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Introduction
With the advent of high-throughput sequencing 
technologies, focus on temporal gene expression 
through examination of the active transcriptome of 
tissues, cells, and model systems using RNA-
sequencing (RNA-seq) has increased.1 In ophthal-
mology and vision research, RNA-seq utilization is 
extensive. For example, investigation of gene 
expression changes in corneal epithelial tissue from 
keratoconus patients has provided insights into the 
cause of this progressive corneal degeneration.2 
Pathways including Wnt, Hedgehog, and Notch1 
signaling were shown to be significantly reduced in 
keratoconus epithelium. In glaucoma, the leading 
cause of irreversible blindness worldwide charac-
terized by the progressive loss of retinal ganglion 
cells (RGCs),3,4 investigations into the RGC tran-
scriptome of induced pluripotent stem cells (iPSCs) 
from patients with the SIX6 risk allele [missense 

variant rs33912345; C>A; p.(His141Asn)] associ-
ated with reduced retinal nerve fiber layer thick-
ness, and mouse models of optic nerve head 
damage have identified critical pathophysiologic 
pathways, such as endoplasmic reticulum stress, 
Notch signaling, and mammalian target of rapamy-
cin (mTOR) pathway.5–7 Elucidation of transcript 
signatures in lens development has revealed the 
expression of novel transcripts decreasing in post-
natal tissue.8 Lens-enriched expression analysis has 
confirmed high expression of established cataract-
linked genes, such as the Crystallin gene family, and 
identified a number of transcription factors as novel 
potential regulators in the lens.9 RNA-seq of rod 
photoreceptors from the zebrafish has identified 
novel expression of genes not previously thought to 
be expressed in this cell type including opsin 4.1 
and several nuclear hormone receptor genes.10 
Similar experiments on dissociated mouse cones 
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have provided an insight into the gene expression 
patterns occurring throughout postnatal develop-
ment, highlighting 14% of all genes detected were 
switched off around postnatal day 6 (P6), including 
those encoding transcription factors, neurogenesis, 
and cone-specific genes.11 Such investigations 
reveal the role of previously unknown or unclassi-
fied transcripts in eye development, for example, 
the characterization of zebrafish zic2, which restricts 
pax2a expression and Hedgehog signaling, when 
ablated causes chorioretinal coloboma12 and identi-
fication of numerous miRNAs regulating pathways 
not previously associated with retinal degeneration, 
using retinal pigment epithelium (RPE) cells under 
oxidative stress as a model system.13 In this man-
ner, novel information is gleaned; new targets for 
potential molecular diagnosis or therapeutic inter-
ventions may emerge.14,15 In this review, we will 
cover the considerations for the design and execu-
tion of a typical RNA-seq project investigating dif-
ferentially expressed messenger RNA (mRNA). 
We will provide recent examples of the utilization 
of RNA-seq within the field of ophthalmology.

Considerations for RNA-seq experimental 
design
With no single optimal pipeline for this experi-
mentation, combined with no standard applica-
tion and analysis approach, the use of RNA-seq 

data can be daunting. Experimental plan and stra-
tegic approaches depend highly on the type of 
RNA and or organism being studied, as well as the 
goals of the research. One may utilize previously 
reported species transcriptomes to guide the align-
ment of reads or align without prior knowledge to 
identify potentially novel transcripts.

One of the most crucial requirements for a suc-
cessful RNA-seq experiment is the biological ques-
tion of interest and how the data generated can 
answer that. Figure 1 summarizes critical aspects 
for an optimal experimental design. Number of 
sample replicates is of importance as increasing the 
number per biological condition has a more signifi-
cant impact on the accuracy of the data produced 
over increasing sequencing depth.16,17 A growing 
number of algorithms can calculate the required 
sample number for significance and power of 
experiments; including Scotty,18 powsimR,19 
PROPER,20 and RNASeqPower.21 Technical rep-
licates are generally not required for differential 
expression analysis, as RNA-seq has been shown 
to be accurate as well as reproducible.22–24

For pilot studies to assess accuracy and variance 
of analysis at different stages of an RNA-seq pipe-
line, simulated data can be created through syn-
thetic reads generated from genomic sequence.25,26 
It is also possible to utilize transcriptomic data 
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Figure 1. A diagrammatic overview of the considerations for designing a successful RNA-seq experiment for 
differential gene expression analysis. Branches of the outline are numbered to indicate the general order for 
the considerations. Within each branch, subbranches denote options to consider within the design.
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submitted to public repositories, such as EMBL 
ENA27 and National Center for Biotechnology 
Information (NCBI) SRA,28 to obtain informa-
tion on the variance of data. Table 1 summarizes 
the current obtainable experimental RNA-seq 
data sets related to ophthalmology and vision 
research at NCBI. Combination of data with 
published data sets from different biological sam-
ples, sequencing centers, or varying experimental 
protocols may lead to incorporation of batch 
effects. Such meta-analysis, therefore, would have 
decreased statistical power and accuracy, even in 
well-designed studies.54 A significant source of 
false discovery of differential expression is com-
monly across batches of experiments rather than 
across the biological groups of interest.55

