
A Comprehensive Study of Argumentation Frameworks
With Sets of Attacking Arguments

Giorgos Flourisa, Antonis Bikakisb

aInstitute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), N. Plastira
100, Vassilika Vouton, Heraklion, GR-70013, Greece

bDepartment of Information Studies, University College London (UCL), Gower Street, London WC1E 6BT,
United Kingdom

Abstract

It has been argued that Dung’s classical Abstract Argumentation Framework (AAF)

model is not appropriate for capturing “joint attacks”, a feature that is inherent in sev-

eral contexts and applications. The model proposed by Nielsen and Parsons in [1],

often referred to as “framework with sets of attacking arguments” (SETAF), fills this

gap by introducing joint attacks as a generalisation of the standard attack relationship

of AAFs, thus constituting a faithful generalization of Dung’s model. Building on that

work, we provide a more complete characterization of these frameworks, which in-

cludes the treatment of various semantics not considered in the original publication,

a more fine-grained representation of all acceptability semantics using labellings, and

two functions allowing the transition between extensions and labellings along with

their properties. Moreover, we show that a variety of well-known results that apply to

AAF can be migrated to the SETAF setting. To further associate the two frameworks,

we provide a natural way to represent a SETAF as a Dung-style AAF, and show how

the generated AAF behaves.

Keywords: Computational argumentation, Abstract argumentation frameworks,

Labellings, Sets of attacking arguments, SETAF, Joint attacks, Acceptability

semantics

Email addresses: fgeo@ics.forth.gr (Giorgos Flouris), a.bikakis@ucl.ac.uk (Antonis
Bikakis)

Preprint submitted to Elsevier March 18, 2019

1. Introduction

1.1. Motivation and problem statement

Abstract argumentation frameworks (AAF) constitute a simple and very successful

model for representing arguments and their counter-arguments and for evaluating the

acceptability of arguments based on their relationships with other arguments. AAFs

were originally introduced by Dung [2], who defined their semantics in terms of exten-

sions, and showed that many frameworks for non-monotonic reasoning, such as logic

programming, default logic and others, are instances of abstract argumentation. Due

to their generality and simplicity, AAFs have been applied to various domains such as

law [3], medicine [4], social networks [5], the Web [6, 7], surveillance systems [8],

engineering design [9] and others, to support tasks such as inconsistency handling,

non-monotonic reasoning, judgement aggregation, decision making, inter-agent com-

munication, etc.

In a nutshell, an AAF is a directed graph, whose nodes correspond to arguments and

whose edges correspond to attacks, which essentially represent the fact that a certain

argument invalidates another. AAFs are given semantics through extensions, which are

sets of arguments (nodes) that are non-conflicting (i.e., they do not attack each other)

and, as a group, “shield” themselves from attack by other arguments (which are not

in the extension). The exact formal meaning given to the term “shield” gives rise to

a multitude of different semantics (complete, preferred, stable, etc.) which have been

considered in the literature (e.g., see [10]).

A richer model for representing the semantics of abstract argumentation frame-

works using labellings was proposed in [11] and was then used in [12] to describe

the acceptability semantics defined by Dung. In that model, the arguments are classi-

fied into three groups, the in-arguments, out-arguments and undec-arguments, via a

function called labelling function. Intuitively, in-arguments correspond to arguments

that are accepted (i.e., are in the extension, in the classical sense described above),

out-arguments are those that are invalidated by in-arguments (through an attack),

whereas undec-arguments are “undecided”, i.e., they are arguments that, even though

there is no explicit attack by an in-argument rendering them invalid, their inclusion

2

in the in-arguments would invalidate the “shielding” requirement mentioned above.

The labelling semantics are more fine-grained, in the sense that they discriminate be-

tween different types of arguments that fail to be included in an extension into out-

arguments and undec-arguments. This is important in several applications that try to

“make sense” out of a debate, and need to understand what an agent should believe after

the debate is over. In this sense, the difference between out and undec is analogous to

the difference between believing that something is not true and not believing that some-

thing is true. In particular, out-arguments are rejected, whereas undec-arguments are

simply not convincing enough to be incorporated in the agent’s knowledge.

In a separate branch of research, it has been argued that it is necessary in many

contexts to be able to represent and reason with “joint attacks”, i.e., attacks where

many arguments, as a group, attack a single one [1]. This should not be confused with

the case where each argument attacks another individually; instead, the proposal of [1]

refers to attacks by sets of attacking arguments. This essentially would turn the graph

into a hypergraph, and constitutes a direct extension of Dung’s work, where all original

results of [2] can be recast in the richer model [1]. This richer model is often referred

to as “Framework with Sets of Attacking Arguments” or, briefly, SETAF.

To comprehend the usefulness of the notion of “joint attacks”, consider the fol-

lowing example from the legal domain (visualised in Figure 1). According to the UK

legislation about marriage and civil partnerships1, in the UK you are not allowed to

marry or form a civil partnership with your partner in the following cases: (a) you

are under 16; (b) you are closely related with your partner; (c) you are not single; (d)

you are under 18 and you don’t have the permission to marry from your parents or

guardians. We can represent this part of the legislation as an AAF, where the right to

get married is represented as an argument (M), which is attacked by four other argu-

ments, each representing a different case from (a)–(d). The argument representing (d),

however, is more complex that the rest of the arguments, as it combines two different

statements (“you are under 18” and “you don’t have the permission to marry from your

parents or guardians”). Therefore, if we combine both statements into a single argu-

1https://www.gov.uk/marriages-civil-partnerships

3

https://www.gov.uk/marriages-civil-partnerships

ment, we may run into trouble if either of the statements is used independently in other

parts of the legislation, e.g., if acting as an argument by itself or if it is combined with

other statements to form another argument.

Indeed, according to the legislation about voting2, you are not allowed to vote in

the UK if you are under 18; in this case,“you are under 18” acts as an argument by itself

against the eligibility to vote. Moreover, according to the legislation about alcohol and

young people3, in the UK you are not allowed to drink alcohol in public if you are

under 16, or if you are under 18 and you are either not accompanied by an adult or

you are not having a meal. In the latter case, “you are under 18” is combined with

one of two other statements to form an argument against the eligibility to drink alcohol

in public. Using AAF, we would need to create a new argument for every different

combination of simple statements that is needed to argue about something. This would

also require specifying the associations among all these arguments, because, e.g., the

validity of “being under 18” could affect the validity of “being under 18 and not having

permission by parent or guardian”, “being under 18 and not being accompanied by an

adult”, and “being under 18 and not having a meal”. Furthermore, to represent some

more complicated parts of the legislation involving many more conditions, we would

need to create much more complex arguments that combine such conditions, making

their understandability difficult. Indeed, Section 6 of this paper studies how organising

arguments into sets can allow the representation of such cases in an AAF, albeit at an

exponential cost (in terms of graph size) and a more complicated computation of the

related extensions.

A framework supporting the notion of “joint attacks” provides a much more elegant

and simple way to model this situation (see also Figure 1). In particular, using SETAF,

(d) could be represented as two separate arguments (A18 andNP), which jointly attack

M . In the voting case, A18 by itself attacks V . In the alcohol case, A18 and NA, as

well as A18 and NM jointly attack Alc.

Since its introduction, SETAF has already been used as the basis for supporting

2https://www.gov.uk/elections-in-the-uk
3https://www.gov.uk/alcohol-young-people-law

4

https://www.gov.uk/elections-in-the-uk
https://www.gov.uk/alcohol-young-people-law

M

V

Alc

R NS

A16

A18

NP

NA

NM

Legend for arguments

M: allowed to marry

V: allowed to vote

Alc: allowed to drink alcohol in public

A16: aged under 16

A18: aged under 18

NP: no parent permission

R: related

NS: not single

NA: not accompanied by an adult

NM: not having a meal

Figure 1: Example of a SETAF, encoding a part of UK legislation.

other useful features, such as higher-level attacks [13], evidence-based reasoning [14]

and coalition formation in multiagent systems [15]. However, to the best of our knowl-

edge, there has been no effort for a complete formal description of SETAF, both in

terms of the different kinds of extensions that have been used to describe AAF (apart

from the semantics described by Dung himself in [2], which was done in [1]), and

in terms of the more fine-grained labelling-based semantics. Also, the relationship

between AAF and SETAF has only been recently considered [16] under specific as-

sumptions.

1.2. Contributions and paper summary

In this paper, we provide a complete formal characterization of SETAF. Although

our main focal point was the SETAF case, most of our results also apply for Dung’s

AAF as special cases, some of them being novel or alternative characterisations of

known notions, thereby completing the picture in certain areas. Specifically:

• We introduce definitions for extension semantics that have been defined for AAF,

but not for SETAF, i.e., naive, semi-stable, eager, ideal and stage semantics (Sec-

tion 3).

5

• We introduce labelling-based definitions for all the semantics that were origi-

nally defined in [1] using extensions (i.e., conflict-free, admissible, complete,

preferred, grounded and stable semantics), as well as for the new SETAF se-

mantics defined in this paper (Section 4). Table 1 provides an overview of the

semantics considered in this paper. For each semantics, the table either provides

a reference to the work that the semantics was originally defined, or an indication

that its definition for the specific setting is an original contribution of this paper.

• We show the association between extensions and labellings for all the SETAF

semantics considered in this paper, in a similar way that [12] described the same

association for AAFs (Section 5). Apart from their value with regard to under-

standing SETAFs, these results also apply for AAFs, and consider more types

of semantics than the original work in [12]. Furthermore, we introduce a novel

Type of Dung’s AAF [2] SETAF [1]

Semantics Extensions Labellings Extensions Labellings

Conflict-free [2] [12] [1]
√

Admissible [2] [12] [1]
√

Complete [2] [12] [1]
√

Grounded [2] [12] [1]
√

Preferred [2] [12] [1]
√

Stable [2] [12] [1]
√

Naive [17]
√ √ √

Semi-stable [18] [12]
√ √

Eager [19] [20]
√ √

Ideal [21] [22]
√ √

Stage [23] [22]
√ √

Table 1: References to definitions of extension- and labelling-based semantics for abstract argumentation

frameworks with single attacks and joint attacks.
√

indicates that the corresponding definition is a novel

contribution of the present paper.

6

perspective to the problem, by studying the concept of proper labellings, thereby

giving a more complete answer to the question of associating extensions and

labellings (in both AAFs and SETAFs).

• We show how a SETAF can be modelled as an AAF, with an exponential in-

crease in the number of arguments considered, and how the extensions of the

two frameworks relate to each other (Section 6). Our approach circumvents the

limitation formally proven in [16], where it was shown that SETAFs are strictly

more expressive than AAFs when considering a fixed set of arguments.

• We present results on the inclusion relationships and the multiplicity of exten-

sions and labellings for the different SETAF semantics, inspired by similar re-

sults on AAFs (Section 7).

The proofs for all new results are presented in Appendix A. Section 8 summarises

the results of our study and discusses the related work.

2. Setting the groundwork: AAF and SETAF

It is well-known that AAFs constitute a very strong and versatile formalism. An

AAF was defined in [2] as a pairAFD = 〈Args,�〉 consisting of a (possible infinite)

set of arguments Args and a binary attack relation� on this set. The same paper, as

well as subsequent ones in the same area, defined different acceptability semantics for

AAFs in terms of extensions, i.e., sets of arguments that can be considered accept-

able. Table 1 presents 11 prominent semantics for AAFs and the papers that they were

originally defined. Informally, A ⊆ Args is: (i) a conflict-free extension of AFD

iff it contains no arguments attacking each other; (ii) an admissible extension iff it is

conflict-free and defends all its elements (i.e., for each argument b ∈ Args attacking

an argument in A, there is an argument in A counter-attacking b); (iii) a complete

extension iff it is admissible and contains all the arguments it defends; (iv) a grounded

extension iff it is minimal (w.r.t. set inclusion) among the complete extensions; (v)

a preferred extension iff it is maximal among the complete extensions; (vi) a stable

extension iff it is conflict-free and attacks all the arguments that it does not contain

7

(i.e., all arguments in Args \A); (vii) a naive extension iff it is maximal among the

conflict-free extensions; (viii) a semi-stable extension iff its union with the set of ar-

guments it attacks is maximal among the complete extensions; (ix) an eager extension

iff it is maximal among the complete extensions that are subsets of every semi-stable

extension; (x) an ideal extension iff it is maximal among the complete extensions that

are subsets of every preferred extension; and (xi) a stage extension iff its union with

the set of arguments it attacks is maximal among the conflict-free extensions.

Dung’s definition for argumentation frameworks was extended in [1] for the case

where an argument can be attacked by a set of other arguments:

Definition 2.1 (Definition 1 of [1]). A Framework with Sets of Attacking Arguments

(SETAF for short) is a pair AFS = 〈Args, .〉 such that Args is a set of arguments

and . ⊆ (2Args \ {∅})×Args is the attack relation.

It is interesting to note the asymmetry in the above definition of attack: a group of

arguments can be the attacker, but not the recipient of an attack. The reason for this

asymmetry is justified in [1], where it is shown that allowing a set of arguments to be

jointly attacked by another does not add to the expressiveness of the proposed model.

The same paper, however, uses the term “attack” also to describe the relationship be-

tween two sets of arguments, A and B, such that a subset C of A attacks an argument

b ∈ B. To avoid confusion, for describing such relationships we define here a new

relation, I⊆ (2Args \∅)× (2Args \∅), such that A I B iff there exist C ⊆ A, b ∈ B

such that C . b.

We write A 6. b when it is not the case that A . b, and A 6I B when it is not the

case that A I B. For singleton sets, we often write A I b to denote A I {b}. We say

that A defends an argument b from a set of arguments A′ that attacks b, iff A I A′.

3. Semantics for SETAF through extensions

In this section we provide definitions for the different acceptability semantics that

were originally defined for AAFs (as informally described in Section 2) for the case

8

of SETAF. Definitions 3.1-3.6 have been adopted from [1], whereas Definitions 3.7-

3.11 constitute novel contributions of this paper and adapt, for the SETAF formalism,

definitions of semantics originally proposed for the AAF case in various works.

In all the following definitions, we consider a fixed SETAF AFS = 〈Args, .〉 and

a set of arguments A ⊆ Args.

Definition 3.1 (Definition 2 of [1]). A is said to be conflict-free iff it does not attack

itself. Formally, A is conflict-free iff A 6I A.

Definition 3.2 (Definition 3 of [1]). An argument a ∈ Args is said to be acceptable

with respect to A, iff A defends a from all attacking sets of arguments in Args. For-

mally, a is acceptable with respect to A iff A I B for all B ⊆ Args such that B I a.

A is said to be admissible iff it is conflict-free and each argument in A is acceptable

with respect to A. Formally, A is admissible iff A 6I A and A I B for all B ⊆ Args

such that B I A.

Definition 3.3 (Definition 8 of [1]). An admissible set A is called a complete exten-

sion ofAFS , iff all arguments that are acceptable with respect to A are in A. Formally,

A is a complete extension of AFS iff all the following conditions hold: (a) A 6I A;

(b) A I B for all B ⊆ Args such that B I A; (c) If, for some a ∈ Args, A I B

for all B ⊆ Args such that B I a, then a ∈ A.

Definition 3.4 (Definition 4 and Theorem 2 of [1]). A is called a preferred extension

of AFS , iff it is a complete extension and there is no other complete extension A′ such

that A ⊂ A′.

Definition 3.5 (Definition 7 and Theorem 2 of [1]). A is called a grounded exten-

sion of AFS , iff it is a complete extension and there is no other complete extension

A′ such that A′ ⊂ A.

Definition 3.6 (Definition 5 of [1]). A is called a stable extension of AFS , iff it is

conflict-free and attacks all arguments in Args \A.

Definition 3.7 (adapted from [17]). A is called a naive extension of AFS , iff it is

conflict-free and is maximal w.r.t. set inclusion among the conflict-free subsets of Args.

9

a1

a2

a3

a4

a5

a6

Figure 2: SETAF for Example 3.12

Definition 3.8 (adapted from [18]). A is called a semi-stable extension of AFS , iff

it is a complete extension and the set A ∪ {b ∈ Args | A I b} is maximal w.r.t. set

inclusion among all complete extensions of AFS .

Definition 3.9 (adapted from [19]). A is called an eager extension of AFS , iff it is

a maximal (with respect to set inclusion) complete extension that is a subset of each

semi-stable extension of AFS .

Definition 3.10 (adapted from [21]). A is called an ideal extension of AFS , iff it is

a maximal (with respect to set inclusion) complete extension that is a subset of each

preferred extension of AFS .

Definition 3.11 (adapted from [23]). A is called a stage extension of AFS , iff it is

conflict free and A ∪ {b ∈ Args | A I b} is maximal among all conflict-free subsets

of Args.

The following example helps to illustrate the concept of extensions and the intuition

behind the different semantics:

Example 3.12. Consider the SETAF shown in Figure 2. Its various extensions are

shown in Table 2. Let us consider in more detail the complete extensions, which are: ∅,

{a1}, {a2, a3, a5}. Note that, for example, {a2, a3} is admissible and conflict-free but

not complete, because it leaves out a5, which is acceptable with respect to {a2, a3}.

Similarly, {a1, a2} is not a complete extension because it is not conflict-free, whereas

{a5} and {a1, a5} are not complete extensions because they are not admissible (a5 is

not acceptable with respect to the corresponding set in either case).

10

Extension type Extensions

Conflict-free ∅, {a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a1, a4}, {a1, a5},

{a1, a6}, {a2, a3}, {a2, a3, a5}, {a2, a3, a6}, {a2, a4},

{a2, a5}, {a2, a6}, {a3, a4}, {a3, a5}, {a3, a6}

Admissible ∅, {a1}, {a2}, {a3}, {a2, a3}, {a2, a3, a5}

Complete ∅, {a1}, {a2, a3, a5}

Preferred {a1}, {a2, a3, a5}

Grounded ∅

Stable {a2, a3, a5}

Naive {a1, a4}, {a1, a5}, {a1, a6}, {a2, a4}, {a2, a6}, {a3, a4},

{a3, a6}, {a2, a3, a5}

Semi-stable {a2, a3, a5}

Eager {a2, a3, a5}

Ideal ∅

Stage {a2, a3, a5}

Table 2: Extensions for the SETAF of Figure 2

In the following, we use shorthands to refer to the various semantics and extension

types, in particular: cf for conflict-free, ad for admissible, co for complete, pr for

preferred, gr for grounded, st for stable, na for naive, se for semi-stable, ea for eager,

id for ideal and sg for stage. We also use σ as a catch-all variable to indicate any of

these semantics. For example, we write co-extension to refer to a complete extension,

and σ-extension to refer to an extension of the type denoted by σ.

