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Abstract

This thesis presents research on the design and development of novel machine learning
methods for activity monitoring using micro-Doppler signatures (u-DS) data collected

from passive Wi-Fi radar (PWR) and multi-static pulse systems.

For PWR, first we propose a phase-sensitive signs-of-life detection method using
PWR. Second, we propose a pipeline for pu-DS classification based on the Sparse Repre-
sentation Classifier (SRC). Third, we adopt and modify the deep transfer network (DTN)
to address the limited volume of the dataset. The phase-sensitive method is proved ef-
fective in detecting signs-of-life signatures and the modified DTN outperforms shallow

methods and the conventional DTN by by 10% and 3% in PWR p-DS dataset.

For active multi-static radar, first we propose Single-Channel (SC-) and Multi-
Channel (MC-) DopNet for classifying personnel walking with or without a rifle. Based
on the Deep Convolution Neural Network, SC-DopNet and MC-DopNet are designed
for mono-static and multi-static radar respectively. They have been verified to improve
the state-of-the-art results by around 8% in this task. Second, as p-DS classification de-
pends on two factors of variation: aspect angle and the target personnel, we design two
unsupervised deep adaptation networks: 1) re-weighted adversarial adaptation network
and ii) joint adversarial adaptation network so that they can generalize well to unseen
variation factors. The two networks are proved effective to learn useful features invari-
ant to the factors and achieve the state-of-the-art results in both computer vision and
p-DS datasets. Third, we propose cooperative and adversarial relationship between the
main activity and the two auxiliary classification tasks, including aspect angle and target
personnel classification. To improve the performance of mono-static u-DS classifica-

tion, we propose ENet to integrate auxiliary tasks in activity classification network by



6 Abstract

selecting either the cooperative or adversarial learning strategy. ENet has been verified

to outperform the SC-DopNet by 6% in average.



Impact Statement

The work carried out in this thesis develop several radar Doppler techniques for activity
monitoring. The proposed methods focus on the signs-of-life detection using a PWR
system and the activity monitoring using u-DS classification of both PWR and multi-
static active radar. Specifically, this thesis makes the following contributions to the field

of radar and remote sensing.

» We propose the phase-sensitive real-time signal processing using PWR systems.
This method can detect the breathing in both Line-of-sight and through-wall sce-
narios, which has been accepted in IEEE RadarConf 2016 and may be potentially

patented and integrated in current PWR systems.

* We design the dictionary learning layer (DLL) and make modifications of existing
DTN for p-DS classification. This method successfully transfers vision knowledge
to the u-DS classification and outperforms existing DTN results by 3% in PWR
p-DS classifications. The design of DLL has been published in the Advanced Con-
ference on Artificial Intelligence in Association for the Advancement of Artificial

Intelligence (AAAI) 2018.

* We propose the SC-DopNet and MC-DopNet based on DCNN for mono-static
and multi-static u-DS classification respectively. In addition, we design two novel
schemes to integrate multi-static u-DS for improving the final decision making.

This has been submitted to the IEEE Sensor Journal.

* We propose a new problem in u-DS classification to eliminate the two factors
of variation in an unsupervised manner, including the aspect angle and the tar-

get personnel. To address this practical and challenging problem, we propose two
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deep adaptation networks to eliminate the variations and they have been verified to
achieve the state-of-the-art in both radar and computer vision benchmark datasets.
One of the network has been published in premier annual computer vision con-
ference, Computer Vision and Pattern Recognition (CVPR) 2018 and the other is
ready to submit to AAAI 2019.

We may be the first to consider different relationships between the main activity
classification task and the auxiliary ones (aspect angle and target personnel classi-
fication) in radar u-DS classification. We also propose the ENet to investigate the
optimal strategies to ensemble these two auxiliary tasks. ENet has been proved
to outperform the methods without ensembling schemes. We potentially wish to

publish ENet in high impact journals.
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Chapter 1

Introduction

With the aim of RAdio Detection And Ranging, fundamental radar function is to detect
the targets and estimate the ranges. From the 1880s when Henrich Hertz first investigated
the usage of electromagnetic waves to detect metal objects, to the modern 77GHz radar
systems for automotive cars, radar technologies have been applied to a much wider area
and not limited to military applications. This thesis investigates the advanced radar

Doppler techniques for activity monitoring using machine learning methods.

1.1 Overview

To monitor the human activities, activity recognition and signs-of-life detection have
been important research topics to facilitate enhanced situational awareness. Compared
to other alternative sensors, radars are advantageous because they are device-free to tar-
gets under detection, robust to weather conditions such as foggy weather, more widely
coverage compared to cameras, easily deployable, with high frame rates and privacy
preserved.

Besides fundamental radar information such as range and bearing, the micro-
Doppler signature (u-DS) (see more details in Section 2.2 and 2.2.1) is a mixture of
the modulated Doppler frequencies caused by the backscattered signals from different
scatters of the target object [, 6]. Recently p-DS has been an essential radar modality for
identifying and monitoring the human activities. The radar community have applied var-
ious machine learning methods to classify the radar p-DS for activity monitoring since

it contains detailed information of target’s movements and activities.
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In general, machine learning methods aim to provide system the ability to auto-
matically learn and improve from the experience (the large amount of data). The last
decade witnessed the success of the machine learning community especially the deep
neural network (DNN) based methods, mainly due to the large amount of data and the
powerful computation resources. Recent DNN based developments have surpassed the
human object recognition performances, outperformed the human’s capability to mimic
and generate other people’s voices and even beaten the best human player in the Chinese
board game Go. With such great successes, we investigate machine learning methods,

especially DNN based methods in u-DS classifications in this thesis.

For monitoring the general human activities such as walking, falling, sitting etc.,
we need to firstly extract features that are discriminative and meanwhile beneficial for
generalization of the classification method. Large amount of research have focused on
designing hand-crafted features for u-DS classifications, such as maximum Doppler fre-
quency and time width of the activity, however, these may largely depend on experts’
knowledge and have been proved to be sensitive to the experimental environments. This
motivates the research in automatically learning the features and classifiers in an end-
to-end training manner in the recent success of DNN. The learned features are ideal
and useful if they can represent the intrinsic structure and valuable information about the
comprising factors of the original u-DS. Until now, how to efficiently learn these features

is still an open question.

With the exponentially increasing amount of data, the current mainstream feature
learning method requires large amount of well-annotated data. These annotation labels
then serve as the direct prior knowledge to guide the feature learning for the classifi-
cation. However, label annotations are expensive and time consuming, not to say that
we are sometimes restricted to access the large amount of data in particular applica-
tions. More specifically, in radar community, it is difficult to collect a p-DS dataset as
large as the ImageNet [7], considering the different experimental environments, the time-
consuming and the highly repetitive human target movements and different radar sensor
types. Since p-DS dataset is relatively small, we need more generalized prior knowledge

for learning discriminative features that may also contribute to classifier generalizations.
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Compared with the principles of radar u-DS hand-crafted feature design illustrated in
previous paragraph, these generalized prior knowledge are relatively high-level and also
scalable and applicable to other scenarios. We illustrate the generalized prior knowledge

in Section 1.2 in more details.

1.2 Contributions

This thesis proposes advanced radar Doppler techniques for activity recognition and
signs-of-life detection. The newly proposed signs-of-life detection using passive Wi-Fi
radar (PWR) is more focused on real-time signal processing using the phase informa-
tion. In addition, the thesis is mainly focused on designing and integrating generalized
prior knowledge in feature learning for the u-DS classification. More specifically, con-
tributions of the thesis and the relevant generalized prior knowledge are illustrated in the

following:

1. Signs-of-life detection for PWR: we utilize phase information for signs-of-life
detection in real-time PWR processing and verify the effectiveness using experi-

mental results.

2. Apply sparsity prior for pu-DS classification: we apply sparse coding procedure

for sparse representation classifier (SRC) design.

3. Integrate sparsity prior and hierarchical prior in pu-DS classification: to ex-
tract useful features within a small-scale p-DS dataset, we leverage the deep trans-
fer network (DTN), use the pre-trained weights on ImageNet and fine-tune the
whole networks using the PWR p-DS dataset. More importantly, we incorporate
sparsity prior in DTN design (based on hierarchical prior) by replacing the fully

connected (FC) layer with the newly designed dictionary learning layer (DLL).

4. Integrate the prior of shareable representations and common factors of multi-
static u-DS in the classification: with the multi-static u-DS data, we propose to
first learn deep convolution neural network (DCNN) representations for each chan-
nel and then design two schemes to ensemble these features for the final classifi-

cation. These ensemble methods are based on the prior knowledge that common
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factors exist in multi-static (multi-channel) u-DS which can robustly constrain the

feature learning and improve the final classification results.

. Integrate the prior of common factors among different data distributions in

p-DS classification: we consider the same task for example activity classification
but the u-DS distributions are different. For example, we train network using
the u-DS sampled from target A and B but test on target C. The prior we are
incorporating is that the features learned from different data distributions shall
only represent the common factor directly indicating the activity, rather than the

target personnel.

. Investigate independent and correlated factors in p-DS classification: p-DS

are composed of multiple factors and we investigate the prior knowledge about
the relationships among multiple factors to improve the main activity classifica-
tion. Two relationships are proposed including independent and correlated ones,
which correspond to adopt the newly proposed adversarial and cooperative learn-
ing strategies in network training. For example, if we assume the target person-
nel is independent to the activity, we may apply adversarial training to learn the
shareable features, which tend to discriminate the activities but confuse the target

personnel recognition.

These contributions have generated the following publications:

* Q.Chen, K.Chetty, K.Woodbridge, B.Tan (2016, May). Signs of life detection

using wireless passive radar. In 2016 IEEE Radar Conference (RadarConf), 2016
IEEE (pp. 1-5). [Contribution 1]

Q.Chen , B.Tan, K.Chetty, K.Woodbridge. (2016). Activity Recognition Based
on Micro-Doppler Signature with In-Home Wi-Fi. In 2016 IEEE International

Conference of HealthCom. [Contribution 2]

Q.Chen, Y.Liu, W.Chen, I.Wassell. “Dictionary Learning Inspired Deep Net-
works for Scene Recognition” In Advanced Association of Artificial Intelligence

Conference (AAAI) 2018. [Contribution 3]
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* Q.Chen, Y.Liu, FFionalli, M.Ritchie, K.Chetty, DopNet: a DCNN Trained from
Scratch for Classification of Armed/Unarmed Human Targets using Multiple-
Channel Micro-Doppler Signatures. Submitted to IEEE Sensor Journal. [Con-
tribution 4]

* Q.Chen, Y.Liu, Z.Wang, [.Wassell, K.Chetty. “Re-weighted Adversarial Adap-
tation Network for Unsupervised Domain Adaptation” In IEEE Computer Vision

and Pattern Recognition (CVPR) 2018. [Contribution 5]

* Q.Chen, Y.Liu, I. Wassell, K.Chetty. “Joint Adversarial Adaptation Network using
Optimal Transport for Unsupervised Domain Adaptation” Ready for Advanced

Association of Artificial Intelligence Conference (AAAI) 2019 [Contribution 5]

In addition to the above publications, a number of papers from the early stages of
the Ph.D. (pre-MPhil upgrade) have been published in conference proceedings. These
are not directly related to the work presented in this thesis, but for completeness are

listed below.

* Q.Chen, B.Tan , K.Chetty, K.Woodbridge. “Doppler Based Detection of Multiple
Targets in Passive Wi-Fi Radar using Underdetermined Blind Source Separation”
In IEEE International Radar Conference, 2018 (Best Student Paper Nomination
Award)

* Q.Chen, M.Ritchie, Y.Liu, K.Chetty, and K.Woodbridge, Joint fall and aspect
angle recognition using fine-grained micro-Doppler classification. In Radar Con-

ference (RadarConf), 2017 IEEE (pp. 0912-0916). IEEE..

* Q.Chen, K.Chetty, P.Brennan, “ A coherent through-the-wall MIMO phased array
imaging radar based on time-duplexed switching”, in SPIE Defense, Security, and

Sensing. International Society for Optics and Photonics 2017.

* Y.Liu, Q.Chen, [.Wassell, “ Deep Network for Image Super-resolution with a dic-

tionary learning layer ”, to appear in ICIP 2017.
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K.Chetty, Q.Chen, M.Ritchie, K.Woodbridge. @A low-cost through-the-wall
FMCW radar for stand-off operation and activity detection. InSPIE Defense+
Security 2017 May 1 (pp. 1018808-1018808). International Society for Optics

and Photonics.

Y.Liu, W.Chen, Q.Chen, [.Wassell (2016, October). Support Discrimination Dic-
tionary Learning for Image Classification. In European Conference on Computer

Vision (pp. 375-390). Springer International Publishing.

K.Chetty, Q.Chen and K.Woodbridge, 2016, May. Train monitoring using GSM-
R based passive radar. In Radar Conference (RadarConf), 2016 IEEE (pp. 1-4).
IEEE.

Tan, B., Burrows, A., Piechocki, R., Craddock, 1., Q. Chen, Woodbridge, K. and
Chetty, K., 2015, December. Wi-Fi based passive human motion sensing for in-
home healthcare applications. In Internet of Things (WF-1oT), 2015 IEEE 2nd
World Forum on (pp. 609-614). IEEE.

Q.Chen, B.Tan, K.Woodbridge, K.Chetty (2015, April). Indoor target tracking
using high doppler resolution passive Wi-Fi radar. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5565-
5569).

B.Tan, Q.Chen, W.Li, K.Chetty, K.Woodbridge, WiFi CSI signal Processing and

Behavior Recognition Methods. In IEEE Communications Magazine.

M.Ritchie, M.Ash, Q.Chen and K.Chetty, 2016. Through Wall Radar Classifi-
cation of Human Micro-Doppler Using Singular Value Decomposition Analysis.

Sensors, 16(9), p.1401.

1.3 Thesis Outline

The thesis is outlined as follows:

Chapter 2 first reviews the background in radar theory, systems, signal processing

and classification methods for p-DS. Since we mainly adopt the sparse coding, dictio-
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nary learning and DCNN for p-DS classification, their fundamentals are also illustrated.
Finally, we review the transfer learning framework and introduce its applications in ac-
tivity monitoring.

Chapter 3 presents the research contribution of activity classification and signs-
of-life detection using PWR. First the phase information extraction methods based on
cross ambiguity function (CAF) is proposed for detecting the sensitive breathing pat-
terns. Second, facing the small-scale u-DS dataset including six daily motions, we adopt
to use SRC and DTN for classifying the six activities. The proposed DTN is aimed
to integrate the sparsity prior and hierarchical prior in DCNN by replacing the newly
proposed DLL with the FC layer in AlexNet [8].

Chapter 4 presents the newly proposed single-channel DopNet (SC-DopNet) and
multi-channel DopNet (MC-DopNet) to recognise armed and unarmed human targets
using multi-static u-DS. We propose novel data augmentation schemes, new regulariza-
tion term to prevent overfitting and two fusion schemes to improve the final decision
making.

Chapter 5 focuses on increasing the generalization capability of DCNN to the un-
seen factors of variations in an unsupervised manner. We propose two deep adaptation
networks to eliminate the variations caused by the target personnel and the aspect angle.

Chapter 6 aims to investigate two relationships among multiple factors, includ-
ing independent and correlated ones. We investigate relationships between the auxiliary
factors (target personnel and aspect angle) and the main one (activity) using the deep en-
semble network (DEN) but adopting two learning strategies: cooperative or adversarial
learning. Through extensive experiments in pu-DS classification, we identify the relation-
ships among them and adopt the optimal learning strategy for activity recognition.

Chapter 7 concludes the whole thesis and proposes the future work.






Chapter 2

Background

Before discussing the advanced radar Doppler techniques for activity monitoring using
machine learning, it is necessary to introduce the basic radar theory, Doppler process-
ing and relevant machine learning methods. In this chapter, we first introduce the radar
theory basics, the pulse radar and the PWR systems to collect data in Section 2.1. Next,
we review u-DS theory, the associated signal processing and classification methods for
activity monitoring in Section 2.2. Sparse coding and dictionary learning (DL) fun-
damentals relevant to u-DS classification are then covered in Section 2.3. Finally we
introduce the basics of DCNN in Section 2.4, review the transfer learning theory and the

mainstream methods (DTN, DEN and deep adaptation network (DAN)) in Section 2.5.

2.1 Radar Theory and Systems

Radars are electronic systems that detect and estimate the range, velocity and bearing of
objects via Electromagnetic waves. Most of the concepts and knowledge in this Section

2.1 are based on the books [9, 10] and we provide the reference here for convenience.

This section first reviews the basic concepts of range resolution and maximum un-
ambiguous range in Section 2.1.1 and introduces the radar range equation in Section
2.1.2. Second, in Section 2.1.4), we introduce the concept of Doppler and the pipeline
to obtain the Intermediate Frequency (IF) signal in PWR and pulse radar systems. Note
that we consider only the super-hetrodyne receiver in this thesis which down-converts

the radio frequency to the IF signals before sampling and digitizing.
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2.1.1 Range Resolution and Maximum Unambiguous Range

Range estimation is fundamental and performed by calculating the time delays between
pulse transmission and receiving the reflected echo, as shown in Eq.(2.1), where R is the

range between target and radar, c is the speed of light and 7 is the time delay.

CXT

R= > 2.1

The range resolution measures the minimum distance where two targets with such
distance in the bearing are still separable. It is directly related to the pulse width 7,4,
in the Eq.(2.2) and (2.3), where two targets are at the range of R and R+ OR, with the
minimum range resolution R and the speed of light c.

Due to the two-way propagation, SR is proportional to the half of the pulse width

T,

pulses as derived in the Eq.(2.3). Conventionally, the range resolution is usually inter-

preted by the 3dB bandwidth B of the pulse. Considering a simple pulse radar system

with rectangular pulse width 7)., the range resolution can be calculated following the

latter part of Eq.(2.3).
2(R+0R) 2R 20R
Tpulse = ( _) - = 2.2)
c c c
cT, Ise C
SR = I — — 2.3
2 2B 23)

The maximum unambiguous range measures the maximum range the radar system
can detect without range ambiguities. This ambiguity happens when the target echo of
the first pulse is received after the second pulse transmission. The maximum unam-
biguous range, denoted as R,, depends on the pulse repetition frequency (PRF) or the
pulse repetition interval of the system and can be calculated based on Eq.(2.4), given the

defined PRF of the radar system.
C

R, = 24
2PRF 24)

2.1.2 Radar Range Equation

The radar range equation is a mathematical and deterministic equation measuring the
received power from the radar receiver based on the physical environment and the trans-

mitter power. As shown in Eq.(2.5), the received signal power of the target, P can be
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represented as:
_ RG/G,6rA’FF,Q

" R2R2ATLL,

(2.5)
* P is the transmit power,

* G;,G, are the gains of transmitter and receiver antenna respectively,

 or is the radar cross section of the target,

* A is the wavelength of the transmit signal at certain frequency,

F;, F, are the pattern propagation factors of transmitter and receiver respectively,

R, R, are the transmitter to target and receiver to target ranges,
* L;,L, are the transmitter and receiver system losses,
* ( is the number of returns from the transmitter to the receiver.

In general, three important measurements including the Signal to Noise Ratio
(SNR), signal to interference ratio and the signal to clutter ratio can be calculated based
on the range equation. SNR measures the ratio between the received signal powers from
the target to the noise power. Signal to interference ratio is the ratio of the received
power from the target to the power of interference signals (such as the direct signal path
from the transmitter to the receiver). Signal to clutter ratio measures the received power
from the target to the power from other static or background clutters. These three mea-
surements are illustrated in Eq.(2.6), (2.7) and (2.8), where Fc is the clutter power, Py is
the jammer power, R;_. and R,_. are the ranges from transmitter to clutter and the one

from receiver to the clutter. Note that:
* 0, is the radar cross section (RCS) of the clutter,

K is the Boltzmanns constant, which is 1.38 x 10~23,

T is the receiver noise temperature,

e B is the receiver noise bandwidth,



42 2.1. Radar Theory and Systems

e F is the noise factor of the receiver.

h P.G,G,0rA*FF,Q

SNR = - = 2.6
N R2*R24n’°L,L,KTBF (26)
P,
SIR=——" (2.7)
N-+P-+ Py
P P
SCR= - = 4 (2.8)
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2.1.3 Doppler Processing

The observed Doppler frequency varies based on the relative distance or velocity be-
tween the target under detection and the radar. In specific, the wavelength of the back-
scattered echo in the radar receiver may decrease or increase depending on the relative
velocity, which gives rise to the observed Doppler frequency.

Suppose the range between the target and the radar is R, the phase changes 8¢
between transmission and received signal depends on R and the wavelength of the carrier
frequency A, as shown in Eq.(2.9).

If we define R as time-dependent, the formulation can be derived in Eq.(2.10) by
replacing R with a function R(¢). Taking the time derivative of the phase changes, the
Doppler frequency is obtained in Eq.(2.10) and (2.11), with v the relative radial velocities

between target and the radar.
2R 4mR

S0 =2m7 =7 (2.9)
4naR
B do¢ o Amy
Onop =5, =500 = (2.10)
®p, 2
foop = 2an :)L—: @2.11)

To calculate the Doppler frequency, we need to estimate the phase-time history
of multiple pulses during a certain period of integration time. Suppose that the com-
plex I-Q Doppler signal are obtained, the most direct way is to use the Discrete Fourier
Transform and its faster alternative Fast Fourier Transform (FFT). Utilizing the modern

digital processing tools including Analog Digital Conversion and the computer process-
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ing, Doppler processing can be performed quickly. Note that the detailed way to obtain

the I-Q Doppler time domain signal will be described later in Section 2.1.4.

2.1.4 Radar Systems and the Doppler Processing

2.1.4.1 Continuous Wave (CW) Doppler Radar

CW radar is continuously transmitting the single tone waveform and receiving the
echoes. The single tone waveform is not modulated, which makes it unable to detect the
range but can detect the Doppler frequency described in Section 2.1.3. However, CW
radar is adopted in many practical short-range scenarios as a motion detector, mainly due
to its low manufacture and operating cost and continuous monitoring the environment
under detection.

The architecture of the CW Doppler radar is shown in Figure 2.1. First, a signal
source generates a single tone frequency waveform at f. and a power amplifier and the
transmitter antenna amplify and propagate it to the environment. In the receiver chain,
first the receiver antenna picks up the returned echoes from targets and a Low Noise
Amplifier (LNA) amplifies it. Then a frequency mixer compares the received echo with
the clean reference signal and generates the Doppler signal with other harmonics and
sideband signals. Next a properly designed Doppler filter, most commonly a bandpass
filter is utilized to extract the clean Doppler signal. Conventionally, the post processing
also requires the Doppler amplifier to increase the SNR. Finally, a digitiser should be
utilized to generate the complex 1-Q or the real number time-domain Doppler signal,
ready for time-frequency analysis methods to estimate the target velocity for the radar

operator.

2.1.4.2 Pulse Radar

Pulse radar is the most widely utilized system in various security control, maritime dis-
covery and military applications. Pulse radar is able to detect both the range and Doppler
information usually for medium and long-range detection therefore it requires more com-
plex design and high power amplifier for pulse transmission.

The simplified architectures of the pulse radar is shown in Figure 2.2 and we use

the superhetrodyne receiver design, which first down-converts the radio frequency to IF
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Figure 2.2: Architecture of the pulse radar.

frequency using the carrier signal. First the pulse waveform is generated and upconverted
to the carrier frequency. Next, the power amplifier and the Tx antenna are utilized to
amplify the pulses and propagate to the air. In the receiver chain, first the Rx antenna
and the LNA amplifier are utilized to filter the backscattered echoes. Following this is
the down converter with the same carrier signal and the IF amplifier is used to amplify
the down-converted IF signal. Due to the powerful digital processing capability, we
can directly digitise the IF signal and generates the [-Q complex number signal, ready
for matched filtering processing with the pre-collected reference pulse waveforms. The
output of the matched filter processing in Section 2.2.2 is the range-time intensity map

and we can perform the time-frequency analysis depending on the target range under
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detection.

2.1.4.3 Passive Wireless Radar

Active CW and pulse radar systems are able to transmit bespoke pulse waveforms, usu-
ally with ideal properties for target detection, large bandwidths and controllable signal
powers. However, in PWR system, the waveform is designed for communications which
limits the performance and increases the burden of the signal processing [11]. As the
waveform from the illuminator of opportunity is unknown, the most important idea in
PWR is: we do not need to know the exact waveform but only to know the differences
between the reflected target echo and the direct signal arrival from the transmitter to
the radar receiver. Following this idea, two receiving channels are designed, termed the

reference and the surveillance channels.

Ideally the reference channel should be designed to receive signals from the trans-
mitter directly and isolate the reflected echoes from the target. On the other hand, the
surveillance receiver should pick up the reflected echoes from targets, also isolating the
direct arrivals from the transmitter. To achieve these criteria, high gain directional anten-
nas with narrow beam-widths are used, pointing to the transmitter and surveillance zone
respectively. In addition, the two channels are synchronized using the same reference
clock so that the signals can be cross correlated to extract the range and Doppler infor-
mation of the moving target. With known geolocations of the transmitter and receiver
pairs, multiple detection results can be fused for final decision making. Like active radar
systems, some tracking filters can be applied to the detection results for associating con-

secutive detections [12].

Compared with the active systems, the performance of PWR systems is limited by
the following two factors: the low range resolution and the transmitter power. However,

relevant solutions are also proposed in the following two points:

* Solution to Low Range Resolution: in general, the bandwidth of the illuminator
of opportunity is limited, which gives rise to the fairly low range resolution. How-
ever, receiving antenna arrays can be utilized to provide higher angular resolution

for compensation.
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* Solution to the Transmitter Power: due to the limited power of the transmitter,

the detection probability can be enhanced by increasing the integration time for

CAF processing. After all, for the conventional CAF processing in PWR, longer

time signals (more relevant data samples) for CAF processing increases the SNR

of target echoes.

The simplified architectures of PWR is shown in Figure 2.3. It can be observed that

the reference and surveillance channel design adopt the similar architecture as the one

used in pulse radar receiver (see Figure 2.2). In general, the only big difference between

PWR and the active pulse radar is the way to collect reference pulse waveform. Due

to the fact that the transmitter of illuminator transmits the arbitrary waveform with the

purpose of communication, the reference signal is collected through reference channel

receiver, rather than the pre-collected and well-defined waveform samples. Note that we

emphasize the SYNC module in Figure 2.3 which synchronizes 1) the reference clock

signal between two channels; ii) the Pulse Per Second signal of the digitisers. The

SYNC module is usually developed by the MIMO cable or the Octo-Clock device with
the GPS-DO signal.
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Figure 2.3: Architecture of the PWR.
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2.2 u-DS Analysis for Activity Monitoring

In this section, we assume the IF signals have been ideally collected based on the in-
troduced operations in Section 2.1. Here, we focus on the processing methods for u-DS
analysis in order to extract the useful information for activity monitoring. To monitor the
activity of human targets based on radar, we introduce the most essential human p-DS
in Section 2.2.1. To generate the u-DS from the IF signals, we review the matched filter
and the time-frequency analysis in Sections 2.2.2 and 2.2.3 respectively.

In fact, the previously mentioned two steps can be replaced by the Ambiguity Func-
tion (AF) which approximately integrates the two steps into a single function. We briefly
introduce AF here and describe why its variant CAF is not ideal for the pu-DS analysis in
later paragraphs. The AF presents the basic waveform properties, such as the range and
Doppler resolution and the ambiguity peaks in the range and Doppler side-lobes etc. A
good waveform choice should have the “thumtack” shape, as there will be no correla-
tion response unless the returned echo is closely matched with the transmitted waveform
pulse. The AF is a 2-D function with two variables, the delay 7 and the Doppler fre-
quency fy, which calculates the matched filter response using different time delays and
Doppler frequencies. The AF result of simulation data using a single pulse rectangular
pulse waveform is in Figure 2.4 and the AF results using experimental PWR signal is
shown in Figure 2.5. In addition, we review the two important mathematical properties

AF [1]:
* The maximum value of AF occurs at (7, f;) = (0,0).

* AF is symmetric in the sense that AF (7, fy) = AF (—7, —fa).

Suppose that the IF signal from the radar receiver is x, () and the reference wave-
form of the pulse radar is x;(t) (x,.¢(¢) for PWR). The AF calculates the spectral power
of each Doppler frequency f; and delay shift 7 in the following Eq.(2.12), where * indi-

cates the complex conjugate operation.

inf
AF (1, f;) = / " e ISl ¥ (1 — 7)x, (1) dt (2.12)

—inf

To compare the echo with the transmission waveform, AF can be extended to the
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Figure 2.4: AF results using a simulated single rectangular pulse waveform of 2 second from
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Figure 2.5: AF result using experiment data of a bi-static PWR: (a) zero Doppler cut, (b) zero
range cut.

CAF [13, 11] by replacing the x;(¢) by x,(¢) in Eq.(2.13). We argue that although AF is
a well-known tool for analysing the fundamental waveform properties [13], CAF is not
ideally designed for u-DS analysis, because adopting discrete fourier transform basis in
CAF may not reveal the fine-grained p-DS structures compared with the more advanced

time-frequency analysis methods in Section 2.2.3.

+inf )
CAF (1, f,) = / =2t (1 T)x, (1) dt 2.13)

—inf
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2.2.1 Human p-DS

The p-DS is a mixture of the modulated Doppler frequencies caused by the backscattered
signals from different scatters of the target object [5, 6]. As reviewed in Section 2.1.3
and Eq.(2.9) to Eq.(2.11), as the time derivative of the phase, u-DSs are mixed due to
the different velocities (instantaneous ranges) of various scatters of the human target.
Highly related to the human motions, the p-DS is a useful data to infer and classify the
activities.

To detect and classify human activities, a model is necessary based on the main
scattering sites of human body parts. The widely used point scatter model is used to
approximate the continuous scatter sites of the human body into key scattering centres
for simplification [14]. Intuitively, the greater the number of centre points chosen, the
more accurate model to describe the complex motion patterns. Generally, five centre
points are chosen, representing the torso centre f; s, the left arm f,1, the right arm
Jarm2, the left leg fi.1 and the right leg fie>. Figure 2.6 illustrates these scattering
centres in a situation where a human target approaches the radar antenna. If a more
complex model is utilized, such as the example in the work of Chen et al. [5, 6], the
pu-DS can present more information. Figure 2.7 shows the p-DS of a walking target

simulated in X-band radar with large bandwidth of S00MHz.

O
W\/\”\/_\J\

C+ orso
Radar < \/\/\/ fot fo /\/\A e
Je fe + flegr

fe +fleg2 (\/\/\1

Figure 2.6: Human target point scatter model. Radar sends the waveform at the frequency of
fe; When a target walks approaching to the radar antenna, the Doppler modulated

frequencies fc + farmla fc + farmZ, fc + flegl s fc + fleg2 and fc + ftorso represent the
velocities of different body parts.
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Figure 2.7: Simulated p-DS of a walking target, from [26, 90]

2.2.2 Matched Filter

The filter response measures the changes in the frequency, phase and amplitude of the
output compared with the input. Matched filter is a filter which generates the maximum
SNR as long as the input x,(f) matches completely with the transmission waveform x;(t).
Denoting the i received and transmitted pulse by x’(¢) and x/(¢), we can perform the
matched filter operation defined in Eq.(2.14) based on cross-correlation between delayed
waveform x' (¢ — 7) and the return echo x’(¢). The output MF'(t) is the matched filter
response w.r.t. the delay 7 for i pulse.

Assume that we have sampled N, pulses (at the sampling rate of fyp.) and
we only consider the maximum delay as 7., the matched filter response can be de-
scribed as a matrix MF, denoted by MF = [MF|,MF,, ...,MFNpulse], with each vector
MF; € CNdelay indicating the MF response of the i pulse. This matrix MF can be more

clearly illustrated in the Figure 2.9 (a).

MF (1) = /0 e — Dy (t)de 2.14)

Next, we introduce the concept of slow-time and fast-time in radar signal process-
ing, which are useful to understand the pu-DS and time-frequency analysis. Generally
speaking, the time within a single pulse sampled at fy,,;. is referred to the “fast-time”

while the time between pulses sampled by PRF' is the “slow-time”. Figure 2.8 (a) illus-
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Figure 2.8: (a) Fast-time four pulses modulated by Doppler frequency. (b) The phases of
Doppler frequency within the four pulses.
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Figure 2.9: (a) Matched filter response matrix MF, the column index j € [1,2,...,Ngeiqy) indi-
cates the fast time index; the row index i € [1,2, ...,Npulse] indicates the slow time
index. (b) Time-Frequency analysis, taking the range-time history from (a) to obtain
the frequency-time history responses; green vector indicates the averaged range-time
history at target’s range bins.

trates the example of four pulses, modulated by the Doppler frequency f4,, = % and

Figure 2.8 (b) plot the phase of the relevant matched filter responses. Note that these

measures are all in fast-time domain.
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2.2.3 Time-Frequency Analysis

Suppose that we obtain the matrix MF in Figure 2.9(a) after the matched filter pro-
cessing. First the constant false alarm rate (CFAR) method [15] is applied to identify
the target range bins or the delay time index j € [1,2,...,Ngeiay]. Since this sub-section
is focused on time-frequency analysis, we assume that we can obtain the range-time
signal related to the target’s activity, as highlighted in red in Figure 2.9(a). We de-

note this signal as the matrix MF,arger = [MFrarget 1, s MFrarget N, 15, )» With i column

pulse
MFiargeri € CNuarger | with Niarger the number of active range bins where the target is.
Conventional methods take average of M F;,4.; along the range bins and obtain the time-
domain signal xj;p € CNewse as illustrated in Figure 2.9(b).

Time-frequency analysis aims to transform the time-domain signal to the joint time-
frequency feature space; the Short Time Fourier Transform (STFT) [16] is the most
widely used while others include but are not limited to the Wigner Ville Distribution
[17] and Empirical Mode Decomposition [18, 19].

STFT uses the sliding window on time domain signals x);r and the FFT operation
on each window to generate the frequency features. This operation is formally defined
in the Eq.(2.15) and illustrated in Figure 2.9(b). First a window function i(u) is applied
to extract the signal atoms in the neighborhood of the time ¢. Next the Fourier transform
is performed on the extracted atoms to generate the frequency responses at the specific
time 7 and x(u)h*(u—t) is defined as the atomic element. The performance of STFT
depends on the window length, choice of window function and the overlapping length

when sliding the window.

JTF(t,f:h) = / +°°xMF(u)h*(u —t)e I gy (2.15)

—o0

Wigner Ville Distribution utilizes the auto-correlation between signals with differ-
ent delays and transform the time domain signal into the instantaneous frequency space
by FFT. Empirical Mode Decomposition is aimed to decompose the mixed signal into
different frequency atoms using the Hilbert-Huang Transform, which is equivalent to
extract signals using different filter banks [18]. In sum, they all provide the joint time-

frequency features JTF (¢, f;h) for the feature exaction and classification. Since we are
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focused on machine learning methods for pu-DS, we adopt the most widely used STFT

for generating all the u-DS in this thesis.

2.2.4 p-DS Classification

Although the p-DS JTF (t, f;h) in Eq.(2.15) contains the fundamental features to infer
the activities, they may not be the optimal one for activity classification. This sub-section
focuses on the feature extraction methods of the p-DS and the classification methods.
Suppose that we have accessed the u-DS JTF (¢, f;h) and denote its discrete data sample
as xup € RNfreq*Niime | where Ntreq and Ny are the frequency and time bins we are
interested in. Since we adopt the most commonly used STFT processing, we only review

the following feature extraction and classification methods based on the matrix x,p.

2.2.4.1 Feature Extraction

A large number of features have been proposed and the ones based on the STFT outputs

can be divided into the following three categories.

* Hand-Crafted Features: these features include the fundamental features directly
related to the human motions, for example, the maximum velocity of the move-

ment, the time width of the u-DS, the RCS values etc.

* Component Analysis Features: these features are based on the statistical com-
ponent analysis, such as Principle Component Analysis (PCA) and Singular Value
Decomposition (SVD) of the spectrogram matrix. Then the useful statistics like
mean average and standard deviation values of the projected data are regarded as
useful features. These methods aim to eliminate the noise and project data vec-
tors to different orthogonal subspaces or transformed into statistically independent

vectors.

* Representation Learning Features: without identifying specific feature extrac-
tion operations, the whole spectrogram matrix is regarded as the only input and we
aim to learn the optimal features in an end-to-end learning framework like DCNN,
which automatically learns the feature and classifier within a unified optimization

function.
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2.2.4.2 Classification Methods

Various classifiers in the machine learning community have been investigated for u-DS
classification which can be summarized into three basic categories: distance, represen-

tation and the statistical model based classifier.

* Distance Measurement Based Classifier Nearest Neighborhood (NN) [20] and
Support Vector Machine (SVM) [21] are well-known examples in this category,
which aim to measure the distance between test samples with the labelled training

samples. The distance varies in both the Kernel space and the raw feature space.

* Representation Learning Based Classifier DCNN aims to represent the raw data
by non-linear or linear combination of different layers, with the final layer’s out-
put the probability vector of the predicted classes. Besides the hierarchical and
complex representations learned by DCNN, another popular classifier is the SRC
[22], which aims to extract the sparse representation of the test sample using lin-
ear combination of training data. The SRC classifier picks up the class with the

minimum representation residue.

* Statistical Model based Classifier Naive Bayesian classifiers [20] and the Gaus-
sian Mixture Model [23] are the well-known classifiers in this category. They both
utilize the principle of maximum likelihood to make decisions according to their
probability density function fitted by the training data. The density function of
Gaussian Mixture Model is always estimated using the Expectation Maximization
algorithms while for the Naive Bayesian classifier, the density function is assumed
to follow the Gaussian distribution. In this way, the mean and standard deviation

of the Gaussian distribution can be estimated easily based on the training data.

2.3 Sparse Coding and Dictionary Learning

The past decades witnessed both the theoretical developments and applications of spar-
sity prior in machine learning, signal processing and computer vision communities
[24, 25, 26]. Sparsity in the data representation encourages that only a few elements

of the representation is non-zero. Rather than using the observed sensor data which
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are complex, redundant and even noisy, the sparse representation is efficient and flexi-
ble, concise and robust to noise [24]. In this section, we review the sparse coding and
DL methods required to generate the sparse representation, which may help understand

contributions when applying them in p-DS classification.

