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Abstract.
There have been recent rapid developments in stable trapping of levitated nanoparticles in

high vacuum. Cooling of nanoparticles, from phonon occupancies of 107 down to ' 100 − 1000
phonons, have already been achieved by several groups. Prospects for quantum ground-state
cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling
remains challenging, but trapping at high vacuum in a cavity is now possible through the addition
of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output
spectrum, with the latter acquiring an atypical “split sideband” structure, of different form from
the displacement spectrum, and which depends on N , the optical well at which the particle
localises. In the present work we investigate the N -dependence of the dynamics, in particular
with respect to thermometry: we show that in strong cooling regions N & 100, the temperature
may still be reliably inferred from the cavity output spectra. We also explain the N -dependence
of the mechanical frequencies and optomechanical coupling showing that these may be accurately
estimated. We present a simple “fast cavity” model for the cavity output and test all our findings
against full numerical solutions of the nonlinear stochastic equations of motion for the system.
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1. Introduction: Levitated Optomechanics

Much experimental effort is currently being invested in the development of optomechanical set-ups

aimed at cooling levitated nanoparticles, from room temperatures down to the quantum regime

[1]. Quantum levitated optomechanics offers the prospect of mesoscopic and even macroscopic

quantum oscillators with extremely high quality factors and largely decoupled from environmental

heating and decoherence. Achieving a high Q — while maintaining low mechanical frequencies

(∼ 100 kHz) and comparatively high masses (∼ 107− 1010 amu) — would make levitated schemes

useful for cat-state preparation [2], matter-wave interferometry [3], tests of collapse theories [4, 5],

and ultra-sensitive short-range force sensing [6].

In a cryogenic environment, MHz-GHz oscillators have reached the ground state at 25 mK

[7] or even higher [8, 9] in clamped set-ups. However, µK temperatures are needed to attain

phonon occupancies of n̄b . 1 in levitated nanospheres, and cooling from room temperatures is

required in most proposed set-ups. Ultra-high vacuum pressures are also needed since ambient

gas represents a major source of heating. Although several alternative schemes were proposed in

2010 [10, 11, 12] ground state-cooling has not yet been achieved in any levitated system. The

key challenge lies in keeping the particle stably trapped while reducing ambient pressures down

to ultra-high vacuum. A particle loss mechanism near ∼ 1 mbar has been identified [13, 14, 15].

While not fully understood, the dependence of particle loss on pressure or laser intensity has been

investigated by several groups [15, 16, 17] in a range of different optical traps.

Active cooling with optical feedback provides one effective means to stabilise the nanoparticle

and trapping at pressures down to ∼ 10−6 − 10−8 mbar has been achieved. MilliKelvin and sub-

milliKelvin temperatures [18, 19, 20, 21] have been demonstrated and in [21], a phonon occupancy

of n̄b ' 63 was measured. Although extremely promising, further progress with this approach

hinges on overcoming the technical challenge of measurement noise-limited feedback cooling at

low n̄b [21].

Progress towards the usual optomechanical technique of red-sideband cooling in an optical cavity

has proved slower, since passive cooling methods cannot sufficiently stabilise the nanoparticle

motion as pressures are reduced past the ∼ 1 mbar bottleneck. In [17], loading of a particle

into a cavity already at high vacuum by means of a mobile fiber and lens trap was successfully

demonstrated with the aid of feedback. Recently, in [22, 23], a hybrid trap set-up comprising a

Paul trap within an optical cavity was shown to trap nanoparticles for indefinite times at high

vacuum and without any additional stabilisation.

More broadly, the field of levitated optomechanics continues to experience rapid new

development: sympathetic cooling of the centre-of-mass motion by cold atoms has been proposed

as an alternative means of achieving ground-state cooling [25]; there is now considerable interest in

investigation of rotational modes of aspherical nanoparticles [26]. An interesting new development

is the study of torsional modes of motion in levitated nanodiamonds with spin degrees of freedom

[27]. Trapping with a type of Paul trap has found an interesting new direction in [28] where

electron spin resonance was demonstrated with a levitated nanodiamond.
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(b)

Figure 1. (a) A hybrid electro-optical trap comprises a Paul trap inside an optical cavity. The
whole set-up is inside a vacuum chamber. The Paul trap stabilises the nanoparticle held in the
combined potentials due to the optical standing wave of the cavity Vopt and ion trap Vion while
the background gas is pumped out. (b) Axial dynamics: a nanoparticle trapped in a single optical
well of the optical potential of the cavity oscillates with a frequency ωM about an equilibrium
point x0. However, because of the oscillating ion trap field, the position of the equilibrium point
itself oscillates slowly with time x0 ≡ x0(t) = Xd sinωdt. Linearised analysis is still possible since
ωd � ωM, so these motions are separable. The dynamics depend on which well N the particle
is captured, since the amplitude of the oscillation in the equlibrium point, Xd ∝ N , depends on
N . Small N ' 1 corresponds to a negligible effect on x0 and weak cooling. In contrast, higher N
corresponds to a larger amplitude oscillation in x0 and strong cooling. Another effect of the x0(t)
oscillation is to slightly modulate the mechanical frequency ωM(t) ' ω̄M + 2ω2 cos 2ωdt, as well as
the optomechanical coupling g(t) = 2ḡ sinωdt. As a result, the intracavity spectrum Syy(ω) has
a very different shape from the mechanical displacement spectrum Sxx(ω). In the present work
we investigate the N -dependence of the mechanical frequency and the optomechanical cooling. A
key motivation is to examine the usual assumptions which underline optomechanical thermometry,
and whether the temperature of a particle in this hybrid trap may be accurately inferred from the
sidebands of the cavity output spectrum.