RNA isolation
Within our cells, several RNA species are present 
at any one time serving differing roles. Through 
transcription of genes, there are protein-encoding 
mRNAs. Small RNAs involved in translation 
include transfer RNAs (tRNAs) and ribosomal 
RNAs (rRNAs). Regulatory RNA species, include 
antisense RNAs (asRNAs), microRNAs (miR-
NAs), Piwi-interacting RNAs (piRNAs), small 
interfering RNAs (siRNAs), short hairpin RNA 
(shRNA), and long noncoding RNA (lncRNA), 
all play a role in gene expression regulation. 
Highly abundant rRNA species, the predominant 
component of the ribosome involved in protein 
synthesis, constitutes up to 90% of the total RNA 
in cells. rRNA may require removal from samples 
to produce a library with considerably more rep-
resentation of mRNA transcripts. Methods for 
rRNA removal include enriching mRNA using 
poly(A) selection, targeting the polyadenosine 
monophosphates at the 3′ tail of mature mRNA 
species, or depletion of rRNA by systems such as 
Ribo-Zero (Illumina, CA, USA) and duplex-spe-
cific nuclease degradation.56 rRNA depletion is 
an essential consideration for formalin-fixed and 
paraffin-embedded (FFPE) samples where RNAs 
are potentially degraded to a small average size, 
under 200 nucleotides.57 rRNA depletion should 
also be considered when the biological sample 
cannot provide enough quantity or high-quality 
mRNA through poly(A) selection.58,59 For sam-
ples with a small amount of starting material, 
there are specific library preparation systems 
available, such as SMART-seq (Takara Bio, CA, 
USA), relying on pre-amplification of fragments 
and may include a second stage of amplifica-
tion.60 This can result in variable 3′ end bias 

representation of genes in library preparation, 
although the overall effect on expression values 
may be negligible.61 Small RNA species, such as 
those lacking poly(A) signals, can be assessed 
through small RNA-seq protocols.62

Library preparation and platforms
To convert RNA into a library of molecules for 
sequencing, generally, it is first fragmented to an 
appropriate size for the chosen platform, either by 
physical or enzymatic approaches. First-strand 
complementary DNA (cDNA) is synthesized 
from the RNA sequences. Dependent on the plat-
form and library kit used, platform-specific 
adapter sequences may be incorporated to the 
ends of the molecules to enable subsequent 
sequencing. Some systems add adapter sequences 
through ligation after cDNA synthesis (including 
Illumina TruSeq, Takara Clontech SMARTer, 
PerkinElmer NEXTflex, and KAPA Biosystems); 
other sequences may be attached to each mole-
cule, including an inline index to identify the 
sample, allowing multiplexing of libraries when 
sequencing. Inline barcodes can be utilized to 
provide a label of origin for each RNA molecule.63 
Recent developments include unique molecular 
identifiers (UMIs), molecular tags consisting of 
several random bases that can be used to detect 
and quantify unique transcripts.63–65 Unwanted 
duplication of reads through amplification meth-
ods can readily be detected.66,67 The addition of 
UMIs significantly improves the accuracy of gene 
quantification, especially high expressing 
genes.68,69 The resulting library of cDNA mole-
cules can then be assessed for quality before 
sequencing.

For library preparation, one must consider how 
much RNA will be available for the experiment as 
well as the specific library types required, for 
example, those that maintain strand information 
or need significantly lower input RNA levels, such 
as those from FFPE or laser-captured micro-dis-
sected samples,70 and single-cell RNA-seq 
(scRNA-seq).71 Strand-specific RNA-seq can 
resolve the ambiguity of overlapping genes tran-
scribed on opposite strands, allowing identifica-
tion of antisense expression by retaining 
information from which DNA strand the RNA 
was first transcribed.72 This information can be 
maintained using approaches that either incorpo-
rate a chemical modification in the second cDNA 
synthesis stage, with subsequent digestion of the 
nonmodified strand, or incorporate distinct 
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Figure 2.

Figure 2. Schematic representation of typical bioinformatic processing of high-throughput sequence data 
for RNA-seq experiments. The sequencing platform generated raw reads (FASTQ) are subjected to quality 
assessment. Where a reference genome and a high-quality annotation are available, resulting high-quality 
cleaned reads can be used in alignment- or pseudo-alignment-based processes. For alignment-based 
process, reads are mapped to the genome and transcriptome in a splice-aware manner. Resulting alignments 
(SAM/BAM/CRAM) are assessed for mapping qualities and counts of features (genes/transcripts/exons) 
generated. Counts are modeled for quantification and differential analysis computed using various methods, 
resulting in differential feature lists. With pseudo-alignment-based methods, clean reads are modeled to the 
transcriptome, allowing direct quantification of appropriate feature(s) for differential analysis. The output of 
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primer adapters with the RNA.73,74 Library prep-
aration protocols differ to achieve specific goals; 
TruSeqTM (Illumina) is a general method chosen 
when starting material is not restricted; Smart-
Seq2 and Ovation (NuGen, CA, USA) are suited 
to low input amounts.60,70,75

