
International Journal of Building Pathology and Adaptation

Inferring the as-built air permeability of new UK dwellings

Journal: International Journal of Building Pathology and Adaptation

Manuscript ID IJBPA-02-2019-0018.R1

Manuscript Type: Original Article

Keywords: airtightness, mathematical modelling, compliance, inference, domestic 
energy use

 

International Journal of Building Pathology and Adaptation



International Journal of Building Pathology and Adaptation

Inferring the as-built air permeability of new UK dwellings

Abstract

Compulsory airtightness testing was introduced for new dwellings in England and Wales in 2006 and 

in Scotland in 2010 to ensure that they are constructed according to design air permeability targets. 

These targets are set to limit heat loss through air infiltration. Previous work examining the large 

ATTMA dataset of UK airtightness test data suggested that, in a proportion of dwellings, the targets 

were being met by post-completion sealing as opposed to airtight construction, but did not quantify 

the prevalence of this practice. 

In this paper, the distribution of as-built airtightness and the proportion of dwellings undergoing 

post-completion sealing are estimated from the ATTMA dataset covering 2015-2016. This is carried 

out by Bayesian statistical modelling, using the dataset of recorded test results and a modelled 

representation of the testing process. This analysis finds the mode of the as-built distribution of air 

permeability as 4.38 ± 0.01 m3/m2h. It predicts that 39% of dwellings aiming for one of the five most 

common design targets have sealing interventions at the point of pressure testing to meet their 

target. The as-built distribution of the ATTMA data is compared to airtightness test data obtained 

from just before compulsory testing was introduced, showing an improvement in the modal air 

permeability of 3.6 m3/m2h since testing became mandatory. 

This article has investigated more deeply than the reported data in order to estimate investigated 

the available data beyond simply what is reported, to estimate what the real levels of airtightness in 

the UK new build stock may be.
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1. Introduction

Airtightness testing of new dwellings became mandatory in England and Wales in 2006 (Office of the 

Deputy Prime Minister, 2006) and in Scotland in 2010 (Scottish Government, 2010). This was partly 

as a result of the limited data available at the time showing that over 75% of dwellings were not as 

airtight as their design specification (Office of the Deputy Prime Minister, 2004); therefore the stated 

aim of this new testing requirement was to reduce the number of poorly sealed buildings (Office of 

the Deputy Prime Minister, 2004).

Under the UK’s compulsory testing regime, a design air permeability target is first set which enables 

a dwelling to meet an overall CO2 emission target. An airtightness test is then carried out on the 

completed dwelling on a sample basis, and if the result is higher (i.e. leakier) than the target, the 

dwelling must undergo remedial work and be re-tested until its permeability is less than or equal to 

the target. Alternatively, as long as the dwelling meets the minimum statutory airtightness target of 

10 m3/m2h at 50 Pascals, the design target may be relaxed if an improvement elsewhere in 

calculated carbon emission performance can be made to compensate or if the dwelling would still 

meet the target carbon emissions using the higher air permeability test result (HM Government, 

2016).  (Government, 2016).

The airtightness test protocol in the UK is managed by the Air Tightness Testing and Measurement 

Association (ATTMA) (ATTMA, 2016.). ATTMA additionally runs an approved Competent Persons 

Scheme for airtightness testers whose requirements include lodgement of all regulatory tests, 

meaning a large dataset of test results is now available. Analysis of this data in a previous article 

(Love et al., 2017) indicated unusual structures in the distribution of airtightness results, with a 

disproportionately high number of measurements just meeting the targets and a sharp drop 

immediately in excess of them. From combining the data with the results of small scale case studies 

finding evidence of post-completion temporary and secondary sealing, it was proposed that such 

distributions may be partly attributable to in-test interventions being made in order to pass the 
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regulatory test. This was framed as ‘hitting the target and missing the point’, since if the proposition 

is correct, then the presence of a target air permeability does not lead lead not to most dwellings 

achieving their target as intended through improvements to the primary air barrier. Instead, a 

significant proportion of dwellings are built leakier and require the use of temporary or potentially 

short-lived remedial measures to attain the target. This conflicts with the intended outcome of the 

regulations: a stock of dwellings with durable airtightness performance.  

The previous analysis of the ATTMA dataset focussed on collecting evidence for the existence of 

mechanisms allowing dwellings to pass their tests sub-optimally, but did not attempt any 

quantitative estimation of the fraction of homes meeting air permeability design targets at the initial 

test compared to those meeting the design targets through sealing either during or after a 

regulatory test. This is important as it is useful to know how intrinsically airtight dwellings are at the 

point of completion using current construction processes, as well as how prevalent the occurrence 

of secondary sealing is in the cases where the homes do not initially meet their targets.