Sensor signals are dense and we tend to represent them under a basis (decompose
the sensor data under a set of basis) so that the more concise and sparse representations
are obtained for advanced applications. More formally based on the sparse coding theory
[24] and the Eq.(2.16), given the observed signal or data y € R¥ and the dictionary or
basis D € RM*N sparse coding methods are aimed to find the maximally sparse code
s € RV as the representation of y, leveraging the linear combination of the atoms in D.
Here, ||s]|o indicates the number of non-zero elements in s. In the context of DL, we are
aimed to not only find the sparse code but also learn the optimal dictionary D based on

the following Eq.(2.17), where € is the upper bounds of the representation error.

Solving the Eq.(2.16) and 2.17 is NP-hard [24], as searching the best sparse code
s with the least non-zero elements is exhaustive, not to say when its dimension is large.
Therefore, some methods have been proposed for either relaxing Eq.(2.16) or aggres-
sively obtaining an approximate but tractable solution. We review some existing meth-

ods in the following sub-sections and discuss the usage in u-DS classification.

s =argmin ||sl|o s.t. y=Ds (2.16)
s,D:argm})anHo st. |y—Ds|3<e (2.17)
S?

2.3.1 Sparse Coding

This section only focuses on reviewing the convex optimzation based and the greedy
methods to solve Eq.(2.16) and discuss their applications in u-DS classification. Convex
optimization methods use ¢; norm penalty as the replacement of Eq.(2.16) but greedy
methods aim to solve the ¢y norm penalty in an aggressive manner. Besides these two
categories, methods developed also include concave optimization, Baysian approaches

etc; interested readers are suggested to find out more details in [27, 28, 29, 29, 30].
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2.3.1.1 Convex Optimization based Methods
In the convex optimization methods, the best approximation of Eq.(2.16) utilizes the
/1 norm penalty, as shown in Eq.(2.18) [31]. This approximation is beneficial because
it guarantees the global minimum solution rather than the local minimums. Note that
the community also refer to this /; norm based methods as the Basis Pursuit methods
[24] and we refer the formulation of Eq.(2.18) the Basis Pursuit De-Noising. To fur-
ther guarantee the equivalence between the ¢y and ¢; norm formulations, the theoretical
development called restricted isometry properties [32, 33] is made and this is shown in
Appendix A.1. Note that the restricted isometry properties measure the worst situation
of the sparse coding problem, however in practice, Basis Pursuit based algorithm works
well in many engineering applications.

In addition, the formulation of the Least Absolute Shrinkage and Selection Operator
[31] has been proposed in Eq.(2.19) where ¥ is the upper bound of the sparsity penalty.

Note that this can be equivalently derived to the well-known formulation without con-

straints in Eq.(2.20).
s=argmin|s|; st. |y—Ds|3<e (2.18)
N
s =argmin|ly—Ds|3 s.t. |s|j; <® (2.19)
N
s:arnginHy—DsH%—l—?LHsHl (2.20)

Under the regime of convex optimization based sparse coding methods, popular
methods based on the gradient descent have been proposed and adopted due to the fast
yet accurate implementation and we also refer them to /;-solvers. These solvers are
efficient since they are designed for specific optimization problems. These efficient ¢;
minimization solvers include, but are not limited to, IST[34], SpaRSA[25], TWIST [35]
and GPSR[36], the Fast ISTA [37] and the Learned ISTA (LISTA) algorithms [38] based
on learning the parameters in the ISTA. Since the work in Section 3.5.6 is inspired by

LISTA algorithm, we mainly review the most relevant developments in the following:

« ISTA: ISTA algorithm aims to calculate the optimal s | at the (¢ + 1) iteration

based on the conventional gradient descent algorithm in Eq.(2.21). For conve-
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nience, we denote the total loss function as F(s) = f(s) + g(s), composed of the
smooth sub-function f(s) = ||y — Ds||3 and the non-smooth part g(s) = ||s||;, with
the learning rate y. Note that ISTA requires that both f and g are convex and g is
known and separable. Besides the black-box algorithms in Eq.(2.21), ISTA uses
a more efficient algorithm by optimizing the proximal term in Eq.(2.22), where
% = L(f) and L(f) indicates that the function f is L( f)-smooth. The solution s,
can be derived in Eq.(2.23) and (2.24), where the function hn 2 (+) is the element-
wise shrinkage function based on g(s) and the threshold is defined as nA. The
ISTA framework can be more intuitively explained in Figure 2.10(a) with the
function H defined as H =1—nD’D. Additionally, since the g(s) is a simple

and element-wise separable function, we can further decompose the Eq.(2.24) to

N 1-dimensional problems assuming that s € RY.

Sl‘-l—l = 8t + 'YVF(S[) (221)
: 1
spe1 = arg min f(s;) +V£(s)" (s =s0) + 5= [ls =513+ 8(s) (2.22)
sERN 2n
!
St+1 =arg§gﬁgﬂlls—(Sr—an(Sz))l\%+g(s) (2.23)
Si41 = hg=na (s + D" (y — Ds;)) (2.24)

LISTA: LISTA algorithm aims to solve the problem in Eq.(2.19) more efficiently
by learning the parameters of a feed-forward network in the Figure 2.10(b). Com-
pared with ISTA, LISTA can be viewed as a time-unfolded recurrent neural net-
work and the example in Figure 2.10(b) unfolds the three iterations in ISTA al-
gorithm with learnable parameters. Note that the back-propagation (see Section
2.4.1.6) operation is used for optimization and the parameters under estimate in-
clude the dictionary D, functional matrix H and the threshold 6 = nA. Since
LISTA is originally applied to solve the sparse code s, the loss function L;;y, 1s
the mean square error between the ground-truth sparse code s,,; and the estimated
one § in Eq.(2.25).

Liisia = [1S0p — 5113 (2.25)
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Figure 2.10: (a) ISTA framework to calculate sparse coding s of the input y using dictionary
D and linear operator H. (b) LISTA framework to calculate the sparse code s by
unfolding the iterative methods in ISTA to recurrent units.

2.3.1.2 Greedy Methods

Instead of replacing the ¢y norm with the ¢; norm penalty, greedy algorithms, also re-
ferred to matching pursuit (MP) [39], attempt to minimize the ¢, norm by selecting the
active support set of the sparse code s in an iterative and aggressive manner. A large
number of MP algorithms have been proposed including but are not limited to MP, Or-

thogonal MP (OMP) [40, 41, 42] and its variants and subspace pursuit [43] etc.

Without considering the gradient and convexity, MP algorithms aim to select the
best active support set of s, in the current step so that the representations D X s,
best matches the original observation y. Although MP based methods usually provide
less accurate and worse estimations compared with the Basis Pursuit counterpart, it is
advantageous because of its easy implementation and light-weight computational load.
It is usually preferred by many engineering applications when computation resources are
limited or the reconstruction accuracy ||y — Ds||% is not the critical requirement. More
specifically, the MP algorithm can be illustrated in Eq.(2.26), where |Q| indicates the
length of the index set, Q C [1,2,...,N] and Nj is the maximally allowed active support

number or the sparsity level of s. Conventionally, the required N; is fixed based on the
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applications and MP methods select the best support index i € Q based on the highest
correlation results between the atom D; and the residual r in the current step. However,

variants of MP differ in searching for and selecting the optimal support set Q.

5,Q=arg min |[ly— Y Disill3 (2.26)
5,| /=N i€Q

e MP: MP algorithm is the simplest type of greedy methods. It first selects the

best-matching dictionary column/atom Dj to the current residual ry, at k™" iteration

by finding out the highest correlation results. Then it also uses this correlation

result as the i/ support value s;. The pseudo-code is shown in the Appendix A.2

Algorithm 1.

* OMP: The OMP algorithm adopts the same way to select the active atoms as MP,
but differs when calculating the support value and the residual at each iteration.
OMP ensures that the same atom in the dictionary cannot be selected twice, as
the residual 7y at the k" iteration is always orthogonal to the selected columns of
dictionary D. Specifically, OMP recognizes and adds a new atom to the active
support set in each iteration and calculates the relevant support values of the set by
minimizing the reconstruction error. The details of the algorithm can be found in
Appendix A.2 Algorithm 2. Many variants of the OMP algorithms have been pro-
posed, including StOMP [44], CoSaMP[45] and the Subspace Matching Pursuit
(see details in Appendix A.2 Algorithm 3) [43].

2.3.1.3 SRC for u-DS classification

£1-solver and the greedy methods can be applied directly to u-DS classification, leverag-
ing the robust sparse representation of the u-DS data. This is because the more compact
representation of the data is i) robust to noise and ii) intrinsically discriminative [22],
which are suitable for classification problems. Wright et al. [22] may be the first to
adopt SRC method for robust classification of facial images. In this subsection, we ap-
ply the SRC in the context of classifying u-DS data.

The core idea of the SRC is that we do not use conventional dictionary, such as the

Fourier basis, but utilize the labelled training p-DS samples as the dictionary D. Suppose
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that the dictionary D € RM*V is composed of N p-DS samples, within C classes, denoted
as [x1,x2,...,xy] = [D1,D3,...,D¢]. SRC first represents the test u-DS data, denoted as y
as the linear combination of the training sample dictionary D constrained by moderate
sparsity level. Secondly the test sample is assigned to the label ¢ if and only if the
residual 7. using all atoms from the class c is the smallest. More specifically, the SRC

can be interpreted as two steps, including sparse coding and classification.

» Sparse Coding: The sparse representation of y shown in Eq.(2.27) and 2.28 can

be obtained using the solvers introduced in Section 2.3.1.1 and 2.3.1.2.
s:argmsin||y—Ds||%+7L||s||1 (2.27)

s:argmsin||y—Ds||%+?L||s||0 (2.28)

 Classification: After the optimal s is estimated, the classification step assigns the
class c to the test sample y by selecting the best class ¢, to reconstruct the y with
the minimum residual, as shown in Eq.(2.29). Note that D, refers to the atoms in

class ¢ and s, indicates the support values of these atoms.

cy =arg mcin |y — Dese||5 (2.29)

2.3.2 Dictionary Learning

Selection of dictionary plays an important role in sparse coding and the classification
performance. To learn the optimal dictionary in the context of classification, we review

the methods to learn a discriminative dictionary from the training data.

Based on the formulation of SRC in Eq.(2.27), (2.28) and (2.26), we may observe
that solving the sparse code s under a fixed dictionary D is constrained by both the recon-
struction error ||y — Ds||3 and the sparsity level penalty ||s|;. Balancing these two terms
and obtaining the optimal trade-off sometimes is limited and may not be beneficial for

classification. However, if we learn the dictionary D, the burden of solving the optimal



2.3. Sparse Coding and Dictionary Learning 61

sparse code s is reduced and the classification performances can be further improved.

fPrior(D)
5,D = argmin Y —DS|)3 s.t. gprior(S) (2.30)
Isili <n Vi

Facing the classification task, DL usually adopts the ideas of incorporating discrim-
inative prior knowledge and the structural constraints when updating the dictionary D
and the sparse code s simultaneously. A unified formulation of DL is in the Eq.(2.30),
where training samples are Y and the dictionary is D, with the sparse codes denoted
as S. Besides the sparsity prior, the fpyio(D) and gprior(S) are additional constraints
which may further increase the discrimination capability and improve the classification

performance in the following two ways:

* Constraints on the dictionary D: Dictionary can be learned constrained by dif-
ferent structural priors. For example, we may directly divide the dictionary D to
multiple sub-dictionaries D,,c € [1,2,...,C] [46]. In addition, further constraints
can be integrated to increase the incoherence between sub-dictionaries from dif-

ferent classes, which has been proved to improve the classification results [47].

Although we have neither developed nor applied DL methods in this thesis, we
are inspired by DL when designing the DLL layer in DTN Section 3.5.6. There-
fore we discuss the connections of DL with the DCNN in advance, emphasizing
our arguments that the whole DCNN design can be interpreted as a special prior
knowledge for learning the dictionary (network weights) D. The ultimate goal
of DCNN’s layer-wise functions, including the nonlinear active functions, con-
volution layers and the FC layers, is to learn a unified function projecting from
the observation data Y to the predicted label embedding S. Learning the DCNN
parameters performs in the similar way of updating the dictionary D. However,
the DCNN applies special prior knowledge on the dictionary D, for example, they
used hierarchical prior knowledge and the whole parameter set is layer-wised. In

addition, they incorporate some non-linear properties on the dictionary D as well.
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* Constraints on the sparse code S: Since sparse codes S in the SRC framework
directly indicate the class information, we may enforce the S to be discrimina-
tive based on some criterion: for example, smaller intra-class distance between S
from the same class and larger inter-class distance between the sparse codes from

different classes in FDDL[48], LC-KSVD [49] and the SDDL [50].

2.4 Deep Convolutional Neural Network

As discussed in the Section 2.3.2, success of DCNN witness the superior performance
when incorporating hierarchical prior knowledge in network design by stacking multiple
linear and non-linear functions. In this section, we first review the fundamental layers
and operations of the Convolutional Neural Network (CNN) in Section 2.4.1. Next,
useful network training strategies are reviewed in Section 2.4.2. Finally we introduce

some successful developments of the DCNN architectures in Section 2.4.3.

2.4.1 Convolutional Neural Network

CNNs are made up of 3 essential layers: Convolutional layers (Conv), FC layers (FC)
and the Pooling layers (Pool). We first review their design and the mechanism. Next,
to increase the network capacity, different non-linear activation functions are reviewed.

Finally, we review the loss function and optimization method in CNN.

2.4.1.1 Fully Connected Layers

The FC layer uses linear matrix multiplication and vector summation, with the following
tunable parameters: weights W € R¥*N and the bias b € N x 1. The basic operation is
shown in the Eq.(2.31), where x € RM*! is the input to the FC layer and y € RV*! is
the output. As no spatial information and prior knowledge is contained in the FC layer
weight matrix W, it is usually utilized to transform the low-level local features, such as
edge and blob features to the higher-level representations.

In CNN, we usually measure the spatial extent of the connectivity between each
neuron and the input data. Therefore we introduce a hyper-parameter called receptive
field RecF [51] to describe such spatial extent. This can also be regarded as the spatial

size of the input under consideration for calculating higher-level layers’ responses. Note
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that the receptive field RecF of the FC layer, is the size of the whole input.

y=f(x)=Wx+b (2.31)

2.4.1.2 Convolution Layers

To extract the local features preserving the spatial information of the sensor data, Conv
layers are widely utilized. After all, it is extremely memory and processor intensive to
process the high-dimensional sensor input using FC layers, as they are fully connecting
each input element directly to each element of the output.

However, utilizing the local filters design and the window sliding operations, Conv
layers are feasible and tractable. The basic Conv layer operation is illustrated in Figure
2.11, where the input sensor data is x € R¥in(height) xWin(width) < Cin(channel) g the " Jocal
filter under optimization k;, i € [1,2,...,C,,] is convoluted with the input x.

Note that the i kernel filter k; is of the size k; € R"*W*Cin and the output size is
[Hyy; (height) X Wy (width) X Coye(channel )]. Mathematically, the output response of a
Conv layer is defined in Eq. 2.32 [52].

y(i, j) = x(i, j) xk(m—i,n—j) =Y Y x(i, j) x k(m—i,n— j) (2.32)

m n

2.4.1.3 Pooling Layers

The Conv layers are memory efficient, due to the sliding window operation. However,
the output is still translation-variant and sensitive to the spatial local distortions [53]. To
alleviate this problem, the pooling layer is inserted between consecutive Conv layers, as
an non-linear sub-sampling function. The basic operation can be shown in Figure 2.12
where the input is a 4 x 4 matrix, the pooling window size is 2 x 2 and with the sliding
window strides of 2 both horizontally and vertically.

In the pooling operation, the stride indicates the step size of the sliding window and
it is applied in all-channel responses. Two well-known methods are max-pooling and

average-pooling [54]. The max-pooling mechanism by preserving the maximum number
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Convolution Operation

Figure 2.11: Convolutions in Conv layer: input feature map with the size of H;, x Wy, x Cjy, is
convoluted by C,,, filters with the size of h; X w; X Cj,, where i € [1,2,...,Cpy]. The
output is with the size of Hyyr X Wy X Coyr.

and deleting all others in each sliding window operation. In addition to the reduced
feature dimension after the pooling layer, it also functions to reduce the parameters under

estimation.
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Figure 2.12: Max-pooling operations.

2.4.1.4 Activation Functions

Activation function is essential in modelling the DCNN since it increases the represen-
tation capability by adding the non-linearity to the features. After all, without the non-
linearity, cascading multiple linear functions is equivalent to modelling using a single
linear function. Activation function comprises two categories: i) the piece-wise non-
linear function including ReLLU [55, 56], Leaky RelLU [57] and the Exponential Linear

Unit [58]; ii) the smooth functions, including sigmoid and tanh as shown in Figure 2.13.
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Figure 2.13: Activation functions in DCNN: input is x € R and output is f(x)

In early CNN research, smooth functions are widely adopted due to the existing
gradients within all range of input values and the fact that they limit the output values
within a specific range. Despite these advantages, inserting them in DCNN is problem-
atic as the gradients are small over a large portion of its input range (also termed as
the neural saturation problem). In addition, stacking multiple layers tends to generate
vanishing gradients when updating low-level layers. To tackle this, the piece-wise non-
linear functions are proposed in the Eq.(2.33). Among these, the most widely used is the
ReLU function, which has proved its superior efficiency and robust classification per-
formance in [59]. ReLU does not suffer the neural saturation problem mainly due to its
linear function design. Additionally ReLU also reduces the computational complexity
since all the negative parts are assigned as zeros. Other advanced variants including the
Leaky ReLLU and the Exponential Linear Unit functions differ from ReLU only when the

input is negative. The designs for the negative input are smoothly changing the function
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values close to zero rather than directly assigning zero to any negative inputs.

f(x) = max(0,x), (2.33)

Besides the activation functions introduced above, softmax function is also widely
used for projecting the predicted features x € R to the discrete multi-nomial distribu-
tion y € RV with y; = P(Y = y;) and i € [1,2,...,N,] in Eq.(2.34). Softmax gives the
following ideal properties for classification task: the sum of the output vector y is one,
with each element positive. This enables the output as the predicted N, -class label under

comparison with the ground-truth one-hot labels.

exp(yi)

—— (2.34)
Litrexp(yi)

Vi = softmax(x) =

2.4.1.5 Loss Function

As we mainly tackle the supervised learning problem, only the relevant classification
loss function in DCNN is reviewed. Given the predicted label y and the ground-truth
label y, the conventional operation is to minimize the cross-entropy [60] loss Lcg in
the Eq.(2.35) for network training. This function is actually measuring the discrepancy
between the predicted label distribution with the ground-truth one which can be derived

using the definitions of entropy and the KL divergence shown in Eq.(2.36) and (2.37).

Nc
Leg =Y —yilog($i) (2.35)

i=1

H(y) =H(y1,Y2,--sIN,) = _ZinOg(yl') (2.36)

N, .
A l

Dir(y|[9) = Zyilog(y
i i

| ) (2.37)
= YN yilog(y:) — yilog(9:)

= Zﬁvc —H(y) +Lcg
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2.4.1.6 Optimization in DCNN

Due to the non-linear activation functions between layers, optimization of DCNN is not
tractable and there is no guarantee for the global minima. The most widely used method
is the Stochastic Gradient Descent (SGD) for minimizing the loss functions defined in

the Section 2.4.1.5.

The idea of SGD can be formalized as follows: suppose that we are given N; train-
ing samples x' with their labels y’ defined in the set {(x,y'),i € [1,2,...,N;]}, we can
randomly choose a subset {(x,y"),i € [1,2,...,M]}, including M samples and term it a
mini-batch. SGD methods then perform gradient descent based on the randomly se-
lected mini-batch per iteration. More specifically, SGD based algorithm comprises the

following two steps:

* Gradient Computation: suppose the DCNN is denoted as a unified function fy
with parameters 60, the gradient of the loss function to the parameters 8 is shown
in Eq.(2.38):

M
oL _ 1 Z aL (2.38)

* Weights Update: this step updates the network weights following the direction to

minimize the loss function L, as shown in the Eq.(2.39), with y the learning rate.

0« 0— yg—g (2.39)

To update multiple layers’ weights, we first reformulate the N;-layer DCNN func-
tion fg as fg = fn,© fn,—10 f20 f1 in the compound way in Eq.(2.40). Next, given the
network input x and the i/ layer function f;, the back-prop is proposed to update net-
work weights efficiently by computing the layer-wise gradients w.r.t the final loss func-

tion based on the chain rule [61, 62]. More specifically, gradients w.r.t. weights of the
()
J

indicates the ;"

a26;

element of the i layer’s output. We introduce a concrete example to illustrate the whole
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optimization procedure in Appendix B.1.

fo(x) = fn, o fn—10f20 fi(x)

(2.40)
= fn(fn—1(-(f2(f1(x)))))
o or
2 " 30 30 A
T 5 (i+1)
oL JL ' ox (2.42)

@~ ox+D) 5 )
8x j ax axj
2.4.2 Network Training Strategies in DCNN

In DCNN, some training strategies and methods are proposed for efficient and robust
optimization. In this section, we review the weight initialization methods and the dropout

operations.

2.4.2.1 Weight Initialization

Weight initialization is essential as it strongly influences the final optimisation result.
This is mainly because the gradients of the network weights in DCNN either vanishes
or explodes easily. This problem and its potential reasons are illustrated clearly in
Eq.(2.40), by assuming the identical layer-wised functions fy, ~ fy,—1 =, ...,~ fi = 8
in Eq.(2.43). Note that in this simplified case, 8 is a scaling scalar for the purpose of
illustration.

fo(x) = fi, 0 fy,—10 fa0 fi(x)

:xBNI

(2.43)

Obviously, depending on the selection of 3, the final unified function fy(x) will
approach to either zero or the limit when increasing the number of layers, as shown in
Eq.(2.44). To tackle this problem, the most intuitive solution is to initialize the network
weights according to the zero mean Gaussian distribution with the standard deviation o,
so that the expectation E(f3) is close to 1. Let us further denote the layer’s input and
output number are denoted as n;, and n,,; respectively. Conventionally, if the activation

function is the tanh, we use the Xavier initialization for o in Eq.(2.45) [55]. If the ReLU
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is used, the widely used initializer is based on Eq.(2.46) [63].

' 1
lim fo() =gt =40 M P (2.44)
Ni—ee oo if B>1
[ 2
S (2.46)
Nin

2.4.2.2 Dropout Operation

Dropout operation is designed to prevent the overfitting problem [64] by reducing the
number of network weights in a stochastic manner. This has been widely recognized as
a stochastic regularization technique which randomly assigns part of the activation x to
zero with the probability of 1 —¢g, 0 < g < 1. In general, the dropout operation works
similarly to a network/output sampler which reduces the number of network weights un-
der estimation for each mini-batch training samples. Another perspective of understand-
ing the dropout operation is via the model ensembling, where multiple smaller networks
are ensembled together stochastically in the optimization. In the test stage, the dropout
probability ¢ is set to 1 and we are calculating the average of multiple smaller networks’
predictions of the test data. Note that in order to preserve the expectation of the output,

o 1, ..
the activations are scaled by — in the training stage.
q

2.4.3 DCNN Architectures

This section reviews some well-known DCNN architectures designed for object classi-
fication. These models formed the basis of most of the deep transfer networks, deep
adaptation networks and the deep ensemble networks. We only introduce the adopted

ones in this thesis but we refer the references of other developments [65, 66].

24.3.1 AlexNet

AlexNet may be the first DCNN architecture demonstrating the success in large-scale
object recognition task, e.g. to classify the objects in ImageNet[59]. Architecture of

AlexNet is shown in Figure 2.14(a) which is composed of Conv and FC layers, with
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appropriate weight initialization [67], drop-out techniques [64] and the Relu activation
functions [68]. This may be the first DCNN network trained in an end-to-end manner

that has demonstrated the superior performance over the hand-crafted features.
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3x3 Conv, 512 Chs
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Figure 2.14: DCNN architectures: 1000 FC indicates the output dimension of the FC layer is
1000; 3 x 3 Conv, 256 Chs indicates the convolutional filter size is 3 x 3 and we use
256 filters. Softmax indicates the softmax function. (a)Architecture of AlexNet;
(b)Architecture of VggNet-16.

2.4.3.2 VggNet
Compared with AlexNet, VggNet [69] in Figure 2.14(b) designs the Conv layer filters

with the same size of 3 x 3, which are smaller than the one used in AlexNet. However,
VggNet stacks more layers in their design.

More specifically, stacking three 3 x 3 Conv layers with the stride size 1 has the
same receptive field as the one using a 7 x 7 Conv layer. Therefore they argue that
stacking more Conv layers but with smaller filter size can improve the classification
results by reducing the number of parameters compared with AlexNet. Another reason

of the outperformance is that VGGNet integrates more non-linear activation functions
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due to stacking more Conv layers and adopting deeper architectures.

2.5 Transfer Learning in Deep Neural Networks

Transfer learning aims to effectively boost the classification performance of the new
task (e.g. learn to recognize a new object) by transferring the knowledge gained from
old ones (e.g. the network weights used to recognize other objects). This is inspired by
the human recognition mechanism, where we tend to link the observed properties of the
new task with the old task stored in the memory. Taking Figure 2.15 as an example where
given such an image, we may preferably describe the animal as: the head of giraffe, the
body of the horse and the zebra’s legs. In our recognition system, these useful features
stored from previous observations of other animals are combined in a particular way
to recognize this “unpopular” animal. The example indicates that to learn a new task
effectively, we may tend to leverage the gained knowledge learned from previous old
tasks.

Machine learning algorithms, especially classification methods make assumptions
about the model and task. The most widely adopted one is that the training and test data,
features or joint feature and label representations are drawn from the same distribution.
Unfortunately due to the various environmental perturbations of the data, different sensor
types and potential human manipulations in the pre-processing methods, this assumption
is rarely held in practical scenarios. In transfer learning, the data sampled from the
original distribution is termed the source data or source domain while the data from the
new distribution is referred to the target data or target domain. To tackle the distribution
discrepancy, transfer learning framework is utilized to classify target data effectively
leveraging the gained knowledge from the source data.

Transductive learning (TL) and inductive learning (IL) are two categories of transfer
learning [70]. Later, the communities also refer to the TL as the domain adaptation

problem. In the following, we review the definitions and discuss the differences.

* Transductive Learning: given the source and the target domain (data,label) pair
Dg = {(x5,ys)} and D¢ = {(x;,yr)}, TL assumes that both domains share the same

classification categories, more specifically y, € [1,2,...,N,| and y, € [1,2,...,N,].
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Figure 2.15: An “unpopular” animal called Okapi, with Giraffe’s head, Horse’s body and Ze-
bra’s leg.

The random variables representing the image and label in general are denoted as
X and Y. In spite of this, the joint distributions of data and label can still be
different: P(Xj,Y;) # P(X;,Y;). The aim of TL or domain adaptation is to learn
transformation 7' so that the joint distribution of feature and label can be similar:
P(T(X;),Ys) = P(T(X;),Y;). In other words, the target domain classification per-
formance can be improved by reducing distribution divergence between the two
domains. A more practical yet challenging scenario is the unsupervised domain
adaptation (UDA) where no label information in target domain is available. As
we make contributions in this particular scenario, we review the relevant UDA

methods in Section 2.5.2.

* Inductive Learning: in IL, we consider a more generalized scenario where labels
from two domains y; and y, are from different classification categories. Although
D¢ # Ds, IL considers to improve the network training of Dy using the gained
knowledge from source domain Dg. If both the source and target data are well-
annotated and labelled, the IL is often referred to the multi-task learning. In this
thesis since we are handling supervised learning for u-DS classification, we review

the relevant multi-task learning methods in Section 2.5.1.
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2.5.1 Multi-task Learning in Deep Neural Networks

Multi-task learning aims to transfer knowledge from well-labeled source domain to the
well-labeled target one when Dg # Dy. We mainly review the methods in the following

two scenarios:

* The source and target data are drawn from different distributions,
P(X;) # P(X;) meanwhile, the classification categories are different. In this
scenario, the community designs DTN for learning new tasks by utilizing the
state-of-the-art DCNN architectures for the old tasks, for example object recog-
nition in computer vision, as introduced in Section 2.4.3. The very high-level
illustration can be found in the example in Figure 2.16, where source domain data
is the large-scale ImageNet dataset while the target domain data is the small-scale
PWR p-DS. Although with different tasks, the DTN can transfer the pre-trained

weights to the new p-DS classification.

* The source and target data are drawn from the same distribution,
P(X;) = P(X;), however the classification categories are different. As the
data are sampled from the same distribution, we are actually classifying multiple
factors of the same data. Taking the u-DS Classification as an example, for each
data sample, we may access labels of three factors, indicating motion, human
target and the aspect angle respectively. To transfer knowledge among multiple
tasks, the DEN is designed by sharing information with each other. A simple ex-
ample of classifying three factors of the u-DS is shown in the Figure 2.17, where
the feature extractor network 7 is shared by the three tasks and the classification
of each factor can be regarded as the source domain while the others are the target
domains. Leveraging the transferred knowledge between tasks, the final motion
classification may outperform the one without gaining knowledge from the other

tasks.

2.5.1.1 Deep Transfer Network

DTN is always utilized to classify small-scale dataset leveraging the pre-trained weights

from the large-scale dataset, for example the ImageNet [71]. DTN is normally composed



74 2.5. Transfer Learning in Deep Neural Networks

Vs
\

I

Lcg
Cross Entropy
Loss

A

Egyptian cat

!

Persian cat Siamese cat . tabby

Transfer

Vi

Lcg
Cross Entropy
Loss

Figure 2.16: An example of DTN: transferring knowledge from object recognition in computer
vision to p-DS classification in PWR. Source domain (data, label) pair xs,ys from
ImageNet is fed to the DCNN 7' and network training is based on the CE loss
Lcg. We transfer network and domain knowledge T to the u-DS classification task.
Fine-tuning the network 7" using the target domain (data, label) pair x;,y, and CE
loss.

of two steps: high-level layer training and the low-level layer fine-tuning. DTN is in-
spired by the fact that low-level and local features are shareable between multiple tasks.
Therefore, we may first train the high-level layers to minimize the loss function with the
low-level Conv layers fixed. Next, we fine-tune the low-level layers and the high-level

layers together but using smaller learning rates.

2.5.1.2 Deep Ensembling Network

DEN is adopted by ensembling multiple tasks so that the features extracted can be task
generic and more discriminative. From other perspective, multiple tasks can be regarded
as the regularization terms for others and prevents the overfitting problem. The com-
monly utilized multiple tasks comprise the classification task, the data encoding and

decoding task [72], the detection task [73] and classifying multiple factors[74].
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Figure 2.17: An example of DEN: ensembling multiple factors (aspect angle and target person-
nel) recognition in p-DS based activity recognition. Given the p-DS data x;;pu,
feature extractor 7 extracts useful feature T (xj,,) based on three tasks, namely
the motion, target personnel and the aspect angle recognition.

2.5.1.3 Applications in p-DS Classifications

Since the u-DS dataset is relatively small compared with the large scale datasets in com-
puter vision, it is difficult to train the whole DCNN architectures introduced in Section
2.4.3. However, shallow methods are not as powerful as the representation capability
compared with the DCNN. In this way, the DTN may be utilized leveraging the pre-
trained weights from ImageNet and the fine-tuning techniques introduced in Section

2.5.1.1 are usually utilized.

To design a robust system for the u-DS classification, two factors of variations
should be accounted for, namely the target personnel and aspect angle. Variations of
the two factors may give rise to data sample variations and these can destroy the pre-
trained classifiers. One solution is to utilize the DEN by ensembling more factor labels
and design multiple factor classification tasks shown in the Figure 2.17. Through incor-
porating multiple tasks and more regularizations for the network training, the variations
caused by the factors may be reduced in the feature space, for example, the features

extracted for motion classification may be invariant to the human target variations.
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2.5.2 UDA in DCNN

As mentioned in Section 2.5, even though with the same classification task, it is almost
impossible to assume that training and test data, or the source and the target data are
drawn from the same distribution. In addition, as the test (target) data are always as-
sumed unlabeled, it is fairly important to learn the classifier and feature extractor from
the training (source) data by considering the effect of test (target) data in an unsuper-
vised manner. We always refer to this the UDA problem, especially for DCNN models,
as DCNN is very sensitive to small perturbations of the input [75]. DCNN models for
UDA are composed of two steps: i) feature and classifier design and ii) reducing the di-
vergence of feature distribution between domains. In the following, we review the main
divergence measurements and the deep adaptation networks to tackle UDA. Finally, we

introduce the potential applications of UDA in u-DS Classifications.
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Figure 2.18: Adversarial training in UDA networks. Given the source (data, label) pair x;, y; and
target data x,, DCNN network 7" aims to extract useful features 7 (x;) and T (x;) so
that the domain discriminator D cannot differentiate which domain they are from.
The classifier is represented as CLS and learned by CE loss using x;, ys.

2.5.2.1 Divergence Measurement
This section introduces divergence measurements commonly used in adaptation tasks
in DCNN, including Maximum Mean Discrepancy (MMD), Jensen-Shannon (JS) diver-

gence and the Optimal Transport (OT) divergence. Let us further assume that the DCNN
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feature representations from two domains are denoted as 7'(x*) and 7' (x') and N and N,

samples are drawn from the distribution P(7 (X*)) and P;(T (X")) respectively.

* MMD: The MMD is usually considered as the non-parametric estimate of the
distance between two distributions, by projecting the input into the Reproducing
Kernel Hilbert space (RKHS) [76]. The projection function can be more formally
defined as ¢ (x) : RY — J# with the /# a RKHS and the MMD is formalized in
the Eq.(2.47) where the distribution discrepancy is measured via the difference
of the feature sample means in the RKHS. This measurement can be efficiently
calculated using the inner product of mapped feature ¢(7'(x})) and ¢(7'(x;)) via
the kernel function trick. In addition, MMD will only be close to zero if the two
distributions under estimate are very similar P(7 (X*)) ~ P,(T(X")), as proved in
[76].

1Ns 1Nt

MMD(T ('), () = |- 3 0(T (7)) — 1 Lo (T ()l (2.47)
N t j

» JS: JS divergence may be the first measurement implemented based on the adver-
sarial training strategy. This has been widely used in the well-known Generative
Adversarial Network (GAN) [77] and relevant applications. We formulate the JS
divergence JS(Ps||P;) in Eq.(2.48) and its implementation using adversarial train-

ing for UDA.

The most relevant example in UDA using adversarial learning is in Figure 2.18
where we add the discriminator network D to discriminate whether the features
T(x') and T(x*) are from the same distribution, while the network 7 aims to
confuse D. The adversarial learning is more formally defined in Eq.(2.49) [77],
where the output of discriminator D(T (x*)) and D(T (x')) are scalars, indicating
the probability that the output is from the source domain. The equivalence between

Eq.(2.49) and the JS divergence Eq.(2.48) is shown in the Appendix B.3.

b+ h
2

2

JS(P||P) = KL(P|| =) + KL(F| (2.48)
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minmax By () p (7(x0)) [[08(D(T ()] + Ex(x)ep () [log (1 = D(T ()]
(2.49)

* OT: OT measures the distribution divergence via the perspective of finding the
optimal transportation plan between domain samples [78]. In general, to reduce
feature distribution divergence, OT based methods first estimate the OT plan be-
tween two distributions and then learn the feature transformation 7 to minimize
the total cost of such a plan. Therefore, we need to define two terms, namely the

transportation plan and the distance of each transportation.

Let us first define the transportation plan between feature distributions in source
and target domains as y with the marginals P; and P respectively. In the dis-
crete version, the set of probabilistic couplings B can be defined as the following
Eq.(2.50). Ideally, the cost of the transportation from T (x}) to T (x';) is measured
by the distance function c(x! 7xtj) and based on this the distance matrix C between

two discrete distributions can be defined.

Finally, we may define the metric J(P, P;) in Eq.(5.23) to measure the total cost
of transporting probability masses from target to source domains. The network 7'

is updated by minimizing the OT divergence measurements in Eq.(2.52).

B={ye R")""|yl, =u*,y" 1, =u'}[79]. (2.50)
J(P,P) = {7,C)p, withy €B, 2.51)
minJ (P, 7;) = min( 7,C), withy € B, (2.52)

2.5.2.2 Deep Adaptation Network

Based on the reviewed measurements in Section 2.5.2.1, the source domain classification
and the feature distribution matching are the two tasks in the DAN. Taking the Figure
2.18 as an example, two loss functions related to the two tasks are designed in the DAN,
including the source domain CE loss Lcg and the domain discrepancy 10ss Lyivergence

indicating the feature distribution divergence.
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2.5.2.3 Applications in u-DS Classifications

Target personnel and aspect angle are two essential factors of variation in u-DS which
make the classification task more challenging. In the practical scenarios, we may only
access a portion of the data from certain target personnels and aspect angles, however
the test data may comprise unseen targets and angles. Facing the distribution divergence
between training and test data, the DAN can be successfully applied to address this UDA
problem where we aim to learn domain-invariant features by reducing the distribution
divergence. More specifically, suppose the training (source domain) data x; are from
target A from 30 degree aspect angle, but the test (target domain) data x; may com from
the target B from 60 degree aspect angle. DAN can be directly applied to solve this

problem.

2.6 Activity Recognition in Diverse Modalities

This section reviews activity recognition methods using diverse modalities, including
camera video based methods, wearable sensor based methods and the radar based meth-

ods.

2.6.1 Camera Video based Methods

Although RGB video sequences in the temporal domain provide a lot of and sufficient
information for action recognition, RGB data encode irrelevant information as well, for
example, the background of the scene and the weather and light condition [80]. The
activity recognition requires to model the temporal information of the video sequences,
design features and classifiers accordingly.

Various hand-crafted features have been adopted in conventional methods, but these
can be divided into two categories: holistic and local representations [80]. Holistic
representation methods regard the whole pixels within the human bounding box as the
Region of Interest (ROI). Such methods include two steps, person detection and the
feature computation of the ROIs. The commonly used descriptors include but are not
limited to silhouettes[81, 82], edges [83] and the optical flow based features [84] in the
spatial-temporal space. Local representation based methods, do not require the person

detection but choose to detect the Point of Interest (POI) and feature computation of the
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POI. The POI detection is in general based on finding a video region (spatio-temporal)
which maximizes the saliency. The commonly used local descriptors include but are not
limited to HOG[85], HOF[85], brightness[86], gradient[86], optical flow[86] and dense
trajectory methods[87, 88].