4. Semantics for SETAF through labellings

Here we introduce a different characterisation of acceptability semantics for SETAF,

using the notion of labellings. The following definitions are similar to the correspond-

ing definitions of [12, 20, 22], but adapted to SETAF. We start our analysis by defining

labellings in general:

11

Definition 4.1 (adapted from [12]). Consider a SETAF AFS = 〈Args, .〉. A la-

belling for AFS is a total function λ : Args 7→ {in, out, undec}.

Note that the labellings of a SETAF are defined over arguments (just like in [12]),

not sets of arguments. For simplicity, for a given (fixed) label λ, we use the terms

in-argument, out-argument, undec-argument to denote arguments that are labelled

in, out, undec respectively. We also write in(λ), out(λ) and undec(λ) to denote,

respectively, the sets of in-, out- and undec-arguments with respect to λ.

We now define various special classes of labellings (i.e., labelling semantics):

Definition 4.2 (adapted from [12, 20, 22]). Let AFS = 〈Args, .〉 be a SETAF. A la-

belling λ : Args 7→ {in, out, undec} of AFS is called:

1. conflict-free iff for all a ∈ Args:

a. if λ(a) = in then in(λ) 6I a

b. if λ(a) = out then in(λ) I a

2. admissible iff for all a ∈ Args:

a. if λ(a) = in then ∀B I a,∃b ∈ B : λ(b) = out

b. if λ(a) = out then in(λ) I a

3. complete iff for all a ∈ Args:

a. λ(a) = in if and only if ∀B I a,∃b ∈ B : λ(b) = out

b. λ(a) = out if and only if in(λ) I a

4. preferred iff it is complete and in(λ) is maximal w.r.t. set inclusion among all

complete labellings of AFS

5. grounded iff it is complete and in(λ) is minimal w.r.t. set inclusion among all

complete labellings of AFS

6. stable iff it is conflict-free and undec(λ) = ∅

12

7. naive iff it is conflict-free and in(λ) is maximal w.r.t. set inclusion among the

conflict-free labellings of AFS

8. semi-stable iff it is complete and undec(λ) is minimal w.r.t. set inclusion among

all complete labellings of AFS

9. eager iff

a. it is complete

b. in(λ) ⊆ in(λ′) for every semi-stable labelling λ′ of AFS

c. in(λ) is maximal w.r.t. set inclusion among all labellings of AFS satisfying

conditions (a),(b)

10. ideal iff

a. it is complete

b. in(λ) ⊆ in(λ′) for every preferred labelling λ′ of AFS

c. in(λ) is maximal w.r.t. set inclusion among all labellings of AFS satisfying

conditions (a),(b)

11. stage iff it is conflict-free and undec(λ) is minimal w.r.t. set inclusion among all

conflict-free labellings of AFS

In the following, we use the same shorthands that we introduced for extensions (cf ,

ad, co, etc.) to refer also to labellings (e.g., a co-labelling is a complete labelling).

Example 4.3. Continuing Example 3.12, Table 3 shows the complete labellings that

correspond to the SETAF of Figure 2. Comparing complete extensions with complete

labellings, we see that, e.g., the third labelling explicitly rejects a6 (because it is at-

tacked by a5, which is accepted), but the second one makes no explicit decision on

a6, as the agent cannot make up its mind on how to resolve the cyclic attack among

a4, a5, a6. This distinction cannot be made with the corresponding complete extensions

(first column of Table 3). Regarding the other semantics: λ1 is the unique grounded

and ideal labelling, λ2 and λ3 are preferred labellings, and λ3 is a stable, semi-stable,

13

Complete extensions Complete labellings

A1 = ∅ λ1(a1) = undec, λ1(a2) = undec, λ1(a3) = undec,

λ1(a4) = undec, λ1(a5) = undec, λ1(a6) = undec

A2 = {a1} λ2(a1) = in, λ2(a2) = out, λ2(a3) = out,

λ2(a4) = undec, λ2(a5) = undec, λ2(a6) = undec

A3 = {a2, a3, a5} λ3(a1) = out, λ3(a2) = in, λ3(a3) = in,

λ3(a4) = out, λ3(a5) = in, λ3(a6) = out

Table 3: Complete extensions and complete labellings for the SETAF of Figure 2.

stage and eager labelling. By comparing these with the extensions presented in Table 2,

one can see that the results obtained with labellings seem to correspond exactly to those

obtained with the extension-based approach. We further study this phenomenon in Sec-

tion 5.

5. Relating extensions and labellings in SETAF

5.1. From extensions to labellings and vice-versa

As already mentioned, for any given SETAF, there is a way to go from sets of argu-

ments (i.e., extensions) to labellings and vice-versa. Before formalising this transition

process, let us introduce some terminology. Given a SETAF AFS = 〈Args, .〉, we

denote by EAFS

the power-set of Args (i.e., all possible extensions, EAFS

= 2Args),

and by LAFS

the set of all possible labellings that can be defined over AFS . When

the SETAF is irrelevant or obvious from the context, we use the simpler notations E ,L

respectively. We can now define the following functions for formalising the transition

process:

Definition 5.1. Consider a SETAF AFS = 〈Args, .〉. We define the function Lab :

E 7→ L such that, for A ∈ E , λ = Lab(A):

• λ(a) = in for all a ∈ A

• λ(a) = out for all a /∈ A, A I a

14

• λ(a) = undec for all a /∈ A, A 6I a

For some A ∈ E , we call Lab(A) the labelling generated by A.

Definition 5.2. Consider a SETAF AFS = 〈Args, .〉. We define the function Ext :

L 7→ E such that, for λ ∈ L, Ext(λ) = {a ∈ Args | λ(a) = in}. For some λ ∈ L,

we call Ext(λ) the extension generated by λ.

Clearly, Ext(λ) = in(λ) for all λ. Note that these definitions are very similar to

the definition of Ext2Lab and Lab2Ext functions in Definition 8 of [12], although

the domain of application here is different. Note also that both Lab and Ext are well-

defined.

5.2. Properties of the transition from extensions to labellings

Now let’s study the interaction between the two transition functions, Lab and Ext.

In particular, we prove the conditions under which Lab is the inverse of Ext (and vice-

versa), and whether these functions are injective, surjective and/or bijective4. In the

following, we assume a fixed, but arbitrary, SETAF AFS = 〈Args, .〉.

We start our analysis by showing some properties of Ext and Lab:

Theorem 5.3. The following are true:

1. Ext is surjective.

2. Lab is injective.

Note that the reverse of Theorem 5.3 is not true (i.e., Ext is not injective and Lab

is not surjective), not even in the more restrictive AAF case, as [12] showed.

Moreover, we can show that when a set of arguments A is transformed into a la-

belling (λ = Lab(A)), the information on A is not “lost”, in the sense that we can

revert the result back to the same set of arguments using Ext (i.e., Ext(λ) = A).

Formally:

4Formally, a function f : S1 7→ S2 is called injective if and only if f(x) = f(y) implies x = y; it

is called surjective if and only if for any y ∈ S2 there exists x ∈ S1 such that f(x) = y; and it is called

bijective if and only if it is both injective and surjective.

15

Theorem 5.4. For all A ∈ E it holds that Ext(Lab(A)) = A.

Note that the reverse counterpart of Theorem 5.4 does not hold, i.e., in general,

Lab(Ext(λ)) 6= λ. This is expected because labellings are more expressive than

extensions, so one naturally expects L to be richer than E . To complete the picture, we

need the notion of proper labellings:

Definition 5.5. A labelling λ is called proper if and only if it holds that:

λ(a) = out if and only if in(λ) I a.

We denote by L̂ the set of all proper labellings.

Proper labellings are important, because it can be shown that they correspond ex-

actly to extensions. Indeed, the following is the counterpart of Theorem 5.4:

Theorem 5.6. It holds that Lab(Ext(λ)) = λ if and only if λ ∈ L̂.

Based on Theorems 5.4 and 5.6, we can easily prove the following important corol-

lary, which essentially clarifies the connection between extensions and labellings, by

showing that E and L̂ are in fact isomorphic, i.e., there is a bijection between them:

Corollary 5.7. The following points hold:

1. Ext �L̂ is injective and surjective

2. Lab is injective and surjective in L̂

3. (Ext �L̂)
−1

= Lab

4. Lab−1 = Ext �L̂

5. L̂ is isomorphic to E

In Corollary 5.7, the notation Ext �L̂ denotes the restriction of the function Ext

in L̂; formally, Ext �L̂ is a function defined over L̂, such that Ext �L̂ (λ) = Ext(λ)

for all λ ∈ L̂. The −1 superscript is used to denote the inverse function, under the

standard definition.

16

Now it remains to see which of the different labelling types introduced in Section 4

are proper. As expected (see [12]), complete labellings (and their subtypes, namely,

grounded, preferred, stable, semi-stable, eager and ideal) are proper, whereas admissi-

ble, conflict-free and naive are not. Moreover, stage labellings are also proper:

Theorem 5.8. For σ ∈ {co,gr,pr, st, se, ea, id, sg} it holds that a σ-labelling is

proper.

The following counterexample shows that Theorem 5.8 does not apply to other

types of semantics. Also, the same example shows that there are proper extensions that

are neither complete nor stage:

Example 5.9. Consider a SETAF with two arguments a, b such that {a} I b. Then:

• The labelling λ(a) = in, λ(b) = undec is conflict-free, naive and admissible,

but not proper.

• The labelling λ(a) = λ(b) = undec is conflict-free, admissible and proper, but

neither complete nor stage.

Theorem 5.8 and Corollary 5.7, are the counterparts of Theorem 11 of [12] for the

SETAF setting. In particular, we have shown that Ext and Lab are essentially two

different ways to express the same thing, if we restrict ourselves to those semantics

that are proper.

Note that, these results can be trivially applied to AAFs as well, since an AAF

is also a SETAF. Under this viewpoint, our results are a direct extension of Theorem

11 of [12], handling more types of extensions, and identifying the important class of

proper labellings, which provides a more complete answer with regard to the relation

between E and L.

5.3. Preservation of semantics during transitioning

The next step is to prove that each type of labelling corresponds to the respective

type of extension and vice-versa. The following series of theorems prove these points.

17

Theorem 5.10. Let AFS = 〈Args, .〉 be a SETAF and A ⊆ Args a σ-extension

of AFS , where σ ∈ {cf ,ad, co,pr,gr, st,na, se, ea, id, sg}. Then, Lab(A) is a

σ-labelling of AFS .

Theorem 5.11. LetAFS = 〈Args, .〉 be a SETAF and λ : Args 7→ {in, out, undec}

a σ-labelling of AFS , where σ ∈ {cf ,ad, co,pr,gr, st,na, se, ea, id, sg}. Then,

Ext(λ) is a σ-extension of AFS .

The above theorems show that σ-labellings and σ-extensions are essentially anal-

ogous ways to define the semantics of a SETAF. For those types of labellings that are

proper (i.e., for all considered semantics except cf , ad, na; see Theorem 5.8), these

two ways are also isomorphic, as Corollary 5.7 shows. Note that most of these results

are direct generalisations (for the SETAF case) of previous results that have appeared

elsewhere for AAFs.

Example 5.12. Referring to Example 3.12 again (visualised in Figure 2), and Table 3

(showing complete extensions and labellings), we can easily verify that: (a) the la-

bellings can be generated through the corresponding extensions, using Definition 5.1;

(b) the labellings are all complete labellings (under Definition 4.2); (c) the extensions

could be generated from the labellings, using Definition 5.2.

6. Associating SETAF with Dung-style argumentation

6.1. Generated argumentation frameworks

Since AAF is a special case of a SETAF, one would expect that the SETAF for-

malism is strictly more expressive than AAF, in the sense that one can create SETAF

argumentation graphs, whose semantics (extensions) cannot be captured by any AAF.

Recent work [16] has shown that this is indeed the case, under the important assump-

tion that the set of arguments is fixed. In other words, [16] showed that, given a set of

arguments, one can create a SETAF whose semantics cannot be captured by any AAF

(using the same set of arguments).

In this section, we show that this limitation can be overcome when dropping this

assumption, i.e., by considering a richer set of arguments for the AAF. More precisely,

18

we show that, given a SETAF, one can generate an AAF and use it to compute the

various extensions of the original SETAF; the caveat is that the AAF will be of expo-

nentially bigger size, i.e., it will include an exponential number of arguments compared

to the original SETAF.

In the rest of this section, the following notation will prove useful: given a set of

arguments A, we denote by A the set consisting of all non-empty subsets of A, i.e.,

A = {B | ∅ ⊂ B ⊆ A}.

The following definition shows one possible way to generate an AAF that repre-

sents the same information as a SETAF. In the rest of this section, we will study the

relationship between the original SETAF and its generated AAF.

Definition 6.1. Consider a SETAFAFS = 〈Args, .〉. The AAFAFD = 〈Args,�〉,

where A� B if and only if A I B is called the generated AAF of the SETAF AFS .

Note that the arguments of the generated AAF are all the non-empty sets of argu-

ments in the original SETAF, whereas the attack relation of the AAF (�) is in fact

equal with the generalised attack relation of the SETAF (I); nevertheless, we chose

to use a different symbol to avoid confusion in the discussion that follows. As a re-

sult of this transformation, a set of arguments (or a σ-extension) in the generated AAF

essentially corresponds to a set of sets of arguments in the SETAF.

Example 6.2. Figure 3 shows an example of application of Definition 6.1. As already

mentioned, the arguments in the generated AAF are essentially all the subsets of argu-

ments in the SETAF (for readability we use A1 to denote {a1}, A12 to denote {a1, a2}

etc.). As a result, extensions in the generated AAF are sets of sets of arguments, e.g.,

{A2, A3, A23} (which corresponds to {{a2}, {a3}, {a2, a3}}) is a complete extension

of the generated AAF, whereas {a2, a3} is a complete extension of the SETAF.

It can be observed that, as already hinted above, the generated AAF (under Def-

inition 6.1) contains an exponentially larger number of arguments (compared to the

SETAF). This is not an issue for this study, because our purpose is not to provide an

efficient mapping of a SETAF to an AAF, but to show that one can always determine

19

SETAF

a1

a2

a3

Generated AAF

A1

A2

A3

A12

A13

A23

A123

A1 = {a1}

A2 = {a2}

A3 = {a3}

A12 = {a1, a2}

A13 = {a1, a3}

A23 = {a2, a3}

A123 = {a1, a2, a3}

Figure 3: A SETAF (left) and its generated AAF (right)

the extensions of the SETAF by examining the AAF, and vice-versa. More efficient

transformations are considered in Subsection 6.10.

In the rest of this section, we assume an arbitrary SETAF 〈Args, .〉 and its gener-

ated AAF 〈Args,�〉. We also denote by EσS the set of all σ-extensions of 〈Args, .〉

and by EσD the set of all σ-extensions of 〈Args,�〉.

6.2. Relating extensions of a SETAF and its generated AAF

Definition 6.1 is based on a natural correspondence between a SETAF and an AAF,

in which a set of arguments A in the SETAF corresponds to a set of arguments A in the

generated AAF. Thus, we expect the σ-extensions of the SETAF (EσS) and its generated

AAF (EσD) to be faithful to this correspondence, for any σ. In particular, we expect that

A ∈ EσS if and only if A ∈ EσD, and that, if E ∈ EσD, then E = A for some A ∈ EσS .

Perhaps surprisingly, this is not, generally, the case. The following results will show

that, although there are certain semantics (including the extension semantics defined

by Dung [21]) in which these relations hold, there are other semantics in which the

relation is more complex, as well as semantics in which EσS , EσD are not related.

Our aim in this section is to make precise the relationship between EσS and EσD for

20

each σ, by providing results showing how to determine the extensions of a SETAF

through the generated AAF, and vice-versa, i.e., how one can determine extensions of

the generated AAF through the SETAF. Importantly, we are not interested in showing

how to compute the extensions of the SETAF or of the generated AAF in isolation.

Our results show that, although there is not always a relationship between EσS and

EσD, one can always determine the extensions of the SETAF by examining the AAF,

and vice-versa. This validates our claim, i.e., that the extension semantics of a SETAF

can be computed through the generated AAF (which is of exponentially bigger size),

and vice-versa. Nevertheless, the use of SETAF provides a simpler, more intuitive, and

exponentially more compact way to represent the information related to joint attacks.

6.3. Conflict-free sets

For conflict-free sets, it is true that A is conflict-free (in the SETAF) if and only

if A is conflict-free (in the generated AAF). However, there are additional conflict-

free sets in the generated AAF (that are not of the form A); these are generated by

combining appropriate conflict-free sets of the SETAF (say A1,A2, . . . ,An) into one

conflict-free set of the generated AAF ({A1,A2, . . . ,An}). More precisely:

Proposition 6.3. For any set of arguments A ⊆ Args in the SETAF, the following

points are equivalent:

1. A ∈ EcfS

2. {A} ∈ EcfD

3. A ∈ EcfD

4. If E ⊆ A, then E ∈ EcfD

Proposition 6.3 establishes the relationship between conflict-free sets in the SETAF

and its generated AAF. However, point #4 shows that EcfD is much richer, and its el-

ements are not restricted to sets of the form A. The following proposition completes

the picture, showing that, in order for a set to be conflict-free in the generated AAF, it

must consist entirely of sets that are conflict-free in the SETAF:

21

Proposition 6.4. If E ∈ EcfD and A ∈ E , then A ∈ EcfS .

A direct corollary of Proposition 6.4 is that if E ∈ EcfD , then E ⊆ EcfS . These results

lead to the following precise characterisation of EcfS , EcfD :

Theorem 6.5. With regard to conflict-free sets, the following points hold:

1. EcfS = {A | A ∈ EcfD }

2. EcfD = {E | E ⊆ EcfS , and A 6I B for all A,B ∈ E}

Interestingly, the characterisation of EcfS is simpler than the one of EcfD , i.e., it is

simpler to compute the conflict-free extensions of the SETAF through the AAF, rather

than the opposite. This is a pattern that will also appear in other types of extensions.