While certain technical challenges remain, the way to ground-state cooling with an optical cavity

now seems open, either with or without feedback. There are a range of strong motivating factors:

a Fabry-Perot optical cavity provides an exquisitely sensitive means of sensing displacement,

exploited recently for the detection of gravitational waves in LIGO [29] where a sensitivity of 10−18
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m was achieved. Importantly, levitation in a cavity allows a non-trivial two-way dynamics between

the nanoparticle motion and the cavity mode. This allows immediate access to quantum effects

arising from the zero-temperature optical field in the cavity. Optical trapping, whether in Fabry-

Perot cavities or optical tweezers is a result of the dipole optical force acting on a dielectric particle,

which implies a potential V (x) = −1
4
|Re αind|E 2(x ) that depends on the particle polarisability αind

as well as electric field E. However, interaction with the cavity standing wave field E(x) ∝ cos kx

represents more than a simple trapping field; the particle shifts the cavity resonant frequency in

a position-dependent way, introducing a back-action between the particle motion and the cavity

mode degrees of freedom. The net effect is a change in the effective cavity length by the levitated

particle, leading to dynamics analogous to the usual clamped cavity optomechanics case where one

effectively has a two coupled oscillator system. For clamped set-ups in the quantum regime, this

coupling has already allowed interesting demonstrations of quantum back-action effects [30, 31]

arising from quantum correlations between incoming cavity noise and the intracavity field.

It is therefore of particular interest to understand the dynamics of the cavity in a Paul trap

set-up with no feedback [22, 23] which most closely approximates the usual scenario of cavity

optomechanics, with two linearly-coupled oscillator modes. The previous studies in [22, 23] have

shown, however, that the cavity output differs qualitatively from the usual case: the experimentally

observed sidebands of the cavity light, detected by homodyne or heterodyne methods, have a very

different spectral profile from the displacement spectra. The distinguishing feature of the cavity

spectrum Syy(ω) are pairs of peaks at ω ' (ωM ± ωd) and at ω ' −(ωM ± ωd) , where ωM is the

mechanical frequency and ωd is the drive frequency of the oscillating Paul trap. In contrast, the

displacement spectrum Sxx(ω) remains peaked at ω ' ±ωM.

In [24] a theoretical quantum model based on the linearised dynamics was developed to

describe these ‘split-sideband’ spectra. The model considered the effect of slow modulations

of the optomechanical coupling g(t) = 2ḡ sinωdt and of the mechanical frequency ωM(t) =

ω̄M + 2ω2 cos 2ωdt. These modulations modify Syy(ω) substantially: with increasing ω2, sideband

shapes become asymmetric as the amplitudes of the peaks within each pair become unequal. For

ω2 ∼ 2ωd, the ω ' ±(ω̄M + ωd) peaks are fully suppressed. Note that the above is distinct from

Stokes/anti-Stokes asymmetry where (when the mechanical oscillator is near the quantum regime)

there is asymmetry between ω ' −ωM and ω ' +ωM sideband features of the cavity output.

In the present work we also investigate the implications of these characteristics for thermometry:

a key question is whether the oscillator temperature may still be reliably inferred from this,

atypical, cavity output. We also investigate in detail, by means of simple models and comparisons

with full numerics, the behaviour of the mechanical frequencies and optomechanical coupling.

In section 2 we review the dynamics of the hybrid trap, and show how the Paul trap modifies

ωM, g and to some extent also ∆, the detuning of the laser from the cavity resonance, by inducing

a well-dependent excursion in the equilibrium position. In section 3 we investigate the shape of the

cavity output spectrum relative to the displacement spectrum; we also derive the dependence of

ḡ, ω̄M and ω2 on experimental parameters, in particular the optical well N where the nanoparticle

becomes trapped. A key finding, of importance for any potential sensing applications, is that that
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Figure 2. Compares experimental data, against numerical simulations using a stochastic Langevin
model, of the cavity output Syoutyout(ω). For a particle caught in the lowest optical wells (N ∼ 1)
there is a strong sideband peaked at ω ' 2ωM due to the presence of position-squared (x2) coupling
to the light. In contrast, the effect of the usual optomechanical linear coupling term gx gives rise
to a double-peaked structure centered on ω ' ωM. With increasing N , the particle becomes colder
and the nonlinear peak becomes relatively weaker, since for a cold particle the x2 dependence
is strongly suppressed. Note that the linear peak for N = 40 has larger area than for N = 1
despite the stronger cooling because of the stronger optomechanical coupling, since g ∝ N . The
mechanical frequency in this system is slightly modulated ωM(t) ' ω̄M + 2ω2 cos 2ωdt. We show
here its central value depends on N hence ω̄M ≡ ω̄M(N). As shown in the figure, the double
peaked structures are centered on ω̄M(N). Here we present a model which will enable one to read
N and hence to infer ω̄M(N) and ω2(N) from the measured cavity output. Data is from [23] at
pressure P ' 10−2 mbar, laser detuning ∆ = −60× 2π KHz, input power Pin = 0.07 mW, finesse
F = 50, 000, and ion trap frequency ωT ' 500× 2π Hz.

the central frequency depends significantly on N , hence ω̄M ≡ ω̄M(N) and this is investigated

in section 3. In section 4 we consider a simple model valid for the fast cavity regime κ � ωM

and we show this fast-cavity model can be used to obtain split-sideband asymmetry. In section

5, we analyse thermometry with split-sideband spectra. We show the area under a properly

normalised cavity output still reliably gives a temperature consistent with the results obtained

from simple period-averaging (i.e., using period-averaged parameters in standard optomechanical

expression for cooling rates). In addition to the new analysis in sections 3 and 4, figure 3 and

figure 4 represent the main new results. All our analytical findings are verified against nonlinear,

stochastic numerics. We summarise and conclude in section 6.

2. Review: Dynamics of the hybrid Paul-trap in a cavity set-up

We consider a charged, dielectric nanosphere levitated in a hybrid trap that combines the optical

potential from the standing wave in the cavity with the ion trap potential:

VTOT(x, y, z, t) = Vopt(x, y, z, t) + Vion(x, y, z, t) (1)

= ~A|a(t)|2 cos2(kx)F(y, z) +
1

2
mω2

T (x2 + y2 − 2z2) sinωdt,



Thermometry of levitated nanoparticles in a hybrid electro-optical trap 6

where |a(t)|2 represents the (fluctuating) photon number in the cavity, and x is the coordinate

along the cavity axis, as shown in Fig. 1. The optical trap depth A = 3Vs

2Vc

εr−1
εr+2

ωl depends on

constant parameters: relative dielectric constant εr ' 2 for silica, laser frequency ωl, sphere

volume Vs = 4
3
πR3, and mode volume Vc = πw2L (where w is the beam waist and L is the cavity

length). F(y, z) = exp(−2(y2 + z2)/w2) represents the transverse Gaussian beam profile. The

axial Paul trap potential Vion(x, y = 0, z = 0, t) = 1
2
mω2

T x
2 sinωdt represents a harmonic potential

with ion trap frequency ω2
T = 2QV0

mr20
, where m and Q are the mass and charge of the bead, V0 is the

voltage, and r0 is a parameter which characterises the ion trap (see [32] for a review of quadrupole

ion traps). In the set-up of [23], A ' 2π× 26 kHz, L = 1.3 cm, w = 60 µm, R = 200 nm, r0 = 0.5

mm, ωd = 1500 Hz and V0 = 300 V. In [13] it was found that R = 200 nm nanoparticles are still

reasonably well described by point-dipole approximations, despite their size.