With the recent successful development of deep learning, features and classifiers
have been integrated in the end-to-end training pipeline using DCNN, which improves
the previous benchmark by a large margin. For the action recognition task, DCNN aims
to learn specialized spatio-temporal descriptors (convolution filters) for the video se-
quences and the classifiers (decisioni boundaries) at the same time. The commonly used
and popular network structures include but are not limited to two-sequence network us-
ing two DCNN:s for still images and the optical flow results[89, 90], various RNN based
models to integrate the CNN features based on multiple frames [91, 92] and the spatial-
temporal 3D CNN [93, 94] including the C3D and I3D networks. Only until recent work
of I3D, DCNN based methods have outperform the conventional hand-crafted features

by a large margin.

2.6.2 Wearable Sensor based Methods

Compared with the RGB video based methods to describe the activity, wearable sen-
sors including but are not limited to accelerometers [95, 96], radio-frequency identifi-
cation (RFID) tags[97], switch sensors and motion sensors [98]. Although these wear-
able sensors provide less information compared with the RGB images, they describe the
most important state change information of the activities. Body sensor networks[98]
have been developed by various research to capture state of user using heterogeneous
sensors[99, 100]. Such network can be used for continuously monitoring the numerous
physiological signals.

To extract relevant features, discrete cosine transform [96] and sparse coding tech-
niques [101] combined with principle component analysis are commenly adopted meth-
ods for modelling the human activities. For the classifiers, hidden markov modelling
[102] and support vector machine [96] are usually utilized. Recent DCNN methods [103]
have been investigated for extracting features and designing classifiers using wearable

sensor data, which outperforms the conventional methods.
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2.6.3 Radar Sensor based Methods

Radar systems, from Doppler to the imaging radar, can detect human activities using
either the Doppler by measuring the velocity of body parts, or providing the images of
the human targets. However, to robustly detect the activities, pu-DS is the most commonly
used measurement.

Various radar systems have been demonstrated to successfully measure the u-DS of
human activities, including the CW radar at various frequencies [104, 105, 106], FMCW
radar [107, 108] which provides robust ranging detection of the human target as well and
the passive Wi-Fi radar for monitoring the activities in both the healthcare and security
applications [109, 110]. As for feature extraction methods, the spectrogram and wavelet
transformation based methods have been most widely utilized to extract the various fre-
quency components of the u-DS[111, 6]. Other time-frequency analysis methods have
been suggested as well, including the hilbert huang transform and the empirical mode
decomposition. These frequency descriptors are then processed by the dimension re-
duction methods, such as principle component analysis and the independent component
analysis methods or some research focus on designing the hand-crafted features includ-
ing the power of the frequencies, the RCS of the radar reflections etc [3, 112]. With the
development of DCNN based methods, more research are investigating to use the spec-
trogram images as the input for the DCNN and learn feature extractor and classifiers

simultaneously[113].






Chapter 3

Passive Wi-Fi Radar for Activity
Classification and Signs-of-life

Detection

3.1 Introduction

This chapter investigates PWR methods for signs-of-life detection and activity recog-
nition, which have attracted attentions from both healthcare and security communities.
Signs-of-life detection can detect breathing patterns in a contactless way in healthcare
applications and can also be used for detecting people dead or alive inside a building
in security applications. Activity recognition can contribute to detect fall motion in the
context of elderly home and also may help identify whether someone gets hit and falls

down etc.

In the era of big data, communications among devices exist almost everywhere and
therefore the Wi-Fi access points are deployed ubiquitously. Because of that, it is more
feasible to deploy PWR sensors utilizing existing Wi-Fi routers for activity monitoring.
More specifically, PWR system comprises two receiver channels, namely the reference
and surveillance channels. Ideally the reference channel is designed to receive signals
from the Wi-Fi transmitter directly and isolate the reflected echoes from the surveillance
channel. On the other hand, the surveillance receiver should pick up the reflected echoes

from targets, also isolating the direct arrivals from the transmitter (see more details in
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Section 2.1.4.3). PWR sensors are able to detect the p-DS caused by targets’ movements
and indicate the relevant activities by comparing the surveillance channel echoes with

the reference waveforms.

Driven by demands “which the aging population are placing on the healthcare ser-
vices”, the Ambient Assistant Living has been a widely accepted concept whereby var-
ious E-healthcare technologies are employed to monitor elderly and disabled people.
Within the Ambient Assistant Living framework, activity recognition has been an im-
portant research topic to facilitate enhanced situational awareness. Current activity mon-
itoring sensor technologies including wearables [114, 115, 116], mobile phones [117],
RFID [118], passive infrared sensors [119, 120], ultra-wide bandwidth based [114] and
vision based sensors [121, 122] are being investigated to detect, recognize and monitor
human activity [123]. Among these, sensors embedded in wearables and mobile phones
such as accelerometers and gyroscopes are able to provide some physical information
about the subjects, but suffer from low movement update rates of typically less than
SHz. In addition, people may forget to wear or drop their on-body sensors due to the
physical discomfort. Passive infrared sensors are able to only provide the coarse-grained
room level existence [124] while RFID based devices employ complex transmitters and
receivers, and require pre-planning in order to optimally site the positions of the nodes
[123]. Similar to on-body sensors RFID tags or transmitters can also be easily dam-
aged, lost or forgotten [125]. In a similar manner to RFID, ultra-wide bandwidth activity
recognition systems need heavy pre-deployment set up and ultra-wide bandwidth com-
ponents are more expensive than other technologies. Video system such as MS Kinect
and Intel RealSense have been investigated in some healthcare projects [126]. However,
in general, the video camera systems require optimal lighting conditions and the accept-

ability of deploying video cameras in home environments raises many privacy issues.

Besides normal activity recognition, signs-of-life detection is challenging in the
healthcare applications as it requires very sensitive detection methods. It is even more
challenging to use wireless or other low bandwidth signal, because we want to detect
small chest-wall movements as an indicator of the respiration. In fact, most techniques in

this category are bespoke active systems with large bandwidth and may require complex
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antenna arrays or the use of wearable devices. However, small movement detection is
very important in both security and healthcare applications, e.g. in security applications,
it is important to detect the hidden human targets, ensuring that no one is behind the
door when raiding a house during a policing operation; in healthcare applications, it is
essential to monitor the sleeping quality and analyze the breathing pattern.

In this chapter, four key contributions are made:

* A real-time phase-sensitive breathing detection methods is proposed and evaluated

for signs-of-life detection.

* A p-DS dataset involving six motions of interest were collected experimentally

and the key features of the signatures are analyzed.

* We propose a novel u-DS classification pipeline including a detection scheme, data
sample alignment method and a suite of classifiers. The classification methods are
SRC and the DTN pre-trained by the ImageNet dataset [7] but fine-tuned using
p-DS datasets.

* Finally, we proposed the DLL layer implemented as a series of recurrent units to
control the moderate sparsity of neural activations in DTN. This is achieved by
replacing conventional FC layer with our newly proposed DLL which improved

the results of conventional DTN [8].

3.2 Related Works

In this section, we mainly review the most related works for signs-of-life detection and

activity recognition using PWR p-DS.

3.2.1 Signs-of-life detection using PWR

Tang et al. designed the new analog circuit for signs-of-life detection [127], namely the
injection lock oscillator to compare the surveillance signal with the reference one and to
extract the phase difference between two channel data. In [128], Li et al. proposed to
extract statistics of the Doppler frequency bins between adjacent CAF batch results to

detect the relative changes of the frequency spectrum. They argue that the statistics and
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relevant patterns can indicate the breathing. The most similar work to us is [129] where
Khan et al. utilized and extended our phase extraction framework for breathing detection
and added to detect large movements by measuring whether the phase value is periodic
or not. To the best of author’s knowledge, we may be the first to investigate using the

phase information in PWR signs-of-life detection.

3.2.2 Activity recognition using PWR p-DS

Human p-DS classification has widely been investigated for activity recognition, espe-
cially in healthcare applications. Li et al. [110] proposed to use the energy power of
PWR Doppler as features for hidden markov model and adopted the time-series feature
for clustering. Since the limited work in activity recognition using PWR p-DS, we also
compare our proposed DTN with DLL and the SRC with related feature learning and
classification methods from other radars. Li et al. [130] proposed to use sparse rep-
resentation for feature extraction of the dynamic hand gesture using the 24GHz radar.
Their sparse representation framework utilizes the basis of Gabor filters design, how-
ever, our SRC is a more self-contained classifier applied directly to the PCA features
using the dictionary composed of training data features, without the memory and time-
consuming, pre-defined Gabor filter dictionary. Seyfiolu et al. [131] also handles the
small scale u-DS dataset using DTN and analyzed the optimal DCNN initilization meth-

ods.

3.3 Signal Model and Processing of PWR

PWR utilizes the existing Wi-Fi access points as transmitters of opportunity. The refer-
ence signal ref(z), can be described as a linear combination of the “clean” transmitted
Wi-Fi signal x;o,,ce(f) and the reflections from static objects, characterized by p’h path

delay 7, and the corresponding complex magnitude and static phase A;ff :
ref(t) = Y A% Xsource(t — Tp) 3.1)
p

Similarly, the signal in the surveillance channel sur(z), is composed of echoes from all

moving targets in the illuminated area of interest, which can be characterized as the p'"



3.4. Breathing Detection using PWR 87

path delay 7, its Doppler shift f; , and relevant complex magnitude and phase A"
sur(t) = ZA;WXsource (t— ”L'p)eﬂ”fd-ﬂ’. (3.2)
p

It is assumed that the reference and surveillance signals are separated via the spatially
directional antennas. In general, a target can be identified by cross correlating the ref-
erence and surveillance signals and using the Fast Fourier Transform (FFT) to find the
exact delay 7 and frequency shift f of the reflected signal. This can be represented by
the CAF in [132, 13] Section 2.2 and also similarly in Eq.(2.13):

CAF(t,f) = /w e I pe £* (1 — ) X sur(t) dt. (3.3)

—o0

3.4 Breathing Detection using PWR

For the small movement detection, we propose a phase extraction method evaluated
by experimental data, assuming that there is no translating motion while the target is
breathing during measurement recordings.

As introduced in Section 2.1.3, Doppler information is directly related to the range
changes. Due to the slow and tiny chest-wall movements, the induced Doppler frequen-
cies are too small to be detect, not to mention the interference near the zero Doppler
frequencies. However, phase information is ideal for the signs-of-life detection as it is
the instantaneous Doppler measurement which is able to detect tiny movements smaller
than the wavelength. In the following, we first discuss the limitations of CAF and pro-
pose the phase-sensitive detection in signs-of-life detection. Second, we propose the

Hampel filter to guarantee the phase stability.

3.4.1 Limitations of CAF and Phase-Sensitive Detection

In normal human breathing, the chest moves slowly and the amplitude of the movement
is small. Detecting breathing using PWR is therefore limited by the following factors:
firstly, the bandwidth of the Wi-Fi signal limits the range resolution to 17 meters [133,
134] which is too coarse for this application; secondly, as the chest movement is slow,

the ideal Doppler resolution for detection requires a long integration time; third, this
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small Doppler signature can be masked by the Direct Signal Interference (DSI) and the
background noise related with the phase variation of the system noise. Later parts focus
on analyzing the effects of the non-stationary background phase variation noise, related
with the systematic phase variation, the long integration time of the Wi-Fi signal or the

specific PWR waveform in the CAF processing.

We analyze breathing detection in more detail and denote the range of chest move-
ments as d(7). Accordingly, the phase of the received echo signal from the chest, ¢ (¢)
can be represented by:

o(r) = 2240, (3.4)

Due to the limited range resolution of the PWR, we can therefore assume that the target
is in one range bin during each CAF operation. Then the correlation result x[m],m €
[0,1,...,M — 1] in the time domain within a range bin of largest power /. is given by:

Npy—1
x[m] = Z ref*im+n— lLypgx| X surliy, +n|, (3.5)
n=0

where M is the number of batches we divide the signal into and * is the Hermitan oper-
ator. N,, is the number of data samples in m'" batch and i, is the starting sample index
of each batch [135]. The reason we are using the batch processing is for the computa-
tion efficiency required in real-time processing. In the indoor environment, as there are

echoes from other reflectors as well, the phase of x[m] could be represented as:

21 x d
¢[m] = EXT[m] + Ostaric (3.6)

where @y qic[m] is the combination of echo phases from static reflectors. Since the slow
breathing process, @ qric[] cannot be larger than half the wavelength and @ 4ic is time-
invariant between two consecutive CAF operations, we are able to simultaneously mon-

itor the phase variation corresponding to the chest movement, without considering the

distortion from DSI and the long integration time involved in FFT operation.

Note also that since the modulation scheme of the Wi-Fi signal is not ideally de-

signed for the radar detection, the test of the background phase stability is necessary.
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Since the background phase variation may cause the ¢gi- not the constant, or at least
probably larger than the phase variation caused by the chest movement. Another cause
for the phase non-stability is the uncertain starting and ending point of the Wi-Fi signals
under integration among different batches. The final phase variation may be caused by
the radar system components, where the systematic noise may be severe as well. These
all can generate the non-stable @, under which the expected phase variation of the

chest movement may be buried and difficult for the detection.

3.4.2 Hampel Filter and the Phase Stability Analysis

Due to modulation characteristics of the Wi-Fi signal, extracting stable and continuous
phase output from cross-correlation is a challenge. The case is even worse when the
beacon signals are transmitted, because the low power and burst rate give rise to less
effective target echoes for integration and the low SNR matched filter results. In this
scenario, the phase caused by the system noise or the clutters will dominate, as ex-
plained in more details in Section 3.7.1.1. When Xo,ce(?) is sparse in the time domain,
discontinuous phase samples are frequently observed and the phase output has relatively

large distortions, as shown in Figure 3.16.

To tackle this problem, a Hampel filter is utilized as a post-processing step to elim-
inate the outliers caused by the discontinuous phase output [136]. Suppose we have

obtained a time series of phase samples, denoted as:

Ok = [Pk—0, Dk 153 P> -+ o» Dkt 0— 15 Pht ) (3.7)

then we would like to check whether ¢ is an outlier. Within a certain window size, ®,

the median absolute deviation scale estimate is calculated as follows:
MAD = median{|¢; — median{ ¢ }|}. (3.8)

Then, with the assumption that the phase data within the window are sampled according

to the following distribution:

O ~ N (U, Ok) (3.9)
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the estimated deviation of the distribution, 6} can be approximately given by the criterion
from [136]:
o = 1.4826 « MAD, (3.10)

where 1.4826 is the calculated in the Gaussian distributions [137]. Given a threshold ¢,
we can classify the phase as an outlier if ||@|| > ¢ x 0. In this case, the outlier will be
set as the median of the series of phase samples. Although outliers can be eliminated by
above methods, phase shifts caused by the background static reflections still remain. Due
to the time invariant characteristics during consecutive CAF operations, we can subtract
the mean of phase outputs for background elimination, represented by the following

equation:

1 k
Oruek =9 =7 2 (3.11)

k—L+1
where ¢ is the k' slow-time sequence of phase information, L is the window length and

Orrue k 1s the phase sequence after mean subtractions.

3.5 Activity Recognition using PWR

3.5.1 Problem Formulation

The PWR basics have been introduced in Section 2.1 and a complete description of the
PWR signal model is given in Section 3.4.1, Eq.(3.4) and the research work [135]. As
introduced in previous Section 2.2, the u-DS is the time history of the frequency vectors
at specific delay induced by the moving target. These vectors are concatenated along the
time axis to generate the time-Doppler history signatures, which are usually regarded as
the preliminary data of the u-DS dataset.

More specifically, suppose that we obtain the original p-DS dataset Dpwr =
{(X,-,yi)}f.\i’ Wk with Npwg samples, X; € RV/M indicates the i’ time-frequency repre-
sentation and y; € R indicates its n.-class label. Note that since different motions may
induce different time periods, X; is the 2-D time-frequency representations of dynamic
size N; in the time domain. For each recording X;, we normalize it to the range of [0, 1]
following the widely adopted techniques. The aim of the PWR based activity recognition

is to predict the activities using u-DS the dataset Dpwr.
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3.5.2 Capability of PWR for Human Activity Recognition

As the velocity of movement is an essential factor of the u-DS, it is necessary to ana-
lyze the velocity profile of daily motions in the within-home environments. In general,
the velocities associated with sitting down on a chair, falling down and even walking,
exhibit a maximum velocity of around 2 m/s [138]. Given a PWR in 2.4GH sepctral
band, the maximum speed limit induces the maximum Doppler shift of approximately
32Hz. To summarize, the PWR system is capable of accurately detecting different mo-
tions via the Doppler frequency estimation. At some specific time instant, although the
Doppler frequencies from two motions might be similar, the whole temporal Doppler
trace may discriminate different activities. To sum up, one activity will induce a particu-
lar velocity-time pattern, which exhibits fruitful features for activity differentiation. The

concatenated p-DS time history is regarded as the main feature for recognition.

3.5.3 u-DS Pre-processing Methods

In this section, pre-processing methods are proposed for activity recognition including
the following two main steps: (i) align and adjust p-DS, (ii) pre-processing methods, as

shown in Figure 3.1.

Data Alignment Data Pre-Process
uD-S Start & End Data Data PCA _Drear
X; Point Detection Interpolation Whitening Dgreas
Data Data Data |- X/
Rescaling Resizing Cropping th

Figure 3.1: Pre-processing steps for activity recognition using PWR.

3.5.3.1 Align and Adjust p-DS

To set up a dataset, the most important requirement is to keep the data samples of the
same size. It is straightforward to maintain the same number of frequency bins in X;
through CAF operation by dividing signal samples within the certain time period into
a fixed number of batches. However, due to the unpredictable time periods of different
motions, it is difficult to keep the same number of time bins for each p-DS sample. To

tackle this, we design the following two procedures:
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* Automatic start and end point detection
* Adjust the data sample size by interpolation

Before illustrating the details of the two procedures, it is necessary to introduce the
normalization method to construct the spectrogram data in this chapter. Suppose that
we obtain the frequency vector x; € RYf at time 7, before we do the concatenation in the
temporal field, we normalize the x; in the range of (0, 1].

To illustrate the two steps clearly, an example is shown in Figure 3.2 (a) and (b).
In Figure 3.2 (a), the start and end points of an activity are identified by the red arrows
and we denote the u-DS between them as the active p-DS. Next in Figure 3.2 (b), the
active u-DS is extracted. and is interpolated to a fixed size using bi-cubic interpolation

methods [139].
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Figure 3.2: (a) Start and end point illustration; (b)The useful part of the u-DS is adjusted into
the same size, with the DSI and the ambiguity peak examples.

Specifically, we propose a method for p-DS alignment using the standard deviation
of frequency vector, x; € RV7 at time 7. The conventional CFAR based detection may not
be suitable in the indoor environment, as shown in Figure 3.2 (b) due to the following

two reasons:

* The ambiguity peaks in p-DS might mislead CFAR to provide false detections,
as shown in Figure 3.2 (b) as they are similar to the Doppler bins induced by the

target movements.
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» DSI effect will generate strong peaks on the zero Doppler line, which might mis-
lead the CFAR detector, as shown in Figure 3.2 (b). In addition, as DSI will be
an important feature to distinguish p-DS (details about this point are in Section
3.6.3.1), we have not performed any DSI elimination method, such as CLEAN

algorithm [11].

N . .
Mean(x;) = jﬂl[ﬁ <l (3.12)
J=1 (1] > abs(xi[j] — Mean(x,)))?
S Xt) = /=1 .
td(x;) ]}]:11[]'] (3.13)

Without ambiguity elimination and the DSI, an intuitive way to identify the active
p-DS periods is to check whether the non-zero frequency bins have large powers; from
another perspective, the variance of the Doppler spectrum is a good feature to distinguish
active or inactive pu-DS. To eliminate the effects of zero Doppler clutters when calculating
the distribution variances, we adopt the weighted standard deviation in Eq.(3.12) and
(3.13), where [ is the weights of the frequency bins, which are larger on higher frequency
bins. We choose the indicator function as I[j] = j2, where Mean(-) calculates the vector
average and abs(-) calculates the absolute value.

In general, we firstly select the active p-DS and then choose the smallest and
largest time bin as the start and end point. The active time bins are selected once the
weighted standard deviations of continuous three time bins are larger than the threshold
Thres =y x min(std(x;)), where 7y indicates the scaling factor and min(std(x;)) calcu-
lates the minimum of the Doppler energy time history. To illustrate the detection process
clearly, we plot the example results using the proposed energy Doppler detection in Fig-
ure 3.13 and 3.14.

As the active u-DS denoted by X; .., may have different number of time bins, we
interpolate them in the time domain to a fixed number using the conventional bi-cubic
interpolation methods [140]. In this way, the transformed data can be denoted as X; ;x €
RNfreq*Niime | \where Nreq 1s the number of Doppler bins and Nyjpe is the interpolated
number of time bins. In fact, we prefer to represent the well-aligned dataset using the

following two formats, fitting the SRC and DTN classification methods respectively.
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* Matrix Format: we transform the data sample by simple concatenating X; r;, to
a vector d; € RNwal | where N,y = N ‘freq X Nrime 1n Eq.(3.14). Next, we again

concatenate d; to matrix form Dpj, pwr € RNworar XNPWR

* Set Format: the original set Dpwr = {(X;, y,-)}i.\g‘l’” is transformed to another set:

N, Nroo X Ni;
Drix pwr = {(Xi Fix, i) }i01 %, where X; gy € R™freq > Nime

dl' = vec(Xi’F,'x) (314)

3.5.3.2 Pre-processing Methods and Feature Selection for SRC

We adopt the PCA method to reduce the dimension and extract features ready for the
SRC classifier and for convenience we use the matrix format Dr;y pwgr and randomly
divide it into training and test datasets, denoted as D7 and Dg with N7 and Ng samples
respectively. More details can be found in Section 3.6.3.

Specifically, the PCA implementation is summarized in the following: first, as
Eq.(3.15) and (3.16) show, we whiten the datasets Dy and Dg to Dyirr 7 and Dyjrs s
respectively by subtracting the average of each column. Second, through Singular Value
Decomposition (SVD) [141], the left singular vectors eigenVec and the eigenvalues
eigenVal are obtained in Eq.(3.17). Finally, we choose the largest K eigenvectors from
the training database and project Dy;rr,r and Dy;fr s onto the subspace spanned by the
K eigenvectors in Eq.(3.18) and (3.19).

The dimension-reduced datasets, denoted as Dg,4 7 and Dg,4 s, are ready to be fed
into the classifiers. Note that we used the eigenvectors of the training set to project the

test samples, as it is assumed that we cannot know all the test samples a priori.

Ddiff,T = DT —Mean(DT) (315)
Ddiff,S =DT—Mean(DS) (316)
leigenVal,eigenVec] = SVD(Dyiff.1) (3.17)

DRear = eigenVecT X Dgiff,r (3.18)
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DRed,S = eigenVecT X Ddiff,S (319)

3.5.3.3 Pre-processing Methods for DTN

Since DTN adopts the end-to-end training pipeline composed of both feature extrac-
tion and classifier design, we represent the interpolated u-DS dataset using set format
Drix pwr. The three-step pre-processing method consists of data re-scaling, re-sizing

and cropping, as illustrated in Figure 3.1.

1. Data Re-scaling: since the original DTN is designed for RGB images, this step

linearly re-scales original values of X; r;, to the range of [0,255].

2. Data Re-sizing: Suppose that DTN requires the input size of Njejgns X Nyig X 3,
we first interpolate the u-DS data X; gy to the size of Npeions X Nyig,exe X 3, Where
Nyid ext>Nyiq. Both Nyiq and N,iq ¢ indicate the number of time bins and Npe;gns
indicates the number of frequency bins. Taking the AlexNet as an example,
the input size is 227 x 227 x 3 so we interpolate X; r;; using bi-linear method to

227 x 256 x 3 and assign the other two channels using the same p-DS.

3. Data Cropping: For training data, we randomly crop the input in the time do-
main from Npejgnr X Nyid exr X 3 (227 x 256 x 3 in AlexNet) t0 Npejghr X Nyig X 3
(227 x 227 x 3 in AlexNet). For test data, we centrally crop them to the size
Nheight X Nyia X 3 (227 x 227 x 3 in AlexNet). The reason for not directly inter-
polating to 227 x 227 x 3 in the AlexNet case is that randomly cropping from the
256 to 227 time bins increases the training data diversity and the generalization
capability of the model. This augmentation technique is useful to extract features

that are invariant to time-domain shifts and perturbations.

Finally, we denote the output of the pre-processing method as the training and test sets:

N N .
Diwg = {XT,yI 17, and Dpwg = {X7, 57 1.5, respectively.

3.5.4 SRC for Activity Recognition

In this section, we apply the SRC on the PCA features extracted in Section 3.5.3.2. Note

that SRC for p-DS classification has been generally introduced in Section 2.3.1.3.
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For a test sample dy.s € RX from Dgea s, if a small number of samples in the training
dataset Dg.4 v can be utilized to reconstruct the test sample dy.5; With minimum residu-
als, the training sample with the bigger support and minimum residual may belong to the
same class as the test sample. This principle results in the following optimization prob-
lem in Eq.(3.20), where s is the sparse coding vector and ||s||o is the {y-norm operator.
As introduced in Section 2.3.1.1 and 2.3.1.2, the ¢;-solver is computationally expensive
and the OMP is noted for its low convergence rate and inaccuracy [43]. Therefore, we
choose subspace pursuit [43] as it has a faster convergence rate than the /;-solver without

loss of accuracy. The pseudo-code of subspace pursuit is in Appendix A.2.

The classification task is operated based on residual comparisons of the reconstruc-
tion error using the i/ class samples. Specifically, reconstruction error of the i’ class
can be calculated by subtracting the linear combinations of atoms from the i class, as
indicated by Eq.(3.21). The test sample label can then be predicted based on the by

looking for the minimum of the reconstruction residuals among all classes.
. 2
argmln“dtest_DRedI ><S||2"|'||S||0 (3.20)
N

argmin||dsess — DRea,r X sil|3 (3.21)
1

3.5.5 DTN for Activity Recognition

The aim to use DTN for PWR p-DS classification is two-fold: first, low-level features
and kernel filters in vision tasks are transferable to u-DS data since they are both 2-D data
and the complexity of p-DS is less than the RGB image (no fine-grained texture features
in RGB images); second, utilizing the fine-tuning techniques and pre-trained weights
from the ImageNet, we may extract the hierarchical and high-level features using very
small number of training samples. To improve the results of non-deep methods, we
apply the most conventional and light-weighted Alexnet for p-DS classification using
pre-trained weights from ImageNet. As the AlexNet architecture has been introduced
in Section 2.4.3, this section focuses on applying and fine-tuning AlexNet for u-DS

classification.
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3.5.5.1 Transfer Vision Knowledge to u-DS Classification

The simplified AlexNet architecture is shown in Figure 3.3, assuming the AlexNet takes
u-DS X3 and the label y; as inputs.

The convolutional and pooling layers in AlexNet from aim to extract convolu-
tional features of the u-DS data, denoted as TConv(XiS ). Next, in order to predict the
class categories explicitly, these spatial sensitive convolutional features are transformed
to Logits(XiS ) =CLS o Trcer 0 Treg © Teony (XiS ) by two Fully-Connect (FC) layers Trcg,
Trc7 and the classifier CLS. Applying soft-max function in Eq.(3.22) on Logits(XiS ), the
i"" element of the output Logitss, f+ indicates the probability that the input Xl.S belongs to
the /" class.

Since the ground-truth label y; is available, the CE loss L¢g in Eq.(3.23) is used

to train the networks with the regularization terms on network weights Lg,, shown in

background Section 2.4.1, where [ j] are operations to select the j* element of the vector.

. exp(Logits)
Logits = 3.22
8ot = Y exp(Logits[ ) G2
Nelass
Leg = =), vilj] x log(Logitsof:[j]) (3.23)
j=1
min Lrotal = Lc + LReg (3.24)
TCUVLvaTFCv
iclass = argmax Logit s || (3.25)
J
v
AlexNet-Conv AlexNet-FC
Lcg
Classification
Loss

Figure 3.3: DTN for PWR based p-DS classification using AlexNet.

3.5.5.2 Fine-tuning Techniques in DTN

In this section, we introduce the adopted fine-tuning technique, including the following

three phases: firstly, we initialize the network using the weights trained on ImageNet,
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except the CLS network (the weight of CLS is initialized based on techniques in Section
2.4.2.1); secondly, we update network Trc7 and CLS by back-propagation but shut off
the paths to T¢,,, layers and stop updating them until convergence; finally, we update

the whole network using a smaller learning rate.

3.5.6 Integrate Sparsity Prior in DTN

In this section, we focus on integrating the sparsity prior in DTN, as sparsity has been
investigated and proved beneficial to prevent over-fitting problem and robust to input
perturbations [142]. Specifically, we investigate the way to incorporate sparsity prior
for automatic controlling the number of neural activation in AlexNet, especially for FC
layers. To achieve this, we design the DLL implemented via a serious of recurrent units
and replace the conventional FC layer with the newly proposed DLL. Note that we adopt
the same fine-tuning technique and details of them can be found in Section 3.5.5.1 and

3.5.5.2.

3.5.6.1 DLL in DTN

Similar to most recognition methods based on DCNN, our network architecture is de-
signed to learn the transformation from the original u-DS XiS to its corresponding label
vector y; in an end-to-end manner. The overall network structure with the replacement
of FC7 layer by DLL layer is illustrated in Figure 3.4, where arrows indicate the feed-

forward direction. The details of each layer and recurrent units are discussed as follows.

To extract the local features of Xis , it first goes through the a stack of conventional
convolution and pooling layers. To measure the improvements brought by our proposed
DLL and the novel loss function in a fair setting, the configurations of all Conv layers
are designed based on the same principles and parameter settings used in AlexNet, as
introduced in Section 2.4.3, 3.5.5.1, 3.5.5.2 and the well-known AlexNet paper [8]. In
the following, we use the example of replacing the FC7 by DLL but it can be used to
replace all FC layers (see the results of different replacements in Table 3.4). We denote
the features obtained from the Conv and FC6 layer as Trce; = Trce © Tcony (XiS ) € RM,
where Trcg © Teony represents the cascaded transformation in the convolution, pooling

and FC6 layers.
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(c)
Figure 3.4: (a) DTN for PWR using AlexNet and DLL; (b) Recurrent network design of the
highlighted DLL7 layer; (c) Detailed architecture of the highlighted unit in DLL7

layer.

To learn the optimal combination of local features, instead of forwarding the fea-
tures Trce; into FC layers (followed by ReLu), we design the non-linear DLL so as
to obtain a sparse feature representation. The DLL is parameterized with a dictionary
Wprr7 € RMXN composed of a finite number of recurrent units to mimic the sparse
coding procedure. Specifically, the dictionary will be ideally learned if the following

equation is satisfied for the given extracted feature representation Trcg ;:

IpLrri=arg TI;ILIL? | Trce,i — WDLL7TDLL7,1'H,2V + A || Toeezil|, - (3.26)
i

where Tpy ;7 is the corresponding sparse feature representation and ||| is the ¢;-norm

function of the input.

In the proposed network, we replace the conventional FC7 layer by the DLL7 in
AlexNet, which is a sub-network aimed at enforcing the sparsity prior on the represen-
tation besides the CE loss L¢cg in Eq.(3.23). Specifically, we formulate our loss function

used for integration DLL and DCNN in Eq.(3.27) and 3.28, where ©® includes all param-
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eters in AlexNet except the FC7 layer and the parameters in the DLL layer. A,ec,, and
lspars,-ty are weights of relevant loss functions and the new term Logits(XiS ) is defined in
3.28. Conventionally, as in [59], a generic ReLu is used for nonlinear mapping. Since
the DLL is designed based on domain knowledge from sparse coding, we are able to
adjust the sparsity level of the neuron activation based on the training set, consequently,
obtaining a better interpretation of the layer response. The implementation of this layer
should be such that it is capable of passing the error differentials from its outputs to
inputs during back-propagation to update the dictionary. The detailed description of the

DLL and its relevant optimization rules are discussed in the Section 3.5.6.2.

ngnLoverall = Leg + Arecon || Trce,i — Worrr Torer,i Hi + Asparsiey || Toezl| - (3:27)

Logits(X®) = CLS o Tpr17 © Trce © Teom (XD) (3.28)

3.5.6.2 Integration of DLL with DCNN

This section introduces details of the fast yet accurate DLL which is inspired by the
LISTA [38] and the dictionary learning method [143] (see background Section 2.3 for
details). As shown in Figure 3.4(b), given the input data from previous layers Trce i,

the DLL is able to compute the final output sparse codes TDLL77,~(K)

efficiently using K
stacked recurrent units (rectangular boxes), each of which exhibits a similar function to
that of an iteration in the ISTA algorithm. In Figure 3.4 (c), we represent such adjacent
recurrent units in a data flow graph, where the rectangular box represents the recurrent

unit, a node represents a variable and the directed edge represents the flow between

two variables. The operations between the adjacent (k— 1) and (k)™ units in the data
(k)

flow graph can be represented by Eq. (3.29) to (3.31), where ;" represents the learned
threshold vector in k" unit, matrix B and S are the linear operator matrix parameterized

by weight matrix of FC6 layer.

B=Wp 7, H=1—Wp,:WpL17 (3.29)

4 = H x T3y 3+ B x Tres, (3:30)
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k
TL()L)L7,1' = g(zM) = max(

=100 (3.31)

Since the dictionary is shared among recurrent units within a DLL, the parameters in
each DLL can then be represented as ®pyr7 = {Wprr7, {ti(k) ijf }}. To further ensure
(k)

the effective non-linear properties of the function g(-), we enforce ;" to be positive by
taking the absolute value as the thresholds. From the implementation side, we consider
the dictionary Wp; 7 as a shared parameter implicitly in each recurrent unit and propose
to compute the gradient of the loss function L,,,.,,;; with respect to Wpy 7 using the chain

rule and back-propagation:

K (k) k
Loverall Z ovemll aTDLL71 aZl( ) (3.32)
3WDLL7 = DL 7 8z§k) oWprr7’
where "
K aLoverall aTDLL7l (92 ;
ifk<K
aL”(‘]’Smll — Hk+1 aTDLL7z aZEk) aTD(LL7)z / (3.33)
aLo T 7 —
ITpLr7. O if k=K
d Tpir7i
It is also worth noting three points: first, oL "(“)"‘” can be calculated based on the overall
DLL7,i
(’)T(k)
objective function (3.27); Second, the ¢ element of e is set to 0 if the ¢f h element

i

(k)
of TLSL)U is zero, otherwise, it is set to 1. Thirdly, asz 7y can be calculated based on Eq.

DLL7,i
(3.30) and (3.31) and we use the ¢;-norm as an approximation of {yp-norm in Eq.(3.31)

to enable standard back propagation in our implementation.

%L#i’g’ is calculated, the dictionary Wp;;7 in the DLL layer can be updated

Once
by SGD. To make this new layer compatible with the other layers in the current DCNN
framework, we need to consider how the loss function can be back-propagated through

L. .
W, and once it is ob-
FC6,i

this DLL layer to the previous layers. We need to calculate
tained, we can perform standard back propagation [59] to update the CNN parameters
in the previous layers. In fact, Trcg ; is similar to the case of dictionary Wp; 17, and can

also be obtained by use of the chain rule.

From the perspective of the overall network architecture, different DLLs (cascaded
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in series) are parametrized by separate dictionaries and all the parameters within the
overall network can be trained by standard backpropagation. It will be shown in the ex-
periments that with the integration of the newly proposed DLL, the overall structure is
able to generate better recognition performance than can the conventional DCNN struc-

ture.

3.6 Results

In this section, the system design of PWR and the implementation of the real-time phase
extraction method are described in Section 3.6.1. Experiments and results in four sce-
narios are described in Section 3.6.2, including indoor and through-wall scenarios using
both the Wi-Fi beacon and data transmission signals. Finally, we present the activity
recognition results in Section 3.6.3 and evaluate the SRC and the novel DTN methods

using the six-motion dataset.

3.6.1 PWR System Design and Implementation

The PWR used in this section utilizes a Software Defined Radio (SDR) architecture. In
this system, two Universal Software Radio Peripheral (USRP) N210s synchronized with
a MIMO cable are used to down-convert the RF Wi-Fi signals centered at 2.462GHz,
as shown in Figure 3.5 (a) and (b). An FPGA (Xilinx Spartan 3A-DSP 3400) and a
100Ms/s, 14-bit analog digital conversion are used to digitize the signal and with the
FPGA function diagrams shown in Figure 3.5 (c). The data are recorded and transferred
into a laptop via gigabit Ethernet port for real time processing.

The reference and surveillance channel antennas used in the indoor experiments are
both log-periodic PCB antennas, with 5 dbi gain and 60 degree beam-width [144]. In the
through-wall experiments, we used two 15 dbi gain Yagi antennas, with a beam-width
of 32 degree [145]. For the Wi-Fi access points, we used an Edimax EW-7416APn, with
two omni-directional antennas of 3 dbi gain [146].

In the case of both beacon and data signals, we sample the Wi-Fi signal using 2
MHz sampling rate and use a 0.5 second integration time with 0.4 second overlapping
time for cross-correlation operations. These parameters are chosen based on trials and

error in the real-world experimental environment, by balancing the integration time and
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Figure 3.5: (a) Two-channel PWR system; (b) RF front-end daughter board; (c) FPGA of USRP
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Figure 3.6: (a) One-thread sequential data processing framework; (b) Multi-thread parallel data
processing.

the output frame rate. The batch processing with a pipeline flow in Labview is used for
real-time implementation [135] including the data buffer storage and the multi-thread
processing. The whole framework can be achieved efficiently by the shift register and
the while loop without missing any data. More specifically, Figure 3.6 (a) shows the
one-thread processing stream, including three sequential procedures: Data Fetch, Cross
Ambiguity Function and the Post Processing. In such sequential procedures, the total
time for each cycle will be 71 + T, + T3. While in Labview, a multi-thread parallel pro-
cessing framework can be set up as shown in Figure 3.6 (b), where in the while loop,
three threads are assigned to three sub-functions respectively. In addition, two buffer
registers are utilized to store the data for next-stage processing. Using this framework,

the delay time is reduced in a large margin to max(Ty, 1>, T3), without missing any data.
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For detections based on beacon signals, only 10 batches are used while for the one based
on data signal, 50 batches are used. It is worth mentioning that the beacon burst rate in
conventional access point setting can be less than 20Hz but for investigating the breath-

ing detection capability, we select the highest rate in experiments.