High-throughput sequencing approaches are rap-
idly evolving regarding both technology and 
chemistry. Illumina, PacBio RS, Oxford 
Nanopore, and Ion Torrent are some of the most 
commonly utilized platforms.76,77 The Illumina 
short read ‘sequence-by-synthesis’ systems have 
been rapidly adopted by the research community 
due to high data throughput, accuracy, availabil-
ity, and declining costs.

Sequencing
Sequencing depth, the number of fragments 
sequenced per sample, remains a critical factor 
for RNA-seq design. Studies have reported that 
increasing reads does not always provide increased 
biological significance.16,17 However, detection of 
lower abundance RNA species requires increased 
read sequencing, although RNA-seq shows a 
greater dynamic range than other assays.78,79 For 
the analysis of differential gene expression alone 
in human samples, 10–20 million reads per sam-
ple would provide significant information on 
most genes expressed. Investigation of alterna-
tively spliced, novel isoforms, or fusion events, 
will require higher read number to capture the 
expression patterns, although increasing reads are 
associated with increased noise.17

With the depth of sequencing and library con-
struction, comes the considerations of single-end 
reads or paired-end reads and read length. cDNA 
products may be sequenced from either single or 
both ends (paired). For simple differential 
expression analysis, single-end reads can provide 
valuable information. Paired-end reads, due to 
the size of RNA fragments produced (typically 
300–500 nucleotides), will provide more 

significant information as the number of reads 
from fragments spanning exon–intron bounda-
ries will be higher. As RNA-seq investigates tran-
scribed and processed RNA, it is crucial that a 
level of aligned reads or paired-end fragments 
span exon boundaries. Single-end reads can be 
utilized for analysis of the 3′ regions of tran-
scripts, such as with Tag-seq and MACE, assum-
ing expression as a whole from sequencing the 
end region only.80

There are several biases in the analysis of RNA-
seq differential expression: low-level transcripts 
producing high significance in expression-level 
differences and longer more abundant tran-
scripts showing greater significance due to large 
number of reads per library aligned to their ref-
erence sequence. Read length is highly depend-
ent on the application; for gene expression, 
profiling short reads (50–75 basepairs, bp) will 
detect the majority of RNA species in a library; 
for analysis of the transcriptome including iden-
tification of novel annotations, paired-end reads 
of 100+ bp will enable complete coverage of 
transcripts and novel splice sites; and for small 
RNA analysis, a read length of 50 bp would pro-
vide coverage of the majority of RNA due to 
their size. Long read sequencing is also possible 
using systems including PacBio and Oxford 
Nanopore, providing detailed analysis of specific 
isoforms expressed as well as allele-specific 
expression patterns, allowing the development 
of personalized transcriptomes.81

RNA-seq analysis at the mRNA level
Commonly, RNA-seq experiments investigating 
differential gene expression follow the stages out-
lined in Figure 2. Once sequencing data are gen-
erated, it requires alignment to either the genome 
or transcriptome reference sequences. In situa-
tions where novel transcripts are of interest, align-
ment to the genome followed by de novo transcript 
assembly is required. After alignment, feature 
counts are calculated and normalized, and 

both approaches can provide further insight through gene ontology analysis (GSEA/GO ORA), pathway analysis 
(Panther, KEGG, DAVID), and visualized (IGV, GenomeBrowse, Bioconductor) for report production. Software 
examples listed are non-exhaustive.
DAVID, Database for Annotation, Visualization, and Integrated Discovery; GO, gene ontology; GSEA, gene set enrichment 
analysis; IGV, Integrative Genomics Viewer; KEGG, Kyoto Encyclopedia of Genes and Genomes; ORA, over-representation 
analysis; Panther, Protein Analysis Through Evolutionary Relationships; SAM/BAM, sequence/binary alignment map.

Figure 2. (Continued)
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differentially expressed features are identified. 
How these changes are biologically relevant to the 
experimental hypothesis is the final stage of 
investigation.

There are an increasing number of tools and 
methods of analysis for RNA-seq data sets, with 
each stage of the study requiring appropriate 
quality control. Aside from command-line tools 
and cloud-based approaches, commercial prod-
ucts include CLC Genomics Workbench (Qiagen, 
CA, USA), DNAnexus, Ingenuity IPA (Qiagen), 
and Partek Genomics Suite. Software for differ-
ential expression analysis has been evaluated 
using both experimental and simulated data sets. 
Comprehensive reports of such tools have been 
presented previously.82–85 Combination of 
approaches using different tools has led to 
improved results.86 Therefore, it is recommended 
to utilize multiple pipelines on the data set and 
understand fully the differences and similarities in 
the results. For this review, we will focus on sev-
eral commonly cited, free, open-source tools to 
achieve differential expression analysis of human 
samples. The tools mentioned are not intended as 
an extensive list.