Note that the side condition that A 6I B for all A,B ∈ EcfS (second bullet in

Theorem 6.5) is crucial. To see this, consider Example 6.2: although {a1} ∈ EcfS and

{a2, a3} ∈ EcfS , the set {{a1}, {a2, a3}} is not conflict-free in the generated AAF (i.e.,

{{a1}, {a2, a3}} /∈ EcfD).

6.4. Admissible sets

For admissible sets, the situation is similar. The following proposition shows how

one can create various admissible sets of the generated AAF, given some admissible

set of the generated AAF, E :

Proposition 6.6. If E ∈ EadD , then:

1. If A ⊆ B and B ∈ E , then E ∪ {A} ∈ EadD

2. If A ∈ E , then E ∪A ∈ EadD

3. If A,B ∈ E , then E ∪ {A ∪B} ∈ EadD

4. E ∪ {
⋃

A∈E A} ∈ EadD

5.
⋃

A∈E A ∈ EadD

6. {
⋃

A∈E A} ∈ EadD

22

Of particular interest is point #6, which shows that, once we have an admissible set

E , we can create a singleton set consisting of just the union of the sets in E and still

have an admissible set. The following proposition establishes the connection between

elements of EadS and EadD , in a manner similar to the one established between conflict-

free sets in Proposition 6.3:

Proposition 6.7. The following points are equivalent for all A:

1. A ∈ EadS

2. {A} ∈ EadD

3. A ∈ EadD

Combining these results, we get the following precise characterisation of EadS , EadD :

Theorem 6.8. With regard to admissible sets, the following points hold:

1. EadS = {A | A ∈ EadD }

2. EadD = {E |
⋃

A∈E A ∈ EadS , and if C I
⋃

A∈E A, then there is B ∈ E such

that B I C }

6.5. Complete, grounded, preferred and stable extensions

Complete, grounded, preferred and stable semantics exhibit a very “canonical” be-

haviour, as Theorem 6.10 shows. Before proving that theorem, we start by showing the

following proposition, which is largely a corollary of Proposition 6.6:

Proposition 6.9. If E ∈ EcoD , then:

1. If A ⊆ B and B ∈ E , then A ∈ E

2. If A ∈ E , then A ⊆ E

3. If A,B ∈ E , then {A ∪B} ∈ E

4.
⋃

A∈E A ∈ E

5. E =
⋃

A∈E A

23

The critical point of Proposition 6.9 is #5, which essentially mandates that a com-

plete extension must be of the form B for some B; this is unlike admissible sets. Using

this result, we can now show our main theorem related to complete, grounded, pre-

ferred and stable semantics:

Theorem 6.10. For σ ∈ {co,pr,gr, st}, the following points hold:

1. EσS = {A | A ∈ EσD}

2. EσD = {A | A ∈ EσS}

The following results are interesting corollaries of Theorem 6.10:

Corollary 6.11. For σ ∈ {co,pr,gr, st}, A ∈ EσS if and only if A ∈ EσD.

Corollary 6.12. For σ ∈ {co,pr,gr, st}, if E ∈ EσD, then there is some A such that

E = A and A ∈ EσS .

6.6. Semi-stable and stage extensions

We now study the case of semi-stable and stage extensions, both of which aim at

maximising the union of the arguments in the extension with those that are attacked

by the extension. The difference between the two cases is that semi-stable extensions

consider maximisation over alternative complete extensions, whereas stage extensions

consider conflict-free sets.

Before studying this case in detail, we introduce some simplifying notations. For

any given A ⊆ Args, we denote: AI = {c | A I c} and A� = {C | A � C}.

Note that A� = {C | A′ � C for some A′ ∈ A} (see also Lemma 1 in Appendix

A.2); these notions are obviously related to the maximisation requirements of Defini-

tions 3.8 and 3.11 with regard to the semi-stable and stage extensions of the generated

AAF.

It turns out that the situation in semi-stable and stage semantics is not as simple as

with the family of complete, grounded, preferred and stable semantics. The prototypi-

cal example that shows the problem associated with semi-stable and stage semantics is

the following:

24

a2

a1

b2

b1

cd

Figure 4: Associating semi-stable/stage extensions of SETAF and generated AAF (prototypical example)

Example 6.13. Consider a SETAF 〈Args, .〉 defined as follows (see also Figure 4):

• Args = {a1, a2, b1, b2, c, d}

• {a1, a2} . b1

• {a1, a2} . b2

• {a1, a2} . c

• {b1, b2} . a1

• {b1, b2} . a2

• {c} . c

• {d} . d

• {a1, d} . c

It is easy to note that the only complete extensions of this SETAF are {a1, a2} and

{b1, b2}. If we add any additional argument to any of these sets we will end up with

a conflict, whereas if we remove any argument we will end up with a non-admissible

set. With regard to semi-stable extensions, clearly {a1, a2} is the only one, because it

attacks c (whereas {b1, b2} does not).

25

On the other hand, for the generated AAF, the set {b1, b2} becomes a semi-stable

extension too. The reason for this is that any set that includes d and at least one

of a1, a2 (e.g., {a1, d}) is attacked by {b1, b2} but not by {a1, a2} (and is also not

included in {a1, a2}).

For stage extensions, the conclusion is similar: {a1, a2} is a stage extension of the

SETAF, whereas both {a1, a2} and {b1, b2} are stage extensions of the generated AAF.

As a more extreme case, consider the following example, where the generated AAF

has an infinite number of semi-stable/stage extensions, whereas the SETAF has none:

Example 6.14. Consider a SETAF 〈Args, .〉 defined as follows:

• Args = {a1, a2, . . .} ∪ {b1, b2, . . .}

• ai . aj whenever i 6= j

• ai . bj whenever i ≥ j

• bi . bi for all i

Note that there are no semi-stable (or stage) extensions for this SETAF. To see this, note

that a semi-stable or stage extension should not contain any bi or more than one ai (or

it would not be conflict-free). Moreover, we note that for any ai it holds that {ai} ∪

{ai}I = {a1, a2, . . .} ∪ {b1, . . . , bi}. As a result {ai} ∪ {ai}I ⊂ {ai+1} ∪ {ai+1}I,

and therefore there is no semi-stable or stage extension.

On the other hand, for all i, {{ai}} is both a semi-stable and a stage extension

for the generated AAF, so the generated AAF contains an infinite number of semi-

stable/stage extensions.

The above examples show that there is no direct relationship between the semi-

stable/stage extensions of the SETAF/generated AAF. The cause of the problem is not

in the SETAF formalism per se (note that the SETAF of Example 6.14 does not in fact

contain joint attacks, so it is an AAF), but in the process of mapping the SETAF to

its generated AAF. In more technical terms, the cause of the problem is evident in the

following result, in particular point #3:

26

Proposition 6.15. Consider two conflict-free sets A, B. Then:

1. If A ∪A� ⊆ B ∪B�, then A ∪AI ⊆ B ∪BI.

2. If A 6I B and A ∪AI ⊆ B ∪BI then A ∪A� ⊆ B ∪B�.

3. If A I B and B ∪BI 6= Args then A ∪A� 6⊆ B ∪B�.

Point #1 of Proposition 6.15 shows that an inclusion in the generated AAF carries

over nicely in the SETAF. The second point deals with the opposite direction, but re-

quires an additional hypothesis, namely that A 6I B. The reason for this hypothesis is

evident in point #3: if A I B then it cannot be the case that A ∪A� ⊆ B ∪ B�,

unless of course B ∪BI = Args (in which case it also holds that B ∪B� = Args

and thus B, B are stable extensions in the SETAF/AAF respectively). As a result of

this, it may be the case that A is a semi-stable (or stage) extension of the generated

AAF, while A is not a semi-stable (or stage) extension of the SETAF (as was also the

case in the above examples).

Before we study the problem in its generality, we start with a simple special case,

which also helps us establish the relationship between stable and semi-stable semantics.

A first obvious corollary of Theorem 6.10 is that EstS 6= ∅ if and only if EstD 6= ∅. Also,

the following holds:

Proposition 6.16. If EstS 6= ∅ then EstS = EseS and EstD = EseD .

Combining this with Theorem 6.10, we get the following corollary:

Corollary 6.17. If EstS 6= ∅, then:

1. EseS = {A | A ∈ EstD }

2. EseD = {A | A ∈ EstS }

We can now study the more challenging case where EstS = ∅. For this, we need

a new notion, which we call domination, defined in two flavours, one for the SETAF

(S-domination) and one for the generated AAF (D-domination):

27

Definition 6.18. Consider two sets of arguments A,B. Then, we say that A S-dominates

B if and only if:

• B \A ⊆ AI

• BI ∩ (Args \ (A ∪B)) ⊆ AI ∩ (Args \ (A ∪B))

Similarly, we say that A D-dominates B if and only if:

• B \A ⊆ A�

• B� ∩Args \ (A ∪B) ⊆ A� ∩Args \ (A ∪B)

As usual, we say that A strictly S-dominates B if and only if A S-dominates B,

but B does not S-dominate A (similarly for strict D-domination).

Practically, S-domination (and D-domination) requires that A attacks “all of” B

(except from their common elements of course) and that A attacks “more of” external

arguments (arguments neither in A nor in B) than B. With regard to the second bullet

of D-domination, note that Args \ (A ∪B) is not the complement of A ∪B (e.g.,

consider C = {c, d} where c ∈ A ∪B and d /∈ A ∪B).

In Example 6.13, {a1, a2} strictly S-dominates (and also strictly D-dominates)

{b1, b2}, because {a1, a2} attacks both b1 and b2 and also it attacks c (whereas {b1, b2}

does not attack any argument not in {a1, a2}).

This property, not surprisingly, is closely related to our purposes; the following

proposition shows that the above two forms of domination are in fact equivalent, and

equivalent with the relation A ∪AI ⊆ B ∪BI:

Proposition 6.19. The following points are equivalent for all A,B ∈ EcfS :

1. A ∪AI ⊆ B ∪BI

2. B S-dominates A

3. B D-dominates A

A glaring omission from Proposition 6.19 is the relation A ∪ A� ⊆ B ∪ B�,

which is not equivalent to the rest. For this, we need an extra precondition, as hinted

by Proposition 6.15 already:

28

Proposition 6.20. If A,B ∈ EcfS and B ∪BI 6= Args, then the following points are

equivalent:

1. A ∪A� ⊆ B ∪B�

2. A ∪AI ⊆ B ∪BI and A 6I B

3. B S-dominates A and A 6I B

4. B D-dominates A and A 6� B

The following is an interesting consequence of the above propositions:

Proposition 6.21. If A,B ∈ EcfS and A ∪AI 6= Args, then the following points are

equivalent:

1. A ∪A� = B ∪B�

2. A = B

We can now move on showing the main result regarding semi-stable semantics.

The following is an interesting prelude:

Proposition 6.22. If A ∈ EseS then A ∈ EseD .

Note that the reverse of Proposition 6.22 does not hold, as Examples 6.13, 6.14

testify. These results allow us to prove the following theorem that clarifies the situation

with respect to semi-stable semantics in the case where no stable extension exists:

Theorem 6.23. The following points hold:

1. EseS = {A | A ∈ EseD , and if B strictly D-dominates A then B /∈ EcoD }

2. If EstS = ∅ then EseD = {A | A ∈ EprS ,A I B whenever A ∪AI ⊂ B ∪ BI

and B ∈ EprS }

To understand better Theorem 6.23, let’s apply it on Example 6.13. As described in

Example 6.13, {a1, a2} and {b1, b2} are the only semi-stable extensions of the gener-

ated AAF. However, {a1, a2} is the only semi-stable extension of the SETAF; {b1, b2}

29

is not, because it is strictly dominated by {a1, a2}, which is a complete extension (so

{b1, b2} cannot be a semi-stable extension, per the first bullet of Theorem 6.23). For

the second bullet of the theorem, note that {a1, a2}, {b1, b2} are the only preferred

extensions of the SETAF, and, although {a1, a2} ∪ {a1, a2}I ⊃ {b1, b2} ∪ {b1, b2}I

and {a1, a2} ∈ EprS , it happens that {b1, b2} I {a1, a2}, so both {a1, a2} and {b1, b2}

are semi-stable extensions of the generated AAF.

Note that the first part of Theorem 6.23 holds even when EstS 6= ∅. This result,

combined with Proposition 6.16 also gives an alternative, but more cumbersome, char-

acterisation of stable extensions for the SETAF. Moreover, the second bullet implies

that if A ∈ EseD then A ∈ EprS . Thus, although we have no guarantee that A will be a

semi-stable extension, we can at least restrict our search to preferred extensions.

With regard to stage semantics, we start by noting that the problems associated

with Examples 6.13, 6.14 are also applicable to stage extensions. However, for stage

semantics, the situation is more complex. The main reason is that stage extensions

have as a starting point conflict-free sets, whose form is more complex in the generated

AAF, compared to complete extensions, which are the starting point for semi-stable

semantics (see Theorems 6.5 and 6.10). As a result, more complex versions of the

above results are necessary.

For the simpler case where EstS 6= ∅, a result similar to Proposition 6.16 holds:

Proposition 6.24. If EstS 6= ∅ then EstS = EsgS and EstD = EsgD .

Combining this with Theorem 6.10, we get the following corollary:

Corollary 6.25. If EstS 6= ∅, then:

1. EsgS = {A | A ∈ EstD }

2. EsgD = {A | A ∈ EstS }

For the more challenging case where EstS = ∅, we start with the characterisation of

EsgS , which does not require any additional tools:

Theorem 6.26. The following holds:

EsgS = {A | A ∈ EcfD , and if B strictly D-dominates A then B /∈ EcfD }

30

It is interesting to note the similarity of Theorem 6.26 (for stage semantics) with its

corresponding Theorem 6.23 (for semi-stable semantics). No such similarity exists for

the characterisations of EseD , EsgD , as we will soon prove.

To properly characterise stage semantics, we need to deal with families of sets of

arguments. Recall (Theorem 6.5) that the conflict-free sets of the generated AAF are

essentially families of conflict-free sets of the SETAF. Along these lines, the corner-

stone for the characterisation of EsgD when EstS = ∅, is the following result:

Proposition 6.27. Consider two families of sets of arguments {Ai}, {Bi}, such that

Aj 6I Ak, Bj 6I Bk for all j, k, and EstS = ∅. Then
⋃
(Ai ∪Ai

�) ⊆
⋃
(Bi ∪Bi

�)

if and only if all of the following points hold:

•
⋃
(Ai ∪Ai

I) ⊆
⋃
(Bi ∪Bi

I)

• For all j, k, Aj 6I Bk

• For all j there is k such that Aj \Bk ⊆
⋃

Bi
I

This result is critical; recall that conflict-free sets (the starting point for stage se-

mantics) in the generated AAF can be any family of conflict-free sets from EcfS , so we

need a way to compare the quantities
⋃
(Ai ∪Ai

�) and
⋃
(Bi ∪Bi

�). Essentially,

Proposition 6.27 states that, in order for
⋃
(Ai ∪Ai

�) ⊆
⋃
(Bi ∪Bi

�) to hold, the

corresponding relation in the SETAF must hold (
⋃
(Ai∪Ai

I) ⊆
⋃
(Bi∪Bi

I)), there

should be no attack on elements of {Bi} by any element of {Ai}, and for every set in

{Ai}, say Aj, all elements of Aj should either be attacked by {Bi} or be contained in

some, fixed, member of the family {Bi}.

We also need the notion of covering. Intuitively, a family {Ai} covers a family

{Bi} if the former contains “larger” sets than the latter. Formally:

Definition 6.28. Consider two families {Ai}, {Bi}. We say that {Ai} covers {Bi} if

and only if for all j there is k such that Aj ⊇ Bk.

As an example, for the families {Ai} = {{a1, a2}, {a3, a4}}, {Bi} = {{a1, a3}, {a2, a4}},

it is not the case that {Ai} covers {Bi} (or vice-versa). Moreover, {Ai} covers

{{a1}, {a3}}, but {Bi} does not.

31

The following proposition can be immediately derived:

Proposition 6.29. If {Bi} covers {Ai} then
⋃
(Ai ∪Ai

�) ⊆
⋃
(Bi ∪Bi

�).

Clearly, the reverse of Proposition 6.29 is not true. Interestingly, when both inclu-

sions are known to hold (i.e.,
⋃
(Ai ∪Ai

�) =
⋃
(Bi ∪Bi

�)), then we can show that

families {Ai}, {Bi} cover each other (under certain additional hypotheses):

Proposition 6.30. Consider two families of sets of arguments {Ai}, {Bi}, such that

Aj 6I Ak, Bj 6I Bk for all j, k and EstS = ∅. Then, the following points are equivalent:

1.
⋃
(Ai ∪Ai

�) =
⋃
(Bi ∪Bi

�)

2. {Ai} covers {Bi} and {Bi} covers {Ai}

We now have all the necessary tools to show our final result related to stage seman-

tics:

Theorem 6.31. If EstS = ∅, then EsgD = {
⋃
Ai | for all j, k Aj 6I Ak, and, if there is

{Bi} such that
⋃
(Ai ∪Ai

I) ⊆
⋃
(Bi ∪ Bi

I), (
⋃
Bi)

⋂
(
⋃

Ai
I⋃

Bi
I) = ∅, and

for all j there is some k such that Aj \Bk ⊆
⋃
Bi
I, then {Ai} covers {Bi} }.

Some clarifications with regard to Theorem 6.31 are necessary. First, the theo-

rem implies that all stage extensions of AFD are of the form
⋃

Ai, where each Ai

is conflict-free, and the various Ai do not attack each other. This is similar to the

requirement for conflict-free sets in EcfD , except that here we take
⋃

Ai, rather than⋃
Ai.

Second, the theorem does not imply any connection between the SETAF and the

AAF stage extensions. In fact, the elements of EsgD are not necessarily of the form A

for some A.

Third, the requirement associated with Theorem 6.31 essentially looks for fami-

lies that exhibit the maximality property required by the definition of stage semantics.

However, this maximality requirement is expressed in terms of the SETAF. In partic-

ular, for a given family {Bi} it checks whether it is “better” than {Ai} (by essen-

tially reiterating the related condition proven in Proposition 6.27). If this is indeed the

32

case, it requires that {Ai} covers {Bi} (which in turn implies that
⋃
(Ai ∪Ai

�) ⊇⋃
(Bi ∪Bi

�), i.e., both families are stage extensions).