3.6.2 Results of Breathing Detection using PWR

3.6.2.1 Line of Sight (LoS) Breathing Detection

The indoor experimental scenario is shown in Figure 3.7 (a). There are four test positions
(from P1 to P4) to allow investigation of different geometries and we plot the bi-static
triangles and the aspect angles related to the four positions in Figure 3.8. During the

experiments, the same subject sat on a chair and breath normally in each position.

Sur Ant

Wi-Fi AP Ref Ant
0.5m
JAPRLIN : é%
g =
0.5m gur ant
@ 33cm Brick Wall Wi-Fi AP
0.4m @ 4
Ref Ant 35cm
1m +—"6lcm
g 0.8 m 0.8 m g . P1
<
P3 P4 n
. . P2 . 40cm
- Q-
@~
1.2m
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(a) (b)

Figure 3.7: (a) Indoor experiment scenario; (b) Through-wall experiment scenario.

Table 3.1: Phase variations of the four test positions from P1 to P4 based on Figure 3.10 with
the corresponding aspect angle and cosine value of the aspect angles.

Positions Average Aspect Angle, | cos(Ouspect)
Phase Variations (rad) | Opec (degree)
P1 1.05 7 0.993
P2 0.96 13 0.974
P3 0.80 41 0.755
P4 0.86 22 0.927
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Figure 3.8: Bi-static triangle and the bi-static aspect angles in the four test positions.

Figure 3.9 shows the phase extraction result for breathing detection using the Wi-Fi
beacon signals only. The phase variations caused by the chest-wall movements can be
clearly seen in the text part of Figure 3.9 (a) . The pattern is examined and verified that
inhaling is found to correspond to decreases in the phase while the increasing phases
are observed along the exhaling. It can also be seen that approximately 8 to 9 cycles of
breathing are detected within around 40 seconds for all testing positions. These corre-
spond to normal breathing rates and have been verified by video recordings. Although
the targets are breathing normally, the magnitudes of the phase variations from the four
positions are different. In addition, it can be seen that even for the same position, the
phase variations vary slightly from one breathing cycle to the next. Here, a number of
potential reasons for these variations are described in the following. Firstly, the wave-
length of Wi-Fi signal is around 12 cm so even slight changes in the geometry due to
body movement will change the phase variation. For example, from Figure 3.9 (a) and
(b), the difference between phase deviations is approximately 1 rad, which equates to 1

cm difference in chest movement. Secondly, different parts of the chest may be detected
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Figure 3.9: Breathing detection using beacon signals at four positions; (a),(b),(c) and (d) cor-
respond to results obtained from P1 to P4 respectively; red curves in (a) and (c)
indicate the phase variations caused by irregular chest-wall movements.

which may alter the phase deviation somewhat. Finally, although the targets are breath-
ing normally, the chest movement is unlikely to be absolutely regular from one cycle to
the next and bulk body movements will cause larger immediate phase changes, such as
the red curves in Figure 3.9 (a) and 3.10 (c).

Figure 3.10 shows the same experiment using data signals. In general, the results are
similar to those found using the beacon signals. However, it seems that the phase varia-
tions are smoother when using data transmissions as illustrated by comparing Figure 3.9
(a) and 3.10 (a). The likely reason for this has been discussed in previous paragraph.

Based on the experimental results, we estimate the average maximum phase vari-
ation within a breathing cycle in the four positions in Table.3.1 and compare with their
aspect angles in Figure 3.8. These values are calculated manually based on estimating
the difference between every two consecutive maxima and minima phase values. In gen-
eral, it seems that increasing the bi-static aspect angle decreases the phase variations,

which agrees with the bi-static Doppler theory. More specifically, phase variation at
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Figure 3.10: Breathing detection using data signals at four positions; red curve in (c) indicates
the phase variations caused by irregular chest-wall movements.

position P1 is the biggest corresponding to the smallest aspect angle which is 7 degree.

3.6.2.2 Through-Wall Breathing Detection

The through-wall experimental scenario is shown in Figure 3.7(b) and the house with
a standard brick/block cavity wall is used (33cm thickness). The detection zone is ap-
proximately 1.2m by 5.4m inside the house and a continuously transmitted data Wi-Fi
signal is used. Both the reference and surveillance channel antennas are placed outside
the house, with 10 cm and 40 cm distances from the wall respectively. The Wi-Fi access
point is located inside the room, at a height of 1.15m and two test positions (P1 and P2)
are located in the room at a range of 61 cm and 101 cm respectively from the wall. It
is worth noting that both P1 and P2 are horizontally adjusted to be at approximately on
the bore sight of the surveillance and reference antennas. During these experiments, the
target is stationary and breathing normally. The detection results using data burst signals
are shown in Figure 3.11. The phase variation patterns are similar to those seen in Figure

3.9 and 3.10 and the breathing pattern can still clearly be seen. However, it seems that
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Figure 3.11: Breathing detection results in through-wall scenario (a) at P1 (b) at P2.

when target is at P2, the phase variation pattern is not as stable as the one at P1, which

is likely to be because of the weaker signal strength caused by the longer distance of P2.

3.6.3 Results of Activity Recognition using PWR

In this section, we first show the PWR p-DS and give a brief introduction. Next, we
illustrate the results of the proposed start and end point detection method. Next, we
design three experimental settings where 20%, 40% and 60% of the dataset are used for
training. Finally, for fair comparisons, we evaluate the SVM, SRC with PCA features

and the DTN based methods listed in Table 3.2.

3.6.3.1 Overview of PWR p-DSs and Analysis

In this section, a u-DS dataset is collected including six daily activities defined in Table
3.3 and we show the corresponding p-DS in Figure 3.12. The six u-DS exhibit different

patterns and the following describe the visual discriminative characteristics:
* The maximum Doppler shift

* Time duration of the u-DS
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Table 3.2: Methods under evaluation for pu-DS classification and their descriptions.

Methods Description
PCA Feature + SVM | We extract PCA feature as introduced in Section 3.5.3.2
and apply SVM classifier.
PCA Feature + SRC We extract PCA feature as in Section 3.5.3.2
and apply SRC classifier.
AlexNet+FC+FT We only fine-tune the final FC layers and classifier
and keep the Conv layers’ weights unchanged.
AlexNet+WholeNet+FT We fine-tune the whole network
using the strategy introduced in Section 3.5.5.2.
AlexNet+DLL6 We fine-tune the whole network and replace
the FC6 with our newly proposed DLL6.
AlexNet+DLL7 We fine-tune the whole network and replace
the FC7 with our newly proposed DLL7.
AlexNet+DLL6+DLL7 We fine-tune the whole network and replace
FC6 and FC7 by our DLL6 and DLL7.

Table 3.3: Dataset description of the six activities in PWR experiments. M1(20) indicates the
first motion including 20 p-DS samples.

Activity and Index Description
M1(20) Subject pickes up from the ground and stand up
M2(20) Subject sits down on a chair
M3(20) Subject stands up from a chair
M4(57) Subject falls down onto the mattress
M5(62) Subject stands up after falling
M6(10) Subject lies on a mattress first then gets out of it

* Does Doppler frequency traverses from negative to positive or just negative / pos-

itive
* The strength of the zero Doppler line caused by the DSI or multipath.

In general, the maximum Doppler frequencies of these six p-DS range from 2Hz to 4.5Hz
and motions with different maximum Doppler frequency shifts will help distinguish dif-
ferent signatures. The second discriminative feature relates to the relative direction of
motion, indicated by the sign (positive or negative) of the Doppler shift frequency: some
motions induce Doppler frequencies that transverse from positive to negative, (e.g. M1
and M2), while others induce only positive or negative Doppler frequencies (M3, M4,
MS5 and M6). Although M1 and M2 both have the similar patterns (from positive to

negative), the time duration of each signature segment increases the discrimination, such
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Figure 3.12: Overview of PWR p-DS in dB scale. (a) to (f) are the p-DS of motion 1 (M1) to 6
(M6) in Table 3.3.

as the shorter duration of positive Doppler frequency in M2 than the positive Doppler
frequency in M1. The final distinguishable feature is the presence of the zero Doppler
line during the motion. A clear example is the comparison between the M5 and M6,
where the Doppler signature patterns are similar, but the latter has a strong zero Doppler
line while former does not. The reason why M5 exhibits no zero Doppler line is when
the target gets out of the floor, the bulk motion blocks the direct signal to the receiver.
Although these selected empirical features agree closely with the intuitive visual inter-
pretation, obtaining these features accurately requires complex feature selection meth-
ods such as detecting accurate Doppler patterns and estimating the mentioned empirical
features. In addition, these methods are prone to be erroneous and have a big influ-
ence on the classification outcome. Anyway, it will always be difficult to represent a
high-dimensional dataset using just four to six empirical features. Note that we further
analyze why the DSI effect is missing at some time in the spectrogram, especially in
3.12 (e). This is because we are normalizing the frequency vector at each time instance

and frequency component related to the Doppler movement is stronger than the power
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of the zero Doppler frequency. This is possible, since when the human target may block
the direct path from transmitter to the receiver of the PWR system. This also can be
regarded as one of the feature to differentiate different activities.

For the classification scheme using SRC, we utilize the reduced-dimension data
vectors defined in Eq.3.18 and 3.19 as input. For selecting features for DCNN, we

simply input the original u-DS according to methods introduced in Section 3.5.5.1.

3.6.3.2 p-DS Start and End Point Detection Result

In this section, we described the start and end point detection results in Figure 3.13,
corresponding to the u-DS results in Figure 3.12. From the observation and comparison
between Figure 3.12 and 3.13, Figure 3.13 (a), (b), (c) and (d) give good and continuous
detection results (red dots), however, the detections are not continuous in (e) and (f).
Through comparisons of p-DS and detection results in Figure 3.13 (e), it seems that p-
DS during 1.6 to 2.1 second are of low energy although we are certain that the target is
moving. The potential reasons may be that the target torso is out of the antenna beam
during this time period. In the detection result in Figure 3.13 (f), we obtain some outliers
around O to 0.2 second and the Doppler energies within that period are relatively high
which corresponds to the high energy around 4.2Hz around 0.1 second in Figure 3.12
(f). Since we know no movements during that period, we hypothesize that this is the
frequency flipping phenomenon, mainly caused by the relatively small slow-time batch
numbers in calculating the Doppler spectrogram or the cyclic properties of the Wi-Fi
signals.

In addition, we analyze the number of the total false detection points (including both
missed and false alarm detection) using different threshold scaling factors, compared
with the ground-truth one generated by manual labeling. Therefore, we use the average
number of missed and false alarm detection bins as the evaluation metrics in Figure
3.14, with the scaling factor 7 in the following set {1.05,1.1,1.15,1.2,1.25,1.3}. The
general trend is that with the increasing scaling factors, the missed detection bin number
increases while the false alarm detection bins decreases. In addition, we plot the total
false detection in green dots as the sum of the missed and false alarm detection numbers.

If the system requirements focus more on low missed detection, we’d better choose the
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small scaling factor like 1.05, however if the low false alarm rate is essential, we’d better
choose 1.15 as the proper one, which is the trade-off solution and balances the relatively
small total false and the false alarm detection bin number. The discontinuous problem
may be solved better if some tracking filters are applied on the results, which is out of
the scope of the thesis. The results generated in this section adopts the 1.15 as the final
scaling factor. For detecting the start and end point index, we choose the smallest and

the largest index of the detected set as the start and end point index.
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Figure 3.13: Detection results of the proposed start and end point detection method. Blue line
indicates the time history of normalized spectrum energy of the u-DS in Figure
3.12. The red star represents the detected time bins with active u-DS.

3.6.3.3 Activity Recognition Results
In Table.3.4, compared with the widely utilized SVM method, SRC with PCA features
outperforms SVM in average 28% in the recognition results. Compared with the SRC

using PCA features, AlexNet+FC+FT method achieves better performance than SRC
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Figure 3.14: Overview of false detection results: red, blue and gree line and markers indicate
the missed, false alarm and the total false detection numbers respectively.

using 40% and 60% of the data for training, however SRC outperforms it by around
1.7% using 20% of the dataset for training. In addition, other DTN methods e.g.
AlexNet+WholeNet+FT fine-tuning the whole networks achieve at least 11% improve-
ment than SRC. This may suggest that shallow method, like SRC is suitable for handling
small training dataset and DTN framework achieves the superior performance compared
to shallow methods only if the whole network is fine-tuned. This may further indicate

that adapting and changing the local feature in Conv layers is essential for DTN.

Table 3.4: Activity recognition results for different features and classifiers, percentage in (%).

Feature + Classifier Train on 20% | Train on 40% | Train on 60%

PCA + SVM 329 57.0 60.0

PCA + SRC 82.0 81.0 88.0
AlexNet+FC+FT 80.3 90.5 93.5
AlexNet+WholeNet+FT 86.3 94.7 98.7
AlexNet+DLL6 89.5 96.0 99.5
AlexNet+DLL7 88.9 953 100.0
AlexNet+DLL6+DLL7 88.7 95.7 99.2

For all experimental settings and methods in Table.3.2, AlexNet using DLL lay-
ers achieves the best performance, outperforming the second best method without DLL
replacements by 3%, 1.3% and 1.3% for training on 20%, 40% and 60% of dataset

respectively. This proves our assumption that moderate sparsity of neural activation
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induce better discriminative capability and prevent the potential over-fitting problem.
The reason why the result improvements of DLL layers decrease is obvious, since more
training data ease the recognition task. In addition, we conduct the ablation study in-
vestigating replacement of different FC layers with DLLs and verify the performance
of cascaded DLL6 and DLL7. In comparison of the three DLL replacement strategies,
including AlexNet+DLL6, AlexNet+DLL7 and AlexNet+DLL6+DLL7, their recognition
differences are only 0.6% in average of all experimental results.

We also provide confusion matrix related to these methods in Table 3.5 and due
to the space limitations, we only report the confusion matrix using 20% training data.
In Table 3.5, SVM with PCA feature achieves the worst results where all test data are
assigned to class 6, which gives rise to the lowest recognition results. Through observa-
tions of the confusion matrices from Table 3.6 to 3.9, both SRC and DTN methods are
confused by u-DS among [C1, C2, C3] and between [C5,C6]. These can be explained by
their visual similarities in among Figure 3.12 (a),(b),(c) and between Figure 3.12 (e),(f).
Specifically, u-DS in C1 and C2 both transverse from positive to negative and with very
similar maximum Doppler frequency. In addition, p-DS in C5 and C6 are similar as their
Doppler periods are both 1 second and the maximum frequencies are around 3Hz.

Table 3.5: Confusion matrix of SVM method with PCA features using 20% data for training,
percentage in (%).

Cl|C2|C3|C4|C5| Co

C1{0.000/]0.0]0.0]0.0]100.0
C2/0.00.0|0.0|0.0]0.0]100.0
C3]100,00/]0.0]|0.0]0.0]100.0
C4100,00/]0.0]0.00.0]100.0
C5/100,00]0.0|0.0]0.0]|100.0
C6|0.000]0.0]0.0]0.0]100.0

3.7 Analysis and Discussion

The following sections first analyze and discuss the following two problems for the pro-

posed phase-sensitive signs-of-life detection method:

* The limitations of the phase extraction method.
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Table 3.6: Confusion matrix of SRC with PCA features,using 20% data for training, percentage
in (%).

Cl1 C2 | C3 | C4 | C5 | C6
C1|100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
C2| 188 |75.0 | 6.2 | 0.0 | 0.0 | 0.0
C3| 500 | 63 | 438 | 0.0 | 0.0 | 0.0
C4| 65 | 00| 43 (8.1 00 | 00
C5| 00 | 00| 0.0 | 2.0 {96.0 | 2.0
C6| 125 | 0.0 | 0.0 | 0.0 | 75.0 | 12.5

Table 3.7: Confusion matrix of AlexNet+FC+FT using 20% data for training, percentage in (%).

Cl | C2 C3 C4 | C5 | Co6
Cl1|882|11.8| 00 | 0.0 | 0.0 | 0.0
C2| 63 [ 438 | 438 | 0.0 | 0.0 | 6.3
C3| 00 | 00 [100.0| 0.0 | 0.0 | 0.0
C4| 65|22 | 00 |76 152 0.0
C5| 00| 00| 00 |10.0]78.0 120
C6| 00 | 00 | 00 | 0.0 |50.0]50.0

Table 3.8: Confusion matrix of AlexNet+WholeNet+FT, using 20% data for training, percentage
in (%).

Cl | C2 C3 C4 | C5 | Co
Cl|{941| 59 | 00 | 0.0 | 00 | 00
C2| 00 | 688 | 31.2 | 0.0 | 0.0 | 0.0
C3| 00 | 00 [100.0| 0.0 | 0.0 | 0.0
C4| 65| 00| 21 |848]| 2.1 | 43
C5| 00| 00| 00 | 2.086.0|12.0
C6| 00 | 00 | 00 | 0.0 | 125875

Table 3.9: Confusion matrix of AlexNet+DLL7 using 20% data for training, percentage in (%).

Cl | C2 C3 C4 | C5 | Co
Cl1|882| 59| 00 | 00 ] 00|59
C2|125]75.0 | 125 | 0.0 | 0.0 | 0.0
C3| 00 | 0.0 |100.0| 0.0 | 0.0 | 0.0
C4| 65| 00| 00 |848| 43 | 43
C5]/ 00 ] 00| 00 | 0.0 [94.0]| 6.0
Cc6| 00 | 00 | 00 | 0.0 |125]875
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* The stability and continuity of phase information to detect breathing.

Secondly, we analyze and discuss the DLL in DTN framework including sparsity results

of neural activations and the effect of recurrent unit number in DLL.

3.7.1 Limitations of the Phase Extraction Method

First, we use an ideal model to explain the phase differences between the reference and

surveillance signals as follows:
sur(t) = ref(t —7) x A x /90, (3.34)

where 7T represent the potential time delay, A is the amplitude of the surveillance signal

loss, @ (¢) represents the mixed phases from different clutters in Eq.(3.35):
. N .
Ael9) — ZAie"i”'(’), (3.35)

where ¢;(¢) and A; are the phase and amplitude from individual i’" reflected clutter. In the
model of phase mixture in Eq.(3.34), we analyze the limitations of the phase extraction

method and therefore propose the two arguments:

* The success of breathing detection relies on the fact that there are no large move-

ments in the same range bin.

* The success of breathing detection does not depend on the static phase influences,

such as DSI and multipath reflections.

Next, we explain the two arguments by presenting the phase mixture phenomenon
in Figure 3.15 (a) and (b). In Figure 3.15 (a), we can see that although the magnitude
from the wall or multipath (highlighted in red arrow) is stronger than the breathing re-
flection (highlighted in green arrow), the mixed phase (highlighted in blue arrow) is still
able to represent the chest movement but with the average of the static phase. However,
in the following Figure 3.15 (b), if there are large movements occurring at the same
range bin, then the mixed phase changing circle is combined by two circles including

the breathing one and the other representing the changes induced by large movements.
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Figure 3.15: (a) Phase changes caused by breathing and the static clutters; (b)Phase changes
caused by breathing and large motions.

In this scenario, it is difficult to separate these two circles, unless using phased array and

beamforming techniques.

3.7.1.1 The phase stability for breathing detection

Ten seconds of data relating to a target sitting at position P1 in Figure 3.7 and breathing
for around 2.5 cycles were collected for detailed analysis. The relevant phase time his-
tory plot is shown in Figure 3.16 and note that we represent the batch number of CAF
processing in the x-axis for easily identifying which batch generates the discontinuous
phase output. First we divide the 10 seconds (sampled at 2MHz) reference and surveil-
lance signal into 1000 batches as shown in Figure 3.16 (a). For each batch, we subtract
the mean of the signals and plot their phases. It is very clear that the up and down of the
phase output represent the chest movement forward and backward relative to the surveil-
lance antenna. In addition, we can also observe the three discontinuous points at batch
155, 157 and 874.

Plotting the amplitudes of the segmented signal from these three batches in Figure
3.17 may explain the potential reasons. This figure shows that: fewer high-power data
bursts are transmitted in these batches. Based on this, it can be concluded that, the phase
output will be able to reflect the chest movement if and only if enough continuous burst

signals are collected during each batch processing of CAF.
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Figure 3.17: Signal amplitude of the three batches that generate discontinuous phase outputs in
Figure 3.16(a).
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To solve this problem, we divide the whole 10 seconds’ data into fewer batches (this
ensures to keep more high-power signals in every batch), say 500 and perform the same
operations. The phase output is shown in Figure 3.16 (b), where the three discontinuous
phase disappear and more continuous phase outputs are obtained.

To sum up, to make the phase output stable and continuous in PWR, we need to
be careful about choosing the proper batch number for CAF processing. Based on the
Wi-Fi data transmission characteristics, detection of the start and end point of the burst
signal is important to extract the stable phase information. In addition, when applying
the phase extraction method in the Wi-Fi beacon signal with a burst rate of maximum 20
Hz, the integration time should be increased to ensure that each batch contains enough

valid and high-power beacon signal samples.

3.7.2 Sparsity of Neural Activations and the Effect of Number of
Recurrent Units in DLL

We analyze the number of recurrent units in DLL by conducting experiments using
AlexNet+DLL7, with other parameters fixed but only increasing the number of recur-
rent units from 1 to 8. The recognition results are shown in Table.3.10. It seems that
with the increasing of recurrent units, the recognition rates increases first and then de-
creases. It suggests that only the moderate sparsity and number of recurrent units can
give rise to the most discriminative results in the DTN.

As shown in Figure 3.18, we plot the ¢; norm of the neural activations of FC7
and DLL7 with different number of non-linear units. These neural activations are based
on feed-forwading all the test data along 5000 iterations of training without drop-out
operation. It can be observed that increasing the non-linear units controls the sparsity
and the /| norm is decreasing. With different sparsity levels, recognition result using 4
units achieves the best performance and this further indicates that moderate sparsity can

increase the discrimination capability of DTN.

Table 3.10: Recognition rates using different number of recurrent units in DLL, evaluated using
20% data for training.

No.Recurrent Units | O (FC only) 1 2 4 8
Recognition Rates 86.3% 88.1% | 88.9% | 89.5% | 89.0%
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recurrent units.

3.8 Summary

In this chapter, with the aim of advancing PWR Doppler processing for recognizing the
daily activities and signs-of-life detection, the work carried out in this chapter makes

specific three key contributions to the knowledge base:

1. For signs-of-life detection using PWR, we propose the novel, real-time and phase-
sensitive processing to monitor the tiny chest-wall movements. Conventional
PWR real-time Doppler processing is limited by the small range changes of chest-
wall movements, the required long integration time to achieve the ideal Doppler
resolution and the strong DSI effect from the clutters. To tackle these, we utilize
the instantaneous Doppler which is the phase output of the cross-correlation result.
Our proposed phase-sensitive method is robust to DSI from clutters and does not

require long slow-time for the integration in the Doppler processing. This method
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is evaluated in various experimental scenarios and we discuss the assumptions,

limitations and the potential reasons of these limitations in the discussion section.

. For activity recognition using PWR, we propose the whole real-time processing
pipeline to capture u-DS of the six daily activities and make them ready for clas-
sification. We apply the SRC method with the PCA feature based dictionary. Fi-
nally, we compare the SRC with PCA features with other conventional methods
for evaluation. Compared with the conventional SVM method with PCA features,

SRC outperforms it by 33.7% in average.

. For activity recognition using PWR, we wish to investigate whether the DCNN
method can improve the p-DS classification performances. It is well-known that
applying the DCNN in the small-scale u-DS dataset is limited by the over-fitting
problem. To tackle this, we adopt the DTN framework pre-trained by ImageNet
and integrate the sparsity prior in FC layers by replacing it with our newly pro-

posed DLL. This design is beneficial in the following two perspectives:

* Compared with sparse representation, the dense representations is highly en-
tangled and sensitive to input perturbations [147], as small changes of the in-
puts will change most of the entries in the feature representation. Therefore,
by integrating the the sparse prior in DTN, the FC layers’ outputs are ro-
bust to perturbations of low-level Conv features. The potential perturbations
may be more severe in u-DS classification as the Conv filters are originally
learned for images rather than p-DS; in addition DTN trained by small-scale

training data cannot generalize well to variations of the unseen test data.

* The DLL integrates the sparsity prior and also implicitly allows variable-
size feature representation for different inputs. This is different from the
ReLU, which only keeps the positive activation neurons. The variable-size
data structure controls the effective dimension of the representation for a
given input which regulates the model to prevent over-fitting and eliminate

the outlier in small-scale dataset.
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The DLL based DTN has been verified to outperform conventional FC layer based
DTN by 2% in average.

For signs-of-life detection using PWR, the most recent research [129] partially ad-
dressed the limitation of our method discussed in Section 3.7.1. This is achieved by
extending our phase extraction framework with an additional module to detect large
movements by measuring whether the phase time history is periodic or not. However,
no detailed method in [129] has been proposed to separate the small and large phase
changes for signs-of-life detection, without losing the small phase changes.

For activity recognition using PWR, we argue that the energy power of Doppler
information proposed by Li et al. [110] cannot represent the complete information of the
spectrum information and the relevant feature learning is not optimal. The main hypoth-
esized reason is that the 1-D energy power contains much less information compared
with the 2-D p-DS for a classification task. Note that the start and end point detection
method developed in Section 3.5.3.1 also relies on the energy power, however, we only
use it to detect the start and end point and the later feature learning and classifier design
leverage the whole u-DS. In addition, to address the DCNN initilization methods for
radar p-DS classification with low training sample support, Seyfiolu et al. analyzed the
conventional DTN and the auto-encoder methods, however, our newly proposed DLL
focuses on improving the DTN performance by incorporating the sparsity prior. In ad-
dition, our proposed methods are not only limited to u-DS but also applicable to other

DTN tasks.



Chapter 4

DopNet: A DCNN to Recognize Armed

and Unarmed Human Targets

4.1 Introduction

This chapter is focused on training a DCNN from scratch to recognize the armed and
unarmed personnel using the multi-static radar p-DS. Their applications in the context
of security, warfare and healthcare have been investigated over a number of years [112,
3, 4]. The challenge of collecting the raw radar data and understanding what action is
occurring can be broken down into three key steps. 1) The representation of the raw
signals, 2) The features that can be extracted from them 3) The classification algorithm
applied to these features. A large number of data representations, features and classifiers

methods have been proposed and applied as a series of separate steps.

Due to the data being a time-frequency signal, the spectrogram (details in Section
2.2.3) is the most common method of representing the data via the STFT. This was
shown to distinguish human targets movements, e.g. walking, crawling, running etc.
or to distinguish human from animals [4, 3, 148]. In addition, other time-frequency
representation methods have been applied, e.g. Gabor transform, Wigner-Ville trans-
form, Empirical Mode Decomposition based on Hilbert-Huang transform to extract
the time-frequency representation of various human movements [149, 150, 151, 152].
Other approaches have proposed the use of extracting empirical features, such as RCS,

Doppler bandwidth, period of motion. In addition, various dimensionality reduction
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or de-noising methods have been investigated, like SVD method, PCA and sparse
representations[3, 4, 112, 109, 108, 149].

As for the selection of classifiers, various research work related to classifiers in ma-
chine learning community have been proposed [105, 153, 109, 108]. However, these
features and classifiers have not been developed and optimized in the same joint frame-
work. This means that for different applications and conditions, the feature extraction
and classifiers may need to be modified and tuned based on subjective experience of the
researcher, rather than an objective methodological framework.

In recent years, with the development of hardware facility and computation methods
such as Graphic Processing Unit (GPU), DCNN has been proposed firstly to address the
ImageNet challenge, to classify an image dataset of more than 10 million images [154].
One of the main advantages is that the feature extraction and the classifier can be jointly
learned in the same framework. However, DCNN is well-known for its difficult training
from scratch and normally requires large amount of data in the training stage to prevent
the overfitting problem.

In this chapter, we propose a modified DCNN trained from scratch called DopNet,
to distinguish armed and unarmed walking human targets using the multi-static radar

data. The contributions are three-folded:

1. Firstly, we propose two key novel schemes to address the over-fitting problem in
training DCNN, including the radar data augmentation in the training stage and
a new regularization term balancing the Mahalanobis distance (M-dist) and Eu-
clidean distance (E-dist) of the network weights. We analyze the effect of various
factors in the single channel DopNet (SC-DopNet) and evaluate the proposed two
schemes. In addition, we compare SC-DopNet results from mono-static radar data

with other handcrafted features and classifiers by experimental results.

2. Secondly, we build the multiple channel DopNet (MC-DopNet) similar to SC-
DopNet and proposed two fusion methods to jointly optimize the total objective
function, called Greedy Importance Reweighting (GIR) method and the ¢;;-Norm
method. Note that these two methods are embedded in training the MC-DopNet

and parameters of the two methods can be jointly learned under the total optimiza-
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tion function. MC-DopNet is an end-to-end learning framework to address the

classification of human p-DS using experimental radar data.

3. Finally, we compare our proposed fusion methods together with MC-DopNet to
other conventional data fusion methods with various features and classifiers. Note
that we also discuss and conclude in what scenarios the proposed two fusion meth-

ods are preferable to be utilized.

4.2 Related Work

In this section, we only review the most relevant work to DopNet, including DCNN
based classification methods for human p-DS. Kim et al. first proposed to train DCNN
from scratch to distinguish hand gestures and aquatic movements using mono-static
radar [155, 156]. Recently, Kim et al. adopted DTN for classifying aquatic movements
using the trained DCNN network weights from ImageNet dataset and only small part of
the network weights are required to be trained [157]. This idea is further evaluated and
compared with the one using auto-encoder based pre-training weights in [158] using a
small number of radar samples. More recently in healthcare applications, DCNN has
also been utilized to recognize falling based on mono-static range-Doppler signatures
[159].

To analyze experimental multi-static u-DS data Using DCNN, Chen et.al [113] pro-
posed to use multiple DCNNs, one for u-DS from each channel. However, they utilized
the DTN framework and fine-tuned only the classification layers. Additionally, when
integrating multi-channel representations for the final descision making, they proposed
to simply concatenate the representations from multiple channels. Patel et.al [160] pro-
posed to use multi-static u-DS but adopted a unified auto-encoder network for feature

learning.

4.3 DopNet Architecture

There are five main component layers in a DCNN, including the Conv layer, non-linear
activation functions, pooling, FC layer and the final Softmax classification layer, as de-

scribed in Section 2.4. First these layers with their architectures and purposes are il-



126 4.3. DopNet Architecture

lustrated specifically in Section 4.3.1. Next in Section 4.3.2, operations to prevent the

overfitting are presented.

4.3.1 DopNet Component and Architecture
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Figure 4.1: Architecture of SC-DopNet.

The network structure of DopNet is illustrated in the Figure 4.1. The first two layers
in DopNet are the Conv layers, denoted as Convl and Conv2, composed of 64 and 128
kernel filters with the size of 32 x 32 and 11 x 11 respectively. The Conv layers are
aimed to select local features of the u-DS by convolving it with the kernels and generate
activation or correlation degree maps. This can be regarded as the Conv layer outputs
and these local maps will be concatenated together in a hierarchical manner [161].

To increase the model capacity of the network, we adopt the ReLU in DopNet
shown in Eq.(4.1). Note that we apply the ReLU function following each layer output,
except the output of the final layer. Additionally, we utilize the Local Response Normal-
ization (LRN) layer developed and verified to reduce the saturation of ReLU function
[161]. The idea is introduced by the lateral inhibition, which will normalize the acti-
vated map among different kernel filters. The details are shown in Eq.(4.2) where Iv"w n
and Of/v, , are the input and output of the LRN layer activated by i"" kernel at position w, i

after the ReLU layer, R is the radius of the amount of kernels for the normalization, 3
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can be interpreted as the polynomial parameter chosen empirically from trials and errors.
This layer generalizes the network by generating competition among different kernel ac-
tivations. Note that input of the LRN layer is always chosen as the output after ReLU

function.

Even with the non-linear and normalization layer, representation of the Conv out-
puts are redundant and sensitive to the spatial transitions of the inputs. Therefore, the
pooling layer is used as a conventional non-linear operation by only remaining the max-
imum among a small region of the output activation map from Conv layers [161]. It is
also mostly used to simplify the network model and to extract the most useful informa-

tion.

Following the Conv layers are the FC layers which usually transform the local ac-
tivation maps of Conv layers to the label embedding. In DopNet, we adopt a three-layer
architecture with output activation number of 512, 128 and 2 respectively, directly trans-
forming local features to the representation of semantic categories. FC layer is regarded
as a conventional linear projection operation, parameterized by the weight w . and bias
b ¢, but without convolutions. Due to the sparsity of the label embedding, the output of
FC layers Oy can always be added with the ReLU operation, described by the Eq.(4.3),
where I, is the input from the previous layer. Another operation related with the FC
layers is the dropout operation in Section 2.4.2.2, which shuts down the gradient flow
and the updates of some neurons randomly for each mini-batch of data so that the FC

weight matrix can be partially learned in a stochastic manner.

Lastly, the output of the last FC layer is a vector Logit € RNeass with the class
number N4, €ach of which indicates the probability that the p-DS input belongs to
that class. As a model under optimization, the loss function we used is the CE function,
implemented by calculating the divergence between the final FC output and the ground-
truth label, y € RNelass in the Eq.(4.4), (4.5) and in Section 2.4.1.5. Logit,, ¢ 1s the output
after the softmax operation (see Section 2.4.1.4) and Lc is the final losses. Besides the
softmax CE loss, we also add a regularization term to balance the M-dist and E-dist for
better optimization schemes. In the next section, the balancing term, together with the

techniques used to prevent overfitting are introduced.
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4.3.2 DopNet Operations for Overfitting Preventions

4.1)

4.2)

4.3)

4.4)

4.5)

(4.6)

4.7)

(4.8)

4.9)

Overfitting problems are common in DCNN models, due to the fact that network param-

eters are biased or more discriminative to the noise in the training samples instead of

being generalisable to the test samples. Prevention of the overfitting problem in DopNet

can be solved from the following three perspectives:

1. Simplifying the network capacity: we adopt the drop-out operation of the FCy

layer and add the ¢, regularization to the weight parameters of the Conv and the

FC layers, with details illustrated in Eq.(4.6), where ¥rc1, Y72, Yeonv1, Yeom2 are

regularization weights of the L, norm of kernel filters in FC1,FC2,Conv1,Cony2
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layers respectively.

2. Increasing the diversity of training data by augmentation, i.e. by cropping the orig-
inal training data into smaller patches, as shown in Figure 4.3. Due to the nature
of the time series of the u-DS data, we generated more training samples by shift-
ing them in the time domain by different stride sizes. As our training u-DS data is
x € RWinput *hinput  the augmented training samples can be represented as the cropped
data along the time axis via different strides, as shown in Eq.(4.7), where width,;,,
height,,, are the window sizes in two dimensions. This operation, if stride sizes
small enough are chosen, will increase the number of training samples, give ad-
ditional data diversity, and improve the robustness of the model as data generated
under various conditions will be used for training. In practice, this time shifting
simulates misalignment in time and small Doppler offsets for the training data and

these two situations can practically happen in realistic uncontrolled scenarios.

Frequency (Hz)

0.5 1 1.5 2 25 3 3.5 4 4.5 5

Figure 4.2: Raw p-DS of a target walking unarmed from angle 1, using receiver node 1 in Figure
4.7; two black boxes indicate the augmented p-DS, with window size of 1s and
window height of 100Hz.

More specifically, as shown in Figure 4.2, an example of a target walking unarmed
from angle 1, received by node 1 is illustrated. Here, in the 5-second p-DS, red
and green rectangular boxes indicate two augmented data samples in the training
stage. The example shown in Figure 4.2 uses width_win as 1.5 second, while the
height win chosen as 100 Hz. It seems obvious that, the augmented data samples

can be generated by selecting very small stride of the moving window, which will
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Figure 4.3: Augmentation results: (a), (b), (c) and (d) are four augmented data examples gener-
ated from the 5-second p-DS in Figure 4.2. The augmentation method and parame-
ters are illustrated in Section 4.3.2.

also simulate small misalignment in realistic data.

3. Regularizing the final loss metric: we derive the M-dist and E-dist between the
ground-truth and predicted labels in DopNet. Since M-dist is aimed to maintain
the discrimination capabilities while the E-dist to provide generalization, a regu-
larization term is designed and incorporated in the DopNet by balancing the gener-
alization and discrimination of the network weights. Note that we balance the E-M
distance only in the final F'C; layer and denote the input, output, weights and bias
in FC, layer as If,07:2,Wye2,bfco. If we assumed that the ground truth label
y can be transformed from the perfect input I}}Cg using the weight Wy, , then we

could write up the simple Euclidean loss between y and Wy.o X I as the Eq.(4.8).

In this way, we argue that this E-dist term is actually measuring the M-dist be-
tween ideal and predicted FC inputs, parameterized by weight matrix wy.,. Since
M-dist is designed to ensure the discrimination capability of the matrix, the regu-
larized term denoted as Lysr, is added to balance the E-distance and M-dist, which
enforces the term w}czw fc2 to be close to identity matrix, as shown in Eq.(4.9).
By adjusting the balance the E and M distance (see Figure 4.17 for the sensitiv-
ity test), we are actually controlling the discrimination and generalization of the

DCNN.



4.4. SC-DopNet 131

4.4 SC-DopNet

In this section, we introduce the SC-DopNet using the components illustrated in Section
4.3.1. We introduce two phases and the relevant loss functions, including the training
and testing phase. To sum up, the total loss function in the training stage is shown in
Eq.(4.10). Once the network parameters are stored and saved, in the test stage, given a
test sample x4, the predicted label can be calculated by the simple max operation of the
Logity, s in Eq.(4.11), where Logit,, ; s the output after the softmax operation Eq.(4.4)

in the Section 4.3.1.

minLTotal = LCE + LReg + YMELME (4 10)

w,0,

iclass = argmax Logits, f: [] 4.11)

~
\ J
T convi —> T convz = Trc1 = Trc2
Yy input

\

Lcg
Classification
Loss

MC — DopNet
Figure 4.4: Architecture of MC-DopNet

4.5 MC-DopNet

Before describing the MC-DopNet, we introduce the effect of aspect angle in u-DS and
how they affect the classification. Figure 4.5 (a), (b) and (c) represent the u-DS of a
walking personnel from the three angles assuming to use the node 3 only as a mono-static
radar (right figure in Figure 4.5). Although the p-DS are collected from the same motion
and the same personnel, the large intra-class variations and small inter-class variations

caused by the aspect angles effect may destroy the classifier, especially considering to
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distinguish the p-DS in Figure 4.5 (b), from Ang 2, walking without a gun and the one
in Figure 4.5 (d) from Ang 1, walking with a gun.