Read quality control
The Illumina sequencing platform will produce 
raw FASTQ files that represent the sequence of 
the library in question. FASTQ is a text-based file 
format including all the sequence data along with 
associated quality scores. Each Phred score repre-
sents a log-scaled estimated probability of error in 
the base being called, for example, a score of 30 
indicates a 1 in 1000 probability that the base is 
incorrect. Initial processing of these read files 
should include quality assessment of the base 
calls using tools such as FASTQC87 or FASTX-
Toolkit.88 These provide graphical summaries of 
the sample reads, allowing quick visual identifica-
tion of potential problems. Issues may commonly 
include over-represented sequences (e.g. adapter 
sequences or rRNA) or low-quality scoring bases 
at the 3′ end of reads. Tools to process the reads, 
filtering of poor bases, and trimming bases and 
adapters include Trimmomatic,89 Trim Galore,90 
and cutadapt.91

Read alignment
Post-processing of the cleaned FASTQ reads 
requires either alignment to the human genome, 
such as Ensembl GRCh38 or NCBI hg38 builds, 

or the associated human transcriptome or 
pseudo-alignment to the transcriptome and 
count modeling with tools such as Salmon,92 
Kallisto,93 and Sailfish.94 Alignment of reads 
requires software that can process mapping in a 
splice-aware manner.95,96 Many reads generated 
will span splice junction coordinates, and align-
ment will require algorithms to split reads to dif-
ferent exonic positions. Mapping software 
includes HISAT2,97 SOAPsplice,98 TopHat2,99 
and STAR.100 These produce a sequence/binary 
alignment map (SAM/BAM101) file of the reads 
aligned to the genome. Alignments may be visu-
alized using tools such as Integrative Genomics 
Viewer (IGV)102,103 or GenomeBrowse,104 pro-
viding an insight to read metrics at the feature 
level. One of the greatest challenges is the subse-
quent assignment of aligned reads to transcripts 
they originate from to infer gene expression. 
Several new generation tools have introduced 
alignment-free transcript or gene quantification 
methods.92–94 These utilize k-mer-based match-
ing to indexed transcript data sets, breaking 
reads into smaller k-mers, resulting in signifi-
cantly faster analysis.94 A recent report, while 
confirming different pipeline performance was 
virtually identical for in vivo transcripts, demon-
strated that alignment-based approaches were 
superior to alignment-free pipelines for total 
RNA analysis, as both small genes and low-
expressed genes biased the accuracies of align-
ment-free approaches.105

Read duplication
Post alignment, processing of the data includes 
sorting by genomic coordinates and marking 
reads that can be assigned as optical or polymer-
ase chain reaction (PCR) duplicates,106,107 using 
tools such as Picard.108 There is significant dis-
cussion as to whether such reads should be 
removed from the analysis, as preferential ampli-
fication of cDNA fragments in the library prepa-
ration could result in a gene/isoform having an 
increased level of reported expression if such 
duplicated fragments were included.109,110 Other 
biases can consist of fragment GC-content, 
priming of reverse transcription by random hex-
amers, and rRNA depletion methods.70,111,112 A 
common practice to handle PCR duplicates 
would include removal of all but one representa-
tive read of identical sequences; however, this 
assumes that all identical reads were generated 
by PCR from the sample cDNA molecule.113 If 
removed, biologically significant information 
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may be lost as smaller genes have reads that span 
the same genomic coordinates. UMIs enable 
tracking of fragments through library prepara-
tion, sequencing, and data analysis to overcome 
such biases.66,114

Feature summarization
Expression levels of features, either at the gene or 
transcript level, are estimated from mapped read 
counts where appropriate feature annotation files 
exist. There is currently no consensus approach 
that is the most suitable to all situations, although 
this is an area of significant recent development.85 
Initial analysis of RNA distribution through tech-
nical replicates fitted well to a Poisson distribu-
tion, in which reads map to the transcriptome in a 
random unrelated fashion within the 
library.22,115,116 With decreasing cost and speed, 
the use of higher numbers of biological replicates 
demonstrated that sample variability was greater 
than the expected distribution, giving increased 
false positives. Subsequent methods to handle 
this variability include analysis based on negative 
and beta-negative binomial statistical models, 
such as edgeR,117 BaySeq,118 Cufflinks2,119,120 
and DESeq2.121 Each requires an input of sample 
counts per gene or transcript that can be created 
with tools such as featureCounts122 or htseq-
count.123 Raw counts generated are not suitable 
for comparison of expression levels. Transcript 
length and library read size are primary factors 
creating bias in such data. This high-dimensional 
count data are, therefore, fitted to the model and 
normalized by the chosen package. There are sev-
eral metrics for normalization of gene expression, 
including RPKM (reads per kilobase per million 
mapped reads),124 FPKM (fragments per kilobase 
per million mapped reads), and TPM (transcripts 
per kilobase million).125 RPKM and related 
FPKM for paired-end sequences normalize gene 
coverage through correction of differing sample 
sequencing depth and RNA length. However, 
RPKM has been shown to be a poor metric for 
RNA abundance between samples.125 RPKM is 
calculated by dividing the read counts per feature 
with a scaling factor (total number of reads in the 
sample x 10−6) and by the length of the gene (kb). 
Within the sample, the RPKM values can be 
assessed for comparative expression analysis; 
however, due to the nature of the variation of 
library sizes between samples, RPKM values will 
not be comparable, leading to confusion in the lit-
erature and the use of RPKM.125 TPM overcomes 
this by reordering the calculation, normalizing for 