6.7. Ideal extensions

Ideal semantics are based on complete and preferred extensions, which behave

quite nicely (see Theorem 6.10). As a result, the corresponding characterisation for

ideal extensions is simple:

Theorem 6.32. The following points hold:

1. E idS = {A | A ∈ E idD }

2. E idD = {A | A ∈ E idS }

6.8. Naive extensions

For naive semantics, the situation is a bit more complex, because they correspond

to maximal conflict-free sets, whose characterisation is more convoluted. The follow-

ing result characterises naive extensions, by just forbidding “better” alternatives of a

candidate naive extension in each case:

Theorem 6.33. The following points hold:

1. EnaS = {A | A ∈ EcfD and B /∈ EcfD whenever A ⊂ B}

2. EnaD = {E | E ⊆ EcfS and A 6I B for A,B ∈ E , and for E ′ for which E ⊂ E ′ ⊆

EcfS there is some A,B ∈ E ′ such that A I B}

6.9. Eager extensions

With regard to eager, the situation is even more complex. This semantics requires

an extension to be maximal among all complete extensions that are subsets of all semi-

stable extensions. To simplify presentation, we use the following sets:

E∩ =
⋂
{A | A ∈ EseD , and if B strictly D-dominates A then B /∈ EcoD }

S∩ =
⋂
{A | A ∈ EprS ,A I B whenever A ∪AI ⊂ B ∪BI and B ∈ EprS }.

Comparing the definitions of S∩, E∩ with Theorem 6.23 (on se-extensions), it is

easy to show the following:

33

Proposition 6.34. The following points are equivalent:

1. A ∈ E∩

2. A ⊆ B for all B ∈ EseS

Proposition 6.35. If EstS = ∅, then the following points are equivalent:

1. A ⊆ S∩

2. A ⊆ E for all E ∈ EseD

The above propositions clarify the intuition behind the rather complex definitions

of E∩, S∩. In particular, E∩ contains all the sets of arguments from the SETAF that

are subsets of all semi-stable extensions of the SETAF; whereas S∩ is itself a maximal

subset of all the semi-stable extensions of the generated AAF. Given the requirement

(for eager extensions) to be subsets of all semi-stable extensions, the relevance of these

sets is obvious.

Based on Propositions 6.34, 6.35, we can use E∩, S∩ as intermediate notions for

showing the characterisation of eager semantics:

Theorem 6.36. The following points hold:

1. EeaS = {A | A ∈ EcoD , A ∈ E∩, and A ⊂ B implies B /∈ EcoD or B /∈ E∩ }

2. If EstS 6= ∅ then EeaD = {A | A ∈ EcoS , A ⊆ B for all B ∈ EstS , and A ⊂ C

implies C /∈ EcoS or there is some D ∈ EstS such that C 6⊆ D }

3. If EstS = ∅ then EeaD = {A | A ∈ EcoS , A ⊆ S∩, and A ⊂ B implies B /∈ EcoS
or B 6⊆ S∩ }

Again, the idea behind the characterisation of eager semantics is to disallow “bet-

ter” extensions by requiring that, whenever a “better” candidate exists, this would fail

the other requirements of the definition (being complete, or being a subset of all semi-

stable extensions).

34

6.10. Alternative transformations

In the definition of the generated AAF (Definition 6.1), we assumed that all non-

empty subsets of Args are included as arguments in the generated AAF. Alternatively,

one could consider various schemes for including sets of arguments “as needed”, i.e.,

different schemes for choosing which sets of arguments from Args will be considered

in the generated AAF. In other words, the arguments of the generated AAF would

include only some of the subsets of Args, whereas the attacks of the generated AAF

would be the attacks that apply among the chosen sets of arguments.

A particularly effective scheme for choosing the arguments to include in the gen-

erated AAF would be to include only sets of arguments that minimally attack other

arguments but one could also consider more complex alternatives. Although we have

not exhaustively explored the space of possibilities and alternative transformations, we

conjecture that such ideas will not produce any better (i.e., more elegant) results com-

pared to the ones described previously in this section. The main reason behind this

conjecture is that one can always create examples where specific sets of arguments will

be “forced” to be included in the generated AAF, thereby breaking the elegance of the

correspondence.

To visualise this, let us reconsider Example 6.13. The existence of the attack

{a1, d} . c forces us to include {a1, d} in the arguments of the generated AAF. This

inclusion is critical because {a1, d} becomes part of {b1, b2}
I

, while no other set of

arguments in the generated AAF is both conflict-free and includes {a1, d}, leading

to the conclusion that {b1, b2} is a semi-stable extension of the generated AAF, de-

spite the fact that {b1, b2} is not a semi-stable extension of the SETAF. And this is

true regardless of the actual arguments we decide to include in the generated AAF so

long as these arguments include all the minimally attacking/attacked sets of arguments

from the original SETAF. Interestingly, if we had considered the minimal transforma-

tion (where only the minimally attacking/attacked arguments are considered) and if

the attack {a1, d} . c was missing, then {a1, d} would not have been included in the

arguments of the generated AAF and {a1, a2} would have been the only semi-stable

extension of the generated AAF. However, this “elegant” behaviour cannot be gener-

alised as explained above.

35

Despite these discouraging remarks, it is still important to consider these alternative

transformations as a means to reduce the average size (number of arguments) of the

generated AAF. A more detailed study of these aspects goes beyond the scope of this

paper and is left for future work.

7. Recasting Dung-style results for SETAF

In the literature, there are various theorems on the properties of and relationships

between different acceptability semantics for Dung-style argumentation frameworks

[2, 12, 10, 24]. Here, we show how these results extend to the SETAF setting, filling

the gaps from previous work (most notably, [1]). Specifically, we focus on the inclu-

sion relationships between the different semantics (Theorem 7.1) and the existence and

multiplicity of extensions and labellings (Theorem 7.2).

Figure 5 shows an overview of the results of this section. Each arrow in the graph

pointing from semantics σ to σ′ indicates that every σ-extension (or σ-labelling) of

a SETAF is also a σ′-extension (resp. σ′-labelling) of the same SETAF (e.g., every

stable extension is also a stage extension). The number (possibly followed by +) that

appears next to each semantics indicates the multiplicity of extensions and labellings

for the specific semantics (e.g., every SETAF has at least one preferred extension).

Similarly to Dung-style AAFs, for certain semantics, the multiplicity of extensions

(labellings) is different between finite and infinite SETAF, i.e., between SETAF with a

finite and SETAF with an infinite number of arguments. All such arrows are strict, i.e.,

no semantics is equivalent to another.

Theorem 7.1. All the inclusion relationships between the different acceptability se-

mantics of SETAF depicted in Figure 5 hold for any SETAF.

Theorem 7.2. Any SETAFAFS has: (i) at least one conflict-free extension (labelling);

(ii) at least one admissible extension (labelling); (iii) at least one complete extension

(labelling); (iv) exactly one grounded extension (labelling); (v) at least one preferred

extension (labelling); (vi) zero or more stable extensions (labellings); (vii) at least one

naive extension (labelling); (viii) zero or more semi-stable extensions (labellings), and

36

at least one ifAFS is finite; (ix) exactly one ideal extension (labelling); (x) at least one

eager extension (labelling), and exactly one if AFS is finite; (xi) zero or more stage

extensions (labellings), and at least one if AFS is finite.

Conflict-free (1+)

Naive (1+)Admissible (1+)

Complete (1+)

Preferred (1+) Grounded (1) Eager (1+, 1 for finite) Ideal (1)

Semi-stable (0+, 1+ for finite)Stage (0+, 1+ for finite)

Stable (0+)

Figure 5: Inclusion relations and multiplicity of extensions and labellings for SETAF acceptability semantics

8. Discussion

In this paper, we provided a complete formal characterization of Frameworks with

Sets of Attacking Arguments (SETAF) by defining different kinds of acceptability se-

mantics in terms of extensions and labellings and showing how they relate to each

other. This way, our work provides labelling semantics for SETAF, something that

was totally missing from the related literature (to the best of the authors’ knowledge).

In addition, our work studied the relationships between SETAF and AAF (as well as

their extensions), and showed how a SETAF (and its extensions) can be expressed in

terms of an AAF (albeit in a less compact and natural manner), complementing previ-

ous work [16]. Further, we have proven that several important results that have been

shown for Dung-style AAFs also apply for SETAF. Our work is based on the defini-

tion of SETAF given in [1], and can be seen as a point of reference for SETAF, as it

generalises different semantics (originally proposed in various papers) for SETAF and

shows various properties. We claim that this is the most complete study of SETAF so

far, properly positioning SETAF within the realm of the literature on computational

argumentation.

37

SETAF is not the only argumentation model that has been proposed for formalising

the notion of joint-attacks. The collective argumentation frameworks proposed in [25]

support the notion of attacks between sets of arguments. The meta-argumentation

frameworks that are used to represent bipolar argumentation frameworks as Dung-style

frameworks in [26], use the notions of coalitions of arguments and attacks among coali-

tions. In both frameworks, the attacks are collective in the sense that they invalidate

all arguments in the attacked set. As shown in [1], collective attacks from a set of

arguments A on a set of arguments B can be represented in SETAF as a series of

attacks from A on each of the arguments in B. Furthermore, compared to the frame-

works proposed in [25], the semantics of SETAF generalise the semantics provided by

Dung, sticking closer to the original definitions of abstract argumentation frameworks.

Argumentation Frameworks with Necessities (AFNs) [27] are another kind of bipolar

argumentation frameworks that support interactions between single arguments and sets

of arguments but in a different way: a necessity relation between a set of arguments B

and an argument a means that the acceptance of a requires the acceptance of at least

one argument in B. The framework presented in [28] also considers sets of arguments,

but as recipients of disjunctive attacks from single arguments. In this framework, the

result of an attack from an argument a that is labelled in to a set of arguments A is that

at least one of the arguments in A must be labelled out. Definition 2.8 and Theorem

2.9 of the same paper show how a finite disjunctive framework can be converted to a

Dung-style AAF with the same set of extensions, which, combined with the results on

the relationship between SETAF and AAF we present in Section 6, provide a way to

associate SETAF with disjunctive argumentation frameworks. Finally, there is another

line of research studying the accrual of arguments (e.g., see [29, 30, 31]), where the

strength of a conclusion or an argument is determined by the number of the indepen-

dent reasons or arguments that support or attack it. As also explained in [1], SETAF

and AAF do not provide a way to quantify the strength of arguments or attacks and,

therefore, cannot support the notion of accrual. It would be interesting though to study

how different approaches applied to AAF that capture certain features of accrual (e.g.,

reasoning about preferences on arguments [32] or the graded acceptability semantics

proposed in [33]) can also be applied to SETAF.

38

With regard to the relationship between SETAF and structured argumentation sys-

tems, [34] studies the formalisation of SETAF as well as other extensions of AAF in

the ASPIC+ framework [35], where arguments are structured as trees whose leaf nodes

are facts and whose non-leaf nodes are either defeasible or strict inference rules. The

paper concludes that such mapping may be ambiguous as there is often uncertainty in

how to reify abstract relations of such frameworks to the elements of the logic, e.g.,

joint attacks of SETAF to binary attacks supported by ASPIC+. A possible way to in-

stantiate a SETAF to a formal logic is by generating an AAF (e.g., using Definition 6.1)

and then mapping the generated AAF to the logic. This, however would result in an

exponentially larger number of arguments. Moreover, as argued in [34], SETAF and

other extensions of AAF, should not be viewed as abstractions of underlying theories

in some formal logics, but rather as models of human reasoning.

Other research literature related to SETAF is mostly concerned with more practical

matters. For example, [36] deals with the computation of preferred extensions. In [13],

SETAF is leveraged for representing other notions such as higher-level attacks (or else,

attacks on attacks); in that work, the model for representing higher-level attacks uses

the machinery of SETAF for representing joint attacks. Further, [14] uses SETAF as

the underlying framework for representing evidence against an argument in order to

support evidence-based reasoning, whereas [15] extends SETAF to develop a formal

argument-based framework for coalition formation.

As next steps of this work, one could consider enhancing the expressiveness of

SETAF by extending its basic model with features similar to the ones used in exten-

sions of the AAF model, such as the introduction of a joint support relation, weights

on (joint) attacks, values promoted by (sets of) arguments, or a preference relation

among (sets of) arguments. This would allow associating SETAFs with the corre-

sponding AAF extensions, i.e. frameworks for bipolar argumentation [37, 38], graded

[33] or weighted argumentation [39] (along with the introduction of ranking-based se-

mantics [40]), value-based [41], or preference-based argumentation [42] respectively.

Given the almost perfect transferability of results from AAFs to SETAFs in the classi-

cal case, we expect the proposed extensions to be also smooth. Moreover, one could

also consider studying alternative (more compact) translation schemes (from SETAFs

39

to AAFs), in the spirit discussed in Subsection 6.10, and examine the extent to which

the results presented in this paper apply under these translation schemes.

Acknowledgements

Work partly performed while Giorgos Flouris was on sabbatical leave in University

College London (UCL), United Kingdom. The authors would like to thank the anony-

mous reviewers for helpful comments that helped improve the quality of the paper, and

also for providing the ideas that motivated the inclusion of Subsection 6.10.

References

[1] S. H. Nielsen, S. Parsons, A Generalization of Dung’s Abstract Framework for

Argumentation: Arguing with Sets of Attacking Arguments, 2007, pp. 54–73.

[2] P. M. Dung, On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games, Artificial Intelli-

gence 77 (2) (1995) 321–357.

[3] H. Prakken, G. Sartor, Law and logic: A review from an argumentation perspec-

tive, Artificial Intelligence 227 (Supplement C) (2015) 214–245.

[4] A. Hunter, M. Williams, Aggregating evidence about the positive and negative

effects of treatments, Artificial Intelligence in Medicine 56 (3) (2012) 173–190.

[5] J. a. Leite, J. a. Martins, Social abstract argumentation, in: Proceedings of the

Twenty-Second International Joint Conference on Artificial Intelligence - Volume

Three, IJCAI’11, AAAI Press, 2011, pp. 2287–2292.

[6] F. Bex, J. Lawrence, M. Snaith, C. Reed, Implementing the Argument Web, Com-

munications of the ACM 56 (10) (2013) 66–73.

[7] J. Schneider, T. Groza, A. Passant, A review of argumentation for the social se-

mantic web, Semantic Web 4 (2) (2013) 159–218.

40

[8] P. Novák, C. Witteveen, Context-aware reconfiguration of large-scale surveillance

systems: argumentative approach, Argument & Computation 6 (1) (2015) 3–23.

[9] P. Baroni, M. Romano, F. Toni, M. Aurisicchio, G. Bertanza, Automatic evalua-

tion of design alternatives with quantitative argumentation, Argument & Compu-

tation 6 (1) (2015) 24–49.

[10] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation seman-

tics, The Knowledge Engineering Review 26 (4) (2011) 365–410.

[11] H. Jakobovits, D. Vermeir, Robust semantics for argumentation frameworks, Jour-

nal of Logic and Computation 9 (2) (1999) 215–261.

[12] M. Caminada, D. M. Gabbay, A logical account of formal argumentation, Studia

Logica: An International Journal for Symbolic Logic 93 (2/3) (2009) 109–145.

[13] D. M. Gabbay, Semantics for higher level attacks in extended argumentation

frames part 1: Overview, Studia Logica 93 (2-3) (2009) 357–381.

[14] N. Oren, T. J. Norman, Semantics for evidence-based argumentation, in: Compu-

tational Models of Argument: Proceedings of COMMA 2008, Toulouse, France,

May 28-30, 2008., 2008, pp. 276–284.

[15] R. Arisaka, K. Satoh, Coalition formability semantics with conflict-eliminable

sets of arguments, in: Proceedings of the 16th Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’17, International Foundation for Au-

tonomous Agents and Multiagent Systems, 2017, pp. 1469–1471.

[16] W. Dvorák, J. Fandinno, S. Woltran, On the expressive power of collective at-

tacks, in: Proceedings of the 7th Conference on Computational Models of Argu-

ment (COMMA-18), 2018, pp. 49–60.

[17] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-

theoretic approach to default reasoning, Artificial Intelligence 93 (1-2) (1997)

63–101.

41

[18] M. Caminada, Semi-stable semantics, in: Proceedings of the 1st International

Conference on Computational Models of Argument (COMMA-06), 2006, pp.

121–130.

[19] M. Caminada, Comparing two unique extension semantics for formal argumen-

tation: Ideal and eager, in: BNAIC 2007, 2007, pp. 81–87.

[20] M. Caminada, On the Issue of Reinstatement in Argumentation, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2006, pp. 111–123.

[21] P. M. Dung, P. Mancarella, F. Toni, Computing ideal sceptical argumentation,

Artificial Intelligence 171 (10-15) (2007) 642–674.

[22] M. Caminada, A labelling approach for ideal and stage semantics, Argument &

Computation 2 (1) (2011) 1–21.

[23] B. Verheij, Two approaches to dialectical argumentation: Admissible sets and

argumentation stages, in: In Proceedings of the biannual International Confer-

ence on Formal and Applied Practical Reasoning (FAPR) workshop, Universiteit,

1996, pp. 357–368.

[24] R. Baumann, C. Spanring, Infinite argumentation frameworks - on the existence

and uniqueness of extensions, in: Advances in Knowledge Representation, Logic

Programming, and Abstract Argumentation, Vol. 9060 of Lecture Notes in Com-

puter Science, Springer, 2015, pp. 281–295.

[25] A. Bochman, Collective argumentation and disjunctive logic programming, Jour-

nal of Logic and Computation 13 (3) (2003) 405–428.

[26] C. Cayrol, M.-C. Lagasquie-Schiex, Coalitions of arguments: A tool for handling

bipolar argumentation frameworks, International Journal of Intelligent Systems

25 (2010) 83–109.

[27] F. Nouioua, AFs with necessities: further semantics and labelling characteriza-

tion, in: Proceedings of the International Conference on Scalable Uncertainty

Management (SUM), 2013, pp. 120–133.

42

[28] D. M. Gabbay, M. Gabbay, Theory of disjunctive attacks, part I, Logic Journal of

the IGPL 24 (2) (2016) 186–218.

[29] J. L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Person, MIT

Press, Cambridge, MA, USA, 1995.

[30] H. Prakken, A study of accrual of arguments, with applications to evidential rea-

soning, in: Proceedings of the 10th International Conference on Artificial Intelli-

gence and Law, ICAIL ’05, 2005, pp. 85–94.

[31] H. Verheij, Rules, reasons, arguments : formal studies of argumentation and de-

feat, Ph.D. thesis, Maastricht University (1 1996).