Dipole/gradient forces allow the nanosphere to be captured in one of the optical wells where

it oscillates about the antinode (x0 = 0) with a mechanical frequency ωM � ωd which is fast

relative to the ion trap drive. We label the optical wells by N , where N ∈ [0 : ±1000] is the

representative number of wells spanned by the Paul trap dimension r0. In the absence of the

Paul trap, ωM is insensitive to the well number N the bead is caught in. However, the effect

of the ion trap is to periodically pull the charged bead away from the antinode and across the

optical well with the drive frequency ωd. This slow, harmonic excursion in the equilibrium position

x0(t), in addition to a fast mechanical oscillation about x0, is a characteristic of the hybrid trap

dynamics (see figure 1) that not only drives cooling, but also causes well-dependent (N -dependent)

optomechanical modulations.

Figure 1 illustrates how the Paul trap removes the x-invariance of the different optical wells of

the cavity standing wave Vopt. The dynamics become well-dependent, with low N associated with

a small x0 excursion, and a dominant quadratic coupling; while a high-N catch resulting in a large

x0(t) and strong cooling. Both regimes were experimentally observed in [23].

In the present paper, we solved the equations of motion in the combined potential of (2).

However, cooling dynamics occurs primarily in the axial direction, so in the modelling and analysis

of the linearised motions below, we focus on the axial (x) degree of freedom. In the numerical

simulations, we always consider the full 3D equations of motion with the addition of a Gaussian

noise bath which, in the absence of cooling, yields steady state temperatures of T ' 300K. Full

details were presented in [23], but in the axial direction we solve:

ẍ = −~kA
m
|a(t)|2 sin(2kx)F(y, z)− ΓMẋ− ω2

Tx cos(ωdt)− ζx(t), (2)

and the noise terms arise from the background bath of gas at room temperature:

〈ζx(t′)ζx(t)〉 ' ΓM2nB
~ωM

m
δ(t− t′) (3)

where nB = kBT/(~ωM), with TB = 300 K and kB is Boltzmann’s constant. ζx and η(t)

are modelled as Gaussian random noise. For the levitated experimental parameters used here,

ΓM ≈ 0.11× 104P s−1 where the pressure P is in mBar.
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For the optical mode, we solve:

ȧ = i∆a− iE + iAa cos2(kx)F(y, z)− κ

2
a− η(t). (4)

Here η(t) is assumed to be photon shot noise, where

〈η(t′)η(t)〉 = κδ(t− t′). (5)

where E is the amplitude of the laser driving the cavity with photons of frequency ωl; it is related

to the input power Pin (for a critically coupled cavity) by E2 =
κ

2

Pin

~ωl

. For a cavity detuned by ∆

from resonance, this results in a mean cavity photon number n = E2
( κ
2

)2+∆2 . Since the steady state

photon number is very large , we note Vopt = ~A|a(t)|2 cos2(kx)F(y, z) ' ~An cos2(kx)F(y, z) so

the optical potential is typically nearly independent of time.

The numerical equations are nonlinear as well as stochastic. Crucially, the numerics make no

assumptions concerning the behaviour of ωM, optomechanical coupling strength g or even the

modulation in the spring constant (the parameter ω2, discussed below) arising from the excursion

in x0. All of these, including the excursion in x0(t), emerge from the numerics, once experimental

parameters such as laser input power Pin, detuning ∆, nanosphere charge Q, and well N are set.

We note that Q varies between experimental runs, as does N the optical well the particle was

captured by; Q and N cannot currently be preset in the experiments and varied unpredictably

from one run to the next.

Thus the numerics provide a stringent and independent check on the theoretical analysis based

on optomechanical theory and linearised dynamics. Figure 2 shows a comparison between the

stochastic numerical simulations of the cavity output and data, for optical capture in low N ,

showing that solving the full nonlinear equations of motion accurately reproduces detailed features

of the data. At the lowest N , as shown in [23], the cavity spectra are dominated by position

squared coupling to the light. This is not investigated in detail here: x2 coupling effects are

strongly suppressed with increasing N , and in the high cooling regimes of N & 100, linear

dynamics predominates. Of more significance is the striking ‘twin-peak’ sideband structure seen

near ω ' ωM ± ωd. For N & 100 in fact, these peaks become asymmetric with a ratio 0 ≤ r < 1

of the amplitudes of the two peaks. This ratio also depends on N . In the following section we

analyse these effects from the linearised dynamics, both classical and quantum.

2.1. Linearised classical dynamics

Although we do not have to input values of ωM or g into the numerics, one may obtain good

analytical estimates from the linearised dynamics, given values for the Paul trap drive frequency

ωd, voltage V0, detuning ∆, input power Pin, as well as nanosphere charge Q and intracavity photon

number n. For convenience, we shift the origin to the antinode of the trapping well, x = xN = N λ
2

instead of the origin of the Paul trap at x = 0. We then adopt the usual procedure of linearising
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about small displacements in position x(t) → x0 + x(t) and optical field a(t) → ᾱ + a(t). Hence

n = |ᾱ|2 is the mean number of photons in the cavity.

In the case of the hybrid trap, however, x0 is time-dependent. From the zeroth order dynamics,

we can show [23]:

sin 2kx0(t) = 2kXd sinωdt, where 2kXd = −ω
2
T

ω̄2
M

2πN. (6)

From the first order dynamics we can show [23]:

ω̄2
M(0) =

2~k2A|ᾱ|2

m
. (7)

and that with the x0(t) excursion, the optomechanical parameters are given by:

g(x0) = kAᾱ sin 2kx0(t) (8)

∆(x0) = ∆ + A cos2 kx0(t) (9)

ω2
M(x0) = ω̄2

M(0) cos 2kx0(t). (10)

Since ωd � ωM, however, x0(t) varies slowly on the time-scale of a mechanical oscillation

allowing separate consideration of the motions; thus we can use the instantaneous values of x0(t),

and substitute values from (6) into the above equations.