An estimation of these values was attempted in this paper using statistical modelling of the 

airtightness test results in the ATTMA dataset. A mathematical model has been developed of the 

test procedure and impact of post-completion interventions on the distribution of airtightness test 

results. Fitting the model to the observed data enabled estimation of key modelled parameters: the 

shape of the distribution of air permeability when new homes are built, and the fraction of dwellings 

which did not meet their target airtightness and therefore underwent some kind of later sealing. The 

best estimate of the as-built distribution of airtightness test results was then compared to a dataset 

of airtightness measurements taken before the introduction of compulsory testing (Grigg, 2004). 

This analysis enabled insights to be drawn about the impact of the introduction of this compulsory 

airtightness testing regime on the as-built airtightness of the stock.   

The rest of this paper is structured as follows. Section 2 provides a description of the data and its key 

structure. Section 3 introduces the statistical modelling methodology to be used. Sections 4 and 5 
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develop the model conceptually and mathematically and Section 6 describes the analysis. The key 

values derived are presented in Section 7 and discussed in Section 8. Finally, the Conclusion in 

Section 9 summarises the key learnings. 

2. Data

This paper uses two datasets, one each from after and before the introduction of compulsory 

testing. The ATTMA data, testing procedures, metadata and data cleaning process are reported in 

detail by Love et al (Love et al., 2017); with key features summarised in section 2.1. The pre-

regulatory testing dataset used for comparison is described in section 2.2.  

2.1 ATTMA dataset

Approximately 130,000 air permeability test results from the UK are lodged with the ATTMA 

database annually; this paper presents the analysis of data from a 1.5 year period, from August 2015 

to December 2016. In addition to the test results, the lodged data also includes a small amount of 

metadata about the building and the test, as well as the inputs to the air permeability calculation. It 

does not include a unique building number or test timestamp.

The dataset was cleaned to remove physically unreasonable results (for example flow exponent 

below 0.5) and erroneous completion of the fields (for example missing envelope area). An 

algorithm was then applied to identify unique dwellings and detect the last test per dwelling in 

instances of multiple tests recorded per dwelling. This process reduced the dataset from 192,731 to 

144,024 results and introduced a small error associated with the imperfect identification of unique 

dwellings and tests being mislabelled as last tests. The reader is referred to (Love et al., 2017) for a 

fuller description of the cleaning and processing steps.

The test data and the design targets taken from the metadata are shown in two different ways in 

Figure 1 . The boxplot on the right displays the full range of values, while the histograms on the left 
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display only values between 0 and 10 m3/m2h at 50 Pascals where the majority of the data lies. Note 

that for the rest of this article, all design and measured air permeability values are given in 10 

m3/m2h at 50 Pascals but quoted simply as 10 m3/m2h for brevity. shows the frequency distribution 

of air permeability test results using 0.01 m3/m2h bins, the highest resolution common to the whole 

dataset. The distribution of declared design targets taken from the metadata is shown in the lower 

subplot.

Figure 1. Top left: dDistribution of last tests. Bottom left: distribution of design targets. Right: both of these distributions in 

boxplot form  (top) and declared design targets (bottom) from the ATTMA dataset. All air permeabilities are reported at 50 

Pa.

Figure 1

Figure 1 shows the frequency distribution of air permeability test results using 0.01 m3/m2h bins, the 

highest resolution common to the whole dataset. The distribution of declared design targets taken 

from the metadata is shown in the lower subplot. The distribution of  last test results recorded in the 

ATTMA database was discussed in detail in previous work (Love et al., 2017). Three particularly 

relevant observations for the analysis presented in this paper are discussed below.
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Firstly, there is a clear mismatch between the range of reported permeabilities, from 0.17 to 42.27 

m3/m2h at 50 Pascals, and the range of reported design targets, from 0.24 to 15.0 m3/m2h. A 

significant minority of dwellings have last test results higher than their; some test results exceed 

their design target; the reason for this is unclear. Furthermore it is not known why a small number of 

dwellings have a design target above 10 m3/m2h. Secondly, there are 450 identifiable unique design 

targets, the most common being 5.0 m3/m2h for 63,467 dwellings (44% of the dataset). Figure 1 

highlights the large peaks followed by very sharp drops in last test results associated with common 

design targets, discussed in Section 1. As the 15 most common design targets in the metadata are 

associated with 95% of the dwellings, such trends dominate the visual trends observed in the Figure 

1. ThirdFinally, 137 design targets have only one associated dwelling; 100 of these dwellings have 

the design target exactly equal to the test result. It is therefore possible that such design targets 

were set after the test, or changed in response to the test result. 

It is not possible to infer the original design and build intent for such situations where tested 

permeability remains higher than design permeability, or where the target may have been changed; 

better metadata would be required to resolve these issues. For these reasons Iit appears that the 

stated design target in the database is not always a reliable indicator of the actual airtightness level 

originally being aimed for. Therefore, in the analysis presented in this work the design target for 

each dwelling is not taken from the database and is instead inferred from the data. 