[32] S. Modgil, T. J. M. Bench-Capon, Integrating dialectical and accrual modes of

argumentation, in: COMMA, Vol. 216 of Frontiers in Artificial Intelligence and

Applications, IOS Press, 2010, pp. 335–346.

[33] D. Grossi, S. Modgil, On the graded acceptability of arguments, in: IJCAI, AAAI

Press, 2015, pp. 868–874.

[34] S. Modgil, Revisiting abstract argumentation frameworks, in: TAFA, Vol. 8306

of Lecture Notes in Computer Science, Springer, 2013, pp. 1–15.

[35] H. Prakken, An abstract framework for argumentation with structured arguments,

Argument & Computation 1 (2) (2010) 93–124.

[36] S. H. Nielsen, S. Parsons, Computing preferred extensions for argumentation sys-

tems with sets of attacking arguments, in: Proceedings of the 2006 Conference

on Computational Models of Argument: Proceedings of COMMA 2006, 2006,

pp. 97–108.

[37] L. Amgoud, C. Cayrol, M.-C. Lagasquie-Schiex, P. Livet, On bipolarity in ar-

gumentation frameworks, International Journal of Intelligent Systems, Bipolar

Representations of Information and Preference (Part 2: reasoning and learning)

23 (10) (2008) 1062–1093.

43

[38] C. Cayrol, M. C. Lagasquie-Schiex, On the acceptability of arguments in bipolar

argumentation frameworks, in: Symbolic and Quantitative Approaches to Rea-

soning with Uncertainty, 2005, pp. 378–389.

[39] P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, M. Wooldridge, Weighted ar-

gument systems: Basic definitions, algorithms, and complexity results, Artificial

Intelligence 175 (2) (2011) 457 – 486.

[40] E. Bonzon, J. Delobelle, S. Konieczny, N. Maudet, A comparative study of

ranking-based semantics for abstract argumentation, in: Proceedings of the 30th

AAAI Conference on Artificial Intelligence (AAAI-16), 2016, pp. 914–920.

[41] T. J. M. Bench-Capon, Persuasion in practical argument using value-based argu-

mentation frameworks, Journal of Logic and Computation 13 (3) (2003) 429–448.

[42] L. Amgoud, S. Vesic, Rich preference-based argumentation frameworks, Interna-

tional Journal of Approximate Reasoning 55 (2) (2014) 585–606.

[43] M. Caminada, B. Verheij, On the existence of semi-stable extensions, in: Pro-

ceedings of the 22nd Benelux Conference on Artificial Intelligence, 2010.

[44] M. Zorn, A remark on method in transfinite algebra, Bulletin of the American

Mathematical Society 41 (1935) 667–670.

44

Appendix A. Proofs

Appendix A.1. Proofs for Section 5

Proof of Theorem 5.3.

(1) Take some A ∈ E and take some λ such as λ(a) = in if and only if a ∈ A,

λ(a) = undec otherwise. Clearly, Ext(λ) = A, so Ext is surjective.

(2) Suppose that Lab(A) = Lab(B) = λ. Then, by the definition of Lab, a ∈ A if

and only if λ(a) = in and also a ∈ B if and only if λ(a) = in, so A = B. Thus, Lab

is injective. �

Proof of Theorem 5.4.

Set λ = Lab(A). Then: a ∈ Ext(Lab(A))⇔ λ(a) = in⇔ a ∈ A. �

Proof of Theorem 5.6.

(⇒) We will show that λ is proper. Suppose that λ(a) = out. Then, by the definition

of Lab, this is true if and only if Ext(λ) I a, which, by the definition of Ext, is

equivalent to in(λ) I a. So λ is proper.

(⇐) Let λ be a proper labelling and set λ′ = Lab(Ext(λ)). We will show that λ′ = λ.

Indeed, λ′(a) = in if and only if a ∈ Ext(λ) which is true if and only if a ∈ in(λ)

⇔ λ(a) = in.

Similarly, λ′(a) = out if and only if a /∈ Ext(λ), Ext(λ) I a; using Definition 5.5

and the fact that Ext(λ) = in(λ), this is equivalent to λ(a) = out.

From the above equivalences we can easily also conclude that λ′(a) = undec if and

only if λ(a) = undec, which means that λ′ = λ and concludes the proof. �

Proof of Theorem 5.8.

Take a co-labelling λ. We note that, by definition, λ(a) = out if and only if in(λ) I

a, so a co-labelling is proper.

Clearly, gr, pr, se, ea and id-labellings are complete, so the result carries over to

these cases as well.

Now take a st-labelling λ. We note that a st-labelling is also a cf -labelling, so

λ(a) = out implies that in(λ) I a, so it suffices to show the opposite implication.

Indeed, suppose that in(λ) I a. If λ(a) = in, we get that λ is not conflict-free, a

45

contradiction; also, by the definition of st-labellings, undec(λ) = ∅, which forces us

to accept that λ(a) = out. So λ is proper.

Now take a sg-labelling λ. We note that a sg-labelling is also a cf -labelling, so

λ(a) = out implies that in(λ) I a, so it suffices to show the opposite implication.

Indeed, suppose that in(λ) I a. If λ(a) = in, we get that λ is not conflict-free, a con-

tradiction. If λ(a) = undec, then we create a new labelling, λ′, such that λ′(a) = out

and λ′(x) = λ(x) for x 6= a. Clearly, λ′ is conflict-free, and contains less elements

marked as undec, which contradicts the minimality criterion of stage labellings, i.e.,

the hypothesis that λ is stage. We conclude that λ(a) = out. This shows that λ is a

proper labelling. �

Theorems 5.10 and 5.11 consist of 11 parts, one for each of the semantics considered

in the theorems. The proof of each part relies on the preceding parts of both theorems.

For example, the proofs of the 9th parts of both theorems, i.e. the proofs for eager se-

mantics, rely on parts 1-8 of both theorems.

Proof of Theorem 5.10.

1. For σ = cf :

We set λ = Lab(A). For any argument a ∈ Args the following conditions hold:

(i) λ(a) = in⇔ a ∈ A (Definition 5.1)⇒

@B such that ∀b ∈ B : b ∈ A and B I a (conflict-freeness)⇒

@B such that ∀b ∈ B : λ(b) = in and B I a (Definition 5.1) (1)

(ii) λ(a) = out⇔ A I a and a /∈ A (Definition 5.1)⇒

∃B such that ∀b ∈ B : b ∈ A and B I a⇒

∃B such that ∀b ∈ B : λ(b) = in and B I a (Definition 5.1) (2)

From (1), (2) and Definition 4.2, we conclude that λ is a conflict-free labelling ofAFS .

2. For σ = ad:

We set λ = Lab(A). For any argument a ∈ Args the following conditions hold:

(i) λ(a) = in⇔ a ∈ A (Definition 5.1)⇒

for all B I a: A I B (Definition 3.2)⇒

46

for all B I a: ∃b ∈ B such that λ(b) = out (Definition 5.1) (1)

(ii) λ(a) = out⇔ A I a and a /∈ A (Definition 5.1)⇒

in(λ) I a (Definition 5.1) (2)

From (1), (2) and Definition 4.2, we conclude that λ is an admissible labelling ofAFS .

3. For σ = co :

We set λ = Lab(A). For any argument a ∈ Args the following conditions hold:

(i) λ(a) = in⇔ a ∈ A (Definition 5.1)⇔

for all B I a: A I B (Definition 3.3)⇔

for all B I a: ∃b ∈ B such that A I b (by the definition of I)⇔

for all B I a: ∃b ∈ B such that λ(b) = out (Definition 5.1) (1)

(ii) λ(a) = out⇔ A I a and a /∈ A (Definition 5.1)⇔

A I a (since by Definitions 3.2 and 3.3, A is conflict-free)⇔

in(λ) I a (Definition 5.1) (2)

From (1), (2) and Definition 4.2, we conclude that λ is a complete labelling of AFS .

4. For σ = pr :

By definition, every preferred extension of AFS is also a complete extension of AFS ,

therefore A is a complete extension of AFS⇒

λ = Lab(A) is a complete labelling of AFS(by part 3 of this theorem for σ=co)

Moreover, by the definition of preferred extensions, A is maximal w.r.t. set inclusion

among the complete extensions of AFS(1)

Suppose there is another complete labelling λ′ such that in(λ) ⊂ in(λ′).Then, A′ =

Ext(λ′) = in(λ′) would be a complete extension of AFS(by Theorem 5.11-3) and

A = in(λ) ⊂ A′, which violates (1). Therefore, in(λ) is maximal among the com-

plete labellings of AFS . Therefore, λ is a preferred labelling of AFS .

5. For σ = gr :

By definition, every grounded extension of AFS is also a complete extension of AFS ,

therefore A is a complete extension of AFS⇒

λ = Lab(A) is a complete labelling of AFS (by part 3 of this theorem for σ=co)

47

Moreover, by the definition of grounded extensions, A is minimal w.r.t. set inclusion

among the complete extensions of AFS(1)

Suppose there is another complete labelling λ′ such that in(λ′) ⊂ in(λ). Then,

A′ = Ext(λ′) = in(λ′) would be a complete extension of AFS(by Theorem 5.11-3)

and A′ ⊂ in(λ) = A, which violates (1). Therefore, in(λ) is minimal among the

complete labellings of AFS . Therefore, λ is a grounded labelling of AFS .

6. For σ = st :

By definition, every stable extension of AFS is a conflict-free subset of Args, there-

fore A is a conflict-free subset of Args⇒

λ = Lab(A) is a conflict-free labelling of AFS (by part 1 of this theorem for σ=cf)

Moreover, for every argument a ∈ Args: either a ∈ A ⇒ λ(a) = in (by Defini-

tion 5.1) or a /∈ A ⇒ A I a (by Definition 3.6)⇒ λ(a) = out (by Definition 5.1).

Therefore, undec(λ) = ∅ and λ is a conflict-free labelling of AFS , which means that

λ is a stable labelling of AFS .

7. For σ = na :

A is conflict-free (by definition of naive extensions), therefore λ = Lab(A) is a

conflict-free labelling of AFS (by part 1 of this theorem for σ=cf).

Moreover, by the definition of naive extensions, A is maximal w.r.t. set inclusion

among the conflict-free subsets of Args (1)

Suppose there is another conflict-free labelling λ′ such that in(λ) ⊂ in(λ′). Then,

A′ = Ext(λ′) = in(λ′) would be a conflict-free subset of Args (by Theorem 5.11-1)

and A = in(λ) ⊂ A′, which violates (1). Therefore, in(λ) is maximal among the

conflict-free labellings of Args. Therefore, λ is a naive labelling of AFS .

8. For σ = se :

By definition, every semi-stable extension of AFS is also a complete extension of

AFS , therefore A is a complete extension of AFS⇒

λ = Lab(A) is a complete labelling (by part 3 of this theorem for σ=co)

Moreover, by the definition of semi-stable extensions, the set A∪{b ∈ Args | A I b}

48

is maximal w.r.t. set inclusion among the complete extensions of AFS . (1)

Suppose there is another complete labelling λ′ such that in(λ)∪{b ∈ Args | in(λ) I

b} ⊂ in(λ′) ∪ {b ∈ Args | in(λ′) I b}. Then, A′ = Ext(λ′) = in(λ′) would be

a complete extension of AFS(by Theorem 5.11-3) and A ∪ {b ∈ Args | A) I b} =

in(λ) ∪ {b ∈ Args | in(λ) I b} ⊂ A′ ∪ {b ∈ Args | A′ I b}, which violates

(1). Therefore, in(λ) ∪ {b ∈ Args | in(λ) I b} is maximal among the complete

labellings of AFS . Therefore, λ is a semi-stable labelling of AFS .

9. For σ = ea :

By definition, every eager extension of AFS is also a complete extension of AFS ,

therefore A is a complete extension of AFS⇒

λ = Lab(A) is a complete labelling of AFS (by part 3 of this theorem for σ=co)

Moreover, by the definition of eager extensions:

(1) A ⊆ B for all semi-stable extensions B of AFS and

(2) C ⊆ A for all complete extensions C of AFS that satisfy (1)

Suppose there is a semi-stable labelling λ′ such that in(λ) * in(λ′). Then, A′ =

Ext(λ′) = in(λ′) would be a semi-stable extension of AFS (by Theorem 5.11-8) and

A′ ⊂ in(λ) = A, which violates (1).

Suppose there is a complete labelling λ′ such that in(λ′) ⊂ in(λ′′) for all semi-stable

labellings λ′′ of AFSand in(λ) ⊂ in(λ′). Then, A′ = Ext(λ′) = in(λ′) would be a

complete extension of AFS(by Theorem 5.11-3) and a subset of all semi-stable exten-

sions of AFS(since by Theorem 5.11-8 and part 8 of this theorem, all the semi-stable

extensions of AFScan be generated from the semi-stable labellings of AFSusing the

function Ext) and A ⊂ A′, which violates (2).

Therefore, in(λ) is a complete labelling of AFS , in(λ) ⊆ in(λ′) for all semi-stable

labellings λ′ of AFS , and in(λ) is maximal w.r.t. set inclusion among all labellings

satisfying the previous two conditions. Therefore λ is an eager labelling of AFS .

10. For σ = id :

By definition, every ideal extension of AFS is also a complete extension of AFS ,

therefore A is a complete extension of AFS⇒

49

λ = Lab(A) is a complete labelling of AFS (by part 3 of this theorem for σ=co)

Moreover, by the definition of ideal extensions:

(1) A ⊆ B for all preferred extensions B of AFS and

(2) C ⊆ A for all complete extensions C of AFS that satisfy (1)

Suppose there is a preferred labelling λ′ such that in(λ) * in(λ′). Then, A′ =

Ext(λ′) = in(λ′) would be a preferred extension of AFS(by Theorem 5.11-4) and

A′ ⊂ in(λ) = A, which violates (1).

Suppose there is a complete labelling λ′ such that in(λ′) ⊂ in(λ′′) for all preferred

labellings λ′′ of AFSand in(λ) ⊂ in(λ′). Then, A′ = Ext(λ′) = in(λ′) would be

a complete extension of AFS(by Theorem 5.11-3) and a subset of all preferred exten-

sions of AFS(since by Theorem 5.11-4 and part 4 of this theorem, all the preferred

extensions of AFScan be generated from the preferred labellings of AFSusing the

function Ext) and A ⊂ A′, which violates (2).

Therefore, in(λ) is a complete labelling of AFS , in(λ) ⊆ in(λ′) for all preferred

labellings λ′ of AFS , and in(λ) is maximal w.r.t. set inclusion among all labellings

satisfying the previous two conditions. Therefore λ is an ideal labelling of AFS .

11. For σ = sg :

By the definition of stage extensions, A is conflict-free, therefore λ = Lab(A) is a

conflict-free labelling of AFS (by part 1 of this theorem for σ=cf). Moreover, by the

definition of stage extensions, the set A ∪ {b ∈ Args | A I b} is maximal w.r.t. set

inclusion among the conflict-free subsets of Args. (1)

Suppose there is another conflict-free labelling λ′ such that in(λ) ∪ {b ∈ Args |

in(λ) I b} ⊂ in(λ′) ∪ {b ∈ Args | in(λ′) I b}.

Then, A′ = Ext(λ′) = in(λ′) would be a conflict-free subset of Args (by Theo-

rem 5.11-1) and A ∪ {b ∈ Args | A) I b} = in(λ) ∪ {b ∈ Args | in(λ) I b} ⊂

A′ ∪ {b ∈ Args | A′ I b}, which violates (1).

Therefore, in(λ) ∪ {b ∈ Args | in(λ) I b} is maximal among the conflict-free

labellings of AFS , which means that undec(λ) is minimal among the conflict-free

labellings of AFS . Therefore, λ is a stage labelling of AFS . �

50

Proof of Theorem 5.11.

1. For σ = cf :

We set A = Ext(λ). According to Definition 5.2:

A = {a ∈ Args | λ(a) = in} ⇒

A = {a ∈ Args | @B ⊆ in(λ) : B I a} (Definition 4.2: cf-labellings)⇒

A = {a ∈ Args | @B ⊆ Ext(λ) : B I a} (Definition 5.2)⇒

A does not attack itself, therefore, by Definition 3.1, A is conflict-free.

2. For σ = ad :

We set A = Ext(λ). λ is admissible and, therefore, by the definition of admissible

labellings (Definition 4.2), conflict-free, and, therefore, by the first part of this theorem,

A is conflict-free. (1).

For any B ⊆ Args such that B I A: By the definition of I, there is some a ∈ A

such that B I a. Since a ∈ A, λ(a) = in. Combining these facts and the definition

of admissible labellings (Definition 4.2), it follows that there is some b ∈ B such that

λ(b) = out, so (by Definition 4.2 again) ∃A′ I b,∀a′ ∈ A′ : λ(a′) = in, so, by

Definition 5.2, A′ ⊆ A. We conclude that A I b. Therefore, for all B I A: A I B

(2).

From (1), (2) and Definition 3.2, we conclude that A is an admissible extension of

Args.

3. For σ = co :

We set A = Ext(λ). λ is complete and, therefore, by the definition of complete la-

bellings (Definition 4.2), conflict-free, and, therefore, by the first part of this theorem,

A is conflict-free. (1).

For any B ⊆ Args such that B I A: By the definition of I, there is some a ∈ A

such that B I a. Since a ∈ A, λ(a) = in. Combining these facts and the definition

of complete labellings (Definition 4.2), it follows that there is some b ∈ B such that

λ(b) = out, so (by Definition 4.2 again) ∃A′ I b,∀a′ ∈ A′ : λ(a′) = in, so, by

Definition 5.2, A′ ⊆ A. We conclude that A I b. Therefore, for all B I A: A I B

(2).

51

Thirdly, suppose that for an argument a ∈ Args, A I B for any B ⊆ Args such

that B I a ⇒ ∃b ∈ B : A I b, thus λ(b) = out and λ(a) = in (by Definitions 4.2

and 5.2). Therefore a ∈ A (by Definition 5.2) (3).

Combining (1)-(3) and Definition 3.3, we conclude that A is a complete extension of

AFS .