gene length followed by normalization for library 
sequencing depth. Therefore, the sum of all 
TPMs in each sample will be the same, unlike 
RPKM/FPKM. This provides the opportunity for 
cross-sample expression-level comparisons. With 
the size of the dimensional data generated for 
gene counts, correction of statistical validity is 
required; a common approach is using false dis-
covery rate (FDR) procedures to correct for mul-
tiple tests, for example, using the 
Benjamini–Hochberg method.126 Such processes 
are aimed at controlling the number of false posi-
tives when the null hypothesis has been incor-
rectly rejected.

Differential gene analysis
One of the most commonly used protocols with 
RNA-seq data analysis is the assessment of 
changes in expression of genes between sample 
conditions. Several methods have been produced 
to normalize and model the count data produced 
from aligned short reads. Generally, the input for 
these tools will be raw counts, to avoid biases 
introduced through normalization. Methods to 
model expression from count data include 
DESeq2,121 Cufflinks2,119 NOISeq,127 and 
edgeR.117 When working with transcript-level fea-
tures, a further consideration would be the change 
in transcript length across samples/conditions 
that would alter intra-sample calculations.119 
Comparative analyses of techniques used for dif-
ferential expression studies have been repor
ted85,116,128,129 and reviewed.84,130,131 Differential 
expression analysis results in lists of differentially 
expressed genes (DEGs) or features and associ-
ated fold changes. Decision on biological signifi-
cance to filter the data set relative to fold change 
and adjusted p-value thresholds is highly depend-
ent on the experimental design, which usually will 
require manual interactive inspection of the data. 
Principal component analysis (PCA) reduces the 
data dimensionality down into components of 
variation.132 By taking the main components and 
plotting them in either two- or three-dimensional 
(2D or 3D) space, samples can be visualized to 
enhance interpretability. PC1 describes the 
prominent variation within the data, PC2 the sec-
ond, and so on. This aids visualization of group-
ings between replicates as well as potentially 
identifying sample outliers.

Transcript-level differential expression analysis 
may assist in the detection of isoform changes. 
Transcripts can be assembled using tools 
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Figure 3. Heat map of differentially expressed genes (DEGs) in zebrafish between isolated optic fissure tissue 
and dorsal retina at 56 hours post fertilization (hpf),159 generated by R for Statistics package NMF. DEGs 
were identified using DESeq2, whose output was filtered for biologically significant results using criteria of 
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including Cuffdiff2 or StringTie133 that assemble 
reads into potential transcripts, using prior knowl-
edge, but also will identify novel transcript iso-
forms, followed by comparison of expression 
levels. Alternative splicing occurs in 90–95% of 
genes in mammals; therefore, analysis of the alter-
native use of exons and splice sites from RNA-seq 
data is of vital importance.134,135 Tools to assess 
differential usage of features such as exons or 
splice sites handle the information differently, 
using an exon-based approach, comparing to the 
overall expression of the associated gene.136,137 
Each has potential benefits and drawbacks, sum-
marized in a recent report on the assessment of 
tools available.138

Batch effects can be a significant source of varia-
tion between batches of samples, resulting in 
reports of false DEGs. There are a number of 
approaches to correct for known or unknown 
batch effects, including surrogate variable analy-
sis (SVA)54 and ComBat.139 Numerous tools have 
been designed with batch effect correction stages 
optional and evaluated.55 Batch effects can ulti-
mately range from increasing variability and 
reducing the power of an experiment, to becom-
ing confounded with a desirable outcome and 
result in misleading biological interpretation.

Data visualization
Visualization of RNA-seq data can be achieved 
in several ways, similar to other forms of high-
throughput sequencing data. Genome browsers 
such as IGV, UCSC,140 and GenomeBrowse 
enable the user to view read alignments, high-
lighting read coverage and alternative splicing 
events with Sashimi plots, and summarizing the 
mapped read density over exons and junctions 
on the gene model.141 Combined with differen-
tial expression and differential usage data, dis-
play of individual genes of biological interest at 
the exon level can be used to assess potential 
complications from read alignment artifacts, for 
example, specific regions of the genome remain 
difficult to either sequence or align to with short 
read sequencing.142,143

Data exploration throughout the analysis pipeline 
ensures precise results being reported. Useful 
tools for summarizing data from raw or processed 
sequence reads as well as alignment statistics vis-
ually include MultiQC,144 QualiMap,145 and 
RNA-SeQC.146 This type of data visualization 
enables querying of read alignment efficiency as 

well as proportions mapped to features such as 
exons, introns, and splice sites.