2.2. Linearised quantum dynamics

The quantum dynamics were investigated in [24] by considering modulations in the optomechanical

coupling g(t) = 2ḡ sinωdt and mechanical frequency ωM(t) = ω̄M + 2ω2 cos 2ωdt. In the present

section, we briefly discuss the dependence of a general optomechanical system on these types

of modulations: the behaviour is generic, in the sense that the resulting split-sideband spectral

structure could be obtained in any set-up where the spring constant and g are both modulated.

In the next section we consider how ḡ, ω̄M and ω2 vary in the specific case of the hybrid trap.

In the quantum regime, very analogous equations are obtained by considering small quantum

fluctuations about equilibrium classical values x̂(t) → x0 + x̂(t) and optical field â(t) → ᾱ + â(t)

The quantum dynamics is given by the linearised quantum Hamiltonian:

Ĥ/~ = ∆â†â+ ωM(p̂2 + x̂2) + g(â† + â)x̂. (11)

where â†, â are creation and annihilation operators for small fluctuations in the cavity mode

about its equilibrium value ᾱ, while x̂ ≡ b̂ + b̂† in appropriately scaled units. The corresponding

equations of motion may be solved in Fourier space and one obtains the well-known expression:

ŷ(ω) = gη(ω) · x̂(ω) +
√
κŶin(ω), (12)

where ŷ(ω) = â†(ω) + â(ω). This expression relates the intra-cavity field amplitude quadrature

to the particle motion; an analogous expression can be written for the phase quadrature of the
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optical field (note that for ∆ = 0, only the phase quadrature couples appreciably to the motion;

however we are considering non-zero ∆ in the present work).

However, if one considers modulated parameters g(t) = 2ḡ sinωdt and mechanical frequency

ωM(t) = ω̄M+2ω2 cos 2ωdt, which are substituted into (11) followed by solution of the corresponding

Heisenberg’s equations of motion, including dissipative terms, one now obtains instead:

ŷ(ω) = ḡη(ω) · [x̂(ω + ωd)− x̂(ω − ωd)] +
√
κŶin(ω). (13)

We define the functions η(ω) = χO(ω) − χ∗O(−ω) and µ(ω) = χM(ω) − χ∗M(−ω), given in terms

of the usual optical susceptibility χO(ω) =
[
−i(ω + ∆) + κ

2

]−1
and mechanical susceptibility

χM(ω) =
[
−i(ω − ωM) + ΓM

2

]−1
respectively.

One may also obtain the quantum displacement spectrum:

x̂(ω) = ḡµ(ω) · (ŷ(ω + ωd)− ŷ(ω − ωd)) +
√

ΓMX̂th(ω) (14)

−iω2χM(ω)
{
b̂(ω + 2ωd) + b̂(ω − 2ωd)

}
+ iω2χ

∗
M(−ω)

{
b̂†(ω + 2ωd) + b̂†(ω − 2ωd)

}
,

The origin of the ‘twin peaks’ behavior is clear from (13): the g-excursion couples the optical

field to shifted displacement X̂±(ω) = x̂(ω+ ωd)− x̂(ω− ωd). Conversely, it is also apparent from

(15) that the ω2 modulation causes x̂(ω) to develop sidebands at ω̄M ± 2ωd. The fact that the

cavity spectrum is related to a frequency-shifted displacement (and vice-versa) makes this system

different from the canonical optomechanical system where ŷ(ω) is simply related to x̂(ω).

By means of iterative substitution of (14) in (13) (and vice-versa) an approximate solution to the

cavity output spectrum may be obtained, which was found to give good agreement with numerics

for moderate values of ω2. It was found that the asymmetry which develops between peak heights

as ω2 increases, is due to interference effects. Details are in [24] but from these solutions, an

expression for ratio r of the heights of the two peaks was obtained:

r ≈ (2ωd − ω2)2/(2ωd + ω2)2. (15)

While in [24] these behaviors were investigated for an arbitrary optomechanical system, the

corresponding modulations also arise naturally for an optically-trapped particle with a sinusoidal

modulation x0(t) of the equilibrium position of the oscillator. Taking g(x0) and ωM(x0) from (8)

to (10) it is shown in the next section that they lead to similar modulations of the mechanical

frequency ωM(t) ' ω̄M + 2ω2 cos 2ωdt as well as g(t) = 2ḡ sinωdt. The N -dependence specific to

the hybrid trap emerges only when we substitute (6) in (8) to (10). Comparisons with numerics

found that r is reasonably approximated by Eq. 15 provided ω2 . ωd. For larger ω2, the ratio r

must be estimated numerically.

3. Results: N-dependence of experimental parameters

Because of the x0(t) excursion, the hybrid trap exhibits atypical cavity output spectra. For N = 1

(figure 2), the modulation of x0 is minimal and does not change the optomechanical parameters
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Figure 3. (a) Colormaps showing the displacement spectra (left panel Sxx(ω)) and cavity output
(right panel, Syoutyout(ω)) for N ∈ [1 : 500], obtained by numerical solution of nonlinear coupled
Langevin equations. Colors indicate the noise power at each frequency. Sxx(ω) is peaked at
ω = ω̄M(N) which decreases with increasing N . The blue line represents the analytical Paul
trap-shifted ω̄M(N) and shows good agreement with the numerics up to N ≈ 400. Additional
weaker sidebands at ω ' ωM ± 2ωd are also seen at higher N . In contrast, Syoutyout(ω) is mainly
peaked at ω ' ω̄M ± ωd; For low N , a ‘twin peaks’ structure is seen; with increasing N an
asymmetric pair develops as the ω ' ω̄M + ωd peak is increasingly suppressed. We compute the
asymmetry ratio using a fast-cavity model which predicts complete cancellation of ω̄M + ωd peak
at N ≈ 362 (marked by ×). Higher-order sidebands at ω̄M(N) ± nωd for odd n also appear as
the frequency modulation becomes stronger. (b) Shows individual spectra for N = 1 (twin peaks)
and N = 300 (asymmetric peaks). Numerics ≡ red and analytical fits ≡ black. Input power
Pin = 0.6 mW, pressure P = 5.4 × 10−2 mbar, laser detuning ∆ = −100 × 2π kHz, and ion trap
frequency ωT ' 630× 2π Hz.
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significantly (although spectra here are strongly affected by position-squared coupling). For higher

N & 100 only the linear coupling is significant; however, instead of the usual single peak at ω = ωM

there is a pair of sideband-peaks at ωM ± ωd.