'Node3, Ang1, Walk Node3, Ang1, Rifle
100 00 g
80 80
(a) 28 I (d) 60 Target
40
20 20
/Node3, Ang2, Rifle
00
(b)
-30 0 +30
degree degree degree
Ang 3 Ang 2 Ang 1
Node 3
(c) Tx/Rx

Figure 4.5: p-DS of two activities from three aspect angles using the mono-static radar. All x-
axis represents time with unit of second while all y-axis represents frequency with
unit of Hz.

To reduce the intra-class and increase the inter-class variations caused by the di-
versity of aspect angles, multi-static radar is utilized to increase the u-DS classification
robustness. This implies collecting simultaneous p-DS of a particular target and activity
from different and spatially distributed radar nodes. Since p-DS from different nodes
exhibit diversed local features, it is difficult to train a single SC-DopNet local feature
extractor which is sharable for all nodes.

Considering a more realistic scenario where streaming the raw I/Q data across a
network from all independent radar nodes may not be feasible but it is highly feasible
to share a higher level classification decision into a centralised decision making system.
Considering these, we choose to design multiple SC-DopNet for each radar node in
MC-DopNet and the way to fuse these data into the multi-channel decision enabled by
MC-DopNet is introduced and discussed in the following section. The MC-DopNet
architecture is shown in Figure 4.4.

Specifically, two novel schemes are proposed to combine multiple channel p-DS
for recognition. The first has been formed the GIR method and the second is the ¢5-

Norm method, which are both applied to fuse the outputs of individual SC-DopNet in an
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end-to-end learning framework. Let us assume that data from Ny;c multiple channels are
now available; we propose to build Nyc individual SC-DopNets, where input of each

SC-DopNet is data from the single channel radar.

When feed-forwarding the multi-channel data samples to their respective SC-
DopNet, the j* single channel output after softmax function is obtained using Eq.(4.4),
denoted as Logit/, j € [1,Nyc]. In general, we proposed two strategies: (1) “win by
sacrificing worst case” and (2) “win by sacrificing best case”, to guide the design of
GIR and /,1-Norm method respectively. The “win by sacrificing worst case” strategy is
to increase the overall recognition rate by sacrificing the performance of channels with
average or poor data quality but only enhancing performance of the best single channel.
The “win by sacrificing best case” strategy is to increase the overall recognition rate by
degrading the channel performance with the best data quality a little but improving the

channel performance with the worst data quality.

(i) GIR Method: the GIR method fuses multiple outputs into one final result de-
noted as Logit®/R based on weighted linear combinations of individual SC-DopNet re-
sult. Note that the weights are also the parameters under DCNN training, rather than
conventional binary voting schemes using the fixed and equal weights. The details are
shown in Eq.(4.12). In general, the GIR method is a greedy algorithm, because the
higher weight from a given channel will be learned and assigned automatically if, and
only if, its corresponding prediction output contributes more to decrease the total loss
function than other channels. In addition, due to the sum of weights are forced to one,
the lower weights of the other channels will be updated as well. To sum up, GIR method
re-weights the weights of multiple channels so that the final loss function is minimized

by the greatest amount.

Specifically, our GIR method uses the weighted single channel output as the fused
prediction into the CE loss function (see Eq.(4.5)). Therefore, the multi-channel loss
function is proposed, which is similar to Eq.(4.5) except that we replace Lcg by LgéR,
with the input LogitS'R in Eq.(4.13), where L, and v}, are the j# channel M-dist reg-

ularization and its respective weight. L}e eq 15 the 7' channel regularization corresponding
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to network weights.

Nyc _ Nyc
Logit®™® =Y BjLogit!, with Y Bj=1,8;>0 (4.12)
=1 j=1
{Vngllll‘géﬁll - GIR + Z YI{/IELIJVIE +L;Qeg (413)

"Wy J

(ii) /;-Norm Method: Unlike the GIR method, ¢>;-Norm method prefers equal
weights on outputs from all channels and tries to enforce similar outputs from differ-
ent channels. In general, the potential advantage of ¢;;-Norm method is to enhance the
output performance from the poor quality channel, constrained by channels with better
quality results. More specifically, the /;;-Norm method constrain the final data repre-
sentation of each node share the same structure. In this way, data representation from

the node with poor quality is able to be compensated by the one with good quality.

Similar to the GIR method from the perspective of implementation, the ¢>;-Norm
method uses a regularization term constrained on the multiple outputs Logit/ from
the last FC layer of multiple SC-DopNets. The regularization term can be shown in
Eq.(4.14) and (4.15), where Logitsja 1 is the output of j/ channel after the softmax op-
eration and Logitsjo 1 [i] infers the probability output that the data from j* channel be-
longs to the i*” class. Finally, the loss function using the £>;-Norm method is shown in
Eq.(4.16), where Logit™! is the final output by averaging all single channel outputs with

equal weights.

Nuc

1 .
Logit™> = —— 'Y Logit’ (4.14)
g NMCj:Zl g

NclassNMC
L =YY Logit] oﬁ[ (4.15)

i=1 j=1

.’ L Nuc . .

min Ly, = Lo + Z YoeLie + Reg‘|"}’L21L ! (4.16)
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4.6 Implementation

In this section, we introduce the NetRad radar systems, the experimental scenarios in the

trial and finally the processing methods and details.

4.6.1 Radar System

The radar system used to collect the data presented in this chapter is the three-node
multistatic system NetRAD [4, 2], which has been developed over the past years at
University College London. Figure 4.6 presents one of the node in NetRad and the basic
architecture can be found in [2]. The system is a coherent pulsed radar and operates at
2.4 GHz. The data shown in this work were collected using the following RF parameters:
0.6 ps pulse duration, 45 MHz bandwidth, linear up-chirp modulation, and 5 kHz PRF
to include the whole human p-DS within the unambiguous Doppler region. Five seconds
of data were recorded for each measurement in order to collect a multiple periods of
the average human walking gait, which is on average approximately 0.6 seconds. The
transmitted power of the radar is approximately 200 mW. The antennas have 24 dBi gain
and are operated with vertical polarization to effectively interact with human subjects,
as the human body shape is such that the vertical dimension is more significant than the
horizontal dimension. This is expected to increase the SNR of the targets’ echoes in

comparison with horizontal polarization

Figure 4.6: Picture of NetRad System [2]: (a) RF chain and FPGA; (b) Data collection module
and mini-PC .
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Table 4.1: Processing parameters including the ones to collect and generate the p-DS, train the
DCNN and augmentation.

Recording Time Ss
Overlapping Ratio 0.9
FFT Integration Time 0.3s
Augmentation Time Width 0.15s
SGD Momentum 0.9
Base Learning Rate 0.001 (FC), 0.0005 (Conv)

4.6.2 Experiment

In the following Figure 4.7, the data are collected when targets walk from three different
angles roughly around 30 degree, O degree and -30 degree, (denoted as Ang 1,2,3). The
distance between the target position and the node 1 is 70m and the node 3 is the Tx/Rx
pulse radar part, while the other two are receivers. There are two movements in the
experiment, which are walking with armed and unarmed weapon (replaced with a metal
stick holding or not holding). There are three people involved into the experiments, their
height are 1.87m, 1.7m and 1.75m respectively. For each walking, the recorded time is

5 second and in total 270 data samples (5 second recording) are collected.

4.6.3 Processing Method

First the matched filter processing in Section 2.2.2 between the reference and received
echo signals and the STFT in Section 2.2.3 is used to obtain the spectrogram. The
processing parameters is summarized in Table 4.1, where the overlapping ratio is 0.9
and the integration time of FFT is 0.3 seconds. Each p-DS sample is recorded for 5
seconds and the stride for cropping the u-DS samples in the data augmentation operation
is chosen as 0.15 seconds. In addition, to increase the challenge of testing, we are also
cropping the testing data into different dwell time but the stride is chosen as 0.3 seconds
and the cropping starting point is chosen randomly. We argue that this test scheme is a
more realistic scenario, where we cannot guarantee where the real-time test data starts,
as the radar may have been performing other tasks prior to extracting the u-DS of a
specific target at a specific time.

All DopNet layers and data operations are implemented using the Tensorflow soft-

ware. The conventional SGD method is used for optimizing the parameters, with the
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momentum 0.9. The initialized learning rate for FC layers and Conv layers are chosen
as 0.001 and 0.0005 respectively. The decay policy for the learning rate is the inverse
decay and the decayed learning rate denoted as Ir ey 18 following the Eq.(4.17), where
[rpase 1s initialized base learning rate. The batch size is chosen as 50 and training and
test samples are shuffled by the Tensorflow FIFO-Queue operation. The regularization

weight for the Conv and FC layers are chosen as 0.005.

[T gecay = Fpase X (14+0.001 x epoch) ™07 (4.17)
Target
70m
Ang3 Ang?2 Ang1
-30° 0° 30°

Node2 40m Nodel 40m Node3
RX RX RX/TX

Figure 4.7: Experiment scenario in the field using NetRad.

4.7 Results and Ablation Study of SC-DopNet

This section analyze the various factors of SC-DopNet via ablation study, including
the augmentation operations, radar operating parameters and the parameters in the SC-
DopNet model. We also give potential reasons and discuss these results. Finally, we

compare the SC-DopNet with various features and classifiers.
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4.7.1 Raw and Augmented p-DS

In this section, the raw u-DS are presented and illustrated and the detailed processing pa-
rameters are outlined in the implementation section. In addition, the data augmentation
procedure and the diverse u-DS are presented in Figure 4.3 with the raw input in Figure

4.2.

a)Node1, Ang1, Walk (b)Node2, Ang1, Walk (c)Node3, Ang1, Walk
105) 'v“ f 10% - 108) g

60 |
40 py.
20

2 4 2 4 2 4

Figure 4.8: Raw p-DS of walking among three angles and three nodes. All x-axis represents
time with unit of second while all y-axis represents frequency with unit of Hz.

In Figure 4.8 and 4.9, the Doppler frequencies related to the bulk movement from
angle 1 and 2 are centred at around 42Hz, while the one from angle 3 is around 30Hz.
This is due to the relatively larger aspect angle for angle 3 than angle 1 and 2. Either
for armed or unarmed gaits, in general, frequency due to arms movement from angle 1
is smaller than angle 2, while the one from angle 3 is much smaller than the angle 1.
These can all be explained by the different Doppler aspect angles in the bi-static radar
geometry and the velocity components of the bi-static bisector.

It can be clearly seen that the unarmed walking gait from angle 1 and 2 are clearly
distinguished from the armed ones by the signatures from 20Hz to 30Hz caused by the
swinging arms. From angle 3, as shown in (e) and (f), the difference between unarmed

and armed one is not obvious, but some vague differences in the p-DS from 15Hz to
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8d)Node1 , Ang2, lele 6e)Node2 Angz lele 6f)Node3 Ang2, Rifle

\. 0

Figure 4.9: Raw Doppler signature of walking with rifle among three angles and three nodes.
All x-axis represents time with unit of second while all y-axis represents frequency
with unit of Hz.

Table 4.2: Radar operating parameter set used for evaluating in the u-DS classification experi-

ments.
Training Perc. {20%,40%,60% }
Dwell Time (Second) {1,1.5,2,2.5}
Aspect Angles (Degree) {-30,0,30}
Radar Node {N1,N2,N3}
20Hz still exist.

4.7.2 Evaluating Radar Operational Parameters

In this section, we analyse the recognition rate using single-channel u-DS data with
different operational parameters such as training percentage, dwell time, node geometry
and all the three aspect angles. The parameters evaluated in the experiments are in Table
4.2.

As shown from Figure 4.10 to 4.13, in general, with all other variables controlled,
increasing the training percentage increases the recognition rate. The reason is obvious,
as it increases the training data diversity and eases the classifier task by decreasing the

test data samples. For training ratio at 0.6, no matter at what dwell time, the recognition
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Figure 4.10: Recognition rates of three training data percentages and three aspect angles, using
data from nodel, dwell time of 1s and SC-DopNet.
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Figure 4.11: Recognition rates of three training data percentages and three aspect angles, using
data from nodel, dwell time of 1.5s and SC-DopNet.

rates all achieve close to 100%. In addition, with the training ratio at 0.4, recognition
rate with dwell time of 2s and 2.5s already achieves very close to 100%. However, the

one with dwell time of 1s and 1.5s can only achieve 98% approximately.

The Figure 4.14 shows the averaged recognition rate among all dwell time with
respect to different angles and training ratios. Among the three aspect angles, it can

be found that the average recognition rate from aspect angle three is the lowest. The
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Figure 4.12: Recognition rates of three training data percentages and three aspect angles, using
data from nodel, dwell time of 2s and SC-DopNet.
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Figure 4.13: Recognition rates of three training data percentages and three aspect angles, using
data from nodel, dwell time of 2.5s and SC-DopNet.

reason is that under movements from aspect angle 3, the bi-static angle formed by target,
transmitter node 1 and the receiver node 2 is the largest that induces the lowest Doppler
frequency shifts and SNR of u-DS. These further lead to the poor discriminative quality
of u-DS from armed and unarmed motions. It can also be inferred that when trained
on 20%, under all dwell time, recognition rate of angle 2 outperforms angle 1 around

2%, but with the increasing of training percentage, recognition rate of angle 1 is chasing
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Figure 4.14: Averaged recognition rate among all dwell time with respect to different angles and
training ratios.
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Figure 4.15: the averaged recognition rate among all training data percentages with respect to
different aspect angles and dwell times.

up to equally the same as angle 2 and even outperforms angle 2 at training percentage
of 0.4 and 0.6 respectively. The main reason can be observed by comparing Figure 4.8
and 4.9, (b) and (d) that the Doppler frequency induced by bulk movements from angle
1 varies larger than the one from angle 2. Note that in our data augmentation steps,
we are truncating the whole 5 second spectrogram into smaller parts (with shorter time
duration), therefore among different augmented truncations of the dataset, augmentation
from angle 2 will induce more variations of bulk Doppler frequency and the more of p-
DS frequency as well. This actually increases the intra-class variations among the train

and test datasets. With the increasing training ratio, these intra-class variations can be
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eliminated as more samples related to different bulk movement Doppler shifts can be
used to train the network. Finally, with the training ratio of 0.6, recognition rate of angle
1 outperforms angle 2, with the potential reason that Doppler signatures induced by
arms movement at unarmed scenario from angle 2 has higher SNR and higher Doppler
frequency shifts than angle 1, as shown in Figure 4.8 and 4.9 (a) and (c). These all relate
to the node 1 as the transmitter and the geometry of radar in the experiments.

Figure 4.15 shows the recognition rate of different angles with respect to different
dwell time. Due to the average of the training ratios, we can deduce that for all angles,
recognition rates increase with the increasing dwell time from 1s to 1.5s. However, with
further increasing dwell time from 1.5s to 2.5s, only the recognition rate from angle 2
increases further and the one from angle 1 attain the similar result at dwell time of 1.5s.
Note that recognition result from angle 3 drops with the further increase in dwell time.
The potential reason for this may be that there are few useful features for signatures of

angle 3 due to the large aspect angle.

4.7.3 Evaluating the Drop-out rate

In this section, we analyse the recognition rate with different drop-out rates via exper-
iments. Here, we only choose the data from the following scenario: node 1, angle 1,
dwell time of 1s. The drop rate ranges from 0.2 to 0.8 in the step of 0.2 and we eval-
uate the respective recognition rates. According to Figure 4.16,when trained with 20%
and 40% data, increasing the dropping rate from 0.2 to 0.8 on FC layers increases the
recognition rates first (when increasing from 0.2 to 0.4) and then decreases them (when
increasing the drop-out rate from 0.4 to 0.8). This is due to the fact that the model is first
overfitting the data but the generalization capability of the model to the test data cannot
be maintained. Increasing drop-out rate from 0.2 to 0.4 then ensures the moderate net-
work capability for better generalization. When the drop-out rate increases further, the
network parameters are relatively small to model the training data, which decreases the
capability of the model and the recognition rate.

In addition, Figure 4.16 shows that when trained with 60% of the data, increasing
the drop-rate from 0.2 to 0.6 continuously increase the recognition rates and the further

increasing will decrease the recognition rate. The reason can be attributed to previously
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Figure 4.16: Recognition rates using different drop-out rates and training data percentages. All
data come from angle 1, node 1 using dwell time of 1s.

described scenario and explanations.

Table 4.3: Recognition rates with different input SNRs. All data come from node 1, dwell time
of 1s using SC-DopNet.

SNR:-10 | SNR:-5 | SNR:5 | SNR:10
Angl | 94.2% 95.5% | 95.8% | 96.0%
Ang2 | 96.1% 96.5% | 96.9% | 96.8%
Ang3 | 83.6% 84.3% | 84.9% | 85.3%

4.7.4 Evaluating E-dist and M-dist

In this section, we analyze and evaluate the regularization weight of the balancing E-M
distances, by comparing different recognition rates based on whether M or E distance
metric dominates. The experiments are conducted using node 1, angle 1, dwell time 1s
with 20% training data. As shown in Figure 4.17 increasing the lambda from O to 1.5
based on the following set {0,0.001,0.005,0.01,0.05,0.1,0.5, 1, 1.5} induces the results
increasing from 89.3% to top 96.9% and then dropping to 93.3%. At first, the M-distance
dominates, but this is prone to overfitting the data. Then due to the increasing of the
balancing weights, the good balance between M and E distance is able to maintain both
generalization and discrimination capability of the network. Increasing the balancing

weights further will then drop the recognition rate again, as the model generalizes too
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Figure 4.17: Recognition rates among different regularization weights of the E-M distance. All
results use data from node 1, angle 1, dwell time of 1s with 20% the training per-
centage.

much but lose the discrimination capability. In this scenario, we choose 0.05 as our

optimal balanced hyper-parameter.

4.7.5 Evaluating the SNRs and Memory Usage

In Table 4.3, recognition rates based on different SNR levels are shown. It can be ob-
served that increasing the SNR from -10 to 5 dB increases the recognition rate by 2%
while recognition rate stays stably the same if we further increase the SNR from 5dB to
10dB.

In addition, we discuss memory usage of the network. In the practical scenario, the
dataset can be trained on the server or computer cluster therefore only the weights of
the network need to be carried onto the site. We also report the memory usage of the
network weights in our single channel DopNet as 44MB. The processing time in the test
stage is roughly linearly proportional to the number of test data and the ratio is 0.085
second per 100 samples. To sum up, the SC-DopNet is big as 44MB and can predict one

test sample in 850 ps.

4.7.6 Comparison with Empirical Features and Classifiers

In Table 4.4, we compare SC-DopNet results with other features extraction methods
(including the state-of-the-art SVD and centroid features) and classification methods

(including the Naive Bayes classifier, the Discriminative Analysis method and Classifi-
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Figure 4.18: Average recognition rates among three aspect angles with respect to dwell time
and classifiers. We report the best feature combination results for the non-deep
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Figure 4.19: Average recognition rates among different dwell time but ranging from different
aspect angles. We report the best feature combination result for the non-deep clas-
sifiers.
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Table 4.4: Recognition results of three non-deep classifiers with the best empirical feature com-
binations and SC-DopNet results. We use data from node 1 with training percentage
of 20%, different dwell time and aspect angles, percentage in (%).

Features Best Combined SVD and Centroid Features DopNet
Dwell Time Is 1.5s 2s 2.55 Is [1.5s] 2s [2.5s
Classifier |[NB|DA |CT |NB |DA|CT |[NB |DA|CT |[NB |DA | CT DopNet

A1N1 {93.1{93.0|88.2193.5/93.9|91.9(94.5|94.7|94.2|196.1|95.0{96.2|94.5|95.9(95.3|95.1

A2,N1 |83.7(83.8|78.6/78.3|184.2|80.2|84.2|83.9|83.1|84.5|84.7|80.5|96.5|97.4|98.3|198.9

A3N1 [76.7(75.4169.2179.6/79.5|74.7|84.3|82.0|78.8(84.1|83.0|76.7|85.5/84.8(85.0|85.1

Average |84.5|84.1|78.7|83.8/85.9|82.3|87.7(86.9|85.4|88.2|87.6|84.5192.2|192.7|92.8|93.0
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Figure 4.20: Averaged recognition results of four classifiers on aspect angles, ranging different
nodes. We report the best feature combination results.

cation Tree method). The experiment setting to generate Table 4.4 is aimed to analyze

recognition performance under node 1 and each of the three angles.

In each experiment, we report the best recognition rates selecting different com-
bination of features and we highlight the best recognition rates by red. In addition, we
report the averaged recognition rates on three angles but ranging from the all dwell times
in Figure 4.18 and also the averaged recognition rates on dwell times but ranging from
the aspect angles in Figure 4.19. With increasing of dwell time, under various classi-
fication methods, the recognition rates all increase. Obviously, compared with angle 2
and 3, using non-deep features and classifiers achieve the best results 93% in angle 1

but SC-DopNet outperforms by 1-2%. For angle 2 and 3, SC-DopNet outperforms other
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Table 4.5: Recognition results of three non-deep classifiers with the best empirical feature com-
binations and SC-DopNet results. We use data from all aspect angles, each radar
node, different dwell times, with training percentage of 20%, percentage in (%).

Features Best Combined SVD and Centroid Features DopNet
Dwell Time Is 1.5s 2s 2.55 Is [1.5s] 2s [2.5s
Classifier |[NB|DA |CT |NB | DA |CT |[NB |DA|CT |[NB |DA | CT DopNet

N1 80.4|80.4|77.4/81.4/81.7|79.4|82.3|181.9|81.2|83.2|182.6/82.6(92.6|93.0(93.7|93.5
N2 70.9(70.0|64.7|73.1|72.8|166.9|73.1|72.7|68.9(73.0|72.868.3(80.2|83.6|83.2|83.9

N3 74.2|74.2|72.3|76.2|75.6|75.0|77.5|77.3|77.3|77.9|77.8|77.7(90.1192.7/93.5/92.9

Average |75.2/74.9|71.5|76.9|77.5|76.7|77.6|77.3|75.8|78.0|77.7|76.2|87.6|89.890.1{90.1

methods by 10% and 6.4%. In addition, from the results of angle 2 in Figure 4.19, SC-
DopNet seems more robust to the aspect angle variations compared with other empirical
features, where other methods achieves in average 82% for angle 2, but SC-DopNet
still remains the recognition rate of over 90%. In Figure 4.19, it seems that SC-DopNet
outperforms all other methods and the recognition result difference is descreasing from
9.8% to 6.2% with the increasing dwell time from 1s to 2.5s.

In Table 4.5, we design a new experiment where all three angles from a single node
are included in the dataset to recognize armed and unarmed movements. In addition, we
summarize the results in Figure 4.20. We argue that this is a more realistic scenario in
mono-static u-DS recognition, as u-DS from all aspect angles are included in the dataset.
It can be observed that under this more complicated task, recognition rates of node 1 us-
ing non-deep features (the first row of Table 4.5) drop around 5% compared with the
average in Table 4.4, however, SC-DopNet only drops 2% achieving averaged 93.5%
on all dwell-time settings. For node 2, SC-DopNet still outperforms other methods by
approximately 10%. For the most difficult result for node 3, it seems that training us-
ing all-angle signatures, SC-DopNet achieves 92.3%, outperforming 15% than the other
features.

To sum up, compared with non-deep feature and classifier, SC-DopNet achieved in
average 92.7%, outperforming the second best feature and classifier (discriminative anal-
ysis method) 4% when evaluating for single angle in node 1. When mixing up p-DS of
all angles, SC-DopNet achieves the most robust results, in average 91.0%, outperforming
the second best around 12.6%. This is mainly due to SC-DopNet’s large model capacity

when handling complex classification tasks, for example the classification of all-angle
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scenario. From another perspective, since we do not change the hyper-parameters, it is

beneficial to train SC-DopNet using larger number of training data.

4.8 Results and Ablation Study of MC-DopNet

In this section, we discuss the feasibility of extending the SC-DopNet to MC-DopNet to
process multi-static u-DS. In addition, we evaluate our proposed two methods, namely
GIR and /;;-Norm method, by comparing with the conventional binary voting (BV)
method. Specifically, the recognition results are shown in Table 4.6, 4.7, 4.8, generated
respectively by BV, GIR and the ¢;;-Norm method. These three tables illustrate the the
fusion recognition rates, the recognition rates using the single-channel prediction (but
trained by fusing multiple-channel data) and the learned weights (for GIR method only)
are shown and compared. Finally in Figure 4.8 and 4.9, we have already showed the raw

p-DS but here we link the recognition results to the u-DS.

4.8.1 Analysis of Node-Angle Combinations in MC-DopNet

This section aims to compare the proposed GIR and ¢;;-Norm with the conventional
BV using MC-DopNet. All experiments are conducted using 30 trials with randomly
selected training and test samples. To ensure fair testing, experimental settings are the
same for the three fusion methods: dwell time of 1s, training with 20%, with the same
augmentation scheme and SC-DopNet architecture, in Section 4.7.

Although results from Table 4.6 to 4.8 are trained based on fusing multiple channel
data, we argue that recognition results based on different node-angle combinations are
essential to understand mechanisms of the fusion methods.

Therefore, we propose to use recognition rates of BV methods as the baseline to
measure the performance of certain node-angle combination. The reason for adopting
BV as baseline is that the total loss function using BV is simply the sum of the loss
functions from three networks with equal weights. There are three main findings by

observing the Table 4.6 and corresponding signatures in Figure 4.8 and 4.9.

1. Finding 1: From the first three columns in Table 4.6 and 4.8, for all angles in-
dependent of the fusing method, recognition rates from node 1 outperform node

3 and those from node 3 outperform node 2. This matches the higher SNR and
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Table 4.6: MC-DopNet recognition results of three aspect angles, using dwell Time of 1s, 20%
training percentage but using the BV method for fusion.

Table 4.7: MC-DopNet recognition results of three aspect angles, using dwell Time of 1s, 20%
training percentage but using the GIR method for fusion.

Node 1 Node 2 Node 3 BV
Accuracy Accuracy Accuracy | Accuracy
(weight) (weight) (weight)

Al | 95.7 (0.333) | 65.0(0.333) | 87.1(0.333) 96.1
A2 | 96.5(0.333) | 77.3 (0.333) | 93.5(0.333) 99.0
A3 | 85.3(0.333) | 70.8 (0.333) | 81.8 (0.333) 91.7

Node 1 Node 2 Node 3 BV
Accuracy Accuracy Accuracy | Accuracy
(weight) (weight) (weight)

Al | 97.3(0.421) | 50.7 (0.289) | 49.3 (0.289) 98.2
A2 | 98.2(0.434) | 50.1(0.283) | 51.2 (0.283) 98.9
A3 | 88.8(0.462) | 51.7 (0.269) | 48.3 (0.269) 89.5

more discriminative features of node 1 than node 3 and 2. The main reason of the
lowest results for node 2 is the larger bi-static angle formed by receiver node 2 and
transmitter node 3, which decreases both SNR and the frequency shifts related to
the motions. In addition, the potential reason for node 1 to outperform node 3 may

be attributed to DSI in node 3, which degrades the SNR of the p-DS.

2. Finding 2: In Table 4.6, all recognition results from A2 and A1l outperforms A3,
no matter which node is selected. This matches the observation by comparing
Figure 4.8 and 4.9, where better data quality (SNR) from angle 1 and angle 2

induce better discriminative quality than the angle 3, no matter from which node.

3. Finding 3: The recognition results from A2 always outperform the Al. The main
reason is that the Doppler frequency induced by bulk movements from angle 1
varies larger than the one from angle 2. This can be observed by comparing (a) and
(d), (b) and (e) of Figure 4.8 and Figure 4.9 respectively. More detailed discussions

can be found in previous Section 4.7.2.

In Table 4.7, when the GIR method is utilized, it can only be found that recognition
rate from Node 1 outperforms the others, but the one of Node 2 and Node 3 are basically

the same. Specifically, the first column in Table 4.6, 4.7 and 4.8 all show that node 1
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Table 4.8: MC-DopNet recognition results of three aspect angles, using dwell Time of 1s, 20%
training percentage but using the ¢,;-Norm method for fusion.

Node 1 Node 2 Node 3 BV
Accuracy Accuracy Accuracy | Accuracy
(weight) (weight) (weight)

Al | 94.9(0.333) | 72.8 (0.333) | 85.7 (0.333) 95.9
A2 | 96.1(0.333) | 81.6(0.333) | 92.7 (0.333) 99.0
A3 | 83.6(0.333) | 72.9 (0.333) | 79.9 (0.333) 93.4

recognition results from whatever angles using GIR method outperforms ¢>;-Norm and
BV method for around 2%. In addition, from the second and third columns, recognition
rates of GIR from node 2 and 3 drop significantly compared to others. The reason
is the greedy nature of GIR which aims to increase the weights from the best quality
channel node 1 and decrease the ones from other channels in the fusing mechanism. This
explanation can also be verified by the extremely unbalanced weights, found in Table
4.7, where weight from node 1 with all angles are larger than other nodes; meanwhile,

weights of node 2 and 3 are approximately the same.

It can be found that for all angles, ¢>;-Norm method only outperforms the BV
method for node 2 data and performs worse than BV for node 1 and 3. Specifically,
comparing the first row in Table 4.6 and 4.8, using the ¢;;-Norm method increases the
recognition rate for node 2 (with the worst data quality) from 65% (using BV method)
to 72.8% however at the price of decreasing the recognition rate for node 1 and 3 from

95.7% (using BV method) to 94.9% and from 87.1% (using BV method) to 85.7%.

Similar patterns can also be found by observing other rows in Table 4.6 and 4.8.
This phenomenon can be interpreted by the nature of ¢;;-Norm, where similar prediction
outputs are enforced among multiple channels. From other words, to improve the perfor-
mance of node 2 with the worst data quality, the /;-Norm sacrifices the single-channel
recognition rate for node 1 and 3 but makes improvements in the fused multi-channel

recognition rate.

4.8.2 Comparison of Fusion Methods in MC-DopNet

In this section, we focus on comparing the recognition results based on multi-channel

data using different fusion methods.
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For fusion results based on angle 1, GIR method achieves the best, approaching
to 98.2% in average, outperforming the BV method (96.1%) and the ¢;;-Norm method
(95.9%). Looking at the weights in Table 4.7, it seems that the greedy-like algorithm
assigns the biggest weight to the node 1 (around 0.421) while assigns equally (around
0.289) to the other two. This matches our assumption and understanding of the greedy
algorithm in the three findings in Section 4.8.1.

For fusion results based on angle 2, BV, GIR and ¢,{-Norm exhibit similar and the
best recognition result (around 99%), due to the data having the highest SNR and the
most discriminative features. For results based on angle 3 with the worst data quality,
the ¢51-Norm method achieves the best 93.4% compared with BV method at 91.7% and
GIR method at 89.5%. The main reason has been discussed in Section 4.8.1 about the
descriptions of ¢,;-Norm method.

In addition, we investigate and discuss when, especially for which angle, GIR and
£>1-Norm should be utilized to improve fusion results. We generate Table 4.9 by calcu-
lating the mean and STD of results using BV method (based on Table 4.6). We argue that
the mean and STD of recognition results are useful to determine the preferable method
for certain angle. It is easy to conclude from Table 4.7 and 4.8 that when fusing multi-
channel results for angle 2, the three fusion methods achieve similar result due to its
originally good discriminative quality. However in Table 4.9, when the mean recogni-
tion accuracy is relatively high but the standard variation is very large, like angle 1, the
GIR method is more suitable for the fusion task. For the low mean accuracy and low

STD scenario, #>;-Norm might achieve the best to fuse these multi-channel data.

Table 4.9: Mean and standard deviation of the results in Table 4.6 fused by BV method.

Mean Recognition Rate | STD Recognition Rate
of All Nodes of All Nodes
Al 82.6% 12.9%
A2 89.1% 8.4%
A3 79.3% 6.2%

4.8.3 Comparison with Empirical Features and Classifiers

In this section, we compare our results with the state-of-the-art SVD and centroid fea-

tures, using the threshold voting as the fusion method in Table 4.10. The experiment
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Figure 4.21: Recognition results of five classifiers and different aspect angles. We use all multi-
static data with dwell time of 1s. We report the best feature combination results
from [3].

setting is to classify the activity from a specific angle using the multi-static u-DS.

Table 4.10: Comparison of MC-DopNet results with other feature extraction methods and clas-
sifiers. For fair comparison, all voting schemes are the best thresholding voting
scheme and features are selected the best combinations reported in the paper [4];
percentage in (%).

Feat Best Combined SVD and Centroid Features MC-DopNet MC-DopNet

DT Is 1.5s 2s 2.55 Is [1.5s] 2s [2.5s [ Is [1.5s] 2s | 2.5s

CLS|NB |DA|CT |[NB |DA|CT |[NB | DA |CT |NB|DA|CT| Soft-max(GIR) [Soft-max(¢,;-Norm)

Al 91.1|91.3/89.2192.4/92.3/91.8(93.5|93.7/93.5|95.6|95.7/93.2(198.2|97.2| 98.2 | 98.5 |95.9(95.9/95.4

A2 (90.8|91.992.0/93.4(93.5/94.8(94.2|94.7/95.9|95.7|96.996.6(98.9|99.6/100.0{100.0{99.0(99.0/99.0

A3 (79.4|79.4(77.2|181.7|82.6/80.0(84.3|84.7|82.1|83.4|84.2/83.4(89.5/89.1| 88.2 | 88.7 {93.4(92.3|193.5

All [80.9(80.7|80.7/82.1|82.9|83.9|83.3|84.0|85.6(84.5|84.4(86.993.7/94.3| 94.9 | 94.3 193.2/94.7(94.6

The results are summarized in Figure 4.21. It can be observed from angle 1 and
2 that MC-DopNet with GIR method achieves the best, outperforming other methods
by 4% to 5%. For angle 3, MC-DopNet with ¢;;-Norm method outperforms all other
methods by 9.4% in average. For the most difficult test scheme with all angle data
in, MC-DopNet based methods either using GIR or ¢,;-Norm, outperform 11.1% than
others in average. The reason has been explained in the three findings in Section 4.8.2.

Note that for all features and methods, recognition rates for all-angle-in setting are lower
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than the best single-angle result but still better than the worst single-angle result.

4.9 Summary

In this chapter, with the aim of recognizing very close human activities, such as armed
or unarmed personnel in security applications, we advance Doppler processing in multi-
static radar by proposing two modified DCNNs, namely SC-DopNet and MC-DopNet
for mono-static and multi-static u-DS classifications.

Differentiating armed and unarmed walking personnel is challenging, mainly due
to the effect of aspect angle diversities in real-world scenarios, as illustrated in details
in Section 4.5, and the overfitting problem caused by small-scale u-DS dataset. To ad-
dress these two problems, the work carried out in this chapter makes specific three key

contributions to the knowledge base:

1. To prevent the overfitting problem facing a small-scale u-DS dataset, two effec-
tive schemes including data augmentation operation and the regularization term
to balance the E-dist and M-dist are proposed so that we can train SC-DopNet
from scratch successfully. By balancing the E and M-dist, recognition results of
SC-DopNet on node 1 has been verified to outperform the one without the regu-

larization by 7.6% in average.

2. In addition, performances of SC-DopNet and the factor analysis have been con-
ducted based on various operating parameters in both the processing and radar
operations. Note that from the authors’ best knowledge, no detailed ablation study
of DCNN for p-DS classification has been done. Compared with the best em-
pirical feature selection and classifier design, SC-DopNet outperforms the best-

performing method by 12.5% in average.

3. To solve the problem of aspect angle diversities for u-DS classification, we adopt
the multi-static p-DS, design the MC-DopNet and propose two fusion schemes
termed as GIR and /;>-Norm methods, embedded in the MC-DopNet. These two
schemes are based on two different strategies respectively, namely (1) “win by

sacrificing worst case” and (2) “win by sacrificing best case” and we evaluate
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them via extensive experiments. In general, comparisons of GIR and ¢;,-Norm
methods largely depend on different geometries of the multi-static radar. However,
whatever strategy to use, MC-DopNet results outperform the best-performing non-
deep feature selection with fusion methods by at least 9.8% using data from all the
aspect angles. The results of different single aspect angle have also been evaluated

but they largely depend on different geometries.

Note that we also argue and discuss how to utilize the statistics of SC-DopNet
results to infer the selection of fusion strategies for MC-DopNet based on different

experimental scenarios.

As reviewed in Section 4.2, the research [113] adopted the multiple DTN for multi-
static u-DS classification. This is similar to our MC-DopNet, however they simply con-
catenate multi-channel features to a longer one for classification. We argue that this
concatenation makes the classifier more difficult to train considering the small-scale p-
DS. In addition, this concatenation does not leverage the intrinsic prior knowledge in
the multi-channel classification task: the extracted features should represent the com-
mon factors among multi-channel data. To leverage such prior, the network needs to
learn the unified features that are discriminative and meanwhile can tolerate the poor
quality single-channel data. Different from their work, we propose two fusion strate-
gies for MC-DopNet in Section 4.5. Patel et al. [160] adopted the fusion strategy to
handle multi-static data but their network only used single DCNN to extract multi-static
features. We argue that their design ignores the variations of the multi-channel local
features, which makes it more difficult to train the feature extractor. This is mainly due
to the large intra-class and small inter-class variations, as illustrated in Section 4.5 and

Figure 4.5.






Chapter 5

Deep Adaptation Network using
Optimal Transport

5.1 Introduction

Recent developments in DNN have yielded state-of-the-art results from supervised learn-
ing applications [162, 154, 163]. However, the success of DNN requires a large amount
of well annotated training data which is not always feasible to perform manually. There-
fore, it has acted as a driver to transfer knowledge from datasets for which labels are
well-defined. Another challenge of DNN is its vuneralbility to small perturbations of
the input data, which is very common for both the computer vision datasets and human
p-DS in radar. The potential perturbations include but are not limited to: light changes,
camera shaking effect and the changes of the geometry view in vision applications; the
aspect angle diversity of the u-DS, SNR changes of target echoes from different exper-
imental scenarios and even the same p-DS from different target personnels in the radar
community. As introduced in Section 2.5.2.3, these perturbations always lead to domain

discrepancies between training and test datasets.

The DA problem [164] was proposed in this context where the data distribution
between the target domain (a few of labels are available, usually in test dataset) and
the source domain (well-annotated labels, usually in training dataset) varies so that the
discriminative features and the classifiers in the source domain cannot be transferred to

the target domain[164, 165]. Under this regime, UDA is the most challenging problem
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where no label information in the target domain (test dataset) is available. More detailed
discussions about the DA and other related concepts are described in Section 2.5, 2.5.1
and details about UDA have already been introduced in Section 2.5.2 and 2.5.2.3.