Biological insight
The biological significance of changes in the global 
transcriptome can be investigated through path-
way enrichment of the list of DEGs/transcripts. 
Two example methods to aid functional signifi-
cance assignment include (1) over-representation 
analysis (ORA), which compares the list of filtered 
DEGs against the annotated genome for over-rep-
resented functional assignment,147 and (2) gene set 
enrichment analysis (GSEA), which utilizes the 
complete data set, ranking the entire transcriptome 
according to the expression-level changes using 
differing metrics.148 Both rely heavily on prior 
knowledge and functional assignment to genes 
through Gene Ontology terms and databases such 
as MSigDB.148 Specific tools have been created for 
such analysis, which invariably demonstrates gene 
length bias, where larger genes have a greater 
chance of showing significant changes. GOSeq, a 
Bioconductor package, aims to estimate and 
account for such bias.149 Analytical tools continue 
to develop; PathwaySplice addresses explicitly bias 
through accounting for number of exons/junctions 
and performs pathway enrichment analysis.150 
Functional annotation data can also be readily 
queried using DAVID (Database for Annotation, 
Visualization, and Integrated Discovery),151 
Panther (Protein Analysis Through Evolutionary 
Relationships),152 QuickGO,153 and STRING.154 
ClueGO, a Cytoscape app, enables rapid querying 
of ontology databases, producing clustered terms 
in a functional network.155 GSEA requires prede-
fined collections of gene sets for analysis of the 
RNA-seq ranked list data set, including Kyoto 
Encyclopedia of Genes and Genomes (KEGG), 
Reactome, and BioCarta. GSEA provides a 
method for investigating changes in related sets of 
genes that may provide more insightful explana-
tion than, for example, a large expression fold 
change of a single gene or numerous changes in 
genes with no biological theme. All genes detected 
experimentally are taken into consideration, not 
only those above the arbitrary cutoffs. Genes with 
small changes in expression that might not have 
reached the significance threshold may be of more 
biological importance within the same pathways, 
providing links between prior knowledge and 
newly generated experimental data.

Novel genes, as well as noncoding RNAs (ncRNA) 
identified in RNA-seq data sets, can present a 
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challenge for functional ontology assignment. 
Protein sequence homology can be readily 
assessed for protein-coding transcripts using cur-
rent databases. While no standard functional 
annotation route is defined for ncRNAs, data-
bases such as miRbase,156 LNCipedia,157 and 
NONCODE158 maintain information on specific 
classes of ncRNA.

Highly similar ontologies cluster, highlighting the 
overall trends and themes of the underlying bio-
logical data. The expression of significant DEGs 
can be assessed through the generation of heat 
maps; a visualization method for rows of data, 
such as counts or expression values, related to the 
mean of that row. By calculating the z-score, the 
number of standard deviations from the mean 
expression of a gene, each sample’s expression 
can be represented through color variations. 
Hierarchical clustering, a way of arranging items 
in a hierarchy based upon similarity, can be used 
alongside heat maps to produce a dendrogram 
that shows the relationship between the rows [in 
this example, genes differentially expressed dur-
ing zebrafish optic fissure fusion159 (Figure 3)]. 
One-way cluster analysis will identify clustering 
based upon similarity of abundant data in one 
dimension, such as expression patterns of genes 
(row) for example, whereas two-way clustering 
will also cluster on the second data dimension, for 
example, similarity of the sample profiles (col-
umn) commonly using Euclidean distances.160 
The aim is to identify subsets of genes in samples 
so that when one data dimension (gene) is used to 
cluster another dimension (sample), clear and 
significant partitions emerge.

Reproducibility
Throughout the analysis of any data set, it is criti-
cal to maintain reproducible workflows, provid-
ing detailed information on how data are 
manipulated, filtered, and assessed.161,162 Even so 
far as versions and dates of databases utilized are 
critical to maintain the integrity of the results. 
There are diverse approaches to maintaining 
reusable and reproducible bioinformatics pipe-
lines such as Subversion and Git (this provides a 
version control system, preserving the history of 
the document). GitHub provides an open-source 
online resource for project tracking, sharing, and 
issue discussion. Code can also be created, 
shared, and annotated similarly with Jupyter sci-
entific computing notebooks. Other options for 
reproducible analysis include AWS Elastic Cloud 

Computing,163 Docker,164 and Galaxy.165 Galaxy 
provides a web-based platform for high-through-
put sequence data analysis. This platform is 
accessible to users without programming experi-
ence by providing a graphical web interface to 
command-line tools as well as predefined shared 
workflows and parameters. Tools and pipelines 
continue to develop rapidly with Galaxy adopting 
many of these improvements.166,167

Utility of RNA-seq in ophthalmology 
research
Vision research has benefited significantly from 
the use of RNA-seq over recent years.168 
Characterization of human diseases related to the 
eye can prove difficult due to the lack of high-
quality human tissue required for the analysis; 
therefore, model systems, such as animals or cell-
based, provide vital resources to further our 
understanding of eye development and disease. 
The role of noncoding and circular RNAs in eye 
disease has been the subject of a recent review.169 
Here, follow some applications in ophthalmology 
and vision research.