Substitution of (6) in (8) gives the optomechanical coupling in terms of N :

g(N, t) = 2ḡ(N) sinωdt, (16)

which oscillates about an N -dependent mean:

ḡ(N) =
ω2

T

ω̄M(0)2
πkA|ᾱ|N. (17)

Another consequence of a high-N catch is the Paul trap pulls the nanosphere away from the

antinode and towards the linear region of the optical well, thereby modulating ωM as well. We

square (6) and (10), add them, and then solve for ωM(t):

ωM(t) = ω̄M(0)
(
1− (2kXd)2 sin2 ωdt

)1/4
. (18)

Expanding up to second order in ζ, we obtain:

ωM(N, t) ≈ ω̄M(N) + 2ω2(N) cos 2ωdt, (19)

where:

ω̄M(N) ≈
(

1− ζN2 − 9

4
ζ2N4

)
ω̄M(0), and (20)

ω2(N) ≈ 1

2

(
ζN2 + 3ζ2N4

)
ω̄M(0). (21)

with ζ = π2

2

ω4
T

ω̄4
M(0)

. Equation (19) underlines the non-trivial, two-way interaction between the cavity

and Paul trap field a hybrid trap: the mechanical frequency is shifted and modulated by the Paul

trap, while the secular frequencies of the Paul trap acquire a “cavity-shift” from the optical field

[23]. We verify this through numerics where we solve nonlinear coupled Langevin equations using

stochastic Runge-Kutta algorithm. We run the simulation for the same parameters as the strong

cooling data in figure 4 of [23], and present the cavity spectra for N = 1 : 500 in figure 3a. The

right panel clearly shows the twin peaks at low N , with progressive suppression of ω ' ω̄M + ωd.

Note that as the map is a log plot, the weak but more complex structure at high N is emphasized.

The mechanical frequency shifts by about 10%, in agreement with (20). For comparison we

overlay the value of ω̄M(N) obtained from (20), showing reasonable agreement up to about

N . 400. Obtaining agreement for higher N & 400 becomes increasingly challenging. One

potential source of the discrepancy may be because, in using (7) to calculate ω̄M, |ᾱ|2 has to be

appropriately corrected as a result of a modified detuning (9). It also has an N dependence since

∆(N) ≈ ∆ + A − 2AζN2. The modulation of ∆ due to the change in x0(t) is usually a minor

effect, provided ∆� A and κ & |∆|. This approximation is tested here by the comparisons with

the numerics which involve no linearisation: in the numerics the effective detuning, as well as ωM

and g, are emergent properties, not input parameters.

It is important to note that the ω̄M(N) shifts are quite different from the usual optical spring

effect seen in standard optomechanics and can be significantly larger. As for the modulation of
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Figure 4. Thermometry in hybrid traps: compares final (steady state) phonon numbers inferred
from the area under the sidebands of the normalised cavity output Syoutyout(ω)/(ḡ2|η(ω)|2) (green
triangles) with those calculated directly from the displacement spectrum Sxx(ω) (red circles).
Results are given as a function of N , the optical well where the nanoparticle is trapped. The
blue line represents the values using the standard optomechanical cooling formula with a period-
averaged coupling ḡ(N). Agreement between the three methods is excellent, except the very
lowest few capture wells N . 10 where there is a strong contribution from the position-squared
coupling term. In this case, the cavity output estimate (which integrates over both linear and
nonlinear sidebands is much larger than the value estimated from Sxx(ω). The inset shows the
final phonon occupancy scales as N−2. Upper panel parameters are for a high-finesse cavity
F = 200, 000 which can yield ground state cooling for capture in high wells N & 300 − 500 for
pressures P = 10−6 − 10−7 mbar; input power Pin = 0.6 mW, laser detuning ∆ = −70× 2π kHz,
ion trap frequency ωT ' 630× 2π Hz. Lower panel parameters are as for figure 3.

the frequency, it is characterised by a quite small amplitude ω2 � ω̄M(N), so it is surprising

that driving the system so far off-resonance with the mechanical frequency is associated with a

dramatic change in the output spectrum: the ratio r → 0 for N ≈ 400. In the quantum model,

the underlying cause was shown to be (eg see Eq.(15)) to be a resonance between ω2 and the drive

frequency, when ω2 ' 2ωd. In the next section we introduce an analytical fast-cavity model which

gives a different perspective to this suppression of one of the ‘twin peaks’.

4. Results: Further analysis of sideband asymmetry

In this section we consider an alternative means to understand the sideband asymmetry in the

hybrid trap. Although not central to the study of thermometry, it adds physical insight.
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Consider the linearised interaction Hamiltonian: H lin
OM = ~g(t)x(t)ya(t), where ya(t) ≡ â†(t) +

â(t) is the amplitude quadrature of the cavity field.

The displacement x(t) = XM(t) + x0(t) may be decomposed into a sum of a fast mechanical

oscillation and a slow drift in the equilibrium position. The fast oscillation is XM(t) ' XM cos ΦM(t)

where XM is the variance of the thermal motion and the accumulated phase ΦM(t) =
∫ t

0
ωM(t′)dt′ =∫ t

0
(ωM + 2ω2 cos 2ωdt

′)dt′. Hence, we write:

x(t) = XM cos

(
ω̄M(N)t+

ω2(N)

ωd

sin 2ωdt

)
+Xd sinωdt, (22)

Substituting (16) and (22) into the interaction Hamiltonian we obtain:

H lin
OM = 2~ḡ sinωdt

[
XM cos

(
ω̄M(N)t+

ω2(N)

ωd

sin 2ωdt

)
+Xd sinωdt

]
ya(t). (23)

Expanding the expression with Bessel and trigonometric identities, and discarding ω̄M±3ωd terms,

H lin
OM = 2~ḡya(t)XM {[J0(φ)− J1(φ)] · sin(ω̄M(N) + ωd)t (24)

+[J0(φ) + J1(φ)] · sin(ω̄M(N)− ωd)t} ,

where Ji is the ith-order Bessel polynomial of the first kind parameterised by φ = φ(N) = ω2(N)
ωd

.