In this chapter, we propose two adaptation networks for UDA to reduce disparate
domain discrepancies and to eliminate the variation of factors between training and test
datasets, namely the Re-weighted Adversarial Adaptation Network (RAAN) and Joint
Adversarial Adaptation Network (JAAN). The two networks both integrate the OT the-
ory in the adversarial training (see the detailed derivations in Section 2.5.2.1 and Ap-
pendix B.3 to understand the relationship between adversarial training and divergence
measurements), but their designs are different, where RAAN utilizes the dual formu-
lation of OT but JAAN utilizes its entropy regularized primal formulation. In addition,
RAAN implicitly adapts the classifier by matching the label distribution, however, JAAN
explicitly matches the joint label and feature distribution via novel network design. Lim-
ited by the unavailable public datasets in radar p-DS classification for evaluations, we
first evaluate the two proposed adaptation networks using the benchmark datasets in
computer vision, including three well-known hand-written digit datasets and the cross-
modality object classification dataset between RGB and RGB-D. Finally, we apply these
two adaptation networks in the radar p-DS to classify armed and unarmed target person-
nels. These two networks are proved to achieve the state-of-the-art results in UDA tasks
and using these two networks increases the p-DS classification performance by a large
margin when handling u-DS sampled from the unseen scenarios.

RAAN has the following two important features which make novel contribu-

tions to the field:

1. To match feature distributions when domains discrepancies are disparate, we train
a domain discriminator network together with the conventional DCNN in an ad-
versarial manner to minimize the OT based earth-mover (EM) distance. Compared
with other methods adopting geometry-oblivious measures, RAAN can better re-

duce large feature distribution divergence.

2. To help adapt the classifier in UDA, we propose to match the label distribution by

estimating a re-weighted source domain label distribution so that it can be similar
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to the unknown target label distribution. In addition, we embed it into the pro-
cedure of minimizing the earth-mover distance during the end-to-end adversarial
training procedure. This not only adapts the classifier but also helps match the

marginal feature distribution.
The contributions of JAAN are summarized as follows:

1. First, to reduce the large discrepancy of the joint distribution, we embed the en-
tropy regularized OT method, i.e., the Sinkhorn algorithm [166, 167] into the
DCNN and adopt the adversarial training strategy to better match the joint dis-
tributions. More specifically, we designed an adaptive distance function using a
presenter network and the cosine distance for the Sinkhorn algorithm. The pre-
senter network, the feature extractor and classifier play an adversarial game where
the presenter network aims to increase the divergence (Sinkhorn loss) of joint dis-

tribution, while the feature extractor and classifier aim to decrease it.

2. Second, we design a reconstruction network by projecting the joint representation
of feature and label to either the reconstructed data or certain fixed features (when
fine-tuning technique in DTN is used). Note that we share the same reconstruc-
tion network for both source and target domain reconstruction. This design can
be regarded as another supervisory signal for constraining the target domain joint
distribution so that it contains the complete information to reconstruct certain level
information of the original images. Finally, our proposed JAAN is evaluated by
conducting a series of experiments using datasets with different domain distribu-
tion discrepancies and we demonstrate that our technique can potentially address

large distribution discrepancies.

5.2 Related Works

To the best of authors’ knowledge, no research have focused on eliminating the variations
of u-DS caused by target personnels and the aspect angles in radar communities. This is
the first developments of designing and applying state-of-the-art UDA methods for radar
p-DS classification. Therefore, we compare our RAAN and JAAN with the most recent

UDA methods in computer vision literature.
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5.2.1 Distribution Matching using Adversarial Training

There are two strategies to reduce domain discrepancies including feature and pixel
distribution matching. For feature distribution matching methods, JS-divergence based
methods are the best-performing techniques for measuring the divergence of feature dis-
tributions in DANs [168, 169, 170]. Although it is not a new statistical measure, the JS
divergence loss is implemented by a mini-batch approach in the DCNN in an adversarial
manner [171, 77]. Domain adversarial neural networks (DANN) [172] may be the first
to add a domain classifier, with the aim of extracting not only discriminative features for
the main classification task, but also indistinguishable ones for the domain classifiers.
The adversarial loss of DANN is implemented by directly maximizing the domain clas-
sification loss and reversing the gradient in the back-propagation. Ghifary et al. designed
the deep reconstruction-classification networks (DRCN) [173] using the same approach
but added another loss function to minimize the reconstruction error of the data samples
between domains. More recently, Tzeng et al. proposed Adversarial Discriminative Do-
main Adaptation (ADDA) [169] composed of two separate discriminative networks (one
for each domain) to extract useful features for the main classification task. The domain
discriminator network is added so that the target network and the domain discriminator
network can compete with each other until the target and source domain features can-
not be distinguished. However, the JS is only effective when the two distributions have

common supports, which may not be a practical assumption.

For matching pixel distributions, inspired by the good performance of adversarial
training in generative models, some methods generate new images that are transferable
in both domains. Liu et al. proposed Co-GAN [168] including two GANSs to generate
diverse images for both source and target domain. Although Co-GAN achieved good
performance in adapting domains having a small discrepancy, it cannot work well when
the domain shifts are disparate [169]. In contrast to Co-GAN, the pixel-level domain
adaptation network (pixelDA) proposed in [170] uses one generative network to generate
images indistinguishable from source and target domains. In addition, constraints on
pixel level similarity between the generated and source images are utilized. In fact, the

ability of generative model based methods for UDA having large discrepancy is still
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under investigation. In addition, matching pixel-wise distribution of large scale images
may not be feasible, because of the large discrepancy and the difficult task to generate

the large-scale images with complex background and foreground objects.

5.2.2 Matching Feature Distribution using OT

The most closely related approach to ours for reducing the distribution divergence is
through solving the OT directly, as described in [79, 78]. However, their implementation
has not been embedded into the end-to-end learning framework and only the stand-alone
De-Caffe features [162] from the DANN network are used. Instead, the methods pro-
posed in this Chapter, namely RAAN and JAAN are among the first to incorporate OT
in deep adaptation network in an end-to-end manner.

More specifically, RAAN utilizes the domain discriminator network with the ob-
jective of minimizing the dual formulation of the OT based EM distance. From this
perspective, the Wasserstein GAN [174, 175] is a special case to minimize the dual of
EM distance, however, their ultimate goal is to generate the images. To the best of au-
thor’s knowledge, RAAN may be the first to learn domain invariant features for UDA
utilizing the OT based EM distance in a DNN.

On the other hand, adopting the primal regularized OT, JAAN may be the first
to learn domain invariant joint feature and label representation by directly reducing the
Sinkhorn divergence loss [176]. To make the contributions more obvious, JAAN also de-
signs the adaptive distance function which further improve the performances. Note that
the concurrent work [177] also adopted the EM distance as the divergence measurement
in UDA, however, RAAN is handling the more generalized scenario with unbalanced

datasets.

5.3 Problem Formulation

In this section, we introduce the notations used in this chapter and formulate our prob-

lem. Suppose we are given a n.-class source domain (training) set Dy = {(x},y} )}7;1

including n; data xj labeled by y; and an unlabelled 7.-class target domain(testing) set
D, = {(x’J)};l’Zl composed of n, images x';. Let us assume they share the same label
space. The random variables representing the data and label in general are denoted as X
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Figure 5.1: Architecture of RAAN.

and Y and the DCNN transformations for source and target domains are represented as
T; and T;. We use P°(-) and P'(-) to denote the probability distributions of source and
target domains.

As introduced in Section 2.5.2, to successfully conduct adaptation between domains

in UDA, two essential problems are required to be addressed:
* Matching the feature distributions between P*(7y(X*)) and P'(T*(X"));

* Adapting the classifier from source to target domains so that P*(Y*|T;(X*)) =
P*(Y'|T;(X")) or more explicitly P*(Y*, Ty(X*)) = P (Y, T,(X")).

5.4 Re-weighted Adversarial Adaptation Network

As illustrated in Figure 5.1, RAAN is composed of four networks, specifically two con-
ventional L-layer DCNNs 7§ and 7;, a domain discriminator network D and the classifier
C. First, in the source domain, the DCNN T7; and the classifier C are trained to extract dis-
criminative features from images x* labeled by y* by minimizing the cross entropy loss
Lcg. Second, to adapt the classifier by matching the label distribution between domains,
the re-weighted source domain label distribution PR¢(Y*) is computed by transforming
a variable «a using the soft-max function. Then it is straightforward to obtain the ratio
PRe(ys)

vector as follows: B = P - To extract transferable features for target domain images
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x', the target domain DCNN 7;, domain discriminator D and the estimated density ratio
vector f3 play the following adversarial game: B and D tries to discriminate whether

features is from the target or source domain, while 7; tries to confuse D and f3.

The first objective of RAAN is to adapt the classifier, which is difficult without the
target domain labels. However, the low dimentionality and discrete nature of the label
vector reduces the complexity to match between domains and we argue that this can
assist with the adaptation of classifiers (see reasons in Section 5.4.2). With this knowl-
edge, a re-weighted source domain label distribution PR¢(Y*) is obtained by mapping a
variable a € R"s by the soft-max function. Note that in the implementation, since 3 is
a fixed function of «, learning & is equivalent to estimate the target label distribution.
Estimation of & aims to ensure that PR¢(Y*) is similar to the unknown target one P'(Y").
Consequently, the density ratio vector can be denoted as B € R"s, with its (y* )th element
B (¥*) calculated by B(y*) = %. As B can be directly computed based on «, in
the following paper, we regard 3 as the variable under estimate.

The second objective of RAAN is to learn the domain invariant transforma-
tions 7 and 7; so that the disparate divergence between marginal feature distributions
P/(T!=E(X")) and P*(T!=E(X*)) is reduced. For brevity, we denote 7, and 7, to replace
7!=L and T/=L respectively in the following. Given the images and labels in the source
domain {x*,y*} € D;, with the aim of extracting discriminative features T;(x*) for the
classification, it is straight-forward to train the classifier C and 7y by minimizing the
cross-entropy loss Lcg as follows:

min Lcg. (5.1)

To obtain transferable features T;(x') without labels, 7; is trained by playing an
adversarial game with the domain discriminator network D and the ratio vector 3 so
that the divergence between the re-weighted feature distribution in the source domain
B(y*")P*(Ts(x*)) and the target domain P'(T;(x")) is reduced. Additionally, to better re-
duce the divergence between disparate domains, the OT-based EM distance is reformu-
lated in the adversarial manner, with more details shown in Section 5.4.1. Specifically,
RAAN is trained in the following adversarial manner, where D with the help of 8 aims

to discriminate whether features are from source or target domain, while 7; tries to con-
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fuse them. Based on the discriminator loss Lffjv, the following objective function can be
obtained:

min max LF¢ . (5.2)

Moreover, in addition to assuming with the adaptation of the classifier, matching the
label distributions also eases the difficulty of matching the marginal feature distribution.
The possible reason may be: if we assume that the feature generation processes are the
same between domains, that is P*(T*(X*)|Y*) = P'(T'(X")|Y"), then PR¢(Y*) = P'(Y")
helps match the marginal feature distributions P*(T*(X*)) = P'(T*(X")).

In Section 5.4.1, to match the marginal feature distributions between domains,
an OT based EM distance is introduced and implemented in an adversarial manner in
RAAN. Then in Section 5.4.2, we propose to match label distributions between domains
and embed it in the adversarial training. We also explain why this helps to adapt the clas-
sifier and meanwhile to match marginal feature distributions. Finally in Section 5.4.3,

we formulate the final objective function of RAAN.

5.4.1 Optimal Transport in Adversarial Training

Suppose that the empirical distributions of source and target domain features are denoted

as i* and pu’ respectively as follows:
N nt
w =Y pidrie) b =) PO (5.3)
i J

where 67(,+) and 67, () are the Dirac functions at location 7y(x}) and 7; (x;) and p; and p’;
are their probability masses. Then, the joint probabilistic coupling, or the transportation
plan between feature distributions in source and target domains can be defined as y with
the marginals p* and p’. In the discrete version, the set of probabilistic couplings B can

be defined by Eq.(5.4) [79]:
B={ye (R "yl =u’,y 1, =p'}. (5.4)

In general, to reduce feature distribution divergence, OT based methods first esti-

mate the optimal transportation plan between two distributions and then learn the feature
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transformation to minimize the cost of such a plan. Therefore, we first define the metric
J(u®,u") in Eq.(5.5) to measure the total cost of transporting probability masses from
target to source domains, where M is the distance matrix whose (i, /)" element is de-
fined by the distance cost function ¢(7;(x;), 7; (x';) ) between features. The (i, 7)™ element
Y(i, j) indicates how much mass is moved from 7;(x’;) to Ty(x;), and F is the Frobenius
dot product. Subsequently for brevity, we drop the index i, j to represent xf,xtj as x* x'.
After that, the OT 7y can be estimated by minimizing the cost J(u*, u') in Eq.(5.6), with
the optimal transportation cost or the well-known EM distance defined by W (u*, u') in
Eq.(5.7)[178]. Finally, assuming the ideal source domain features 7;(x*) are available, to
learn the transferable features in target domains, it is intuitive to train the DCNN trans-
formation 7, under the objective of minimizing the EM distance W (u*, u’), as shown in

Eq.(5.8).

J(u', 1"y = {y,M)p, withy €B, (5.5)
% = argminJ (u*, u")[79] (5.6)
yeB
W (W', 1) = minJ(u*, u') (5.7)
yeB
mTinW(us,ut) (5.8)

To avoid using linear programs or iterative algorithms (since this is difficult to im-
plement in DCNN gradient descent based framework) to compute the constraint of ¥ in
Eq.(5.4), the dual formulation of W (u*, u') is utilized in Eq.(5.9) (following Eq.(5.3) in
[179]), considering the capability of batch-wise back-propagation in DNN. More specifi-
cally, we use the domain discriminator network D and its variant D as two dual functions

in the following:

W(u*,u") = max Lugy,, where
DD
Liv= E D(T,(¥ E D(T,(x 5.9
d XSNPS(XS) ( (X >)+xf~P’(X’) (t( )) ( )

s1.D(T;(x") + D(T, (X)) < e(Ty(x"), T ().

For RAAN, we choose the following distance cost function ¢(7y(x*), T} (x')) = || T (x*) —
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T;(x")|| for reasons of computational efficiency and permitting gradient measurements,
however, this does not infer that it is the only function that could be selected. According
to the constraint Eq.(5.9), the best function that D has to be is —D, as c(Ty(x*), T; (x'))
is defined to be non-negative. In this way, the constraint in Eq.(5.9) is equivalent to
ensuring that D is a 1-Lipschitz function, or alternatively its gradient norm is smaller
than 1. Therefore, if we use Eq.(5.9) to replace the EM distance Eq.(5.8), the DCNN
transformation 7; and the domain discriminator network D can be trained based on the
mini-max objective function in Eq.(5.10),

min W (1, 4') = min max Lg,, where
T ., D

Lav= ),  DLE)P(LE)Y)PG)— E D)  (510)
(xs’ys)wps(x7ys) xl~P (X)

st.|| V) DGE)I2 <1, | Ve DITE)) 2 < 1.

5.4.2 Adapting the Classifier by Label Distribution Matching

Although OT based EM distance is utilized to match feature distributions P*(75(X*))
and P'(T;(X")), we argue that it is not sufficient to successfully adapt the classifier from
source to target domain, since P*(7y(X*)) = P'(T;(X")) does not infer P*(Y*|Ty(X*)) =
P'(Y'|T;(X")). However, according to Bayes rule in (5.11), instead of matching
PI(Y'|T,(X")) and P*(Y*|Ty(X*)) directly, we can learn 7; under the objective of matching
PS(T(X)|Y$)PS(Y*) and P! (T; (X)) |V P/ (YY),

P(T(X)|Y)P(Y) = P(Y|T(X)). (5.11)

In fact, as no label information in the target domain P'(Y") is available, it is non-
trivial to directly match P'(T;(X")|Y")P' (Y") and P*(T(X®)|Y*)P*(Y*). However, as the
label is a low-dimensional and discrete variable whose distribution is well-defined, it
is more straightforward to match label distributions between domains compared with
its conditional variant. Therefore, we take a step back and propose to estimate the re-
weighted source domain label distribution PR¢(Y*) so that it is similar to the unknown

P'(Y") in the target domain. In fact, we argue that matching the label distributions be-
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tween two domains can also help the adaptation of the classifier, because at least part of
PT;(X))|Y")P'(Y") and PS(Ty(X*)|Y*)PR¢(Y*) is matched. Based on such an assump-
tion, since the EM-distance has been adopted to match P'(T;(X") and P*(Ty(X*), we pro-
pose to embed the re-weighted label distribution P®¢(Y*) into the procedure of matching
the marginal feature distribution P*(75(X*)) and P'(7;(X")) in the adversarial training.
To estimate the re-weighted label distribution PR¢(Y*), the constraint in Eq.(5.12) should
be considered, where, y; indicates the label of the i'" class. However, this constraint has

already been considered in the implementation using the softmax function.

Finally, to estimate the re-weighted label distribution, if we directly replace the
P5(Y*) by PR¢(Y*) in the mini-max objective function L4, in Eq.(5.10), a new loss
function Lf:jv is obtained in Eq.(5.13), where the network D, T; and the ratio vector f3 are
trained in the following manner: D and 8 are trained in a cooperative way to estimate
the EM-distance, while T; is trained to minimize the EM-distance. From the perspective
of implementation, B can be regarded as assigning different significance to data x* in the
source domain, so that the mini-batches in the two domains are sampled from similar

distributions, which helps D and T; to focus on matching P*(7;(x*)) and P'(T;(x")).

Nels

Y PRy =y) =1, (5.12)
i=1
min max Lffjv, where
I, Dp
Lag, = Y DILE))P(LE)Y)PY)—  E - D(T())

topt(xt
(x5 %) ~PS(X5,Y5) X ~PlH(X")

= Y DL)P(LEOY)BOIP () - | E D))  (513)
(309 P X F) X

= E ND(T;(x*))— E D(T;(x
o By BOIDEEN) — B D)

st V) DT )2 < 1 177,60 DTG 2 < 1.

5.4.3 Optimization in RAAN

As shown in Figure 5.1, RAAN is proposed to jointly minimize the cross-entropy loss

of the source domain samples and to reduce the divergence of the extracted feature dis-
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tributions. First, we define the empirical estimate of the loss function LS;V as follows:
I &
adv——ZD s0D) = - X DT ())). (5.14)
j=1

Following on from the idea of controlling the 1-Lipschitz function of the domain dis-
criminator network D [175], we explicitly constrain the gradient norm penalty term as

follows:

Lep = || 7 4x) Lagy — U2 (5.15)

where 7'(%) is the weighted interpolation samples of 7;(x’) and Ty(x*). In summary, the

total objective function in RAAN is formulated in the following adversarial manners:

Igll? LS, 4 AgpLgp + Areg || B2, (5.16)

— D T 5.17

mtn " Z H (5.17)

mlniﬁL C(Ts(x7)),y7) (5.18)
T,.C nSI CE Xi))sYi)s .

where Lcg(C(Ty(x7)),y?) indicates the CE function with classifier C, feature vector
Ty(x}) and its ground-truth one-hot label vector y?. Note that to train the networks sta-
bly, the source domain DCNN 7 is trained first while 7; and D are trained to match
the feature distributions between 7;(x') and T;(x*) in an adversarial manner. In addition,
to stably learn the ratio vector, we add the ¢;-norm of 3 as the regularization term in
Eq.(5.16). A,p and A, indicate the regularization weights of the gradient penalty term

and the ¢>-norm of the ratio vector respectively.

5.5 Joint Adversarial Adaptation Network(JAAN)

In the following, we introduce the notations used in JAAN. As illustrated in Figure 5.2,
JAAN is composed of six networks, specifically two conventional L-layer DCNNs 7§ and
T;, classifier networks Cy and C;, a presenter network P and a reconstruction network R.

In addition, we concatenate the feature and label vector as J$ = concat (x!,Cs(T/=L(x5)))
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Figure 5.2: Architecture of JAAN.

to represent the joint representation and so as J; for the one in the target domain. In
general, JAAN’s architecture and functions are illustrated in the following: first, in the
source domain, the DCNN 7§ and the classifier Cy are trained to extract discriminative
features from images x° labeled by y* by minimizing the cross entropy loss ITC\E Second,
to jointly match feature and label distribution, we concatenate feature and predicted label
in two domains as J* and J'. Learning the target domain feature transformer and the
classifier is first supervised by the error between raw images (or certain fixed feature in
fine-tuning operation) and the reconstructed one using the shared reconstruction network
R. Next, to extract domain-invariant joint representations J*° and J’, the T; and C; are
updated based on minimizing the optimal transportation efforts of transporting masses
from the target domain distribution to the source one, which is calculated by the Sinkhorn
algorithm having input as their distance between distribution masses. JAAN learns an
adaptive distance function represented by the cosine distance between outputs of the
presenter network P. Note that the adaptive distance function is updated adversarially

with the update of feature transformer and classifier.

The first objective of JAAN is to learn the discriminative feature transformations 7y

and classifier Cy for the main classification task, by minimizing the following empirical
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cross entropy loss L/C\E in Eq.(5.19).

min Leg. (5.19)

N 7CS'

The second objective of JAAN is to learn domain invariant feature transformers 7, T;
and classifiers C;, C; so that discrepancies between joint distributions of feature and label
P/(T/=E (), C(T/7E(x'))) and PS(T!=E(x%), Cs(T!=E(x*))) are minimized. This requires

the following two operations:

1. First, it is required that the joint representation of feature and predicted label from
the two domains must reconstruct their raw data (or low-level features if fine-
tuning technique is adopted) using the shared reconstruction network R. This is
performed by minimizing the following two reconstruction losses L},,, and L.,
respectively. This operation may implicitly guarantee that the joint representation
of feature and predicted label are at least scale invariant and preserve the complete
information of the data, as shown in Eq.(5.20).

min L}

t
+LL,. (5.20)
T§'7C§‘77}7C[7R recon recon

2. Second, to further explicitly reduce distribution discrepancies between do-
mains, we wish to learn the domain-invariant feature transformers and classifiers
T5,Cs, T;,C; by minimizing the OT based transportation cost, Lgjukhorn @S shown
in Eq.(5.21). In JAAN, we calculate the Lg;,i;0/» Using the conventional entropy
regularized OT method called the Sinkhorn algorithm, with joint representations
Ji, J; and the distance function c(-,-) as inputs. To ensure that c(-,-) largely dis-
criminates the J; and J;, JAAN chooses to design and learn the adaptive distance
function c¢(J; ,J;) as the cosine distance between the presenter network’s outputs
P(J7) and P(J%), indicated by Eq.(5.22) and (5.26). A more illustrative figure to
explain this adversarial training process is shown in Figure 5.3. To sum up, the
presenter network P plays an adversarial game with the feature transformers 7, T;

and the classifiers C;, C; so that the joint distribution divergence between domains

can be reduced.
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Figure 5.3: Adversarial training in JAAN: (a) Distance between joint distributions described by
a fixed distance function (b) Distance between joint distributions using the adap-
tive distance function, defined by the cosine distance of presenter network output.
Presenter network P pushes the two distributions to increase the distance between
them. (c) Although P pushes distributions, 7;, C;,T; and C pull the distribution
closer even than before, so that joint distributions under the adaptive distance func-
tion are matched closer. (d) Distance between joint distributions under the fixed
distance function after adaptation is closer so that the distributions are matched be-
tween domains.

in Lg; I T 5.21
]}’g}’l}tlya Slnkhorn(c( i J)) ( )
m}?-x LSinkhorn (C(Jf,.];-)) (5.22)

In Section 5.5.1, we introduce the entropy-regularized OT method and the Sinkhorn
loss for reducing the joint distribution divergence. Section 5.5.2 focuses on particularly
the way to learn the adaptive and discriminative distance function adversarially from the
feature transformers and classifiers. In Section 5.5.3, we formulate the final objective

function and the optimization of JAAN.

5.5.1 Distribution Matching using Entropy-Regularized OT

Suppose that &7,(;:) and &7 ) are the Dirac functions at location 7;(J;) and 7;(J}), with
p; and p’j their probability masses, we can define the empirical joint distributions of
feature and label, u® and u’ in source and target domain in Eq.(5.3). In addition, as we
are working in the discrete settings, B is defined as a set of probabilistic couplings ¥ in

Eq.(5.4).



172 5.5. Joint Adversarial Adaptation Network(JAAN)

In general, to reduce joint distribution divergence between domains in UDA, JAAN
first estimates the optimal transportation plan (the coupling ) between two domains’
distributions and secondly learns the feature transformation and classifier to minimize
the transportation efforts of such a plan. For the consideration of computational effi-
ciency, we utilized the entropy-regularized Sinkhorn 10ss Lyunorm (1°, 1") [176] to rep-
resent such transportation efforts in Eq.(5.23), where M is the distance matrix whose
(i, /)" element is defined by the distance function ¢(7(J¢), T;(J%)) between joint repre-
sentations. The (i, j)"* element of (i, j) indicates how much mass is moved from .(J%)
to T5(J¥), and F is the Frobenius dot product. The regularization term Z:lsji’l log(y(i, j))
indicates the entropy operation of the 7y, € represents the weight of this smooth regu-
larization term and ny, n; are the number of samples in source and target domain when
defining the discrete distributions. Subsequently for brevity, we drop the index i, j to
represent JI-S,J;. as J*,J'. It is then straight-forwarded to update the feature transformer
and classifiers so that the Sinkhorn loss is minimized. Note that details of the iterative

Sinkhorn algorithm can be found in [176] and we provide detailed pseudo-code of our

implementation in Appendix B.4.

ng, 1y

Lsinkhorn(.usa.u[) = <Y7M>F +TE Z log(”i”]Y(ivj))a withy € B, (5.23)
i,j=1

Thg’ig G Lsinknorn (5.24)

5.5.2 Adaptive Distance Function Learning in OT

The large domain discrepancy between joint distributions of feature and label implies
that it may be difficult to find out a proper distance function c that is discriminative
for comparing joint representations J* and J’. Therefore, JAAN selects to learn the
distance function to increase the transportation efforts Lg;uin0rn €ven for very similar
representations J* and J'. Guided by this principle, learning the distance function ¢ and
the feature transformers and classifiers are trained in an adversarial way, as shown in
Eq.(5.25). Rather than directly learning a distance function, JAAN designs and learns a
presenter network P for projecting the joint representations J* and J* to a discriminative

latent space and defines the cosine distance of these outputs as the distance function c,
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as shown in Eq.(5.26). In this way, the final loss function is given in Eq.(5.27).

L 5.25
T, ,21,171"3, Clmi)lx Sinkhorn ( )
P P
() =1~ S (5.26)
/ P [211P(J7)]2
Lsinkhorn 5.27
. g};}’ . Max Leinkho (5.27)

5.5.3 Optimization

As shown in Figure 5.2, JAAN is proposed to jointly minimize the cross entropy
loss ITCE, the image-level (or the feature-level) reconstruction loss from two domains

N
Lrecon

+L

recon and the adaptive Sinkhorn 10ss Lginknor, to reduce the domain discrepan-

+L;

recon are shown in

cies. Specifically, the empirical cross entropy loss LCE and Lj,.,,

Eq.(5.28) and (5.29) respectively, where Lo indicates the cross entropy operation and

we use the ¢; norm as the reconstruction loss.

Lep =min— ) L 508

ffllél CE ITI:,Hzn;IZ ce(Cs(T5(x7)), ¥1), (5.28)

X —R(J) ~R(J%) 5.9
n,cmya?c,RnYZII i+ Zux i1 (5.29)

In summary, the total objective function in JAAN is formulated in the following adver-
sarial manner in Eq.(5.30), where Ag;uinorn and Ayecon indicate the regularization weights

of the adaptive Sinkhorn loss and the pixel-wise reconstruction loss respectively.

. t F—
min = max lSinkhornLSinkhorn + Arecon (L;gcon + Lrecon) +Lce (5.30)
TY aCS7Tt 7Cf 7R P

5.6 Implementation

The experiments in this chapter involve three adaptation tasks in hand-written digit
datasets, cross-modality datasets and the pu-DS datasets, with the details illustrated
in Section 5.7. These experiments are conducted on a GPU cluster, with two

NVIDIA K20 GPU cards integrated in the Dell T620 server. For all experiments,
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Figure 5.4: UDA datasets: (a) Three hand-written digit datasets; (b) cross-modality dataset in-
cluding RGB and RGB-depth images.

(b)

we utilize the Adam optimizer, with the learning rate selected from the following
set:{2¢7>,5¢73,1e74,2¢7*,5¢7*,1e73}. For the regularization weights, Agp and Ayee
are chosen from the following sets {1,10,50,100} and {0.1,1, 10,50, 100,500} respec-
tively. We used the exponential decay, with decay factor of 0.99 for every 1000 iterations.
All experiments are run 10 times, each for 100000 iterations and we report the average
results. For all adaptation tasks, the batch size used is 128. For pre-processing of pu-DS
and hand-written dataset, we normalize data in the range of [0,1]. For cross-modality
datasets, we utilized the pre-processing scheme including detecting objects in the two

modalities, cropping and resizing in ADDA [169] and VGG-16 network [154].

5.7 Experiments and Results

In this section, we introduce three UDA tasks including adaptation among the hand
written digit datasets, cross-modality datasets and the pu-DS datasets. RAAN and JAAN
are evaluated using them and we compare them with the most recent UDA methods.

Additionally, we also describe and analyze the results in this section.

5.7.1 Adaptation between Hand-Written Digit Datasets

The first UDA task adapts between three hand-written digit datasets including MNIST
[180], USPS [181] and SVHN [182]. As shown in Figure 5.4, adaptation between these
three datasets are of varying difficulty. MNIST and USPS are both composed of grey-

scale images in a fairly well-controlled environment. To evaluate RAAN and JAAN in
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reducing large domain discrepancies, SVHN is also explored which is composed of RGB
images in more complicated real-world scenarios, e.g, misalignment of images and dif-
ferent light conditions. In addition, note that the sub-class instances of SVHN are largely
unbalanced (with different data numbers in each class category). Two useful measures
are adopted to quantify the domain discrepancies, including the recognition results be-
fore any adaptation (which is also called the source-only recognition rates) and the well-
known A-distance which calculates the generalization error of classifying the source and
target domain features as a binary classification task [183, 184]. These results are shown
in Table 5.1 and 5.2. Specifically in this thesis, we adopt the SVM classifier to calculate
the generalization error 0 of classifying the source and target domain features as a binary
classification task. Then the A-distance d can be calculated as follows: d = 2(1 —286).
From observing Table 5.1, the A-distance of pair (SVHN,MNIST) is the highest, larger
than the (USPS,MNIST) by 0.049 and (MNIST,USPS) by 0.079. This corresponds to the
source-only recognition rates in Table 5.2 where the larger the A-distance is, the lower
recognition rates achieved in the source-only adaptation tasks. These all suggest that the
domain discrepancies are: (SVHN,MNIST) > (USPS,MNIST) > (MNIST,USPS).

Table 5.1: A-distance between hand-written digit datasets; M, U and S refer to MNIST, USPS
and SVHN respectively.

Adaptation StoM MtoS StoU UtoS MtoU UtoM
A-Distance 1.993 1997 1979 1984 1914 1.944

For the task of adapting between hand written digit datasets, the following three
adaptation directions are chosen for the evaluation: from MNIST to USPS, from USPS
to MNIST and from SVHN to MNIST. We adopt a variant of LeNet as network Tj,
T; and the domain discriminator network D is composed of three fully-connected layers
activated by the ReLU with output activation numbers of 512, 512, 1 respectively. As for
the dataset and experimental protocols, we utilize the one in [185] for adapting between
MNIST and USPS, while for adaptation from SVHN to MNIST, we choose that in [169]
for fair comparisons.

To assess the reasons underlying RAAN’s performance, we denote RAAN(+) and

RAAN(-) as RAAN with and without the re-weighting scheme respectively. Note that we
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Table 5.2: Recognition rates (%) of adapting hand-written digit dataset.

Methods ~ MNIST to USPS  USPS to MNIST SVHN to MNIST
Source Only 72.5 61.2 59.3

Table 5.3: Recognition rates (%) of adapting hand-written digit dataset.

Methods MNIST to USPS  USPS to MNIST SVHN to MNIST

Source Only 72.5 61.2 59.3
W-MMD [186] 72.6 65.4 67.4
Gradient Reversal[172] 77.1 73.0 73.9
Domain Confusion [187] 79.1 66.5 68.1

Co-GAN]J168] 91.2 89.1 No Converge
ADDA [169] 89.4 90.1 76.0
RAAN(-)(Ours) 88.3 91.5 80.7
RAAN(+)(Ours) 89.0 92.1 89.2
JAAN (Ours) 92.2 93.7 91.8

are not integrating the re-weighting scheme in JAAN from the following two reasons:
1) JAAN has explicitly consider to embed the label in the joint representation; ii) we
tried to implement the re-weighting scheme in Sinkhorn loss but this does not converges
finally. As shown in Table 5.3, when adapting between MNIST and USPS, compared
with ADDA and Co-GAN, the proposed RAAN(-), RAAN(+) and JAAN achieve very
competitive results and JAAN and RAAN(+) slightly outperform RAAN(-). In the most
difficult task, i.e., adapting from SVHN to MNIST, RAAN(-), RAAN(+) and JAAN
achieve 80.7%, 89.2% and 91.8% respectively, outperforming the state-of-the-art ADDA
by 4.7%, 13.2% and 15.8%, while Co-GAN does not converge in this experiment. Based
on this, it seems that the weight-sharing approach utilized in Co-GAN is not capable of
generating transferable images between disparate domains such as MNIST and SVHN
[169]. As RAAN(-) and JAAN utilize the same DCNN architecture to ADDA’s and
Co-GAN'’s, RAAN(-)’s and JAAN’s superior performances are mainly owing to the OT
based objective function and the joint feature and label representations. We hypothesize
that the OT based objective function is able to better reduce the feature distribution
divergence when the domains are disparate, e.g., SVHN and MNIST. With the fact that
JAAN outperforms RAAN(+), we hypothesize that compared with RAAN (utilizing the

dual formualtion of OT), reducing the Sinkhorn loss (primal formulation of OT) with
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the adaptive distance function is able to better reduce joint distribution divergence of
feature and label than JS and MMD based divergence. In addition, based on the fact that
RAAN(+) achieves superior performances to both ADDA and RAAN(-), we hypothesize
that matching the label distribution helps adapt the classifiers, and embedding it into
minimizing the EM distance of feature distributions can be regarded as two cooperative

tasks.

5.7.2 Adaptation between Cross-Modality Datasets

To continue evaluating RAAN and JAAN in reducing large domain shifts, the second
adaptation task is designed using the NYU-D dataset [188], adapting from the indoor
object images in RGB format to the depth variants encoded by the HHA! format[189].
The 19-class dataset is extracted following the scheme in [169]. As shown in Figure
5.4, the domain shifts between images of RGB and HHA format are fairly large, mainly
due to the low image resolutions and potential mis-alignments caused by the coarse
cropping box. In addition, as shown in the instance number in Table 5.4, this dataset has
unbalanced sub-class instances. Furthermore, it is challenging as the images from the
target domain are in a completely different format from those in the source domain.

In this section, RAAN and JAAN are evaluated in the presence of large domain
shifts that confront the adaptation from RGB images to RGB-depth images. To enable a
fair comparison, we follow ADDA’s experimental set-up [169] and utilized the VGG-16
architecture [154] for DCNNs 7; and 7; for RAAN and JAAN. The domain discrimina-
tor network D used for RAAN is composed of three fully-connected layers activated by
the ReLLU, with 1024,2048,1 outputs respectively. For JAAN, the presenter network P
is composed of three fully-connected layers activated by the ReLLU, with 1024, 2048, 64
outputs respectively. For the reconstruction network R, we use the fully convolution net-
work settings to reconstruct not the raw data, but only the output of the last convolution
layer results of VGG-16 network. The reason for this is that training the de-convolution
networks using the adaptation datasets are difficult, since the whole VGG-16 network is

trained using the ImageNet dataset. The classifiers C; and C; in JAAN and the one in

'HHA refers to an encoding technique to encode the depth image with three channels at each pixel:
horizontal disparity, height above ground, and the angle the pixels local surface normal makes with the
inferred gravity direction.
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RAAN use one FC layer, with the the predicted label with the size of 19.

As shown in Table 5.4, we report the sub-class classification accuracy achieved by
RAAN(-), RAAN(+) and JAAN, along with the re-weighted label distribution PRe(Y )
yielded by RAAN(+) and the target one P'(Y"). It can be observed from the overall
recognition rates that RAAN(+) achieves an average of 34.3%, outperforming ADDA
by 6.7%, RAAN(-) by 3.5% and JAAN by 1.1%. In addition, RAAN(-) and JAAN out-
perform ADDA by 3.2% and 5.6% respectively. The reason of RAAN(+)’s improvement
over JAAN may be because for handling extremely unbalanced class distributions, re-
weighting the label distribution in RAAN(+) is more effective than integrating the label
in the joint representation as JAAN does. This is reasonable as RAAN(+)’s re-weighting
scheme is explicitly integrated in the domain discriminator loss but we have to implic-
itly constrain to match the label distribution via the joint representation in JAAN. In
fact, ADDA only achieves better performance in classes “desk”, “dresser”, “garbage
bins” and “sofa” whose instance numbers are small. It can also be seen that RAAN(+)
outperforms RAAN(-) not only from the overall recognition accuracy but also from how
many classes the classifier can recognize (classes with the recognition rates more than
0%). This is potentially due to the fact that the re-weighting scheme increases the signif-
icance of instances from the sub-classes with a lower number of instances. This can be
verified by comparing the number of sub-class instances with the estimated ratio vector
B in Table 5.4. Although RAAN(-) and JAAN utilize the objective functions inspired
by the same OT theory, JAAN outperforms RAAN(-) which implies that the prime OT
formulation and the objective of regularized OT performs more robust to reduce large

domain discrepancies.