Human retina
Transcriptome analysis of three human donor 
adult healthy eyes has provided insight into which 
RNAs are expressed specifically in human retinal 
tissue. Farkas and colleagues identified 79,915 
novel alternative splicing events that included 
29,887 novel exons and 28,271 novel exon skip-
ping events with 116 potential novel genes 
expressed in retina. The observations, while 
highly reproducible, indicate a high level of nov-
elty in the makeup of the retinal transcriptome 
that highlights the difference between species and 
the importance of characterization of human tis-
sue.15 Further comprehensive analysis of eight 
normal eyes has been carried out, demonstrating 
transcriptome differences between macular and 
peripheral retina.170 Approximately, 80% of the 
annotated transcriptome was reported to be 
expressed in the retina, which showed signifi-
cantly different alternative splicing patterns to the 
RPE, choroid, and sclera; hence, spatiotemporal 
gene localization is needed. Analysis of mature 
mRNAs and ncRNA such as long-intervening 
ncRNAs (lincRNAs) has been shown to be 
involved in numerous cellular pathways in devel-
opment and disease. Analysis of total RNA within 
both fetal RPE and iPSC-derived RPE identified 
over 1000 lincRNAs and 180 novel genes 
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expressed in fetal RPE. The research also con-
firmed that the transcriptomes of iPSC-RPE were 
comparable to fetal RPE, so enforcing the suita-
bility of these cells for vision research.171

While global transcriptome analysis via RNA-seq 
has fueled our understanding of underlying mech-
anisms of disease, ultimately it provides little 
information on the basic unit of biology, the cell. 
Since the development of scRNA-seq using in-
house approaches, the field has seen an increase in 
the number of commercial options available. 
Protocols generally involve tissue disruption, 
which can lead to changes in expression profiles, 
although in vivo methods of mRNA isolation from 
tissue and prefiltering of cells based upon mor-
phology and function have been produced.172–174 
Post hoc PCA or hierarchical clustering of single-
cell data has been relied upon to determine cell 
type classification. Recent scRNA-seq has identi-
fied up to 40 cell types of RGCs in the mouse 
retina using such approaches.175 While elucidation 
of model system RGCs has been invaluable, the 
need for further characterization of human cell 
types remains vital. To address this, human pluri-
potent stem–derived RGCs were profiled using 
scRNA-seq, showing a variable expression pattern 
of common RGC-associated genes, further indi-
cating diversity within the cell population.176

Retinal dystrophies
Currently, mutations in over 75 genes can cause 
retinitis pigmentosa (RP), affecting the RPE and 
or photoreceptor cells, leading to progressive loss 
of vision. Stem cell–based therapies offer poten-
tial treatment avenues, either replacement of reti-
nal cell types through differentiation protocols or 
protection via general neuronal lineage cells.177 
Using a rat model of progressive photoreceptor 
degeneration harboring a mutation in the Mertk 
gene (Royal College of Surgeons, RCS rat), 
RNA-seq has been used to elucidate expression 
changes post stem-cell transplantation with 
human neural progenitor cells (hNPCs).178 
Comparative analysis of gene expression profiles 
of treated and untreated RCS rats and controls 
identified 68 genes with altered expression pat-
terns due to treatment with hNPCs. Pathway 
analysis revealed an enrichment of signaling 
involved in phagocytic response alongside the 
increase in photoreceptor cell survival. The 
underlying Mertk mutation causes improper 
phagocytosis of photoreceptor outer segments, 
and restoration of phagocytosis by hNPCs is 

encouraging. Similarly, mouse models of RP, 
including the rd10 mouse harboring a mutation in 
Pde6b, have been used to assess transcriptional 
changes underlying photoreceptor degenera-
tion.39 Decreased expression of rod-specific genes 
was associated with a clear increase in Muller-
specific gene expression, although other cell type-
specific genes were dysregulated.39 Interestingly, 
alternative splicing of 284 genes was altered in the 
degenerated retina, with predominantly increased 
exon inclusion.