We then easily see that the optical field probes the split frequency ω̄M(N) ± ωd with different

weights. The initial phase of the Paul trap drive is irrelevant to the asymmetry; what matters is

g(t) and ωM(t) are antiphase, which naturally follows from H lin
OM.

The equation shows that if J0(φ) = J1(φ), the coupling to the ω̄M(N) + ωd frequency vanishes.

Thus for this model one expects the ratio r to be zero if ω2(N)
ωd
∼ 1.4, which is not too far from

the prediction of the quantum model, ω2(N)
ωd
∼ 2.

We may also derive the split-sideband ratio using a fast-cavity picture. For κ � ωM, the

cavity field a(t) instantaneously follows the mechanical motion; for optical trapping however,

a(t) ∝ cos2 kx(t); light scattered from the cavity has a similar dependence. Substituting the form

for x(t) from Eq.22, the Fourier transform of cos2 kx(t) may be used to calculate the cavity output

PSD.

In general, sidebands of ω̄M(N)± nωd, n = 1, 3, 5, .. will appear, as observed in figure 3. With

a more sophisticated detection, we may be able to resolve these higher-order sidebands in the

experiments. For now, however, we are interested with the coefficients of ω̄M(N) ± ωd and their

ratio:

r =
J0[XMJ0(φ)] J1[XMJ1(φ)]− J0[XMJ1(φ)] J1[XMJ0(φ)]

J0[XMJ0(φ)] J1[XMJ1(φ)] + J0[XMJ1(φ)] J1[XMJ0(φ)]
. (25)

With the simultaneous excursions in g and ωM, the optical field remains equally sensitive to the

split-frequency ω̄M(N)± ωd only when φ(N) = ω2(N)
ωd

= 0; this happens at N = 0. As N increases

and ω2(N) becomes stronger, the twin-peak evolves into an asymmetric pair. In fact, one of the

peaks completely vanishes when the condition J0(φ) = J1(φ) is met, i.e. when φ(N) ≈ 1.4. We

see this condition clearly from (25) as well. For the parameters in figure 3, numerics indicate that

complete cancellation happens at N ≈ 400, while the fast-cavity model predicts N ≈ 362. The

quantum model, valid for both fast and slow cavities, gives an even closer estimate: ω2(N) ≈ 2ωd
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at N ≈ 419. As with ω̄M(N), accuracy could be improved by considering ∆-modulation that

corrects |ᾱ|2.

The absence of ΓM in (25) means the ratio persists even as the pressure is lowered. However,

as we have not included quantum noises, the fast-cavity description is valid only in the thermal

regime; the sideband ratio changes when quantum correlations become significant [24]. But, even

if the quantum model may be extended to the ground-state, it is a linearised description. The

fast-cavity model, while fully classical, includes all nonlinear behavior including the quadratic

x2-coupling that dominate low-N dynamics. This is not predicted by the quantum model. In the

weak cooling regime, only the fast-cavity model is able to describe the dynamics, allowing the

ratio of ωM ± ωd to 2ωM to be obtained [22].

In the next section we outline how to do thermometry with a normalised cavity output using

ḡ(N) and ω̄M(N) that we derived in section 3.

5. Results: Split-sideband thermometry

As illustrated in figure 2 and figure 3, the sidebands of the cavity output field in the case of a

hybrid trap differ qualitatively from the standard case, with split-sideband structures seen both

at low and high N . For low N (weak cooling), Syoutyout(ω) has twin-peak pairs near ω = ±ωM

and a further large peak at ±2ωM due to x2 coupling to the light. For higher N (strong cooling),

the split-sideband becomes asymmetric and the position-squared effects are strongly suppressed.

As we are interested in strong cooling, we do not consider x2 coupling here. A key question we

test here is whether usual procedures for inferring temperature experimentally are still reliable for

these non-standard output spectra.

In the canonical optomechanical case, the PSD of the position spectrum Sxx(ω) may be

deduced from the cavity output (in this case exemplified by the amplitude quadrature) from

the approximate relation:

Syoutyout(ω) ' g2|η(ω)|2Sxx(ω), (26)

where the optical susceptibility η(ω) = χO(ω) − χ∗O(−ω) was defined in Sec 2.2. The expression

may be deduced from (12), but neglecting the Ŷin terms. In the limit of long measurement time,

the Wiener-Khinchin theorem connects the Fourier transform of the autocorrelation function with

the power spectral density: Sxx(ω) = 〈|x̂(ω)|2〉. The area under Sxx(ω) then gives the variance

〈|x̂|2〉 which the equipartition theorem relates to temperature [33]:

1

2π

∫ +∞

−∞
Sxx(ω) dω =

〈
|x̂|2
〉

=
kT

mωM

. (27)

Using (26) and (27), the temperature can be extracted from a properly normalised cavity output:

1

2π

∫ +∞

−∞

Syoutyout(ω)

g2|η(ω)|2
dω =

kT

mωM

(28)

Note that in the standard case, Sxx(ω) and Syoutyout(ω) have very similar shapes and are peaked

at ωM. All the constant coupling parameter g does is to rescale the area under Syoutyout(ω). It
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is implicit that the above integrals are over the mechanical sidebands only. This is especially

important in the numerics or near the quantum regime since Syoutyout(ω) may have a background

arising from so-called imprecision noise, due to shot noise or classical laser noise. Near the quantum

regime, the area of the sidebands is small and the background can contribute a significant error if

the integral spans a frequency range larger than the sideband.

For hybrid trap experiments and simulations however, the equivalent expression to (26) is:

Syoutyout(ω) ' ḡ2|η(ω)|2SX±X±(ω), (29)

The optical field now probes the shifted displacement spectrum: SX±X±(ω) =
〈
|X̂±(ω)|2

〉
=

〈|x̂(ω + ωd)− x̂(ω − ωd)|2〉.