4. For σ = pr :

By the definition of preferred labellings, λ is a complete labelling, and therefore, by

part 3 of this theorem for σ=co, A = Ext(λ) = in(λ) is a complete extension of

AFS . Moreover, in(λ) is maximal w.r.t set inclusion among the complete labellings

of AFS . Therefore, A is maximal among the complete extensions generated by the

complete labellings of AFS (as described in Definition 5.2). By Theorem 5.10-3 and

Theorem 5.4, all the complete extensions of AFScan be generated from the complete

labellings of AFSusing the function Ext. Therefore, A is maximal w.r.t. set inclusion

among all complete extensions of AFS , and therefore, by Definition 3.4, a preferred

extension of AFS .

5. For σ = gr :

By the definition of grounded labellings, λ is a complete labelling, and therefore, by

part 3 of this theorem for σ=co, A = Ext(λ) = in(λ) is a complete extension of

AFS . Moreover, in(λ) is minimal w.r.t set inclusion among the complete labellings

of AFS . Therefore, A is minimal among the complete extensions generated by the

complete labellings of AFS (as described in Definition 5.2). As shown in the proof

above (for σ=pr), there is no complete extension that is not generated by a complete

labelling of AFS as described in Definition 5.2. Therefore, A is minimal w.r.t. set

inclusion among the complete extensions of AFS , and therefore, by Definition 3.5, a

grounded extension of AFS .

6. For σ = st :

We set A = Ext(λ) = in(λ). By the definition of stable labellings, for any argument

a ∈ Args, either:

52

(1) λ(a) = in⇔ a ∈ A (by Definition 5.2) or

(2) λ(a) = out⇒

∃B ⊆ Args such that B I a and ∀b ∈ B: λ(b) = in (since λ is conflict-free)⇒

∃B ⊆ Args such that B I a and ∀b ∈ B: b ∈ A (by Definition 5.2)⇒A I a

Summing up: ∀a ∈ Args: a ∈ A or A I a (3).

Moreover, by the definition of stable labellings, λ is also a conflict-free labelling of

AFS , and, therefore, by part 1 of this theorem for σ=cf , A is conflict-free. By combin-

ing the latter fact with (3) and Definition 3.6, we conclude that A is a stable extension

of AFS .

7. For σ = na :

By the definition of naive labellings, λ is a conflict-free labelling, and therefore,

by part 1 of this theorem for σ=cf , A = Ext(λ) = in(λ) is a conflict-free subset

of Args. Moreover, in(λ) is maximal w.r.t set inclusion among the conflict-free la-

bellings of AFS . Therefore, A is maximal among the conflict free sets of arguments

generated by the conflict-free labellings of AFS (as described in Definition 5.2). By

Theorem 5.10-1 and Theorem 5.4, all the conflict-free extensions of AFScan be gen-

erated from the conflict-free labellings of AFSusing the function Ext. We, therefore,

conclude that A is maximal w.r.t. set inclusion among all conflict-free subsets of Args,

and therefore, by Definition 3.7 a naive extension of AFS .

8. For σ = se :

By the definition of semi-stable labellings, λ is a complete labelling, and therefore,

by part 3 of this theorem for σ=co, A = Ext(λ) = in(λ) is a complete exten-

sion of AFS . Moreover, undec(λ) is minimal, and therefore in(λ) ∪ out(λ) is

maximal w.r.t. set inclusion among the complete labellings of AFS . Therefore, by

the definition of complete labellings, in(λ) ∪ {b ∈ Args | in(λ) I b} is maxi-

mal w.r.t set inclusion among the complete labellings of AFS , and by Definition 5.2,

A ∪ {b ∈ Args | A I b} is maximal among the complete extensions generated by

the complete labellings of AFS (as described in Definition 5.2). As already proved,

there is no complete extension that is not generated by a complete labelling of AFS as

53

described in Definition 5.2. Therefore, A ∪ {b ∈ Args | A I b} is maximal w.r.t. set

inclusion among the complete extensions of AFS , and therefore, by Definition 3.8, a

semi-stable extension of AFS .

9. For σ = ea :

By the definition of eager labellings, λ is a complete labelling, and therefore, by part 3

of this theorem for σ=co, A = Ext(λ) = in(λ) is a complete extension of AFS (1)

Moreover, in(λ) ⊆ in(λ′) for every semi-stable labelling λ′ of AFS . Therefore, by

Definition 5.2 and part 8 of this theorem for σ=se, A ⊆ A′ for every semi-stable

extension A′ = Ext(λ′) generated (as described in Definition 5.2) by a semi-stable

labelling λ′ of AFS . By Theorem 5.10-8 and Theorem 5.4, all the semi-stable ex-

tensions of AFScan be generated from the semi-stable labellings of AFSusing the

function Ext. We, therefore, conclude that A is a subset of every semi-stable exten-

sion of AFS . (2)

Finally, in(λ) is maximal w.r.t. set inclusion among all labellings of AFS satisfying

conditions (1) and (2). Therefore, A is maximal w.r.t. set inclusion among all complete

extensions generated by the complete labellings of AFS (as in Definition 5.2), satisfy-

ing conditions (1) and (2). As already proved, there is no complete extension that is not

generated by a complete labelling of AFS as described in Definition 5.2. We, there-

fore, conclude that A is maximal w.r.t. set inclusion among all complete extensions of

AFS that are subsets of every semi-stable extension of AFS . By Definition 3.9, it is,

therefore, an eager extension of AFS .

10. For σ = id :

By the definition of ideal labellings, λ is a complete labelling, and therefore, by part 3

of this theorem for σ=co, A = Ext(λ) = in(λ) is a complete extension of AFS (1)

Moreover, in(λ) ⊆ in(λ′) for every semi-stable labelling λ′ of AFS . Therefore,

by Definition 5.2 and part 4 of this theorem for σ=pr, A ⊆ A′ for every preferred

extension A′ = Ext(λ′) generated (as described in Definition 5.2) by a preferred la-

belling λ′ of AFS . By Theorem 5.10-4 and Theorem 5.4, all the preferred extensions

of AFScan be generated from the preferred labellings of AFSusing the function Ext.

54

We, therefore, conclude that A is a subset of every preferred extension of AFS . (2)

Finally, in(λ) is maximal w.r.t. set inclusion among all labellings of AFS satisfying

conditions (1) and (2). Therefore, A is maximal w.r.t. set inclusion among all complete

extensions generated by the complete labellings of AFS (as in Definition 5.2), satisfy-

ing conditions (1) and (2). As already proved, there is no complete extension that is not

generated by a complete labelling of AFS as described in Definition 5.2. We, there-

fore, conclude that A is maximal w.r.t. set inclusion among all complete extensions of

AFS that are subsets of every preferred extension of AFS . By Definition 3.10, it is,

therefore, an ideal extension of AFS .

11. For σ = sg :

By the definition of stage labellings, λ is a conflict-free labelling, and therefore, by part

1 of this theorem for σ=cf , A = Ext(λ) = in(λ) is a conflict-free subset of Args.

Moreover, undec(λ) is minimal, and therefore in(λ) ∪ out(λ) is maximal w.r.t. set

inclusion among the conflict-free labellings of AFS . Therefore, by the definition of

conflict-free labellings, in(λ)∪{b ∈ Args | in(λ) I b} is maximal w.r.t set inclusion

among the conflict-free labellings of AFS , and by Definition 5.2, A ∪ {b ∈ Args |

A I b} is maximal among the conflict-free subsets of Args generated by the conflict-

free labellings of AFS (as described in Definition 5.2). As already proved, there is no

conflict-free subset of Args that is not generated by a conflict-free labelling ofAFS as

described in Definition 5.2. Therefore, A ∪ {b ∈ Args | A I b} is maximal w.r.t. set

inclusion among the conflict-free subsets of Args, and therefore, by Definition 3.11, a

stage extension of AFS . �

Appendix A.2. Proofs for Section 6

Lemma 1. The following points hold:

1. If A� B, A ⊆ A′ and B ⊆ B′, then A′� B′

2. If A� B, then there exists some A′ ⊆ A such that A′� B

3. If A� B, then there exists some b ∈ B such that A� {b}

55

4. {C | A′� C for some A′ ∈ A} = {C | A� C}.

Proof.

Obvious from the properties of I and the definition of�. �

Lemma 2. If E ∈ EcfD , then:

1. If E ′ ⊆ E then E ′ ∈ EcfD

2. If A ⊆ B and B ∈ E , then E ∪ {A} ∈ EcfD

3. If A ∈ E , then E ∪A ∈ EcfD

Proof.

#1 is obvious.

Regarding #2, consider some C such that C� A. Then, C� B (Lemma 1). Since

E is conflict-free and B ∈ E , C /∈ E . If C = A then A� B, so B� B and B ∈ E ,

a contradiction since E is conflict-free. So C /∈ E ∪{A}, thus E ∪{A} is conflict-free.

#3 is a direct corollary of #2. �

Proof of Proposition 6.3.

(1)⇔ (2): A ∈ EcfS ⇔ (by definition of EcfS)

A 6I A⇔ (by Definition 6.1)

A 6� A⇔ (by the definition of conflict-free sets in AFs [2])

{A} ∈ EcfD .

(2)⇒ (3): direct from Lemma 2, point #3.

(3)⇒ (2): direct from Lemma 2, point #1.

(3)⇒ (4): direct from Lemma 2, point #1.

(4)⇒ (3): obvious. �

Proof of Proposition 6.4.

If A /∈ EcfS , then A I A, i.e., A� A, which contradicts the assumption. �

Proof of Theorem 6.5.

#1 is immediate from the equivalence of points #1, #3 of Proposition 6.3.

56

For #2, take some E ∈ EcfD . By Proposition 6.4, E ⊆ EcfS . Moreover, by the fact that

E ∈ EcfD , we conclude that A 6� B, i.e., A 6I B for all A,B ∈ E . �

Proof of Proposition 6.6.

For #1, note initially that E ∪ {A} is conflict-free (Lemma 2, point #2). Moreover,

consider some C such that C� A. Then, C� B, so there is some A′ ∈ E such that

A′� C. We conclude that E ∪ {A} is admissible.

#2 is a direct corollary of #1.

Regarding #3, we must first show that E ∪ {A ∪ B} is conflict-free. Indeed, suppose

that E ∪ {A ∪B} is not conflict-free, i.e., there are A1,A2 ∈ E ∪ {A ∪B} such that

A1 � A2. Then, there is some a ∈ A2 such that A1 � {a}. We can conclude that

there is some A3 ∈ E such that a ∈ A3; indeed, if A2 ∈ E , then take A3 = A2,

otherwise A2 = A ∪ B so a ∈ A or a ∈ B, and we can take A3 = A or A3 = B

respectively. Therefore, A1� A3 and A3 ∈ E . Since E is conflict-free, we conclude

that A1 /∈ E , thus A1 = A∪B, i.e., A∪B� A3. Since A3 ∈ E and E is admissible,

there is some A4 ∈ E such that A4� A∪B. But then, there is some a′ ∈ A∪B such

that A4 � {a′}, i.e., A4 � A or A4 � B. This leads to a contradiction, because,

A4,A,B ∈ E and E is conflict-free. We conclude that E ∪ {A ∪B} is conflict-free.

Now consider some C such that C � A ∪ B, and take any a ∈ A ∪ B such that

C � {a}. Suppose that a ∈ A. Then C � A, so (since E is admissible) there is

some A′ ∈ E such that A′� C. Same arguments can be used if a ∈ B. Thus, A∪B

is acceptable with respect to E . This concludes the proof.

For #4 the proof follows the arguments of case #3.

For #5, set B =
⋃

A∈E A. We note first that E ∪ {B} ∈ EadD (case #4). Also, for any

C ∈ B, we get that E ∪ {B} ∪ {C} ∈ EadD (case #1). Thus, E ∪ B ∈ EadD . But, by

construction, E ⊆ B, which leads to the result.

For #6, set B =
⋃

A∈E A. Now take any C � B. Then, since B ∈ EadD (point #5)

and B ∈ B, we conclude that there is some D ∈ B such that D � C. Given that

D ∈ B, we conclude that D ⊆ B so B� C, which leads to the result. �

Proof of Proposition 6.7.

#1⇒ #2: take some A ∈ EadS . By Proposition 6.3, {A} ∈ EcfD . Now consider some

57

C such that C� A. Then C I A, so A I C (since A ∈ EadS), i.e., A� C. These

facts prove that {A} ∈ EadD .

#2⇒ #1: suppose that {A} ∈ EadD . By Proposition 6.3, A ∈ EcfS . Now consider some

C such that C I A. Then C � A, so A � C (since {A} ∈ EadD), i.e., A I C.

These facts prove that A ∈ EadS .

#2⇒ #3: direct from Proposition 6.6, point #5.

#3⇒ #2: direct from Proposition 6.6, point #6. �

Proof of Theorem 6.8.

#1 is direct from Proposition 6.7, in particular by the equivalence of points #1, #3 of

that proposition.

For #2, take some E ∈ EadD and set D =
⋃

A∈E A. By Proposition 6.6, {D} ∈ EadD , so,

by Proposition 6.7, D ∈ EadS . Now take some C I D. By construction, there is some

A ∈ E and a ∈ A such that C I a, so C I A⇒ C� A. Given that E is admissible,

we can now conclude that EadD ⊆ {E |
⋃

A∈E A ∈ EadS , and if C I
⋃

A∈E A, then

there is B ∈ E such that B I C}.

For the opposite inclusion, let’s take some E as required by the theorem and set D =⋃
A∈E A. First, we will show that E ∈ EcfD . Indeed, suppose A,B ∈ E such that

A� B. Then, A I B, so D I D, a contradiction by the fact that D ∈ EadS . Further,

assume some C such that C � B for some B ∈ E . Then, C I B, so C I D

(because B ⊆ D), so by the definition of E , there is some B′ ∈ E such that B′ I C,

i.e., B′� C, so E ∈ EadD and the proof is complete. �

Proof of Proposition 6.9.

For #1, note that, by Proposition 6.6, point #1, A is acceptable with respect to E , so

A ∈ E .

Point #2 is a direct corollary of point #1.

Points #3 and #4 also follow from Proposition 6.6 (points #3, #4, respectively) by

noting that A ∪B and
⋃

A∈E A are acceptable with respect to E .

For point #5, note that B ∈ E implies that B ∈
⋃

A∈E A, so E ⊆
⋃

A∈E A. The

opposite inclusion follows by combining points #4 and #2 of this proposition. �

Proof of Theorem 6.10.

58

We will first show the theorem for σ = co.

For #1: Take A ∈ EcoS . First we note that A ∈ EadS , so A ∈ EadD (Proposition 6.7).

Moreover, we can deduce that for any a ∈ Args \A, there is some B such that B I a

and A 6I B, i.e., B � {a} and A 6� B. Now take any C /∈ A. Then, there is

some c ∈ C \ A, and by the above observation it follows that there is some B such

that B � {c} and A 6� B, i.e., B � C and A 6� B. Thus, A ∈ EcoD , i.e.,

EcoS ⊆ {A | A ∈ EcoD }.

For the opposite inclusion, take some A ∈ EcoD . It follows that A ∈ EadD , so A ∈ EadS
(Proposition 6.7). Moreover, for any C /∈ A there is some B such that B � C and

there is no D ∈ A such that D � B, or, equivalently, B � C and A 6� B, or,

equivalently, B I C and A 6I B. Now take any c /∈ A. Then {c} /∈ A, so by the

above conclusion, there is some B I {c} and A 6I B, which means that A ∈ EcoS .

For #2, take some E ∈ EcoD and set B =
⋃

A∈E A. Then, by Proposition 6.9, E = B.

But then, as already shown above, B ∈ EcoS , which proves that EcoD ⊆ {A | A ∈ EcoS }.

The opposite inclusion is also trivial, because if A ∈ EcoS then A ∈ EcoD by the first

point.

Now consider the case where σ = pr.

If A ∈ EprS , then also A ∈ EcoS , so A ∈ EcoD . If we assume some E ∈ EcoD such that

E ⊃ A, then by the case where σ = co we conclude that E = B for some B ⊃ A and

B ∈ EcoS , a contradiction. Thus, A ∈ EprD , i.e., EprS ⊆ {A | A ∈ E
pr
D }.

For the opposite inclusion, note that if A ∈ EprD then A ∈ EcoD , so A ∈ EcoS and if

we assume some B ∈ EcoS such that B ⊃ A we end up with B ∈ EcoD and B ⊃ A, a

contradiction.

For #2, if we consider an extension E ∈ EprD then E ∈ EcoD , so E = A for some A. But

then, by the first case above, A ∈ EprS . The opposite inclusion is also direct from the

above case.

The case where σ = gr is similar to the case where σ = pr and omitted.

Now consider the case where σ = st.

We have: A ∈ EstS ⇔

59

A 6I a for all a ∈ A and A I b for all b ∈ Args \A⇔

A 6� {a} for all {a} ⊆ A and A I B for all B 6⊆ A⇔

A1 6� A2 for all A1,A2 ∈ A and A� B for all B /∈ A⇔

A ∈ EstD .

Based on the above equivalence, all the necessary inclusions for points #1 and #2 can

be easily shown. �

Lemma 3. For all A and c, c ∈ A ∪AI if and only if {c} ∈ A ∪A�.

Proof of Lemma 3.

We note that c ∈ A if and only if {c} ∈ A. Furthermore, c ∈ AI ⇔ A I c⇔ A�

{c} ⇔ {c} ∈ A�. Combining these two results, the proof follows trivially. �

Proof of Proposition 6.15.

For point #1:

Take some c ∈ A∪AI. Using Lemma 3: {c} ∈ A∪A� ⊆ B∪B�, so c ∈ B∪BI.

For point #2:

Take some C ∈ A ∪A�. We consider two cases:

Case 1: If C ∈ A then C ⊆ A ⊆ A ∪AI ⊆ B ∪BI. If C ∩BI = ∅ then C ⊆ B,

i.e., C ∈ B ⊆ B∪B�, so let’s assume that C∩BI 6= ∅ and take c ∈ C∩BI. Then

c ∈ BI ⇒ {c} ∈ B� ⇒ B� {c} ⇒ B� C, i.e., C ∈ B� ⊆ B ∪B�.

Case 2: If C ∈ A� then there is some c ∈ C such that A � {c}, so A I c, i.e.,

c ∈ A ∪AI ⊆ B ∪BI. If c ∈ B then A� B, i.e., A I B, a contradiction, so we

have to assume that c ∈ BI, which means that B I C, i.e., C ∈ B�.

We conclude that in either case C ∈ B ∪B�, so A ∪A� ⊆ B ∪B�.