5.7.3 Adaptation between Radar pu-DS Datasets

In this section, we evaluate adaptation results of RAAN and JAAN using the mono-static
u-DS from the same dataset in Chapter 4 and the details of the dataset and pre-processing
methods are described in Section 4.6. We consider the domain discrepancies of u-DS
classification caused by two practical factors of variation: (i) different aspect angles and
(i) different target personnels. These two factors may give rise to potentially large sta-

tistical gaps (domain discrepancies) between training and testing datasets. Note that we
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Table 5.4: Recognition rates (%) of adapting cross-modality dataset.
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formulate our UDA problem in p-DS classification scenario as the following: the source

domain is composed of u-DS from certain aspect angles and target personnels, while the

target domain data is composed of u-DS from other angles and target personnels.

Table 5.5: Experiment details for adapting two factors of variations including aspect angle and
target personnel.

Node Index Node 1 in Figure 4.7
Mono-Static u-DS (5-second) Number 90
Train Percentage 20%
Dwell Time Is
Augmented Train mono-static u-DS Number 918
Augmented Test mono-static u-DS Number 648
FFT Time Period 0.3s
FFT Overlap Ratio 0.9
Aspect Angles (Degree) -30, 0, 30
Target Personnels Target 1,2,3

We follow the experiment setting in Section 4.6 and the summary of the utilized p-

DS dataset is in Table 5.5. In this chapter, we mainly evaluate the effect of the proposed

adaptation method using mono-static u-DS and specifically, we design two evaluations

composed of 12 adaptation tasks listed in Table 5.6. In these experiments, our interest

factor is the motion while the distraction factors are target personnel and the aspect

angle. Evaluation 1 (Exp 1-6) focuses on the variations caused by target personnels

while the Evaluation 2 (Exp 7-12) mainly investigates the variations of the aspect angle.

In addition, we also design two scenarios for each experiment including the “Factor

Control” and the “No Control”. Specifically, “Factor Control” scenario controls one
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distraction factor when analyzing the variations of the other distraction factor, while
“No Control” scenario does not consider this. Taking Expl-6 as an example, in the
“Factor Control” scenario, we use the data from rarget 1 only if we want to eliminate
the variations caused by aspect angles but in the “No Control” scenario, we use the data

from all targets.

To evaluate the RAAN and JAAN in p-DS adaptation tasks, we utilize the SC-
DopNet in Section 4.4 as the base network, including 7y and 7; and the classifiers. The
discriminator network D and the presenter network P adopt similar architectures, where
RAAN uses two fully connection layer with the input size of 128 and activation units of
64 and 1 respectively. JAAN uses two fully connection layer as well, with the input size
of 130 (the size of joint label and feature representations) and activation units of 128 and
64 respectively. The classifiers used in both JAAN and RAAN adopt the single FC layer.
The de-convolution network in JAAN to reconstruct the raw input data is shown in Table

5.7.

Table 5.6: Experiments to evaluate the factors of variation; the main interest factor is the motion
recognition while two distraction factors include aspect angle and target personnel.
We conduct these experiments in both “Factor Control” and “No Control” scenario.

Experiment Variation Source Domain | Target Domain
Number Factor (Training Set) (Testing Set)
Evaluation 1
Expl Target Personnel Target 1,2 Target 3
Exp2 Target Personnel Target 1,3 Target 2
Exp3 Target Personnel Target 2,3 Target 1
Exp4 Target Personnel Target 1 Target 2,3
Exp5 Target Personnel Target 2 Target 1,3
Exp6 Target Personnel Target 3 Target 1,2
Evaluation 2
Exp7 Aspect Angle Angle 1,2 Angle 3
Exp8 Aspect Angle Angle 1,3 Angle 2
Exp9 Aspect Angle Angle 2,3 Angle 1
Expl0 Aspect Angle Angle 1 Angle 2,3
Expll Aspect Angle Angle 2 Angle 1,3
Expl2 Aspect Angle Angle 3 Angle 1,2
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Table 5.7: Deconvolution network for JAAN with SC-DopNet.

Layers | Kernel Number | Kernel Size | Stride | Activation
dConvl 512 1x1 1 Relu
dConv2 128 3x5 1 Relu
dConv3 64 2x2 2 Relu
dConv4 32 5x5 2 Relu
dConv5 1 7x7 5 Relu

Table 5.8: A-distance for adaptation tasks Exp1-6. AVG represents the averaged result of the six
experiments.

Expl | Exp2 | Exp3 | Exp4 | Exp5 | Exp6 | AVG
A-distance | 1.667 | 1.798 | 1.698 | 1.776 | 1.809 | 1.420 | 1.695

5.7.3.1 Adaptation Results between Factor of Target Personnels

Before describing the recognition results, we first report the A-distances of Expl-6 in
Table 5.8 to measure the domain discrepancy and the difficulty of the adaptation task.
Next, adaptation results of Exp1-6 in the “Factor Control” scenario are shown in Table

5.9, Figure 5.6 and 5.7.

For base network results, JAAN outperforms RAAN in average by 1.0%. However,
as highlighted, for handling variations of target personnels, JAAN outperforms RAAN in
average by 3.6%. It may be concluded that JAAN outperforms RAAN when eliminating
variations of target personnels. In addition, due to the similar source-only results of
base networks, we hypothesize that the main reason of JAAN’s improvements is the
regularized OT formulation adopted in JAAN, which is more robust and suitable than

the dual formulation used in RAAN to handle target personnel discrepancies.

In addition, we plot the A-distances with the base network results of all adaptation
tasks of Table 5.9 together in Figure 5.5. The general trend may be summarized that the
recognition rates of an experiment decrease with the increasing of its A-distance, and
the vice versa with decreased A-distance.

Finally, to evaluate the effects of OT based divergence measurement, we also com-
pare RAAN and JAAN with the widely used MMD and JS divergence described in Sec-
tion 2.5.2.1. For fair comparisons, we only replace the OT based module with the MMD

and JS module and keep the same base networks. It can be observed in Table 5.9, Figure
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Figure 5.5: A-distance and recognition results in Exp1-6
Table 5.9: Recognition rates (%) in evaluation 1, adapting between the factors of target person-

nel; AVG-M refers to average results of the 6 experiments using a specific method.
Base-Net refers to results using base network of RAAN and JAAN.

Expl Exp2 Exp3 Exp4 ExpS Exp6 AVG-M
Base-Net (RAAN) 84.0 71.0 956 683 672 7I1.1 76.3

MMD 91.1 744 956 750 678 76.7 80.1

JS 889 733 911 644 733 81.6 78.8
RAAN 911 76.7 978 91.7 751 778 85.0
Base-Net JAAN) 856 723 969 727 633 732 71.3
MMD 95.6 822 989 70.6 656 8l.1 82.3

JS 90.0 76.7 989 71.1 694 789 80.8

JAAN 97.8 844 100.0 96.7 75.7 844 88.6

5.6 and 5.7 that RAAN outperforms MMD and JS divergence measurement by 4.9% and
6.2%, while JAAN outperforms MMD and JS by 6.3% and 7.8% in average.
Adaptation results in the “No Control” scenario are shown in Table 5.10 and the

following findings can be observed:

* First the base network results in the“No Control” scenario outperforms the ‘“Fac-
tor Control” result by 4.4% and 3.7% using RAAN’s and JAAN’s respectively.
This finding is interesting as it seems that increasing the data diversity in the fac-
tor of aspect angle helps the network to generalize better to the unseen factor of

variations.

» Second, the improvements of RAAN and JAAN are 8.7% and 11.3% respectively
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Table 5.10: Averaged recognition rates (%) of evaluation 1 in “No Control” scenarios. Base-Net
refers to results using base network of RAAN and JAAN.

Eval 1
RAAN(Base-Net, Factor Control) 76.3
RAAN(Adaptation, Factor Control)  85.0
RAAN(Base-Net, No Control) 80.7
RAAN(Adaptation, No Control) 84.5

JAAN(Base-Net, Factor Control) 717.3
JAAN(Adaptation, Factor Control)  88.6
JAAN(Base-Net, No Control) 81.0
JAAN(Adaptation, No Control) 88.2

in the “Factor Control” scenario, however the result improvements degrade to
3.8% and 7.2% in the “No Control” scenario. This proves that JAAN outperforms

RAAN in both scenarios and therefore is robust to different domain discrepancies.

* Finally, to handle the more complex and difficult adaptation task in the “No Con-
trol”” scenario, JAAN outperforms RAAN by 3.5%.

To sum up, in either the “No Control” or “Factor Control” scenarios, JAAN performs

better than RAAN.
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Figure 5.6: Recognition results of Exp1-6 using RAAN’s base network; AVG-M refers to aver-
age results of the 6 experiments using a specific method.
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Figure 5.7: Recognition results of Exp1-6 using JAAN’s base network; AVG-M refers to average
results of the 6 experiments using a specific method.

Table 5.11: A-distance for adaptation tasks Exp7-12.

Exp7 | Exp8 | Exp9 | ExplO | Expll | Expl2 | AVG
A-distance | 1.798 | 0.869 | 1.056 | 1.580 | 1.510 | 1.446 | 1.377

5.7.3.2 Adaptation Results between Factor of Aspect Angle

First, we report the A-distances of Exp7-12 in Table 5.11 and the results of Exp7-12 in
“Factor Control” scenario are shown in Table 5.12, Figure 5.9 and 5.10. Compared with
the average A-distance of Expl-6 (1.695) in Table 5.8, the average result of Exp7-12
(1.377) 1s lower. In addition, compared with the average source-only results 76.8% in
Expl-6, the one caused by aspect angle in Exp7-12 is 88.7%. The higher source-only
results and the lower A-distance of Exp7-12 both suggest the smaller domain discrepan-
cies caused by aspect angle than the target personnels. In addition, we plot the averaged
recognition results of Exp7-12 and the related A-distances in Figure 5.8. The same trend
is found out as the one in Figure 5.5 where increasing the A-distance usually decreases

the recognition rates.

In Table 5.12, it seems that the base network of JAAN outperform RAAN in average
by 0.2% and JAAN outperforms RAAN by 0.1% in average. In Exp8-9 and Exp11-12,

RAAN achieves very similar results with JAAN and we hypothesize that this is because
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Figure 5.8: A-distance and recognition results in Exp7-12. AVG represents the averaged result
of the six experiments.

Table 5.12: Recognition rates (%) in evaluation 2, adapting the factors of aspect angle; AVG-M
refers to average results of the 6 experiments using a specific method. Base-Net
refers to result of base network of RAAN and JAAN.

Nodel Targetl  Exp7 Exp8 Exp9 ExplO Expll Expl2 AVG-M

Base-Net(RAAN) 71.1 100.0 100.0 88.9 78.9 93.9 88.8
MMD 74.4 100.0 100.0 92.2 79.4 99.4 90.9

JS 71.1 100.0 100.0 90.4 81.1 98.3 90.2
RAAN 77.8 100.0 100.0 93.9 82.8 99.4 92.3
Base-Net (JAAN) 73.3 100.0 100.0 90.6 80.5 86.9 88.6
MMD 77.8 100.0 100.0 92.2 81.1 99.4 91.7

JS 74.4 100.0 100.0 91.1 82.8 91.7 90.0

JAAN 80.0 100.0 100.0 91.7 82.8 100.0 92.4

the domain discrepancies of these tasks are small, which is verified by the A-distance in

Table 5.11. In Exp7, where the A-distance is the largest in Exp7-12, JAAN outperforms

RAAN by 2.2%. In addition, we also compare RAAN and JAAN with other divergence

measurements in Table 5.12, where both RAAN and JAAN outperform the others around

1.5% in average. It may be concluded that when domain discrepancy is relatively small,

RAAN and JAAN achieve similar results while JAAN outperforms RAAN when domain

discrepancies are disparate.

Finally, we report the results of Exp7-12 in “No Control” scenario in Table 5.13 and

the following findings can be observed:

 First the base results using RAAN’s and JAAN’s base networks in the “Factor
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Figure 5.9: Recognition results of Exp7-12 using RAAN’s base network.
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Figure 5.10: Recognition results of Exp7-12 using JAAN’s base network.

Control” scenario outperforms the “No Control” scenario by 8.6% and 9.2% re-

spectively. This may be because the aspect angle variation increases the domain

discrepancies.

* Second, the improvements of RAAN and JAAN are 3.5% and 3.8% respectively

in the “Factor Control” scenario and the result improvements increase to 4.5% and

7.4% in the “No Control” scenario. This proves that JAAN outperforms RAAN in
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Table 5.13: Average recognition rates (%) of evaluation 2 in “No Control” scenarios. Base-Net
refers to results using base network of RAAN and JAAN.

Eval 2

RAAN(Base-Net, Factor Control) 88.8
RAAN(Adaptation, Factor Control)  92.3
RAAN(Base-Net, No Control) 80.2
RAAN(Adaptation, No Control) 84.7

JAAN(Base-Net, Factor Control) 88.6
JAAN(Adaptation, Factor Control)  92.4
JAAN(Base-Net, No Control) 79.4
JAAN(Adaptation, No Control) 86.8

both scenatios and achieves more robust results.

* Third, to handle the more complex and difficult adaptation task in the “No Control”

scenario, JAAN outperforms RAAN by an average of 2.1%.

To sum up, in “Factor Control” scenario, JAAN and RAAN achieve similar results when
domain discrepancies are small. However, in “No Control” scenario, JAAN outperforms

RAAN when adapting aspect angle variations.

5.8 Analysis

In this section, we analyze the results including the re-weighting scheme in adversarial
training, the domain distribution divergence in both quantitative and qualitative ways and
finally the sensitivity study of parameter selection in Sinkhorn algorithm in JAAN. The
evaluation is in the context of the most challenging benchmark (with unbalanced label

distribution), which involves adapting from the SVHN to the MNIST.

5.8.1 Evaluate the Re-weighting Scheme in RAAN

In Figure 5.11, we evaluate the re-weighting scheme by comparing the ground truth label
ratio vector (red) and the learned one (blue). It can be seen that some ratios are accurate
while others are not. However, the relative ratio trend of the learned ratio vector 3
follows that of the ground truth.

As the label distributions between SVHN and MNIST are largely mismatched, it

will confuse the domain discriminator and the feature distributions will be matched in a
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Figure 5.11: Ratio of label distribution between SVHN and MNIST; red line indicates the
ground truth ratio, while blue one indicates the estimated ratio.

Table 5.14: A-distance of adversarial training method

Metric Source  ADDA RAAN(-) RAAN(+) JAAN
Only
A-Distance  1.673  1.548 1.526 1.506 1.341

biased manner. In addition, the mismatch of label distribution will directly give rise to
the mismatch of classifiers as well. However, as shown in Figure 5.11, RAAN(+) suc-
cessfully matches the distribution of labels by simply learning the ratio vector embedded
in the adversarial training. Therefore, this can be regarded as the main reason for the 9%
improvement achieved by RAAN(+) compared to RAAN(-) shown in Table 5.3. To sum
up, matching the label distribution can better adapt the classifiers.

To understand the instance re-weighting scheme intuitively, it is implemented by
assigning different significance to source domain instances. For example, as shown
in Figure 5.11, the learned ratio of digit “0” is around 1.5, which means that in the
adversarial training, each sample from digit “0” in SVHN dataset can be regarded as 1.5

samples.

5.8.2 Ablation Study of Modules in JAAN

In this section, we evaluate JAAN’s components by comparing the recognition rates
yielded by an ablation study. The components and parameters in an ablation study in-
clude: usage of reconstruction network and its loss, usage of adaptive distance function
learning, batch size number, entropy regularization weights in Sinkhorn loss and the

update frequencies of the feature transformer network, the classifier and the presenter
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network. As the domain discrepancy between SVHN and MNIST is fairly large, we

choose to conduct ablation study based on this adaptation task.

For evaluating the role and contribution of reconstruction network and the adaptive
distance function learning, we reported the recognition results obtained in the follow-
ing: the average recognition rates obtained without the reconstruction network and loss
is in average 85.8%, while the one without the adaptive distance function learning is
in average 81.7%. Experimentally, we may conclude that the reconstruction loss and
learning the adaptive distance function are essential in adapting the joint feature and la-
bel distributions. The potential reason for the use of reconstruction network may be:
reconstruction of the original images (or fixed features) using shared network between
domains provides implicit constraints for complete feature information for reconstruc-
tion at least matching the scale level of the representations. In addition, the potential
explanation for the use of the adaptive distance function learning may be: with the aim
of matching disparate domain distributions, it requires a more powerful distance function

to measure the distribution discrepancy between domains.

We next analyze the effects of important parameters in JAAN, as shown in the
following Tables. Note that when analyzing effects of a parameter, we fixed the others
using the following optimal values: batch size of 64, 0.1 as the weights of regularization
and 20 iterations of updating the presenter network per update of the feature transformer
networks and classifiers. As shown in Table 5.15, it seems that JAAN’s performance is
sensitive to the batch size when it is smaller than 64 (in a 10-class classification task).
We can explain this from the mechanism of the Sinkhorn algorithm, where the optimal
transportation map requires calculation based on finding the most similar two samples
from each domain. In this way, the larger the batch size, the more samples we can select
in each operation. When the batch size is larger than 32, it seems that JAAN stably
performs in the adaptation task. Based on Table 5.16, it seems that JAAN is not that
sensitive to the weights of entropy regularization and similar conclusions can be drawn

based on observation of Table 5.17.
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Table 5.15: Recognition rates (%) using different batch sizes

Batch Size 16 32 64 128 | 256
RecognitionRates | 85.2 | 89.6 | 91.8 | 90.2 | 90.5

Table 5.16: Recognition rates (%) using different weights of entropy regularization.

weights of Entropy Regularization | 0.01 | 0.05 | 0.1 | 0.5 1 2
RecognitionRates 89.6 | 91.8 | 90.5 | 90.2 | 91.8 | 90.5

5.8.3 Evaluate Distribution Divergence of Feature Embeddings

To analyze JAAN’s performance on reducing the distribution discrepancies in a quanti-
tative way, we calculate the A distance suggested by the UDA community [183, 184].
The extracted features under comparison are: source-only features, features extracted by
ADDA and the one extracted by RAAN(-) and RAAN(+), which is based on the dual
formulation of JAAN.

As shown in the Table 5.14, the A distances of feature embeddings with no adap-
tation, adapted by ADDA, RAAN and JAAN progressively decrease. This implies that
JAAN outperforms others in reducing the distribution divergence. In the experimental
set up, as JAAN utilized the same feature transformer network as the others, compared
with ADDA, we may conclude that better performance of JAAN is mainly due to the
OT based distribution divergence compared with the geometry-oblivious JS divergence.
Additionally, the improvement of JAAN over RAAN shows the superior performance
of adaptive function learning in RAAN, rather than the fixed /;-norm distance function

used in RAAN.

Finally, to measure the feature distribution divergence in a qualitative way, we uti-
lized the T-SNE software package [190] to visualize the 2-D embedding of the extracted
features. It can be seen in Figure 5.12 that the example points from the same class
adapted by JAAN in Figure 5.12(d) are clustered closer than those by other methods.
In addition, clusters from different classes adapted by JAAN are separated further apart
compared with other methods. The findings are consistent with the A-distance measure-

ments in Table 5.14.
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Table 5.17: Recognition rates (%) using different iterations of updating presenter network per
update of the feature transformer and classifier.

Iterations 5 10 20 30 40 50
RecognitionRates | 89.6 | 91.2 | 91.8 | 90.2 | 91.8 | 90.5

401 x

20 W B

—20 1

—40
40 =25 0 25 50

Figure 5.12: T-SNE plot of features when adapting from SVHN to MNIST; (a) No adaptation
(b) Adaptation after ADDA (c) Adaptation after RAAN (d) Adaptation after JAAN.
We randomly select 1000 features samples from 10 classes, with 100 samples per
class.

5.9 Summary

p-DS classification methods in real-world applications are limited by distribution dis-
crepancies or variations between the training data and the unseen test data. We observe
two main factors of variation for p-DS, including target personnel and the aspect angle.
We argue that in most real-world applications, collecting and labelling data from all the
target personnels and aspect angles are expensive, time-consuming and inefficient. In
this chapter, with the aim of increasing the generalization capability for the u-DS classi-
fication, we introduce the UDA task to eliminate the variations between training (source

domain) and test (target domain) p-DS.

To the best of the authors’ knowledge, no UDA methods have been applied for
the p-DS classification, which proves the novelty of this chapter. Comparing with the
computer vision research, previous UDA methods are mainly based on the divergence
measurement relying on the common support between the feature distributions, but in
real-world applications, it is in general not feasible due to the uncontrollable data collec-
tion scenarios. To tackle this problem, the proposed RAAN and JAAN are inspired by
OT based divergence measurement which is oblivious to the uncommon support. More
specifically, the work carried out in this chapter makes specific three key contributions

to the knowledge base:
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1. We first propose two factors of variations in pu-DS classification, including the
target personnel and the aspect angles and apply the UDA methods to eliminate

these variations.

2. The RAAN and JAAN are the first adaptation networks to integrate the OT formu-
lations in an end-to-end training manner. We implement both the dual and primal

regularized loss functions in the context of adversarial feature learning.

3. We evaluate the RAAN and JAAN in computer vision UDA datasets and apply

them in the p-DS classification.

Through an extensive set of experiments using various UDA datasets, RAAN and
JAAN outperform state-of-the-art methods based on MMD and JS divergence measure-
ments in computer vision community, especially when the domain distribution diver-
gence is large. Specifically, RAAN and JAAN outperform the current best-perfoming
method by 4.8% and 6.8% in hand-written digit datasets respectively. For the most chal-
lenging cross-modality dataset with disparate domain discrepancy, RAAN and JAAN
outperform the current best-perfoming method by 15.4% and 14.3% respectively. In
addition, JAAN outperforms RAAN in the hand-written digit dataset by 2.47% in aver-
age however, RAAN outperforms JAAN by 1.1% in cross-modality dataset. In general,
JAAN outperforms RAAN in almost all settings which may be due to the fact that pri-
mal OT formulation performs more robust than the dual formulation. However, when
the data number from different classes is highly unbalanced, RAAN outperforms JAAN.
We hypothesize that it is more effective to match label distribution by integrating the
re-weighting scheme directly in the network loss function design (as RAAN did) rather
than using a joint representation of label and features (as JAAN did).

In the context of the u-DS classification, to the best of the author’s knowledge, no re-
search has focused on eliminating the factors of variations (distraction factor) to improve
the motion recognition (interested factor). We therefore summarize our conclusions as

follows:

* First, we propose to measure the A-distance of different factors of variation in
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p-DS so that the relevant domain discrepancy can be identified. We find that vari-

ations caused by target personnel are larger than the aspect angle.

* Second, in the “Factor Control” scenario, JAAN outperforms RAAN by 3.6% in
average when addressing the target personnel variations, while they achieve simi-
lar results when handling aspect angles. Compared with other widely used MMD
and JS divergence measurements, RAAN and JAAN outperforms the current best-
performing result by 4.9% and 6.3% for target personnel, and by 1.4% and 2.1%

for aspect angle respectively.

* Finally, in “No Control” scenarios, JAAN outperforms RAAN by 2.1% and 3.5%

respectively for adapting the target personnel and aspect angle variations.

To sum up, RAAN and JAAN have been proved to be very beneficial in reducing
the distribution divergence and increasing the generalization capability of the DCNN in

both computer vision and radar community.






Chapter 6

ENet: Ensembling Cooperative and
Adversarial Learning for u-DS

Classification

6.1 Introduction

In Chapter 5, the UDA problem was introduced to the u-DS classification tasks and in-
cluded a discussion of the two main factors of variations that cause distribution discrep-
ancy between training and testing u-DS dataset. To reduce distribution discrepancy be-
tween training and test dataset in an unsupervised way, two adaptation networks RAAN
and JAAN were proposed. In fact, the two adaptation networks are inspired by the ad-
versarial learning (AL) strategy in Section 2.5.2.1, 2.5.2 and 2.5.2.3 in the sense that we
want to learn features that are only useful for the motion recognition task, but insensitive
and not useful for recognizing the target and aspect angles of the u-DS. This chapter
investigates another learning strategy called cooperative learning (CL) which is exactly
different from the AL strategy. CL learns features that are useful for both the main task,
e.g. motion recognition and the auxiliary one e.g. target or aspect angle recognition.
The work is driven by the idea that the features useful for a task may exhibit underlying
properties which will also be useful for alternative recognition tasks. Note that as CL
strategy is very similar to the idea of IL, introduced in Section 2.5.1 and the Ensemble-

Net (ENet) is very similar to the DEN introduced in Section 2.5.1.2, 2.5.1.3, we refer
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to these two sections for more background details. Since there are two main factors of
variations (human target and aspect angle) or alternatively two auxiliary tasks besides
the main motion recognition, we investigate in this chapter the relationship between the
motion recognition and the following two auxiliary ones respectively: recognize the hu-
man target and the aspect angle. Note that the AL strategy used here is different from
the two proposed adaptation networks in Chapter 5. This chapter assumes that the labels
of three tasks in the training stage are available but the adaptation networks in Chap-
ter 5 deals with a more challenging scenario where no labels were available in the two

auxiliary tasks. Specifically, there are three main contributions of this chapter:

1. We propose the objective function for cooperative learning strategy and make com-

parisons of the one used for adversarial learning strategy.

2. We investigate whether the two additional tasks are cooperative or adversarial to

the main motion recognition tasks.

3. We propose an ensembling architecture to handle the three tasks and evaluate the

algorithm using recognition performance of the main motion recognition task.

6.2 Related Works

To the best of the author’s knowledge, we have not found any p-DS classification works
about improving the motion recognition results leveraging the relationships of classify-
ing multiple auxiliary factors, for example target personnels and aspect angles. There-
fore, we have to compare with the works in multi-task learning framework in computer
vision and machine learning communities.

Multi-task learning framework is widely utilized in computer vision and machine
learning communities, for example, extracting useful features that are useful for both
classification and the image reconstruction purposes|[72], for classification and detection
[73, 191] and even for the most recently proposed detecting and tracking video objects
[82]. These methods ensemble different types of tasks however, ENet is only focused on
classification tasks but on classifying multiple factors of the same input u-DS. The most

similar series of works in the multi-label learning framework [192, 193], but these two
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works can be regarded as using the CL strategy. More specifically, they have not incor-
porate adversarial learning strategies in feature learning, not to mention they investigate
and evaluate the strategy to adopt different combinations of CL and AL for different fac-
tors. However, ENet considers the way to ensemble both CL and AL for two auxiliary
tasks with the aim of improving the classification results of the main task. These prove

the novel contributions made by ENet.

6.3 Cooperative Learning and Adversarial Learning

This section first formulates our problem adopting cooperative and adversarial learning
strategy. Then we aim to introduce networks and objective functions adopting coopera-

tive and adversarial learning strategies.

6.3.1 Problem Formulation and ENet Architecture

In this section, we first introduce the notation in this chapter and formulate our prob-

J

lem. Suppose we are given ny,g tasks and within j*# task we are dealing with an n s

Nty NTask

class recognition problem. The training set Dy = {(x!",y7%)}1T7 1" including n7, data

Te)}nTe

x{" labeled by {y/7}"4* and an unlabelled n/, ~class testing dataset Dy = {(x 1Y

composed of nr, data ij.e and share the same multi-label space. The random variables
representing the data and label in general are denoted as X and Y and the DCNN trans-
formations are represented as 7. Under the setting of pu-DS classification of armed or
unarmed walking motions (n7,4 = 3, including motion, target and aspect angle recogni-
tion), where the motion recognition is a binary classification task and both the target and
aspect angle recognition involve distinguishing three classes.

To investigate the applicability of CL and AL strategies in p-DS recognition, we
designed the ENet shown in Figure 6.1, composed of the SC-DopNet as the base net-
work and two sub-networks for the two auxiliary tasks respectively. First the useful and
generic low-level convolution layers are shared and represented as T¢ o =Tconv1 © Tcom2-
Second, for simplicity, we represent the multiple training labels as yzg,yﬁd,yﬁg and
the cascaded FC layers as T =TH. oTH.,oCLS", TM. =TM., 0T}, oCLSM and
Tg‘c = TI?Cl o Tf‘cz oCLS” for human, motion and angle recognition task respectively.

The two sub-networks TI?C, TI?‘C with their objective functions LgE,L‘éE are designed
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Sub-Net For Target Personnel Task
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Figure 6.1: Architecture of ENet; M, H and A refer to motion, human target personnel and aspect
angle respectively. Conv and FC and CLS refer to convolutional, fully connected and
the classifier respectively.

with the same aim of achieving better performance in the main task. To sum up, the fol-

lowing sections investigate the effect of adopting CL or AL strategy for each auxiliary

task, by evaluating recognition rates of the main motion recognition task.

6.3.2 Cooperative Learning and Adversarial Learning

First, we define the objective function for the main motion recognition task. With the
input u-DS xiT’, the output features of the convolution layers are obtained as Ty, (xl.T’),
which are the low-level features useful for all the three final recognition tasks. For
motion recognition, the network 7¢,,, and TIfYé are trained based on minimizing the
conventional CE loss L%E given the motion label yﬂ,, in Eq.(6.1), where CE is the CE

function.

nTr

jin Lty = jin X CE( TAC(Teow(xi ), Yid) (6.1)

With the aim of learning useful and discriminative features for both main and auxil-

iary tasks, the CL strategy is utilized and the following objective function LgE for target
personnel recognition is designed in Eq.(6.2), so as L‘éE for aspect angle recognition in

Eq.(6.3). The CL strategy can be interpreted as the following two perspectives:

1. From a specific auxiliary task, the feature extractor T¢,,, and the classifiers Tﬁc or
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T]‘;‘C are trained based on minimizing the same and cooperative objective functions.

2. From the relationship between main and auxiliary tasks, feature extractor Tc,,,
is updated to extract discriminate features which contribute to both the main and
auxiliary tasks. Alternatively, the main and auxiliary tasks are cooperative and the
main task is playing a cooperative game with the auxiliary tasks. The cooperative

game means that the extracted features contribute to multiple recognition tasks.

nTr

min Lz = min Y CE(THe(Teom (X)), yii) (6.2)
T}«HC7TConv T}{:IC7TConv i=1
nTr

min L2z = min ZCE( The(Teom (x17)), yﬂ?) (6.3)
TFC7TC0nv TI‘:’L‘C’TC"”V i=1

Aiming at learning useful and discriminative features only for the main task, we
may want the features Tcop, (xiT’ ) to confuse auxiliary classifiers, which is the approach
behind the AL strategy. If AL is utilized, the following mini-max objective function for
target personnel recognition can be designed in Eq.(6.4), so as L/é’]?dv for aspect angle
recognition in Eq.(6.5). The AL strategy can be interpreted as the following, similar to

the one described in previous paragraph:

1. From a specific auxiliary task, the feature extractor T¢,,, and the classifiers Tlﬁc
or Tj;‘c are trained based on minimizing the different and adversarial objective
functions. Specifically, the auxiliary task classifiers TFHC and Tlﬁf‘c are designed to
classify human and aspect angles but the feature extractor network 7¢,,, aims to

confuse these classifiers.

2. From the perspective of task relationships, feature extractor T, is updated to
extract discriminate feature which contributes only the main task but degrades the
auxiliary tasks. In other words, the main task is playing an adversarial game with
the auxiliary tasks. The basic knowledge of adversarial learning or adversarial
game are introduced in Section 2.5.2.1 from the perspective of divergence mea-

surements.

Tr

n
maxmin L2, = maxmin ZCE ( THE-(Teom (xI7)), y,T;I) (6.4)
Tcony TFHC Teony T;IC i—1
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Tr

n
A - A T T
maxmin Liz = maxmin ZCE( Trc(Teon(x; ")) Yia) (6.5)
Tcony TI‘éC Tcony TFI':‘C i=1

6.3.3 ENet: Ensemble Cooperative and Adversarial Learning

To recognize armed and unarmed walking, as there are two auxiliary tasks, the exact
strategy for the whole network training requires investigation. Since for each task, there
are potentially two strategies or objective functions under selection to ensemble multiple
loss functions, we propose the linear combination method to ensemble the task-specific
loss functions in Eq.(6.7), where w4 and @y are the linear combination weights of the

loss functions, I4 and /Iy are indicator functions, depending on choice of learning strate-

gies.
min LY+ oy x L2 + oy x LY (6.6)
TM. TA . TH
FC'»"FC"FC

min LY + @y x Iy x Lg + oy x Iy x LA

Cony

1,CL is used 1,CL is used (6.7)

Ix= Iy
—1,AL is used —1,AL is used

6.4 Experiments and Result Analysis

In this section, we evaluate different learning strategies for ensembling three recognition
tasks on the basis of recognition rates of the main task. First, we evaluate ensembling
results of two tasks and investigate exact relationships between the main one and each
of the auxiliary ones. Next, we evaluate the best choice of learning strategies for ensem-

bling three tasks.

The dataset used is following the same experimental configurations and the pre-
processing methods in Chapter 4 (see Section 4.6 for details), where the experimental
u-DS are utilized to recognize armed and unarmed target personnel from three aspect
angles, three target personnels and three nodes. For simplicity and controlling the factor
of radar nodes, we only evaluate the mono-static u-DS in ENet, with the details in Table
6.1. Note that we use the augmentation scheme proposed in Section 4.3.2 and obtain 918
augmented mono-static u-DS for training and 648 for testing when evaluating one radar

node. Finally we conduct three separate experiments for evaluating ENet performances
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of the three nodes. The u-DS in the experiments are shown in Figure 4.8 and 4.9.

Table 6.1: Experiment summary details for evaluating different task relationships and the opti-
mal learning strategies.

Mono-Static u-DS (5-second) No. 90
Train Percentage 20%
Dwell Time Is
Augmented Train mono-static u-DS No. 918
Augmented Test mono-static u-DS No. 648
FFT Time Period 0.3s
FFT Overlap Ratio 0.9
Aspect Angles (Degree) -30, 0, 30
target personnels Target 1,2,3

To clarify the experiments, we summarize the following 9 experiments in Table 6.2,
where the Exp1-6 evaluate relationships between two tasks for all three nodes while the
Exp7-9 evaluate relationships among the three tasks for all the three nodes. Addition-
ally, we summarize different learning strategies or task relationships in Table 6.3 using
the selected weight @y and wy. More specifically in Table 6.3, as there is only sin-
gle auxiliary task under evaluation in Expl-6, the learning strategy under selection is
either cooperative or adversarial; however for ensembling two auxiliary tasks in Exp7-
9, there are four combination strategies under selection. Finally, for the weights @y
and wy under selection in the optimization, we choose them in the same parameter set
{0.001,0.01,0.1,1,5}.

To evaluate the performance of different strategies, we use the average and the
best-performing recognition rates when selecting w4 and wy in the parameter set. For
each parameter, we run 10 times to calculate the average recognition rate. We run 5000
iterations using the Adam optimizer in Tensorflow and report the average recognition

rates of the final 100 iterations.

6.4.1 Results of Ensembling Two Tasks (Exp1-6)

In this section, we evaluate the main motion recognition results by ensembling each of
the two auxiliary tasks , namely the target personnel and aspect angle recognition. The
SC-DopNet is adopted for T%, Tcony and the FC layer for the two auxiliary sub-networks

TI‘;‘C, T]«ﬁc- We investigate different weights w4 and @y using both CL and AL strategies
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Table 6.2: Experiment summary for evaluating different task relationships and the optimal learn-
ing strategies.

Aspect Angle Target Personnel Motion Node
Expl v 1
Exp2 v
Exp3 v
Exp4
Exp5 v
Exp6
Exp7 v
Exp8 v
Exp9 v

<

ERNANEN
aNENANENENENENENEN
W = W[ W] NN —

Table 6.3: Experiment summary of the learning strategies under evaluation and the parameter
set under selection.

Relationship under evaluation Weight in the optimization
Expl-6 (Cooperative, Adversarial) {0.001,0.01,0.1,1,5}
Exp7-9 | (Angle Cooperative, Target Cooperative) {0.001,0.01,0.1,1,5}
(Angle Cooperative, Target Adversarial) {0.001,0.01,0.1,1,5}
(Angle Adversarial, Target Cooperative) {0.001,0.01,0.1,1,5}
(Angle Adversarial, Target Adversarial) {0.001,0.01,0.1,1,5}

while fix the main task weight as 1. Note that we use the best recognition rate in each
experiment as the main evaluation metric. Based on the extensive results presented in
Table 6.4, 6.5 and 6.6, we summarize our observed relationships between main motion
recognition and the aspect angle or target personnel recognition. In addition, to clearly
show the trend of results, we plot the recognition rates of Exp1-6 with the parameter set

in Figure 6.2.

Results of ensembling the motion and aspect angle recognition are shown in the
second column of Table 6.4, 6.5 and 6.6 for node 1, 2 and 3 respectively. In addition,
we report the baseline results of SC-DopNet without the ensembling from Chapter 4 and

summarize the results in Figure 6.3 based on Table 6.4, 6.5 and 6.6

From the best-performing result in Figure 6.3, firstly, ensembling single auxiliary
task in ENet improves the baseline result of SC-DopNet. In specific, adopting the best
ensembling strategy outperforms the baseline by 2.2%, 19.8% and 2.3% for the three

nodes respectively, which implies that the ENet architecture is the most useful for node
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Figure 6.2: Results of CL and AL strategies in Exp1-6, summarizing the results of Table 6.4, 6.5
and 6.6; motion recognition rates (a) in Expl and Exp2 using CL; (b) in Expl and
Exp2 using AL; (c) in Exp3 and Exp4 using CL; (d) in Exp3 and Exp4 using AL;
(e) in Exp5 and Exp6 using CL; (f) in Exp5 and Exp6 using AL.
2. The reason may be that the aspect angle for node 2 is the largest and the p-DS is the
least discriminative, as clearly observed in Figure 4.8 and 4.9. Compared with node 2,
improvements of recognition results are smaller and less obvious when the aspect angles
are relatively smaller for node 1 and 3. Secondly, to investigate the relationships between
the motion and aspect angle recognition, AL based method outperforms CL for node 1
(see Expl in Table 6.4), however, CL based method achieves better result for node 3 (see
Exp5 in Table 6.6). Note that both CL and AL based methods for node 2 achieve 100%
(see Exp3 in Table 6.5), outperforming the SC-DopNet baseline (without ensemble) by
19.8%. Therefore we conclude in Table 6.7 that the relationship between aspect angle
and motion recognition largely depends on different geometries and there is no unified

relationship for all the three nodes.

In Figure 6.3, ensembling the motion and target personnel recognition outperforms
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Figure 6.3: Result comparisons of Expl-6 with the baseline; Ens-Angle-Best: ensemble angle
recognition and show best result; Ens-Human-Best: ensemble target personnel and
show best results.

Table 6.4: Evaluated Task Relationships using Exp 1 and 2. Recognition rates A(B) indicate:
A% for motion recognition rate and B% for auxiliary task recognition rate.