Equation (29) was derived in [24] for arbitrary optomechanical coupling, but which we have

explicitly related in Sec.3 N in (17); hence ḡ ≡ ḡ(N). In a manner similar to (27), we can extract

the temperature from SX±X±(ω):

1

2π

∫ +∞

−∞
SX±X±(ω) dω =

〈
|X̂±|2

〉
=

kT

mωM

. (30)

In the thermal regime, (29) relates SX±X±(ω) to a properly normalised Syoutyout(ω); (30) becomes

1

2π

∫ +∞

−∞

Syoutyout(ω)

ḡ(N)2|η(ω)|2
dω =

kT

mωM

. (31)

which relates the temperature to the split-sideband cavity output spectra, via an N -dependent

normalisation.

In figure 4 we test (31) . We obtain the temperature independently by calculating the area of

Sxx(ω) obtained from the full stochastic numerics; this is accessible to theory but not usually to

experiments measuring homodyne or heterodyne cavity spectra. We compare this temperature

with that obtained from a numerical simulation of Syoutyout(ω).

Additionally, we also estimate the temperature (in K) from the balance between heating and

cooling rates. The dissipative part of the effective response function gives the optomechanical

cooling rate [33]: Γopt(t) = g2(t)κ [S(ωM)− S(−ωM)], where S(ωM) =
[
(∆ + ωM)2 + κ2

4

]−1

[33].

As it depends on g2(t), the cooling rate varies cyclically, reaching a maximum when the bead is

at the linear region of the optical well. Knowing that g, ωM, and ∆ have N -dependent average

values, we use (17), (20), and ∆̄ = ∆ + A to get the time-averaged optomechanical cooling rate:

Γopt(N) = 4ḡ2(N)κ

{[(
∆̄ + ω̄M(N)

)2
+
κ2

4

]−1

−
[(

∆̄− ω̄M(N)
)2

+
κ2

4

]−1
}
. (32)

An effective temperature can then be obtained:

T ' 300
ΓM

Γopt(N) + ΓM

. (33)

For high N , the accuracy of (33) is limited by the small-angle approximations we used in deriving

the shifted average parameters; nonetheless, figure 4 shows good agreement, at least for high N ,

between the three methods: time-averaging (33), from the area of the sidebands of Sxx(ω) and of

the normalised Syoutyout(ω).



Thermometry of levitated nanoparticles in a hybrid electro-optical trap 16

There are some evident discrepancies. For really low N , however, we see a discrepancy that

can be explained by noting the cavity output spectra Syoutyout(ω) are dominated by the nonlinear

x2-coupling sidebands at ω ' ±2ωM. This sideband is not present in Sxx(ω); this source of error

could be improved by integrating only the area under the ω ∼ ωM sidebands; nevertheless, care is

needed for N . 100.

In the important sideband resolved case of figure 4(a) which can lead to ground state cooling,

there are increasing discrepancies with lower pressure as the sideband area becomes small; this is

partly a numerical error which requires stronger averaging by the stochastic numerics; however,

the systematic overestimate of temperature by Syoutyout(ω) is attributed to the contribution from

the imprecision floor (from laser shot noise). With knowledge of ωM this can be improved by

integrating strictly only over the frequency range under the sidebands; as the mean frequency

changes with N , at present the numerics integrate over a much wider frequency range than is

spanned by the sidebands.

For the case of the fast cavity, there is also a systematic over-estimation of the temperature from

Syoutyout(ω) even at the highest pressures, where the sideband area is large and the imprecision

noise contribution is negligible. We attribute this to the uncertainty in g(N); The temperature

depends on (g(N))2 so is sensitive to this value; this may indicate that the analytically computed

g(N) in the fast cavity dynamics is underestimated by 20− 30%. There is also an extremely large

discrepancy between the Langevin numerics and the optomechanical formula for low N ; calculation

of sideband area in this regime is numerically challenging: since ΓM ∝ P , in this case, the cooling

rates Γopt(N) → 0 for low N (e.g., for the experiments considered here, ΓM ≈ 0.11 × 104P s−1

where the pressure P is in mBar). The sidebands are thus extremely narrow so the numerical

estimation of the area under the sidebands becomes very difficult.

Figure 4 also indicates the approximate point where r ≈ 0 and a single peak (as opposed to

a twin-peak structure) dominates the sideband structure of the cavity output. This provides a

signature of high N capture. The inferred value of N represents a key source of uncertainty for

experimental thermometry since N is at present inferred from the sideband shape. Fortunately for

N � 100 the variation of temperature on N is sufficiently slow, that an uncertainty in N ∼ 10−50

still allows a reasonable estimate of g(N).

6. Summary and Conclusions

The use of Paul traps has opened the way for ground state cooling of nanoparticles in optical

cavities, without the need for additional feedback cooling and at high vacuum. However, the

resulting quantum noise spectra are atypical and complete understanding of the cavity output

is essential not only for thermometry but also for any future sensing applications. The complex

split-sideband structure potentially offer additional diagnostics of the dynamics including in the

quantum regime [24], which further motivates such studies. In the present work we have analysed

the N -dependence of the cavity output spectra, cooling dynamics, and optomechanical parameters.

We show that the mechanical frequencies are slightly dependent on N and shift to slightly lower
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values with increasing N . The shift is however quite predictable so easily calculated from either

numerics or analytically for N not too high.

In particular, asymmetries in the sidebands of the cavity output, arising from the effect of the

ion trap drive and characterised by the ratio r(N), were investigated. The r = 0 point provides a

distinctive feature which can be investigated in future experimental studies. From the quantum

linearised dynamics, it is to predicted to occur if ω2 = 2ωd. We introduce a fast cavity model,

which is valid only if κ � ωM, but which gives further insight as it also produces an r = 0

point. We have also investigated and compared temperatures extracted from the simulated cavity

output spectra with those obtained from standard optomechanical cooling rate expressions, but

using period-averaged parameters. We conclude that although the cavity output spectra have a

complex sideband structure, temperatures may still be reliably inferred which are consistent with

those calculated directly from the displacement spectra.

7. APPENDIX: Measuring ω2
T and nanosphere charge Q.

A Paul trap, in addition to the oscillating field with a drive frequency ωd may also include a static

field V DC(x, y, z)1
2
mω2

DC (x2 + y2 − 2z2).