For point #3:

Since A I B, there is b ∈ B such that A I b. Consider also some c ∈ Args \

(B ∪ BI). Then, for the set C = {b, c}, it holds that A I C, so A � C, i.e.,

C ∈ A ∪ A�. However, C 6⊆ B (because c /∈ B) and B 6� C (because it does

not attack b due to conflict-freeness, and it does not attack c by the choice of c). Thus,

C /∈ B ∪B�, which leads to the desired result. �

Proof of Proposition 6.16.

60

Take A ∈ EstS . Then A ∈ EcoS and A ∪ AI = Args, so A ∪ AI is maximal, i.e.,

A ∈ EseS . For the opposite, note that since EstS 6= ∅, there is at least one B such that

B ∈ EcoS and B∪BI = Args. Thus, if A ∈ EseS then A ∈ EcoS and A∪AI = Args,

thus A ∈ EstS .

For the second relation, we note that EstS 6= ∅ implies that EstD 6= ∅, thus, following the

same reasoning we can show that EstD = EseD . �

Proof of Proposition 6.19.

(1)⇒ (2) Take c ∈ A \B; obviously c ∈ A ⊆ A ∪AI ⊆ B ∪BI. Since c /∈ B by

construction, it follows that c ∈ BI, which proves that A \B ⊆ BI.

Moreover, take c ∈ AI ∩ (Args \ (A ∪ B)). To prove the second condition of S-

domination, it suffices to show that B I c. Indeed, c ∈ AI ⊆ A ∪AI ⊆ B ∪BI,

and, by construction, c /∈ B, thus c ∈ BI, which concludes this part of the proof.

(2)⇒ (3) We will first show that A \B ⊆ B�. If A \B = ∅ then the result follows

trivially, so suppose that this is not the case and take C ∈ A \ B. Then C ⊆ A and

C 6⊆ B, so there is some c ∈ C ∩ (A \B). By S-domination, B I c, so B I C, i.e.,

B� C, which proves that A \B ⊆ B�.

Now take C ∈ A�∩Args \ (A ∪B). To prove the second condition of D-domination,

it suffices to show that B � C. Indeed, by construction, A � C, so there is c ∈ C

such that A� {c}, i.e., A I c. But then c ∈ A∪AI ⊆ B∪BI. By the construction

of c and C, it follows that c /∈ B, so c ∈ BI, which in turn implies that B� C.

(3) ⇒ (1) Take c ∈ A ∪AI. It suffices to show that c ∈ B ∪BI. This is obviously

true if c ∈ B, so we will assume that c /∈ B and show that B I c under these assump-

tions. We split the proof in two cases.

Case 1: If c ∈ A, then c ∈ A \B so {c} ∈ A \B ⊆ B�, so B� {c}, i.e., B I c.

Case 2: If c ∈ AI, then A I c⇒ A� {c} ⇒ {c} ∈ A�. Moreover, given that A

is conflict-free, c /∈ A and also c /∈ B (by the hypothesis), so {c} ∈ Args \ (A ∪B).

We conclude that {c} ∈ A� ∩Args \ (A ∪B) ⊆ B� ∩Args \ (A ∪B) ⊆ B�,

so B� {c}, i.e., B I c. �

Proof of Proposition 6.20.

The equivalence between (2), (3) and (4) is obvious by Proposition 6.19. Also, (1)

61

clearly implies (2), by Proposition 6.15, points #1 and #3. Further, (2) implies (1) by

Proposition 6.15, point #2. �

Lemma 4. For all A, A ∪AI = Args if and only if A ∪A� = Args.

Proof of Lemma 4.

The result is obvious from Corollary 6.11, for the case where σ = st. �

Proof of Proposition 6.21.

Suppose that A ∪ A� = B ∪ B�. Then, by Lemma 4 and the hypothesis, we

conclude that A∪A� 6= Args, B∪B� 6= Args and B∪BI 6= Args. Moreover,

A ∪ A� ⊆ B ∪ B�, so, by Proposition 6.20 and the fact that B ∪ BI 6= Args,

A 6I B; also (by S-domination), A \ B ⊆ BI. Similarly, B ∪ B� ⊆ A ∪ A�,

so B 6I A and B \A ⊆ AI. The combination of these relations can be true only if

A \B = B \A = ∅, which means that A = B. The opposite implication is trivial, so

this concludes the proof. �

Proof of Proposition 6.22.

If EstS 6= ∅, then there is some B ∈ EcoS such that B ∪BI = Args, and, since, A ∈

EseS , it follows that A ∪AI = Args, i.e., A ∈ EstS , which implies, by Theorem 6.10,

that A ∈ EstD . The latter means that A ∈ EcoD and that A ∪ A� = Args so it is

maximal, which concludes the proof for this case.

Now let’s assume that EstS = ∅. Then A ∪AI 6= Args. Since A ∈ EcoS , A ∈ EcoD
(Theorem 6.10). Also, consider some E ∈ EcoD such that A ∪ A� ⊂ E ∪ E�. By

Theorem 11 of [2] there is some E ′ ∈ EprD such that E ′ ⊇ E and it is obviously the case

that A∪A� ⊂ E ′∪E ′�. Moreover, by Theorem 6.10, there is some C ∈ EprS such that

E ′ = C, i.e., A∪A� ⊂ C∪C�. But then, by Proposition 6.15, A∪AI ⊆ C∪CI.

Since A ∈ EseS it follows that A ∪AI = C ∪CI. If C 6I A then the latter relation

would imply that C∪C� ⊆ A∪A� (Proposition 6.15), a contradiction, so C I A.

But A ∈ EcoS by construction, so the latter relation implies that A I C. Combining the

above results we have that A I C and A ∪A� ⊆ C ∪C�, so, by Proposition 6.15

we are forced to assume that C ∪CI = Args, a contradiction by our hypothesis. �

62

Proof of Theorem 6.23.

For #1, take some A ∈ EseS . By Proposition 6.22, A ∈ EseD . Moreover, if B strictly

D-dominates A, then, by Proposition 6.19, A ∪AI ⊂ B ∪ BI, so, since A ∈ EseS ,

we are forced to conclude that B /∈ EcoS , thus B /∈ EcoD .

For the opposite inclusion, we note that, since A ∈ EseD , A ∈ EcoD , so A ∈ EcoS . Now

suppose that there is some B ∈ EcoS such that A ∪AI ⊂ B ∪ BI. Then, B strictly

D-dominates A (by Proposition 6.19), so, by the hypothesis, B /∈ EcoD , thus B /∈ EcoS ,

a contradiction by our hypothesis on B.

For #2, take some E ∈ EseD . Then, by Theorem 2 of [18], E is also preferred, so, by

Theorem 6.10, it is of the form A for some A ∈ EprS . Now take some B ∈ EprS such

that A∪AI ⊂ B∪BI. If A 6I B, then by Proposition 6.20 and the above inclusion,

it follows that A∪A� ⊆ B∪B�. Since A ∈ EseD and B ∈ EprS ⊆ EcoS , we are forced

to assume that A ∪A� = B ∪B�, so A = B (Proposition 6.21), which contradicts

the fact that A ∪AI ⊂ B ∪ BI. Thus A I B, so: EseD ⊆ {A | A ∈ E
pr
S ,A I B

whenever A ∪AI ⊂ B ∪BI,B ∈ EprS }.

For the opposite inclusion, take some A for which A ∈ EprS and A I B whenever

A ∪AI ⊂ B ∪BI,B ∈ EprS . Suppose, for the sake of contradiction, that A /∈ EseD ,

so there is some E ∈ EcoD such that A∪A� ⊂ E ∪E�. By Theorem 11 of [2] there is

some E ′ ∈ EprD such that E ′ ⊇ E and it is obviously the case that A∪A� ⊂ E ′∪E ′�.

Moreover, by Theorem 6.10, there is some C ∈ EprS such that E ′ = C, i.e., A∪A� ⊂

C ∪C�. But then, by Proposition 6.15, A ∪AI ⊆ C ∪CI. If A ∪AI ⊂ C ∪CI

then, by the initial hypothesis, A I C. If A ∪ AI = C ∪ CI and C 6I A then

Proposition 6.15 leads to a contradiction, so C I A. But A ∈ EprS thus the above

attack implies that A I C. Thus, in any case, A I C, so there is some c ∈ C such

that A I c. Moreover, since EstS = ∅, C /∈ EstS , so there is some d ∈ Args\(C∪CI).

For the set D = {c, d}, we have that A I D, so A� D, i.e., D ∈ A� ⊆ A ∪A�.

On the other hand, D /∈ C (because d /∈ C) and D /∈ C� (because C 6I d, and c ∈ C

so C 6I c). This contradicts with the assumption that A ∪A� ⊂ C ∪ C�, and the

proof is complete. �

Proof of Proposition 6.24.

63

Take A ∈ EstS . Then A ∈ EcfS and A ∪ AI = Args, so A ∪ AI is maximal, i.e.,

A ∈ EsgS . For the opposite, note that, since EstS 6= ∅, there is at least one B such

that B ∈ EcoS ⊆ EcfS and B ∪ BI = Args. Thus, if A ∈ EsgS then A ∈ EcfS and

A ∪AI = Args. It remains to show that A ∈ EcoS . Indeed, if C I A, then C 6⊆ A

(otherwise A would not be conflict free). Thus, there is some c ∈ C \A, and by our

hypothesis on A it follows that A I c, thus A I C. Further, since A ∪AI = Args,

A cannot be expanded further, because for all b /∈ A, we get that A I b and A 6I A.

Thus, A ∈ EcoS .

The second relation is straightforward from Theorems 2, 4 of [10]. �

Proof of Theorem 6.26.

Take some A ∈ EsgS . Then, by definition, A ∈ EcfS , so A ∈ EcfD (Theorem 6.5).

Moreover, if B strictly D-dominates A then B ∪ BI ⊃ A ∪AI (Proposition 6.19),

and since A ∈ EsgS we are forced to conclude that B /∈ EcfS , thus B /∈ EcfD .

For the opposite, since A ∈ EcfD , it follows that A ∈ EcfS (Proposition 6.3). Moreover,

if there is B ∈ EcfS such that B ∪BI ⊃ A ∪AI, then B strictly D-dominates A, so

B /∈ EcfD (by construction), i.e., B /∈ EcfS , a contradiction. Thus, A ∈ EsgS . �

Lemma 5. Consider some family {Ai} such that Aj 6I Ak for all j, k. If EstS = ∅,

then either
⋃
(Ai ∪Ai

I) 6= Args or
⋃
Ai /∈ {Ai}.

Proof of Lemma 5.

Suppose that EstS = ∅. Assume, for the sake of contradiction, that
⋃
(Ai ∪ Ai

I) =

Args and that
⋃
Ai ∈ {Ai}. We will show that, for B =

⋃
Ai, B ∈ EstS , which

is a contradiction by the hypothesis that EstS = ∅. Indeed, B ∈ {Ai}, so B 6I B,

i.e., B ∈ EcfS . Furthermore, BI ⊇ Ai
I for all i, thus

⋃
(Ai ∪Ai

I) ⊆ B ∪ BI, so

B ∪BI = Args. Thus, B ∈ EstS , a contradiction. �

Proof of Proposition 6.27.

(⇒) For the first bullet, take c ∈
⋃
(Ai ∪ Ai

I). Then {c} ∈
⋃
(Ai ∪ Ai

�), so

{c} ∈
⋃
(Bi ∪Bi

�) which proves that c ∈
⋃
(Bi ∪Bi

I).

For the second bullet, suppose that Aj I Bk. Since EstS = ∅, from Lemma 5 we get

that either
⋃
(Bi ∪Bi

I) 6= Args or
⋃

Bi /∈ {Bi}. We split the proof in two cases:

64

If the former is true, take some c /∈
⋃
(Bi ∪ Bi

I). Also, there is some b ∈ Bk such

that Aj I b, and set C = {b, c}. Then, we note that C 6⊆
⋃
Bi (by the construction

of c ∈ C), and that C /∈
⋃
Bi
� (because, if this was the case, then there would be

some Bm attacking either b or c, both of which are impossible by the hypothesis on

{Bi} and the choice of b, c). We conclude that C /∈
⋃
(Bi ∪Bi

�). On the other hand,

Aj I C, so C ∈
⋃
(Ai ∪Ai

�), which contradicts the hypothesis.

If the latter is true, then set C =
⋃
Bi. It follows that C 6⊆ Bj for all j, so C /∈

⋃
Bi.

Moreover, there is no Bj such that Bj I C, because then Bj I Bk for some k,

a contradiction. Thus, C /∈
⋃
(Bi ∪ Bi

�). On the other hand, Aj I C, so C ∈⋃
(Ai ∪Ai

�), which contradicts the hypothesis.

For the third bullet, consider some j such that for all k, Aj \Bk 6⊆
⋃

Bi
I. Then, for

each k, there is some ck such that ck ∈ Aj \ Bk and ck /∈
⋃

Bi
I. Set C =

⋃
{ck}.

Then, obviously, C ⊆ Aj, so C ∈
⋃
(Ai ∪ Ai

�). On the other hand, if there is m

such that C ∈ Bm, then C ⊆ Bm, a contradiction because cm ∈ C but cm /∈ Bm

by construction. Similarly, if there is m such that C ∈ Bm
�, then there would exist

cn ∈ C such that Bm I cn, i.e., cn ∈ Bm
I, a contradiction by construction again.

Thus, C /∈
⋃
(Bi ∪Bi

�), which contradicts the hypothesis.

(⇐) Take some C ∈
⋃
(Ai ∪ Ai

�). We will show that C ∈
⋃
(Bi ∪ Bi

�). We

consider the following cases:

Case 1: If C ∈
⋃

Ai then there is some j such that C ⊆ Aj. Moreover, by the

hypothesis, there is some k such that Aj \Bk ⊆
⋃

Bi
I. We consider two sub-cases:

Case 1a: If C ∩ (Aj \Bk) = ∅, then, since C ⊆ Aj, we conclude that C ⊆ Bk, i.e.,

C ∈
⋃

Bi, thus C ∈
⋃
(Bi ∪Bi

�).

Case 1b: If C∩(Aj\Bk) 6= ∅, then take c ∈ C∩(Aj\Bk). It follows that c ∈
⋃

Bi
I,

so C ∈
⋃
Bi
�, which implies, again, that C ∈

⋃
(Bi ∪Bi

�).

Case 2: If C ∈
⋃
Ai
�, then there is j such that Aj � C, so there is c ∈ C such

that Aj I c, which means that c ∈
⋃
(Ai ∪Ai

I) ⊆
⋃
(Bi ∪Bi

I). However, by the

hypothesis that Aj 6I Bk for all j, k, we conclude that c /∈
⋃
Bi, thus c ∈

⋃
Bi
I. The

latter allows us to conclude that {c} ∈
⋃

Bi
�, i.e., C ∈

⋃
Bi
� ⊆

⋃
(Bi ∪ Bi

�),

which concludes the proof. �

65

Proof of Proposition 6.29.

Take C ∈
⋃
(Ai ∪ Ai

�). If there is j such that C ∈ Aj then, since {Bi} covers

{Ai}, C ⊆ Aj ⊆ Bk for some k, i.e., C ∈
⋃
(Bi ∪Bi

�). Similarly, if there is j such

that C ∈ Aj
� then for the set Bk for which Bk ⊇ Aj we get that C ∈ Bk

�, i.e,

C ∈
⋃
(Bi ∪Bi

�), which concludes the proof. �

Proof of Proposition 6.30.

(1)⇒ (2) Consider some j. Then, applying Proposition 6.27 for the inclusion
⋃
(Ai∪

Ai
�) ⊆

⋃
(Bi∪Bi

�), we conclude that there is some k such that Aj \Bk ⊆
⋃

Bi
I.

However, applying Proposition 6.27 again for the opposite inclusion, we conclude that

for all j,mBm 6I Aj. The combination of these facts can only be true if Aj \Bk = ∅.

Thus, for all j there is k such that Aj ⊆ Bk, i.e., {Bi} covers {Ai}.

The proof that {Ai} covers {Bi} is analogous.

(2)⇒ (1) Trivial by applying Proposition 6.29 twice. �

Lemma 6. If E ∈ EsgD then there exists a family {Ai} such that E =
⋃
Ai.

Proof of Lemma 6.

Suppose that E = {Ai}. Set E ′ =
⋃
Ai. It suffices to show that E = E ′. Initially we

note that for any Bi,Bj ∈ E ′, if Bi� Bj, then there exist Ai,Aj such that Bi ⊆ Ai,

Bj ⊆ Aj, so Ai � Aj, i.e., E is not conflict-free, a contradiction. Thus, E ′ ∈ EcfD .

Moreover, obviously, E ⊆ E ′. Now suppose, for the sake of contradiction, that E ⊂ E ′,

and take B ∈ E ′ \ E . Then, B ⊆ Aj for some j. We observe that B is not attacked by

some set in E (because then that set would attack Aj and thus E would not be conflict-

free), i.e., B /∈ EI. But then B ∈ E ′, but B /∈ E ∪ EI, a contradiction from the

hypothesis that E is a stage extension. �

Proof of Theorem 6.31.

Initially, take some E ∈ EsgD . Then, by Lemma 6, E =
⋃

Ai for some family {Ai}.

Moreover, E ∈ EcfD so by Theorem 6.5, Aj 6I Ak for all j, k. Now suppose some

{Bi} as required in the theorem. From the fact that (
⋃

Bi)
⋂
(
⋃
Ai
I⋃

Bi
I) = ∅,

we conclude that for all j, k Aj 6I Bk and Bj 6I Bk. Thus, Proposition 6.27 can be

applied to conclude that
⋃
(Ai ∪ Ai

�) ⊆
⋃
(Bi ∪ Bi

�). But since E ∈ EsgD , we

66

conclude that
⋃
(Ai ∪ Ai

�) =
⋃
(Bi ∪ Bi

�), so by Proposition 6.30 {Ai} covers

{Bi}.

For the opposite inclusion, consider some E =
⋃

Ai for some {Ai} as described by

the theorem. From the hypothesis that Aj 6I Ak we conclude that E ∈ EcfD . Suppose

that E /∈ EsgD . Then, by the hypothesis that E /∈ EsgD and Lemma 6 there is some other

family, say {Bi}, for which Bj 6I Bk for all j, k and
⋃
(Ai ∪Ai

�) ⊂
⋃
(Bi ∪Bi

�).