Tasks Motion (Aspect Angle) Motion (Target Personnel)
Expl Exp2
Cooperative (5) 92.1 (87.9) 96.1 (88.5)
Cooperative (1) 92.6 (84.1) 94.3 (50.0)
Cooperative (0.1) 93.9 (82.9) 97.5 (66.9)
Cooperative (0.01) 94.1 (80.8) 94.1 (63.1)
Cooperative (0.001) 91.9 (80.8) 96.4 (77.4)
Variations 2.042 2.900
Adversarial (5) 92.2 (41.7) 91.5 (41.1)
Adversarial (1) 92.4 (24.4) 93.1 (44.5)
Adversarial (0.1) 94.8 (19.2) 92.6 (55.3)
Adversarial (0.01) 92.9 (53.7) 93.5 (82.3)
Adversarial (0.001) 92.8 (79.5) 92.8 (86.4)
Variations 2.071 1.503

92.6% [see Chapter 4, Table 4.5]

the baseline SC-DopNet by 4.9%, 8.5% and 3.0% respectively for the three nodes. As
shown in the third column of Table 6.4, 6.5 and 6.6, the best-performing CL based
methods outperform AL by 4.0%, 1.9% and 1.2% for three nodes respectively. These

findings suggest that the motion and target personnel recognition are better modelled
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Table 6.5: Evaluated task relationships using Exp3 and 4, recognition rates A(B) indicate: A%
for motion recognition rate and B% for auxiliary task recognition rate.

Tasks Motion (Aspect Angle) Motion (Target Personnel)
Exp3 Exp4
CooperativeW5 100.0 (88.9) 83.5(44.9)
CooperativeW 1 100.0 (89.4) 88.7 (43.5)
CooperativeW0.1 100.0 (87.9) 86.7(61.7)
CooperativeW0.01 99.8 (84.4) 84.3 (68.7)
CooperativeW0.001 100.0 (85.4) 87.9 (75.8)
Variations 0.179 4.504
Adversarial W5 100.0 (13.3) 86.8 (41.2)
Adversarial W1 100.0 (10.4) 86.7 (43.1)
Adversarial WO0.1 100.0 (9.6) 86.6 (58.6)
Adversarial W0.01 100.0 (79.4) 86.8 (73.3)
Adversarial W0.001 100.0 (80.4) 85.2(77.5)
Variations 0 1.374

80.2% [see Chapter 4, Table 4.5]

Table 6.6: Evaluated task relationships using Exp5 and 6, recognition rates A(B) indicate: A%
for motion recognition rate and B% for auxiliary task recognition rate.

Tasks Motion (Aspect Angle) Motion (Target Personnel)
Exp5 Exp6
CooperativeW5 92.1 (98.2) 85.3 (88.7)
CooperativeW 1 92.4 (98.8) 87.6 (35.0)
CooperativeW0.1 89.3 (95.7) 93.1 (56.4)
CooperativeW0.01 91.4 (96.9) 84.3 (61.9)
CooperativeW0.001 88.6 (96.4) 85.9 (80.2)
Variations 3.419 6.977
Adversarial W5 90.0 (29.6) 89.4 (44.1)
Adversarial W1 90.1 (18.9) 91.0 (43.2)
Adversarial W0.1 92.0 (28.2) 89.7 (52.9)
AdversarialWw0.01 91.4 (81.2) 91.9 (66.3)
AdversarialW0.001 90.4 (93.2) 91.9 (77.5)
Variations 1.757 2.372

90.1% [see Chapter 4, Table 4.5]

as CL tasks.

6.4.2 Results of Ensembling Three Tasks (Exp7-9)

In this section, we evaluate the motion recognition results by ensembling two auxiliary

tasks, namely target personnel and the aspect angle recognition. Since two strategies
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Table 6.7: Summarized optimal relationships when ensembling single auxiliary task.

Tasks Relationship
Motion and Aspect Angle Recognition, Node 1 | Adversarial
Motion and target personnel recognition, Node 1 | Cooperative
Motion and Aspect Angle Recognition, Node 2 Unclear
Motion and target personnel recognition, Node 2 | Cooperative
Motion and Aspect Angle Recognition, Node 3 | Cooperative
Motion and target personnel recognition, Node 3 | Cooperative

[0Baseline |1 Ens-Multiple-Best
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Figure 6.4: Result comparison of Exp7-9 with the baseline; Ens-Multiple-Avg: average result
when ensembling both angle and target personnel recognition; Ens-Angle-Best: best
result when ensembling both angle and target personnel recognition.

can be selected to ensemble single auxiliary task, there are four potential strategy com-
binations. For the purpose of clear representation of the results, we summarize the main
results in Figure 6.4 and Table 6.8 and we leave the detailed results for every combina-

tion and parameter selection in Table C.1, C.2 and C.3 in Appendix C.

Table 6.8: Evaluated Relationships among Three Tasks.

Node Relationship
1 Adversarial for Angle Recognition,
Cooperative for target personnel recognition.
2 Adversarial for Angle Recognition,
Cooperative for target personnel recognition.
3 Cooperative for Angle Recognition,
Cooperative for target personnel recognition.
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In Figure 6.4, first, the best-performing ensembling strategy in ENet outperforms
the baseline by 1.7%, 3.9% and 2.8% respectively for the three nodes. Among the three
nodes, the result improvement for node 2 is the largest which suggests that ensembling
strategy in ENet is more useful for radar nodes with larger aspect angles. Compared
with the results when ensembling single task, these result improvements degrade and
we hypothesize the following two reasons: 1) the first may be that ensembling two tasks
increases the parameter searching space and handles a more complex task which makes
it more difficult to train the network; ii) this may be potentially because the gradients
of the shared feature extractor compensate when learning multiple tasks. More detailed
research works are required for further investigation.

As shown in Table C.1, C.2 and C.3, adopting CL for target personnel recognition
achieves the best performing results for all nodes, no matter which strategy to ensemble
for aspect angle recognition. This suggests that the relationship between motion and
arget personnel recognition are cooperative when ensembling two auxiliary tasks. For
strategies to ensemble aspect angle recognition in this more complex task, AL based
methods outperform CL for node 1 but CL outperforms AL for node 3. These basically
match with the findings when ensembling single task in Table 6.7. The only difference is
the result of node 2 where AL based methods outperforms CL to ensemble aspect angle
recognition. These observations suggest that the relationship between the aspect angle
and motion recognition depends on different geometries. All the above findings are

summarized in Table 6.8.

6.5 Summary

p-DS classification methods in real-world applications are limited by two factors of vari-
ations, including the target personnel and aspect angle. In this chapter, to learn useful
features for the motion recognition task only, we design ENet and ensemble the two aux-
iliary tasks including aspect angle and target personnel recognition. More specifically,

the works carried out in this chapter generate the following contributions:

1. To the best of our knowledge, ENet may be the first development to utilize the

label information of two auxiliary tasks, namely the aspect angle and target per-
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sonnel recognition in a multi-task learning framework to boost the main motion

recognition performance.

2. For ensembling multiple tasks, we propose two learning strategies, namely the
CL and AL for incorporating more constraints on the feature extractor network of

ENet.

3. Finally, we evaluate the ENet when ensembling single auxiliary and both auxiliary
tasks for three nodes in the context of mono-static radar system. We also investi-
gate and summarize the observed relationship and the relevant optimal ensembling

strategy between the auxiliary and the main tasks via extensive experiments.

To sum up, ENet has been proved very beneficial for mono-static u-DS classifcation
by ensembling two auxiliary tasks using different proposed strategies. To the best of the
author’s knowledge, no research has focused on this in the context of u-DS classification.

Through careful evaluation of the relationships between the auxiliary and the main
task, we obtain the best-performing ensembling strategies among motion, angle and tar-

get personnel recognition. The following main findings are summarized:

* Ensembling either single or two auxiliary tasks outperforms the baseline SC-
DopNet method, but the improvement to ensemble two tasks is not as good as
the single auxiliary task. Specifically, ensembling single auxiliary task (best-
perfoming strategy) outperforms the baseline SC-DopNet method in average by
3.6%, 14.2% and 2.7% from node 1 to 3 respectively. However, Ensembling two
tasks outperforms the baseline by 1.7%, 3.9% and 2.2% from node 1 to 3 respec-

tively.

* Based on the previous point, no matter which task to ensemble, the result improve-

ment of ENet is larger when the aspect angle is larger.

* For all geometries and nodes, the target personnel recognition can be modelled as

cooperative with the main motion recognition.

* The relationship between the aspect angle and the motion recognition largely de-

pends on the radar geometries.



Chapter 7

Conclusions

This thesis investigates advanced radar Doppler techniques, including the signs-of-life
detection using PWR and various p-DS feature learning and classification methods using
PWR and pulse multi-static radar for activity recognition. This chapter summarizes the

contributions and outlines the potential future works.

7.1 Contribution Summary

The works carried out in this thesis explore the capability of radar Doppler information
in activity monitoring, including the signs-of-life detection and the activity recognition.

The detailed contributions are summarized in the following:

1. In Chapter 3, to the best of our knowledge, this is the first real-time phase-sensitive
CAF processing using PWR to extract instantaneous Doppler information repre-
senting the chest-wall motion. The proposed method has been evaluated via both
LoS and through-wall experiments to successfully detect the chest-wall motion of
human targets. In addition, we design different bi-static radar geometries in LoS
experiments and link the geometries with relevant detection results. Finally, we
also analyze the potential problems met in the real-time implementation, explore
relevant solutions and discuss the assumptions of the success of phase-sensitive
CAF processing. This method has been verified to be robust to DSI from clutters
and not limited to long integration time in the real-time Doppler processing. It is
worth noting that the success of the proposed phase extraction method depends

on the background phase stability of the PWR system. Before any trial and usage
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of the phase-sensitive CAF method, we may carefully check the phase stability
test of the PWR system because the large variation of the background phase may
dominate in the phase variation of both the background and the one caused by the
chest movement. In this way, the hampel filtering cannot be successfully applied
to eliminate the large variations of the background noise (they are sometime at low

frequencies as well). More detailed discussions can be seen in sections 3.4.1 and

3.7.1.

. Also in Chapter 3, the PWR u-DS dataset of six daily motions are collected and we

focus on integrating the sparsity prior in designing the feature learning and clas-
sification methods. Specifically, this is the first application of SRC for the PWR
u-DS classification and SRC has been verified to outperform the well-known SVM
by 33.7% in average on the PWR p-DS dataset. In addition, facing a relatively
small-scale dataset, we design a novel DCNN layer namely the DLL for the DTN
and replace it with the FC layers in order to ensure the sparsity of the extracted
features. All these designs and proposed methods have been evaluated using the
PWR pu-DS dataset and DLL based DTN method has been verified to outperform
the conventional DTN methods by 2% in average. The improved recognition re-

sults prove the following benefits of sparsity prior:
* it is robust to the small perturbations and therefore suitable for small-scale
dataset by increasing the generalization capability.

* it implicitly allows variable-size feature representations, which controls the
effective dimensions of the features. This is suitable for small-scale dataset

from the perspectives of over-fitting prevention and the outlier elimination.

Finally, we conduct the ablation study to analyze the effects of the sub-modules.

. In Chapter 4, we propose the SC-DopNet and MC-DopNet for fine-grained p-DS

classification caused by very similar human motions. The novelties are summa-

rized as follows:

* The SC-DopNet is novel since we propose two effective schemes to train
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the networks using the small-scale pu-DS dataset, including suitable data aug-
mentation schemes and proper regularizer of balancing the E-dist and M-dist.
In addition, the effects of the schemes with the conventional DCNN training
methods are analyzed using a detailed ablation study in the context of u-DS
classification, which has never been done before. By balancing the E and
M-dist, recognition results of SC-DopNet on node 1 has been verified to out-
perform the one without the regularization by 7.6% in average. In addition,
compared with the best empirical feature selection and classifier design, SC-

DopNet outperforms the best-performing method by 12.5% in average.

* The MC-DopNet is proposed for integrating feature representations of multi-
static radar in the final decision making. This is novel since we propose two
effective fusion schemes based on two different strategies, namely (1) “win
by sacrificing worst case” and (2) “win by sacrificing best case”. All the
proposed methods have been evaluated via extensive experiments and com-
parisons of the proosed GIR and /1>-norm methods largely depend on differ-
ent geometries of the multi-static radar. However, no matter which propsoed
strategy to use, MC-DopNet results outperform the best-performing non-
deep feature selection with fusion methods by at least 9.8% using data from
all the aspect angles. Finally, we also argue and discuss how to utilize the
statistics of SC-DopNet results to infer the selection of fusion strategies for
MC-DopNet based on different experimental scenarios, however, this finding

requires more experimental data to evaluate.

4. In Chapter 5, we propose two deep adaptation networks, namely the RAAN and
JAAN to eliminate the variational factors of u-DS and to generalize the model to
the unlabeled test samples with unseen factors. The novelties and contributions

are summarized as follows:

* u-DS classifications in real-world applications are limited by distribution dis-
crepancies or variations between the training data and the unseen test data.

We may be the first to propose the two main factors of variation of p-DS,
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including human personnel and the aspect angles.

To the best of our knowledge, the work in this chapter may be the first ap-
plication of UDA methods for u-DS classification in order to eliminate the

variations of the two factors.

RAAN and JAAN are both based on the OT theory, which are novel both in
the p-DS classification and computer vision and machine learning commu-
nities. We evaluate these two networks using both computer vision datasets
and the u-DS datasets. RAAN and JAAN have been verified to outperform
the best-performing UDA methods in computer vision by average of 4.8%
and 6.8% in hand-written digit datasets and by average of 15.4% and 14.3%
in the cross-modality dataset. For eliminating the two factors of variation in
u-DS in the “Factor Control” scenario, RAAN and JAAN outperforms the
current best-performing result by 4.9% and 6.3% for target personnel, and
by 1.4% and 2.1% for aspect angle respectively. For eliminating the two fac-
tors in “No Control” scenario, JAAN outperforms RAAN by 2.1% and 3.5%

respectively for adapting the target personnel and aspect angle variations.

* We measure the variations of factors among different adaptation tasks quanti-

tatively using the A-distance and various experiments are conducted to verify

the proposed methods under different level of variations.

RAAN and JAAN have been proved to be very beneficial in reducing the varia-
tional factors, increasing the generalization capability of the DCNN and improving

the recognition performance both in computer vision and radar community.

. In Chapter 6, we propose ENet to improve the main motion recognition results by
leveraging the labels of multiple auxiliary tasks, including the aspect angle and the

target personnel recognition. The summarized contributions are as follows:

* To the best of our knowledge, ENet may be the first developments to utilize

labels of multiple factors by ensembling the main and auxiliary tasks.

* We propose two learning strategies for ensembling multiple tasks, including

the CL and AL.
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* We investigate the potential relationships between each auxiliary task and the

main ones using experiments.

We evaluate the proposed ENet using multi-static radar u-DS and conclude the

followings:

* Ensembling either single or two auxiliary tasks outperforms the baseline SC-
DopNet method, but the improvement to ensemble two tasks is not as good
as the single auxiliary task. Specifically, ensembling single auxiliary task
(best-perfoming strategy) outperforms the baseline SC-DopNet method in
average by 3.6%, 14.2% and 2.7% from node 1 to 3 respectively. However,
Ensembling two tasks outperforms the baseline by 1.7%, 3.9% and 2.2%

from node 1 to 3 respectively.

* No matter which task to ensemble, the improvement of ENet is larger when

the aspect angle is larger.

* For all geometries and nodes, the target personnel recognition can be mod-

elled as cooperative with the main motion recognition.

* The relationship between the aspect angle and the motion recognition largely

depends on the radar geometries.

7.2 Future Work

The future work comprises the following three perspectives, including i) to estimate
the chest-wall movements using phase information from the multi-static radar; ii) to
extend JAAN by embedding the re-weighting scheme and matching the label distribution
explicitly iii) to embed the sequential modelling in pu-DS classification. The more details

are illustrated in the following:

» Signs-of-life detection using multi-static radar: the proposed phase-sensitive
method is based on mono-static PWR and the phase output is limited by the bi-
static radar geometries. In practical scenario, we cannot ensure that the target is
sitting in the place and breathing. However, if multiple surveillance signals can

be obtained from the multi-static PWR, the phase-sensitive CAF processing for
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each node can estimate the phase variations simultaneously. Leveraging the phase
information from multiple nodes, we may estimate the chest movement more ro-
bustly, since the set-up of the multi-static radar is more robust to the geometries,
especially the target position. In addition, based on the bi-static geometries and
the measured phase information, we may estimate the rough geo-locations and the

angle of the target by phase information extraction.

Extend JAAN by integrating the re-weighting scheme: as introduced in Chapter 5,
in the most challenging cross-modality dataset, RAAN outperforms JAAN and we
argue that the re-weighting scheme is more effective to reduce domain discrepan-
cies with a largely unbalanced dataset. In the real-world applications, unbalanced
dataset is very common and we wish to improve JAAN by explicitly integrating
the re-weighting scheme to estimate the target domain label distribution. This is
also feasible since we only need to adopt the re-weighting formulation of RAAN

in the JAAN formulation.

Embed temporal sequential modelling: In this thesis, we have not explicitly con-
sidered to extract the the temporal features of the pu-DS. Since p-DS is a sequence
data, we may leverage the Long-Short-Temporal Model (LSTM) based Recurrent
Neural Network (RNN) to model the sequence data and take the output feature of

RNN as the input of all the proposed models in this thesis.



Appendix A

Materials of sparse coding and

dictionary learning

A.1 Restricted Isometry Properties

In general, the Restricted Isometry Properties proposed the following two conditions so
that the equivalence is guaranteed and we can obtain the sparsest solution s for the sparse

coding problem [32, 33]:

» Atom Incoherence: this condition requires that the dictionary atom, or columns

in D are incoherent with each other.

» Sparsity of the Sparse Codes: this condition requires the exact sparse code s is

sufficiently sparse.

A.2 Pseudo-Codes of MP, OMP and Subspace Pursuit

In this section, we provide the pseudo-codes of MP, OMP and Subspace Pursuit algo-

rithms in Algorithm 1, 2 and 3 respectively.
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Algorithm 1: Matching Pursuit Algorithm

Input: Input signal, y € RM; Dictionary, D € R®*V; Maximum active support
number N;; Reconstruction error bound threshold; Maximum iteration
number K.

Output: Active support set Spet = {Si}i-\iﬁ Index set Q C [1,2,...,N]

corresponding to Syct-

Initialising the residual r; = y;

fork=1:Kdo

i) Find the index i by selecting the maximum inner product value || D7 r;|.
D"

TN where D; is the i’ atom of the

11) Calculate the coefficients s; <+

dictionary D.
iii) Add s; and i in Sy¢¢ and Q respectively.
iv) Calculate residual r;1| = r; — 5;d;
I=1+1.
| Break if I > N; or ||r;|| < threahold.
return S,¢¢ and Q

Algorithm 2: Orthogonal Matching Pursuit Algorithm

Input: Input signal, y € RM; Dictionary, D € R®*V; Maximum active support
number N;; Reconstruction error bound threshold; Maximum iteration
number K.

Output: Active support set Saet = {Si}i'\iﬁ Index set Q C [1,2,...,N]

corresponding to Syct-

Initialising the residual r; = y;

fork=1:Kdo
i) Find the index i by selecting the maximum inner product value || D7 r;|.
T
11) Calculate the coefficients s; < ”@ﬁé” , where d; is the ' atom of the

dictionary D.

iii) Add s; and i in Saee k and Qy respectively.

iv) Calculate the projection matrix P, = Dg, (DgTszQk)*IDSle to the
subspace spanned by Dy, .

v) Calculate residual i = (I — Py)y

k=k+1.

| Break if k > Nj or ||r|| < threahold.

return Sye¢ k and £
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Algorithm 3: Subspace Pursuit Algorithm

Input: Input signal, y € R¥; Dictionary, D € R®*"; Maximum active support
number N;; Reconstruction error bound threshold; Maximum iteration
number L.

Output: Active support set Spet = {si}é\i 15 Index set Q C [1,2,...,N|

corresponding to Syet.

Initialising the residual r; = y;

fork=1:Kdo

i) Find the index set Qg,,,1 « by selecting the largest 2N, inner product

values ||D7r].

ii) Find another index support set 2,2 by selecting the largest N

pseudo-inverse formulation: (Dgszpp1 kDQmpka)_leTlmppl,krk

T

iii) Calculate the coefficients S, ; based on (Dg2 I 2o, k)’lDQ Tk
? supp2, SUpp2, supp2,

iv) Set Q;, = Q'SM[)PZ,k'

v) Calculate residual riy1 = rie — Do, Saer i
k=k+1.

| Break if ||ry|| < threahold.

return S;e¢ x and Qy

pp







Appendix B

Materials of DCNN and Deep
Adaptation Network

B.1 Optimization of DCNN

The whole optimization procedure is composed of the following three steps, including
feed-forward step, back-prop step and weight update step. Specifically in FigureB.1, we

use a simple Neural Network composed of three FC layers as an example to illustrate

(1)

the steps to update the parameter w,," which indicates the weight connecting the second

element of the input xéo) to the third element of the first layer’s output xgl ),

* Feed-Forward Step: in the feed-forward step of FigureB.1, we first compute and
store the relevant activations of intermediate layers xgl), x&z), xgz), the predicted

label y* and the loss function L w.r.t the input x.

dL
* Back-Prob Step: Next, we calculate the gradient —0 based on the equations in
oWy,
the second step of Figure B.1 using the feed-forwarded results in previous step.

(1)

* Weight Update Step: Finally, we update the weight wzl3 by gradient descent, as

shown in the third step in FigureB.1.

B.2 Batch Normalization in DCNN

In SGD, there exists large variations between different batch data which can increase

the distribution oscillations of both network weights and the output activations. As the
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i) Feed-Forward Step:

Compute and store intermediate outputs;

@D x@ y*

ii) Back-Prop Step:

Compute gradients w.r.t. network weights
oL aL oxY

6W2(;) B 6x§1) awz(g)

Label: y

oL ax® oL ax® ax{
6x§2) Bxgl) " 6x§2) Bxgl) awz(_,l,)
oL 9L 9y”
ax$? 0" gx?

oL oL dy’
axiz) ay* axiz)
f3 f2 fi iii) Weight Update Step:

Update the weight via gradient descent.

oL
(D 1
Waz™ & Wa3' — Vaw(1)
23

Figure B.1: Back-propagation in Neural Networks.

oscillations potentially can lead to training instability, we have to use smaller learning
rates, which is prone to the gradient vanishing problem. Besides adopting the proper
weight initialization techniques in Section 2.4.2.1, a more direct method is the Batch
Normalization (BN) [194]. The basic idea behind is: instead of normalizing the input
of the network as we usually do, we can also normalize inputs of all layers within the
network. Note that BN has been integrated before activation function of each layer so
that the input statistics of activation function is with zero mean and variance of one. This
potentially allows the usage of larger learning rates, non-ideal initialization and alleviates
the gradient vanishing problem caused by some activation functions like sigmoid and
tanh.

As shown in the Eq.(B.1), the BN operation computes the whitened sample £ (with
zero mean and unit variance) using the mini-batch samples x' € R4, i € [1,2,...,M]. Note
that € in Eq.(B.1) is used for preventing the intractable computation. Another common
practice is to use two learnable scaling scalars for controlling the output of BN § which is
also the input of the activation function in Eq.(B.2), as the zero mean and unit variance

samples may not be optimal for activation functions. Note that both y and the B in



B.3. Relationship between JS divergence and Adversarial Training Optimization 221

Eq.(B.2) are with the same dimension as x'.

1 ¥
N:A—/I;X17
2 lM i 2
c :M;(x —u) (B.1)
i XU
oZ+e
F=v8+B (B.2)

B.3 Relationship between JS divergence and Adversar-

ial Training Optimization

First assuming that the network T is fixed, the optimal discriminator network D* can
B(T(x))

Py(T (x)) + A(T (x))

Next, we can derive the optimization function Lp;s.(T) by replacing the discriminator

be solved by the Eq.B.3 and the tractable solution is D* (7 (x)) =

network with the optimal one D*(T(x)). More specifically, the optimization function
w.r.t the network T is Lp;s(T) in Eq.B.3.1. Note that since the JS divergence is at least
zero so the minimum of Lp;s.(T) is —log4 as long as the distributions from two domains

are matched. Therefore, the network 7 is optimized based on the Eq.B.4.

Lpisc(T) :mlng/T(x)Ps(T(X))log(D(T(X)))+Pt(T(X))10g(1 —D(T(x)))dT (x) (B.3)

m]in Lpise(T) (B.4)
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1
+Er(x)~e(r(x))[10g(§)+10g( 5

— —log(4)+ KL(P(T(x))

+KL(P(T (x))]]

= —log(4) +JS(P,(T (x))||P.(T (x)))

B.4 Pseudo-code of Sinkhorn Algorithm

(B.5)

In this section, we illustrate the methods JAAN utilized for calculating the Sinkhorn

loss, as shown in the following Algorithm 4. Note that in the last line, diag indicates the

function to transform a vector to a diagonal matrix whose diagonal elements remains the

vector.
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Algorithm 4: Sinkhorn loss

Input: Source Domain Joint Representation (J¥)7 , Target Domain Joint
Representation (J;);ﬂzl, Presenter Network P, weight of entropy
regularization €, total iteration number L

Output: Transportation Map ¥, Sinkhorn Loss Ly, norn

Initialising b = 1,,

Y(i, ), calculate c(JiS,J;) = cos(P(JiS),P(J;)), M; ;= M(J,'sw];')

M(J;Y,Jj.)
Kj=exp =
fori=1:Ldo
Update a, given b and K:
1,
- B.6
“~ Kb @0
Update b, given a and K:
1
b= _— B.7
Kq (B.7)
L Increment /.

return y = diag(a)Kdiag(b), Lsninorn = (Y, M)







Appendix C

Results of Ensembling Two Tasks in

Exp7-9 in Chapter 6

In this appendix, we provide the detailed results of ensembling two tasks in Exp7-9 of

Chapter 6.
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Table C.1: Result of ensembling two tasks, node 1, percentage in (%).

(w4,0H) Motion Motion Motion Motion
Coop Angle Coop Angle Adv Angle Adv Angle
Coop Human Adv Human Coop Human Adv Human

(5.5) 92.7,83.4,90.0 | 92.7,82.3,26.3 | 92,5,22.2,87.8 | 93.5,37.5,29.3
5, 92.6,83.7,90.0 | 92.6,83.3,30.3 | 92.3,26.9,88.4 | 93.2,27.7,34.1
(5,0.1) 92.8, 82.1, 88.8 | 92.8,83.2,43.8 | 93.4,24.6,86.9 | 92.5,27.3,61.4
(5,0.01) 92.6,83.0,87.5 | 93.2,83.4,73.2 | 92.7,24.8,85.6 | 92.8,24.0,81.9
(5,0.001) 92.4,82.3,85.8 | 93.3,83.0, 86.0 | 93.2,30.6,84.7 | 93.2,27.1,83.6
(1,5) 93.0, 84.9, 88.5 | 92.3,82.9,24.9 | 92.7, 30.0, 89.3 | 93.0,33.6,26.5
(1,1) 92.9,84.0,89.0 | 93.6,83.4,29.6 | 92.6, 21.5,87.7 | 93.4,28.6,29.1
(1,0.1) 92.9,84.1,88.9 | 93.2,82.4,36.2 | 94.3,27.1,88.8 | 92.8,23.4,57.5
(1,0.01) 93.8, 83.9,87.9 | 94.0,83.5,53.0 | 93.6, 30.0, 86.7 | 93.6,25.1,81.9
(1,0.001) 93.4,83.3,87.8 | 93.3,82.5,82.1 | 93.2,27.3,85.6 | 93.3,23.3,84.6
(0.1,5) 92.9,81.1,88.2 | 93.5,80.9, 26.5 | 93.2,52.7,89.0 | 92.6, 68.6, 26.8
(0.1,1) 93.2,84.6,89.0 | 93.3,82.3,28.1 | 93.1,46.0, 89.7 | 93.8,39.1,27.3
(0.1,0.1) 93.5, 84.3,89.9 | 93.5,83.5,34.5 | 93.7,34.9,89.5 | 92.7,27.3,30.3
(0.1,0.01) 93.4,81.6,88.3 | 92.9,82.1,43.2 | 93.3, 23.6, 86.7 | 93.6,29.8, 57.0
(0.1,0.001) | 93.5,82.8,87.6 | 93.6,82.7,65.0 | 93.7,33.6,85.2 | 93.6,70.9,23.6
(0.01,5) 93.3,82.1,90.9 | 92.6,79.2,27.1 | 92.6, 66.6,88.3 | 92.9,76.8,23.6
(0.01,1) 93.9,81.4,88.5 | 93.8,82.2,24.2 | 93.2,63.9,89.4 | 93.2,65.9,26.8
(0.01,0.1) 93.5,81.5,87.9 | 93.2,81.9,30.8 | 92.8,41.4,88.1 | 93.3,55.6,32.2
(0.01,0.01) | 93.8,81.7,88.8 | 92.8,79.8,47.1 | 93.5,54.1,86.9 | 94.0, 50.8, 54.4
(0.01,0.001) | 93.9,81.7,89.8 | 94.2,82.4,83.9 | 93.8,42.2,86.0 | 93.0,48.9, 33.6
(0.001,5) 93.1,80.5,89.5 | 93.1,77.8,26.4 | 93.6,80.7,90.0 | 92.9, 78.3, 26.0
(0.001,1) 93.2,81.7,88.2 | 93.3,78.8,27.1 | 93.0, 74.5, 88.3 | 93.1,78.1,24.8
(0.001,0.1) | 93.7,82.2,89.1 | 93.7,80.9,34.1 | 94.0,72.1, 88.5 | 93.2,63.1,31.5
(0.001,0.01) | 93.6,82.3,88.8 | 93.8,78.0,61.5 | 93.5,71.7,87.9 | 93.4,61.5,38.5
(0.001,0.001) | 93.5,81.4,88.7 | 92.3,82.0,80.3 | 93.3,70.7,83.9 | 93.8,74.7,81.4

Baseline Motion recognition rate without multi-task learning framework

92.6 [see Chapter 4, Table 4.5]
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Table C.2: Result of ensembling two tasks, node 2, percentage in (%).

(4,0) Motion Motion Motion Motion
Coop Angle Coop Angle Adv Angle Adv Angle
Coop Human Adv Human Coop Human Adv Human

(5.9 80.4,75.7,83.2 | 77.8,78.4,26.1 | 81.3,29.1,81.9 | 81.2,32.0,31.7
5,D 81.4,76.8,80.3 | 79.4,76.7,27.5 | 82.8, 28.5, 80.5 | 82.1, 25.0, 35.8
(5,0.1) 80.1,74.4,79.8 | 81.0,76.9,26.7 | 81.3,33.3,78.1 | 79.2,26.9,77.4
(5,0.01) 80.9, 74.8, 79.6 | 80.3,77.8,78.9 | 79.6, 28.0, 79.2 | 83.8,25.8,79.2
(5,0.001) 81.9,76.3,79.1 | 78.4,76.2,78.3 | 80.4,26.3, 80.0 | 81.8, 28.1,79.8
(1,5) 81.1,76.9,81.5 | 79.6,72.3,25.2 | 81.8,30.5,80.0 | 81.2,42.4,31.9
(1,1) 81.3,74.4,82.5 | 81.5,77.2,27.5 | 81.9,29.4,78.3 | 81.9,27.3,28.5
(1,0.1) 80.5,75.9, 81.1 | 78.8,76.0,49.4 | 79.6,24.0,81.2 | 83.2,32.9,54.2
(1,0.01) 80.8,74.4,77.3 | 81.9,75.3,76.5 | 80.8,31.2,79.0 | 81.6,26.9,78.1
(1,0.001) 81.1,78.2,78.9 | 82.4,74.4,77.7 | 81.8,32.3,76.9 | 81.2,25.0,76.0
(0.1,5) 81.6,75.4,82.2 | 81.3,73.8,26.9 | 79.5,56.0,80.0 | 82.8,70.7,25.5
(0.1,1) 80.3,74.6,81.7 | 80.9,71.7,24.2 | 80.8,36.9,80.0 | 81.2,59.4,22.8
(0.1,0.1) 80.7,73.6,81.0 | 81.7,68.5,32.8 | 80.6,29.7,81.7 | 80.0,29.4,27.9
(0.1,0.01) 81.0,73.4,81.9 | 80.8,71.5,59.5 | 83.1,29.8,79.4 | 81.1,30.1,64.3
(0.1,0.001) 81.7,75.2,76.7 | 81.1,73.2,78.0 | 80.5,25.6,75.7 | 81.7,28.4,75.8
(0.01,5) 80.3,71.9,82.3 | 80.5,71.0,20.2 | 82.3,70.9,81.8 | 79.8,70.7,30.2
(0.01,1) 82.8,72.7,82.8 | 80.9,71.0,20.5 | 78.8,62.4,81.5 | 79.6,68.2,23.5
(0.01,0.1) 81.2,70.3,79.0 | 80.6,69.3,27.8 | 80.2,65.5,79.4 | 82.1,61.9,28.4
(0.01,0.01) 81.7,72.7,78.5 | 80.7,72.8,71.9 | 84.1,67.6,78.5 | 81.0,64.1,72.8
(0.01,0.001) | 82.5,73.2,79.7 | 80.5,71.0,76.2 | 80.6,53.8,75.6 | 81.3,63.8,72.9
(0.001,5) 79.2,71.2,81.8 | 82.1,69.5,27.5 | 80.4,73.2,81.6 | 80.0,69.0,27.2
(0.001,1) 80.8,72.2,82.1 | 80.8,70.1,26.4 | 78.6,70.5,82.3 | 82.1,70.6,25.5
(0.001,0.1) 81.9,74.1,79.4 | 81.5,66.5,31.2 | 82.7,66.8,80.4 | 81.5,66.9,33.6
(0.001,0.01) | 82.0,71.4,81.1 | 79.7,69.4,78.9 | 81.5,70.4,74.6 | 79.4,64.2,67.4
(0.001,0.001) | 82.4,71.4,76.7 | 82.4,68.1,75.2 | 80.2,67.9,76.1 | 81.6,69.5,76.9

Baseline Motion recognition rate without multi-task learning framework

80.2 [see Chapter 4, Table 4.5]
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Table C.3: Result of ensembling two tasks, node 3, percentage in (%).

(4,0H) Motion Motion Motion Motion

Coop Angle Coop Angle Adv Angle Adv Angle

Coop Human Adv Human | Coop Human | Adv Human
(5,5) 91.0,99.0,81.6 | 91.5,98.8,26.2 | 91.2,13.5,81.9 | 89.7,27.2,33.1
(5,1) 90.0,98.5,82.4 | 90.3,99.2,27.7 | 90.2,23.2,80.0 | 91.1,16.9,33.3
(5,0.1) 92.2,98.6,83.7 | 91.2,97.8,39.8 | 91.9,15.0,78.0 | 91.3,13.7,54.2
(5,0.01) 90.5,98.3,75.4 | 91.8,98.6,66.7 | 91.2,20.4,74.0 | 90.9,25.3,70.9
(5,0.001) 89.2,97.7,78.1 | 91.6,99.0,79.2 | 90.0.24.6,71.7 | 91.1,22.5,74.1
(1,5) 90.6,97.5,84.2 | 91.1,98.1,29.2 | 90.1,31.5,80.7 | 92.5,27.0,30.3
(1,1) 91.0,98.4,84.9 | 91.9,98.7,32.1 | 91.9,12.3,76.5 | 90.1,24.2,34.6
(1,0.1) 91.7,98.0,78.5 | 90.2,97.9,42.4 | 91.0,18.5,79.4 | 91.0,10.9,42.7
(1,0.01) 91.0,98.1, 78.9 | 90.6,98.5,56.9 | 92.1,24.8,78.5 | 89.6,18.1,67.4
(1,0.001) 91.7,97.7,78.6 | 91.7,98.1,72.7 | 89.8,13.6,70.6 | 91.0,6.0,68.1
(0.1,5) 89.4,97.4,81.1 | 91.4,97.3,24.8 | 89.2,79.0,84.3 | 91.9,93.8,33.5
(0.1,1) 89.3,97.8,83.7 | 91.2,97.3,30.0 | 91.2,67.8,80.4 | 90.8,63.7,30.9
(0.1,0.1) 91.5,98.6, 80.4 | 92.0,98.6,33.7 | 91.3,78.2,80.3 | 89.8,62.7,37.8
(0.1,0.01) | 91.3,98.5,77.9 | 91.8,97.8,55.5 | 90.3,38.3,72.2 | 87.7,51.5,69.4
(0.1,0.001) | 89.3,97.8,74.4 | 90.5,97.4,69.8 | 90.7,70.1,74.0 | 89.0,50.9,63.0
(0.01,5) 91.9,98.0,81.4 | 92.4,96.1,33.0 | 90.2,98.0,85.3 | 91.7,97.3,27.2
(0.01,1) 89.7,96.1,78.7 | 91.0,97.6,27.5 | 91.4,96.3,82.8 | 92.5,95.7,27.2
(0.01,0.1) | 91.0,96.9,81.7 | 90.9,97.5,35.4 | 87.7,87.9,76.8 | 91.2,86.7,31.7
(0.01,0.01) | 90.9, 96.8,76.4 | 90.1,94.6,50.8 | 90.0,94.6,77.5 | 92.4,92.5,71.0
(0.01,0.001) | 91.8,97.2,78.4 | 90.0,97.4,75.9 | 92.3,81.0,76.5 | 87.6,88.6,67.4
(0.001,5) 90.7,98.4, 80.5 | 92.3,96.7,28.6 | 91.1,97.5,83.9 | 89.6,93.8,18.9
(0.001,1) 92.9,95.0, 82.5 | 90.1,95.1,21.2 | 90.1,94.8,83.2 | 91.8,97.2,26.4
(0.001,0.1) | 90.2,93.3,78.9 | 90.3,97.1,34.8 | 88.7,94.6,79.0 | 91.0,97.1,36.7
(0.001,0.01) | 91.2,94.2,78.1 | 87.0,86.2,58.5 | 92.3,94.0,78.4 | 90.9,93.6,50.8
(0.001,0.001) | 91.4,94.2,74.0 | 90.0,94.0,71.1 | 90.6,96.1,76.8 | 90.9,93.5,70.9

Baseline Motion recognition rate without multi-task learning framework

90.1 [see Chapter 4, Table 4.5]
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