The corresponding frequencies depend on the applied voltages UAC and UDC respectively;
1
2
mω2

T = QUAC/r
2
0 while 1

2
mω2

DC = QUDC/r
2
0 where r0 ' 0.5 mm for the present study and

Q is the charge.

In the absence of a cavity, the x, y, z motions are separable and are given by Mathieu equations,

mü =
mω2

d

4
[au − 2qu cos(ωdt)]u, (34)

for u = x, y, z and where ax,y = QUDC/(mω
2
dr

2
0) and

qx,y = 4QUAC/(mω
2
dr

2
0), (35)

while az = −ax and qz = −2qx. In the present study, UDC = 0 and no DC offset is applied.

Due to their importance in mass spectrometry, the Mathieu equations are well-studied (see [32]

for a review). Since ωd � ωT, the motions are adiabatically separable into fast micromotion

(oscillations at ωd) and a slower secular motion. However, the secular motion is not characterized

by ωT; rather, it is characterized by a distinct so-called secular frequency; for modest qu � 0.9,

the secular frequency is given by:

ω(u)
s ' ωd

2

√
au +

q2
u

2
(36)

In the ion trap component of the hybrid trap, no static field is applied. However, provided

transverse motions are of small amplitude relative to the beam waist, the optical mode provides an
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(a)

Figure 5. In order to calculate the optomechanical coupling ḡ(N) and hence the cooling rates, an
essential parameter is the Paul trap frequency ω2

T = 2QV0
mr2

0
. This depends on the nanosphere charge

Q which can vary each time a new nanosphere is loaded into the hybrid trap. ω2
T is estimated

by measuring the transverse (secular) frequencies of the trap, as well as the mechanical frequency,
as explained in the Appendix. (a) Left panel illustrates a set of data where the amplitude of the
y motion is sufficiently large to visibly modulate the cavity output intensity (typically, however,
the amplitude of secular motions is too small to be so apparent). The asymmetric nature of
the trajectory in this case is even apparent: the upper, more rounded features correspond to the
particle turning point nearer the centre y = 0 of the optical beam; the lower, more pointed features
correspond to a turning point further out (larger y) in the optical beam. (b) The low frequency
part of the Fourier transforms of the cavity output data reveals ωs: in addition to peaks at ωs and
its harmonics, there are also sidebands on the peak at the drive frequency.

approximate static potential. The Gaussian transverse confining potential F(y, z) = exp[−2(y2 +

z2)/w2] represents an approximate harmonic potential for motions of amplitude � w. This

introduces an effective DC parameter ay = az:

ay,z =
16~An
mw2ω2

d

, (37)
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where n = |ᾱ|2 is the photon number. For a non-ideal Paul trap, one must also define a trap

efficiency ε:

ω2
T = 2QεUAC/r

2
0 =

q

2
ω2

d. (38)

The efficiency, which ranges from 0.1−1 in different traps is the ratio between the voltage required

to obtain a given secular frequency, relative to the ideal Paul trap, and absorbs uncertainties in the

effective trap dimension parameter r0. The value of Q inferred from ωT or q = Qε is an effective

charge for a trap where the efficiency is not accurately known.

Substituting (37) in (36) and using (7), we get an effective secular frequency that is a sum of

the original ω2
s with only AC drive, and a correction term proportional to ω̄2

M arising due to the

photon field acting as a DC offset:

ω2
s (n) = ω2

s (n = 0) +
2ω̄2

M

k2w2
, (39)

where ω2
s (n = 0) =

ω2
d

4
q2

2
, and ω̄M = ω̄M(N = 0) ≈ ω̄M(N) for modest N . Through the readout

of ω̄M and the effective ωs(n) from the cavity output we can then infer q using (39) and ω2
T using

(38).
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[14] Kiesel N, Blaser F, Delić U, Grass D, Kaltenbaek R and Aspelmeyer M 2013 Proc. Natl Acad. Sci. USA 110

14180
[15] Millen J, Deesuwan T, Barker P F and Anders J 2014 Nat. Nanotechnol. 9 425
[16] Ranjit G, Cunningham M, Casey K, Geraci A A 2016 Phys. Rev. A 93 053801
[17] Mestres P, Berthelot J, Spasenovi M, Gieseler J, Novotny L and Quidant R 2015 Appl. Phys. Lett. 107 151102
[18] Li T, Kheifets S and Raizen M G 2011 Nature Phys. 7 527
[19] Gieseler J, Deutsch B, Quidant R and Novotny L 2012 Phys. Rev. Lett. 109103603
[20] Vovrosh J, Rashid M, Hempston D, Bateman J and Ulbricht H 2016 Controlling the Motion of a Nanoparticle

Trapped in Vacuum arXiv:1603.02917.
[21] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601
[22] Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S and Barker P F (2015) Phys. Rev. Lett. 114

123602
[23] Fonseca P Z G, Aranas E B, Millen J, Monteiro T S, Barker P F 2016 Phys. Rev. Lett in press
[24] Aranas E B, Fonseca P Z G, Barker P F and Monteiro T S 2016 Toward detection of the quantum limit with

slowly modulated optomechanics arXiv:1606.07377
[25] Ranjit G, Cris Montoya C and Geraci A A 2015 Phys. Rev. A 91 013416
[26] Kuhn S, Kosloff A, Stickler B A, Patolsky F, Hornberger K, Arndt M and Millen J 2016 Full Rotational

Control of Levitated Silicon Nanorods arXiv:1608.07315.
[27] Hoang T M, Ma Y, Ahn J, Bang J, Robicheaux F, Yin Z G and Li T 2016 Phys. Rev. Lett 117 123604
[28] Delord T, Nicolas L, Schwab L, Htet G 2016 Electron spin resonance from NV centers in diamonds levitating

in an ion trap arXiv:1605.02953
[29] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102
[30] Weinstein A J, Lei C U, Wollman E E, Suh J, Metelmann A, Clerk A A and Schwab K C 2014 Phys. Rev. X

4 041003
[31] Peterson R W, Purdy T P, Kampel N S, Andrews R W, Yu P L, Lehnert K W and Regal C A 2016 Phys.

Rev. Lett. 116 063601
[32] March R E 1997 J. Mass Spectrom. 32 351
[33] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391