Thus, Proposition 6.27 can be applied to conclude that:
⋃
(Ai ∪ Ai

I) ⊆
⋃
(Bi ∪

Bi
I), Aj 6I Bk for all j, k, and for all j there is some k such that Aj \ Bk ⊆⋃
Bi
I. From these we can also conclude that (

⋃
Bi)

⋂
(
⋃
Ai
I⋃

Bi
I) = ∅, so

by the construction of {Ai}, we get that {Ai} covers {Bi}, i.e.,
⋃
(Ai ∪ Ai

�) ⊇⋃
(Bi ∪Bi

�) (Proposition 6.29), which is a contradiction. �

Lemma 7. For any family {Ai},
⋂
Ai =

⋂
Ai.

Proof of Lemma 7.

C ∈
⋂
Ai ⇔

C ⊆
⋂
Ai ⇔

C ⊆ Ai for all i⇔

C ∈ Ai for all i⇔

C ∈
⋂

Ai. �

Proof of Theorem 6.32.

We note the following facts:

A ∈ EcoS ⇔A ∈ EcoD (using Theorem 6.10)

A ⊆
⋂
EprS ⇔ A ⊆

⋂
Ai ⇔ A ⊆

⋂
Ai ⇔ A ⊆

⋂
Ai ⇔ A ⊆

⋂
EprD (using

Lemma 7, Theorem 6.10, and assuming, without loss of generality, that EprS = {Ai})

A ⊂ B⇔A ⊂ B (obvious).

Combining the above facts, and the definition of ideal extensions, we can easily prove

the theorem.

For the first result: A ∈ E idS ⇔

A ∈ EcoS , A ⊆
⋂
EprS and there is no B such that B ∈ EcoS , B ⊆

⋂
EprS and A ⊂ B

⇔

67

A ∈ EcoD , A ⊆
⋂
EprD and there is no B such that B ∈ EcoD , B ⊆

⋂
EprD and A ⊂ B

⇔

A ∈ EcoD , A ⊆
⋂
EprD and there is no E such that E ∈ EcoD , E ⊆

⋂
EprD and A ⊂ E ⇔

A ∈ E idD .

For the second result: E ∈ E idD ⇔

E ∈ EcoD , E ⊆
⋂
EprD and there is no E ′ such that E ′ ∈ EcoD , E ′ ⊆

⋂
EprD and E ⊂ E ′⇔

there exists A such that E = A, A ∈ EcoD , A ⊆
⋂
EprD and there is no B such that

E ′ = B, B ∈ EcoD , B ⊆
⋂
EprD and A ⊂ B⇔

there exists A ∈ EcoS , A ⊆
⋂
EprS and there is no B such that B ∈ EcoS , B ⊆

⋂
EprS

and A ⊂ B⇔

A ∈ E idS . �

Proof of Theorem 6.33.

For the first bullet note that if A ∈ EnaS then A ∈ EcfS , so A ∈ EcfD . Moreover, if

A ⊂ B then A ⊂ B so (since A is a naive extension) B /∈ EcfS , thus B /∈ EcfD .

For the opposite inclusion, we first note that A is conflict-free, so it suffices to show

that there is no B ∈ EcfS such that B ⊃ A. Suppose, for the sake of contradiction, that

such a B exists. Then, B ⊃ A, so B /∈ EcfD , thus B /∈ EcfS , a contradiction.

For the second bullet, take some E ∈ EnaD . Then, E is conflict-free, so E ⊆ EcfS and

A 6I B for all A,B ∈ E (Theorem 6.5). Moreover, if E ′ ⊃ E , then E ′ /∈ EcfD , i.e., (by

Theorem 6.5 again) it is either the case that E ′ 6⊆ EcfS or there is some A,B ∈ E ′ for

which A I B. The latter means that if E ⊂ E ′ ⊆ EcfS then there is some A,B ∈ E ′

for which A I B.

For the opposite inclusion, take some E as required by the theorem. Theorem 6.5 and

the definition of E implies that E ∈ EcfD . Now assume that there is some E ′ ⊃ E ,

E ′ ∈ EcfD . Then, E ⊂ E ′ ⊆ EcfS , so there is some A,B ∈ E ′ such that A I B, a

contradiction by the hypothesis that E ′ is conflict free. �

Proof of Proposition 6.34.

A ∈ E∩⇔ (by the definition of E∩)

A ⊆ B for all B ∈ {C | C ∈ EseD , and if D strictly D-dominates C then D /∈ EcoD }

⇔ (by Theorem 6.23)

68

A ⊆ B for all B ∈ EseS . �

Proof of Proposition 6.35.

A ⊆ S∩⇔ (by the definition of S∩)

A ⊆ B for all B ∈ {C | C ∈ EprS ,C I D whenever C ∪ CI ⊂ D ∪ DI and

D ∈ EprS } ⇔ (by definition)

A ⊆ B whenever B ∈ {C | C ∈ EprS ,C I D whenever C ∪ CI ⊂ D ∪DI and

D ∈ EprS } ⇔ (by Theorem 6.23)

A ⊆ E for all E ∈ EseD . �

Proof of Theorem 6.36.

(1) Take some A ∈ EeaS . Then, by definition, A ∈ EcoS , i.e., A ∈ EcoD (Theorem 6.10).

Also, by Proposition 6.34, it must be the case that A ∈ E∩. Further, since A is an

eager extension, if there is some B such that B ⊃ A, then B /∈ EcoS (thus B /∈ EcoD),

or it is not the case that B ⊆ C for all C ∈ EseS (thus B /∈ E∩ by Proposition 6.34).

For the opposite inclusion, take some A as specified in the theorem. We will show that

A ∈ EeaS . Indeed, A ∈ EcoS (Theorem 6.10) and A ⊆ B for all B ∈ EseS (Proposi-

tion 6.34). Further, A is the maximal set with these properties, because if A ⊂ B then

B is either not complete or is not a subset of all semi-stable extensions.

(2) The proof is obvious by definition, when considering the fact that EstS = EseS
(Proposition 6.16).

(3) Take some E ∈ EeaD . Then E ∈ EcoD , so by Theorem 6.10, there must be some

A ∈ EcoS such that E = A. Moreover, A is a subset of all semi-stable extensions,

so by Proposition 6.35 it follows that A ⊆ S∩. Further, assume that A ⊂ B. Then

A ⊂ B. Since A ∈ EeaD , it follows that B is either not complete, or it is not a subset

of all semi-stable extensions, so we get the result by considering Theorem 6.10 and

Proposition 6.35.

For the opposite inclusion, consider A with these properties. Then A ∈ EcoD (by The-

orem 6.10) and A is a subset of all semi-stable extensions (by Proposion 6.35). It

remains to show that it is maximal with these properties. Indeed, suppose that there

is some E ′ such that E ′ ∈ EcoD , E ′ ⊆ E ′′ for all E ′′ ∈ EseD and E ′ ⊃ A. Then, since

E ′ ∈ EcoD there is some B such that E ′ = B and B ∈ EcoS . But then A ⊂ B, so by the

69

definition of A it follows that B /∈ EcoS or that B 6⊆ S∩, both of which contradict our

hypotheses on E ′,B. This concludes the proof. �

Appendix A.3. Proofs for Section 7

Proof of Theorem 7.1.

Every stable extension of AFS is also a stage extension of AFS :

Let A be a stable extension of AFS . Then, by Definition 3.6, A is conflict-free and

attacks all arguments in Args \A. Therefore, A ∪ {b ∈ Args | A I b} = Args,

which means that A∪{b ∈ Args | A I b} is maximal among all conflict-free subsets

of Args. Therefore, A is a stage extension of of AFS .

Every stable labelling of AFS is also a stage labelling of AFS :

Let λ be a stable labelling of AFS ⇒

Ext(λ) is a stable extension of AFS (by Theorem 5.11)⇒

Ext(λ) is a stage extension of AFS (as proved above)⇒

Lab(Ext(λ)) is a stage labelling of AFS (by Theorem 5.10) (1)

By Theorem 5.6 and the fact that λ is a proper labelling: λ = Lab(Ext(λ)) (2).

From (1) and (2): λ is a stage labelling of AFS .

Every stable extension of AFS is also a semi-stable extension of AFS :

Let A be a stable extension of AFS . Then, by Definition 3.6, A is conflict-free and

attacks all arguments in Args \ A. Therefore, A is a complete extension of AFS ,

as (i) it is conflict-free, (ii) for all B ⊆ Args such that B I A, A I B (since any

such B must be a subset of Args \A), and (iii) Args \A does not contain any ar-

guments that are defended by A (since they are all attacked by A). It also holds that

A ∪ {b ∈ Args | A I b} = Args, therefore A ∪ {b ∈ Args | A I b} is maximal

among all complete extensions. Therefore, A is a semi-stable extension of of AFS .

Every stable labelling of AFS is also a semi-stable labelling of AFS :

The proof is similar with the stable – stage labellings case; just replace “stage” with

“semi-stable”.

70

Every semi-stable extension of AFS is also a preferred extension of AFS :

Let A be a semi-stable extension of AFS . Then, by Definition 3.8, A is a complete

extension of AFS and A∪{b ∈ Args | A I b} is maximal w.r.t. set inclusion among

all complete extensions of AFS . Suppose that A is not a preferred extension of AFS .

Then, there is another complete extension A′, such that:

A ⊂ A′ ⇒

A ∪ {b ∈ Args | A I b} ⊂ A′ ∪ {b ∈ Args | A I b} ⇒

A ∪ {b ∈ Args | A I b} ⊂ A′ ∪ {b′ ∈ Args | A′ I b′}

which violates the condition that A is maximal w.r.t. set inclusion among all complete

extensions of AFS . Therefore, A is a preferred extension of AFS .

Every semi-stable labelling of AFS is also a preferred labelling of AFS :

The proof is similar with the stable – stage labellings case; just replace “stable” with

“semi-stable” and “stage” with “preferred”.

All other inclusion relationships are directly derived from the definitions of the respec-

tive semantics.

�

Proof of Theorem 7.2.

Any SETAF AFS has at least one preferred extension (labelling):

Let AFD be the generated AAF of SETAF AFS (Definition 6.1). As proved in [24]

every AAF has at least one preferred extension, therefore AFD has at least one pre-

ferred extension. By Theorem 6.10 and the fact that for any two sets of arguments

A,B ⊆ Args, it holds that A = B if and only if A = B, AFS has the same number

of preferred extensions with AFD. Therefore, AFS has at least one preferred exten-

sion, and, by Theorem 5.10, at least one preferred labelling.

Any SETAF AFS has at least one complete, admissible and conflict-free extension

71

(labelling):

By Theorem 7.1, every preferred extension (labelling) of a SETAF AFS is also a com-

plete, admissible and conflict-free extension(labelling) of AFS . As proved above, any

SETAF has at least one preferred extension (labelling). Therefore, any SETAF has at

least one complete, admissible and conflict-free extension (labelling).

Any SETAF AFS has exactly one grounded extension (labelling):

Let AFD be the generated AAF of SETAF AFS (Definition 6.1). According to [2],

every AAF has a unique grounded extension, therefore AFD has a unique grounded

extension. By Theorem 6.10 and the fact that for any two sets of arguments A,B ⊆

Args, it holds that A = B if and only if A = B, AFS has the same number of

grounded extensions with AFD. Therefore, AFS has a unique grounded extension.

By Theorem 5.10, AFS therefore has at least one grounded labelling. Suppose that

AFS has two grounded labellings, λ and λ′. By 5.11, we would then be able to gen-

erate two grounded extensions, Ext(λ) and Ext(λ′). According to Theorem 5.8 and

Corollary 5.7Ext is injective for grounded labellings. Therefore,Ext(λ) andExt(λ′)

can’t be the same. This, however, contradicts that AFS has a unique grounded exten-

sion. Therefore, our hypothesis that AFS has two grounded labellings doesn’t hold,

which means that AFS has a unique grounded labelling.

Any SETAF AFS has zero or more stable extensions (labellings):

It suffices to find a SETAF with no stable extensions or labellings. Consider the SETAF

AFS = 〈Args, .〉, where Args = {a, b, c} and . = {(a, b), (b, c), (c, a)}. AFS has

no stable extensions or labellings.

Any SETAF AFS has at least one naive extension (labelling):

The proof procedure is similar to the one used in [43] for the preferred semantics

of AAF. Consider a (possible infinite) sequence of increasing conflict-free subsets of

Args, A1,A2,A3, . . . such that A1 ⊂ A2 ⊂ A3 ⊂ The union of these sets,⋃
Ai is also conflict-free, as if this was not the case, then at least one of Ai would not

be conflict-free. According to Zorn’s Lemma [44], every non-empty partially ordered

72

set (P) of which every totally ordered subset (T) has an upper bound contains at least

one maximal element. Let P be the set of all conflict-free subsets of Args ordered

according to the subset relation. Every sequence of conflict-free subsets of Args,

A1,A2,A3, . . . such that A1 ⊂ A2 ⊂ A3 ⊂ . . . is a totally ordered subset of P , and

has an upper bound, i.e. their union,
⋃

Ai. Therefore, according to Zorn’s Lemma, P

has at least one maximal element, which is a naive extension of AFS . Therefore, by

Theorem 5.10, AFS at least one naive labelling.

Any SETAFAFS has zero or more semi-stable extensions (labellings), and at least one

if AFS is finite:

Finite SETAF: As already proved, AFS has at least one complete extension. Since

Args is a finite set of arguments, it can only have a finite number of complete exten-

sions. Therefore, the set of sets A ∪ {b ∈ Args | A I b}, where A is a complete

extension of AFS , has at least one maximal element. Therefore, AFS has at least one

semi-stable extension, and, by Theorem 5.10, at least one semi-stable labelling.

Infinite SETAF: Example 6.14 shows an infinite SETAF with no semi-stable extensions

or labellings.

Any SETAF AFS has exactly one ideal extension:

Let AFD be the generated AAF of SETAF AFS (Definition 6.1). As proved in [24],

every AAF has a unique ideal extension, therefore AFD has a unique ideal extension.

By Theorem 6.32 and the fact that for any two sets of arguments A,B ⊆ Args, it

holds that A = B if and only if A = B, AFS has the same number of ideal extensions

with AFD. Therefore, AFS has a unique ideal extension. By Theorem 5.10, AFS

therefore has at least one ideal labelling. Suppose that AFS has two ideal labellings,

λ and λ′. By 5.11, we would then be able to generate two ideal extensions, Ext(λ)

and Ext(λ′). According to Theorem 5.8 and Corollary 5.7 Ext is injective for ideal

labellings. Therefore, Ext(λ) and Ext(λ′) can’t be the same. This, however, contra-

dicts that AFS has a unique ideal extension. Therefore, our hypothesis that AFS has

two ideal labellings doesn’t hold, which means that AFS has a unique ideal labelling.

73

Any SETAF AFS has at least one eager extension (labelling), and exactly one if AFS

is finite:

Finite SETAF: We call a set of arguments eager iff it admissible and is a subset of

every semi-stable extension of AFS . As already proved, a finite SETAF has at least

one semi-stable extension. Consider two subsets of Args, X, Y, which are both ea-

ger. Then, S = X ∪Y is also a subset of every semi-stable extension of AFS . Since

S is a subset of every semi-stable extension, it is conflict-free. It also holds that for

every set of arguments B attacking an argument in S, S I B. Therefore, S is also

admissible. There is, therefore, one maximal eager set, A, which is the union of all

eager sets in AFS . Suppose there is an argument a ∈ Args \ A, such that a is ac-

ceptable w.r.t. A. Since A is a subset of every semi-stable extension, a is acceptable

w.r.t., and, therefore, contained in every semi-stable extension of AFS . This implies

that A′ = A ∪ {a} is an eager set, since it is admissible and is a subset of every semi-

stable extension of AFS , which violates the maximality of A. Therefore, A contains

all the arguments it defends. It is therefore a complete extension of AFS , and maximal

among the complete extensions of AFS that are subsets of every semi-stable extension

of AFS , and therefore the unique eager extension of AFS . By Theorem 5.10, AFS

has, therefore, at least one eager labelling. Suppose that AFS has two eager labellings,

λ and λ′. By 5.11, we would then be able to generate two eager extensions, Ext(λ)

and Ext(λ′). According to Theorem 5.8 and Corollary 5.7 Ext is injective for eager

labellings. Therefore, Ext(λ) and Ext(λ′) can’t be the same. This, however, contra-

dicts that AFS has a unique eager extension. Therefore, our hypothesis that AFS has

two eager labellings doesn’t hold, which means that AFS has a unique eager labelling.

Infinite SETAF: Consider the case that AFS has no semi-stable extensions (which, as

already proved, is possible for infinite SETAF). Then, A ⊂ Args is an eager ex-

tension of AFS iff it is a maximal (w.r.t. set inclusion) complete extension of AFS

(by Definition 3.9), and therefore A is an eager extension of AFS iff it is a preferred

extension of AFS (by Definition 3.4). As already proved, an infinite SETAF has at

least one preferred extension. Therefore, AFS has at least one eager extension, and,

by Theorem 5.10, at least one eager labelling. For the case that AFS has at least one

semi-stable extension, the proof is the same with the case of finite SETAF.

74

Any SETAF AFS has zero or more stage extensions (labellings), and at least one if

AFS is finite.

Finite SETAF: There is at least one conflict-free subset of Args. Since Args is a finite

set of arguments, it can only have a finite number of conflict-free subsets. Therefore,

the set of sets A∪{b ∈ Args | A I b}, where A is a conflict-free subset of AFS , has

at least one maximal element. Therefore, AFS has at least one stage extension, and,

by Theorem 5.10, at least one stage labelling.

Infinite SETAF: Example 6.14 shows an infinite SETAF with no stage extensions or

labellings.

�

75

	Introduction
	Motivation and problem statement
	Contributions and paper summary

	Setting the groundwork: AAF and SETAF
	Semantics for SETAF through extensions
	Semantics for SETAF through labellings
	Relating extensions and labellings in SETAF
	From extensions to labellings and vice-versa
	Properties of the transition from extensions to labellings
	Preservation of semantics during transitioning

	Associating SETAF with Dung-style argumentation
	Generated argumentation frameworks
	Relating extensions of a SETAF and its generated AAF
	Conflict-free sets
	Admissible sets
	Complete, grounded, preferred and stable extensions
	Semi-stable and stage extensions
	Ideal extensions
	Naive extensions
	Eager extensions
	Alternative transformations

	Recasting Dung-style results for SETAF
	Discussion
	Proofs
	Proofs for Section 5
	Proofs for Section 6
	Proofs for Section 7