Age-related macular degeneration
Understanding the pathogenesis of age-related 
macular degeneration (AMD) has been challeng-
ing due to the multifactorial etiology.179 AMD is 
characterized by RPE degeneration and conse-
quent photoreceptor cell death. Although impli-
cated in AMD, RPE phagocytosis has only 
recently been demonstrated to be dysfunctional 
by transcriptome analysis of RPE cells isolated 
from post-mortem AMD and normal age-
matched control human eyes.180 To explore the 
disease progression, rat models of AMD were 
assessed for temporal changes in retinal transcrip-
tomes. Enrichment ontology analysis has pro-
vided insight into cellular differentiation and 
developmental processes, all differential expres-
sion events were downregulated in comparison to 
controls. Gene clusters identified differing gene 
sets at the various disease stages linked to apopto-
sis.181 Targeted treatment of the exudative form 
of AMD through inhibition of vascular endothe-
lial growth factor (VEGF) signaling using ascor-
bate-based targeted DNA hydroxymethylation 
has been validated via characterization of the 
resultant transcriptome in RPE cells (human 
fetal, rat and cell line ARPE-19) showing signifi-
cant reduction in VEGF expression.182

Corneal dystrophies
Corneal dystrophies are a group of genetic condi-
tions that result in sight loss from various patterns 
of corneal opacity.183 Posterior polymorphous 
corneal dystrophy (PPCD) is a rare autosomal 
dominant disorder characterized by changes in 
Descemet membrane and the endothelial cell 
layer leading to decreased vision secondary to 
corneal edema.183 Although mutations in tran-
scription factors OVOL2 (type 1) and ZEB1 (type 
3) account for approximately 40% of all PPCD 
cases, the transcriptomes of PPCD endothelium 
and cultured human primary corneal endothelial 
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cells were assessed to further elucidate potential 
biomarkers.184,185 Characterization of DEGs asso-
ciated with ZEB1 and OVOL2 identified addi-
tional genes involved in proliferation, cell 
adhesion and migration, and cell morphology, 
which can be used to identify candidate genes for 
genetically unresolved patients.

Glaucoma
Success in glaucoma treatment can be determined 
by the level of fibrotic encapsulation post trab-
eculectomy surgery.186 To further understand the 
fibrotic response, RNA-seq has been used to iden-
tify dysregulated genes between primary fibrotic 
and nonfibrotic fibroblast cell lines isolated from 
glaucoma patients.187 Genes involved in inflamma-
tion and apoptosis were significantly upregulated in 
the fibrotic cell type, including RELB, PPP1R13L. 
MYOCD (a critical cofactor of serum response 
factor regulating smooth muscle cell differentia-
tion). PRG4 was upregulated in nonfibrotic cells 
and has been associated with high levels of hyalu-
ronic acid and scar-less fetal wound healing.188 In 
total, 246 genes were differentially expressed in 
fibrotic cell lines compared to nonfibrotic, provid-
ing an insight to a distinct fibrosis gene signature.

Prospects
RNA-seq is now becoming the standard method 
of transcriptome analysis as both the tools and 
technology continue to develop. Methods of anal-
ysis differ significantly and validation of results 
using different tools remains uncertain. As more 
comparative studies are evolving, more appropri-
ate use of tools will be forthcoming. Continued 
development of RNA-seq technologies has 
resulted in the ability to analyze minimal amounts 
of starting material, even from older fixed and 
embedded archived tissue. Development of single-
cell techniques continues to be a highly dynamic 
area of research.189–191 Elucidation of cellular 
transcriptomes, in tissue-related context, will 
provide an insight into the regulation of gene 
expression in assumed identical cell types. 
Combined with temporal experimental designs, 
analysis of thousands of cells at a time, using 
techniques such as DROP-seq and InDrops, can 
provide detailed analysis of cellular subgroups 
within systems of interest.192,193 Recent adaption 
of scRNA-seq has allowed the reconstruction of 
cell lineage histories in model systems.194–198 
Such large-scale informatics will drive knowledge 

of RNA expression through developmental stages 
and tissue types as well as providing the technol-
ogy to approach many disease-related issues.

With the availability of open-access sequence data 
in online repositories including NCBI SRA and 
EMBL ENA, combined with the increase in com-
puting power, increasing the speed of pipeline 
analysis, the amount of knowledge to be gained 
from transcriptome analysis is increasing. 
Combined with other ‘omics data, RNA-seq anal-
ysis has the potential to link gene expression with 
genomic features such as epigenetic changes, DNA 
sequence alterations, and protein interactions. The 
Department of Health and Social Care’s 100,000 
Genomes Project, whose aim was to sequence 
75,000 genomes of patients with rare diseases and 
cancer,199,200 concomitantly collected RNA along-
side the DNA samples. This initiative will result in 
increased diagnostic rates and the discovery of 
novel disease-causing variants, while also provid-
ing an extensive wealth of information on tran-
scriptomes from individuals with varied genetic 
backgrounds. For eye disease, the transcriptome 
will provide insights into how genes alter the devel-
opment or function of the eye and has the potential 
to provide researchers with novel targets for thera-
peutic strategies.
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