and hatching indicate covariance elements scaled
by the fitted variables ai j described in Appendix A.2.
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{Z1B : 27.3% , Z1R : 5.6% , Z2B : 0.1% , Z2R : 0.1% } – see
Table 1 for sample details.

We apply the GAMA flux-limit r < 19.8 to MICE and make
a flat cut in absolute rest-frame g − r to isolate the red sequence.
Dividing the MICE area (with declination 640 deg) into 18 rect-
angular patches, each ∼180 deg2, we measure the clustering sig-
nals in each patch and find the spread to be slightly disagreeable
with the clustering of analogous samples in GAMA (Fig. A.3).
Thus we choose to validate the swot clustering jackknife rou-
tine (swot-jk), and its sensitivity to the jackknife subvolume
numbers-vs.-size trade-off, using MICE.

We first obtain swot-jk estimates of the MICE sample clus-
tering signals and covariances, per patch. We then estimate total
MICE sample clustering covariances by constructing 2D jack-
knifes with all 18 patches. The variance16 over swot-jk esti-
mates then approximates the sample variance of a 180 deg2 – i.e.
GAMA-like – survey. If this is greater than any systematic off-
set between the mean covariance over the patches and the (area-
scaled) total jackknife covariance, then the bias of the swot-jk is
subdominant to the statistical error of a GAMA-like survey. This
is indeed the case for smaller transverse pair separations, which
are well-sampled even by small angular scales. Samples at high
redshift also do well in this regard, as smaller angular scales trace
large spatial volumes. As Fig. A.4 illustrates, however, the swot-

16 We are now discussing the variance over independent estimates of the clustering covariance.

jk significantly underestimates large-scale covariance elements
for low-redshift samples (bottom panels; green lines & shading
vs. solid coloured lines). As discussed in Appendix A above, this
is due to poor sampling of these pairs, and thus diminished vari-
ation across jackknife samples.

Since the jackknife performance differential is dominated by
sample redshift, rather than colour, we attempt to quantify the
lost variance by fitting 1 scaling variable to each of the 3 largest
transverse separation bins i under consideration. Boosting each
covariance element with the product ai j of the 2 relevant scaling
variables, we are able to bring the mean-over-patches (pink lines
and hatching in Fig. A.4) into closer agreement with the total
MICE jackknife. We take these scaling factors to be approx-
imately representative of the large-scale performance drop-off
inherent to the swot-jk at low redshift, and apply them to our
low-z GAMA clustering covariances.

Appendix B: Individual sample fits

Table B.1 details the individual fits of the 1-parameter NLA
model to galaxy samples, as described in Sect. 4.2.2, along
with the relevant sample properties displayed in Fig. 6, and
constraints upon the galaxy biases of corresponding density
samples.

Table B.1. 1D marginalised constraints (to 1σ) upon the 1-parameter NLA amplitude AIA for each sample under consideration – each of the points
shown in Fig. 6 corresponds to a row here.

Sample fred 〈z〉 〈L/Lpiv〉 bg AIA

G+S: full 0.54 – – – 1.06+0.47
−0.46

G: full 0.43 0.23 0.51 1.57+0.08
−0.08 0.26+0.63

−0.62
S: full 0.60 0.11 0.22 0.91+0.11

−0.12 2.01+0.79
−0.71

All blue 0 – – – 0.21+0.37
−0.36

G: high-M∗, blue 0 0.36 2.69 1.62+0.11
−0.11 2.72+2.54

−2.60
†G: z > 0.26, blue 0 0.33 1.06 1.10+0.07

−0.07 0.78+0.55
−0.54

†G: z < 0.26, blue 0 0.15 0.21 1.55+0.09
−0.08 −1.26+0.75

−0.69
†S: blue 0 0.09 0.14 0.88+0.12

−0.14 1.03+0.90
−0.85

All red 1 – – – 3.18+0.46
−0.45

G: high-M∗, red 1 0.31 2.03 1.93+0.09
−0.10 6.27+0.98

−0.96
†G: z > 0.26, red 1 0.33 1.47 1.52+0.11

−0.11 3.55+0.90
−0.82

†G: z < 0.26, red 1 0.17 0.50 1.84+0.12
−0.12 3.63+0.79

−0.79
†S: red 1 0.12 0.29 1.19+0.11

−0.11 2.50+0.77
−0.73

Notes. “G” and “S” denote GAMA and SDSS samples, respectively. The independent galaxy samples whose signals constrain the “All blue” or
“All red” amplitudes are denoted with †. Samples denoted “high-M∗” are selected from GAMA to have stellar masses >1011 M�. Also shown are
red galaxy fractions fred, mean redshifts and mean luminosities (relative to the pivot Lpiv = 4.6 × 1010 L�) per shapes sample, and marginalised
galaxy bias fits to corresponding density samples. Rows without these numbers correspond to amplitudes which were fit to multiple wg+ signals
from samples with different properties.
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Appendix C: Linear alignment model fits

Here we present fits of the linear alignment model to our IA
data. Table C.1 shows the results of our LA fitting, which are
discussed in Sect. 4.2.3.

Table C.1. The same as Table 2, here for the parameters of the linear alignment (LA) model (Sect. 3.1) and its luminosity-dependent analogue
(LA-β).

Sample 〈z〉 〈L/L∗〉 bg AIA χ2
ν p(> χ2) Aβ β χ2

ν p(> χ2)

GAMA full 0.23 (0.24) 0.51 (0.70) 1.56+0.09
−0.08

}
1.23+0.57

−0.52 1.48 0.14 1.37+4.09
−2.45 2.25+1.95

−2.53 1.54 0.13
SDSS Main full 0.11 (0.11) 0.22 (0.22) 0.94+0.10

−0.11
G: z > 0.26, blue 0.33 (0.33) 1.06 (1.09) 1.10+0.07

−0.07
G: z < 0.26, blue 0.15 (0.17) 0.21 (0.36) 1.55+0.09

−0.08 0.35+0.45
−0.43 1.35 0.15 0.80+0.55

−0.60 2.57+1.59
−1.69 1.34 0.17

S: blue 0.09 (0.09) 0.14 (0.14) 0.88+0.13
−0.15

G: z > 0.26, red 0.33 (0.33) 1.47 (1.48) 1.52+0.10
−0.12

G: z < 0.26, red 0.17 (0.18) 0.50 (0.56) 1.85+0.13
−0.13 3.70+0.52

−0.53 1.34 0.16 3.93+0.66
−0.63 0.17+0.20

−0.20 1.40 0.14
S: red 0.12 (0.12) 0.29 (0.29) 1.19+0.11

−0.12
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Appendix D: Photo-Z bias parameter contours

Here we include our Fisher forecasted constraints for all IA
and photo-z nuisance parameters considered (Sect. 5), before

and after application of our derived IA model priors (Sect. 4).
Figs. D.1 and D.2 accompany the LA/LA-β model forecasts of
Figs. 8 and 9, respectively.

Fig. D.1. The same as Fig. 8, for nuisance parameters only.
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Fig. D.2. The same as Fig. 9, for nuisance parameters only.
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