2.2 Comparison dataset

One component of the analysis described in this paper is a comparison of the ATTMA data to a 

dataset collected before the introduction of mandatory testing. This comparison dataset was  of the 

as-built permeability distribution derived from the ATTMA data to that from an air permeability 

dataset of dwellings constructed and tested before the introduction of mandatory testing in England 

and Wales in 2006, which were collected by Grigg for the Energy Saving Trust (Grigg, 2004) . This 

comparison dataset will and thus will be referred to as the ‘EST data’., Itand contains air 
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permeability test results carried out in 2004 for 99 new dwellings in England under the same test 

protocol as the . The airtightness test protocol used for the EST data was the same as that used to 

collect the ATTMA data. However, the EST tests were carried out to ascertain the state of 

airtightness in new dwellings at the time, as opposed to demonstrating compliance with building 

regulations. The EST dataset therefore represents the as-built state of new dwellings built in 

accordance with the April 2002 edition of Approved Document L1 and would therefore have not 

undergone any test-related sealing or remedial work.

3. Methodology

The approach taken in this paper is statistical modelling, whereby a model is applied to a dataset 

with the aim of extracting useful information about the data-generating process (Konishi and 

Kitagawa, 2008, Anderson, 2007). Using models to understand data is a standard technique in the 

field of energy and buildings.: For example, at the simplest level it could entail linear regression (see 

e.g. (Summerfield et al., 2010)), whilst; other studies use more complex models (see e.g. (Rouchier 

et al., 2018)). The appropriate level of model complexity should take into account the amount of 

structure present in the data – representing the complexity of the phenomenon being described as 

well as the ability to measure it – and the extent to which the phenomenon is understood and 

evidenced (Ashdown, 2018). While all models in the field of energy and buildings are abstractions of 

reality, some explicitly attempt to describe causal processes such as physical laws (e.g. (Biddulph et 

al., 2014)) and others encapsulate a large number of unknown physical and social processes without 

trying to model them explicitly (e.g. (Huebner et al., 2016)). The approach in this paper is situated in 

between these two approaches: we develop a mathematical representation of the socio-technical 

process of airtightness testing. 

Statistical modelling is applied as follows. We begin with a dataset of test results and a conceptual 

model of the test procedure outlined in Section 4, indicating that an unknown proportion of 

dwellings have already undergone remedial works before their recorded test. This insight is then 
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formalised into a mathematical model of the test procedure in Section 5, and applied to the data in 

Section 6. The useful information to be extracted is how airtight the dwellings were before remedial 

works were carried out and the proportion requiring these works.

An essential component of statistical modelling is model specification: choosing a mathematical 

description of the system which can reproduce the main features of the data (Lehmann, 1990). 

Statistical models are expressed as probability distributions because they incorporate some random 

variation due to limited information (Davison, 2003, Pawitan, 2001). That is, they describe a system 

in which the origin of each data point does not need to be specified deterministically by the model, 

but the distribution of all data points should be able to be recreated. This is a suitable modelling 

approach for this analysis because of a lack of knowledge of the characteristics of each individual 

dwelling. For example, it is not known whether the airtightness test result for a particular house 

came about from passing its regulatory test first time or from undergoing remedial works. However, 

it is assumed that in the entire sample of 140,000 homes, a large number of processes (involving 

design, construction and the test procedure) combine to generate a small set of well-defined 

probability distributions.  The intention of the analysis is then to determine the nature of these 

distributions and the parameters that control them. There are several established techniques for 

comparing models and learning parameters from data (MacKay, 2003). ; iIn this paper Bayesian 

inference is used (Congdon, 2007). 

4. Conceptual model of airtightness testing

A simple conceptual model of the current airtightness testing process, shown in Figure 2, is used as 

the basis for the analysis in this paper. The conceptual model is derived from simplifying Figure 8 in 

Love et al (Love et al., 2017), and attempts to encapsulate the range of possible testing processes 

that may occur. 
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The two halves of the model in Figure 3 differ according to whether a full test is actually completed 

before any interventions to the building fabric take place. The left hand side of the model depicts a 

cycle in which a full test is carried out first, and if the result is a fail, then interventions to the 

building fabric are then carried out, with feedback on the level of improvement provided to the 

tester through re-testing. This process is termed here as ‘loose feedback’, as remedial work is carried 

out each time without knowledge of exactly how much effect the remedial work will have on 

decreasing air permeability. These interventions may therefore lead to a better result than the 

design target, in some cases by a large amount. This will still lead to a sharp cut-off at the design 

target value, but will not result in an accumulation of dwellings immediately below the design target.

The right hand side of the model in Figure 3 shows a scenario in which a full test is not carried out 

initially. Instead, an initial ‘check test’ is performed in which the blower door fan is left running to 

give a 50 Pascal pressure difference in order for the tester to determine from the fan flow rate 

whether the dwelling would pass a full test. If not, in-test sealing and remedial measures are carried 

out with the fan still running, with the tester able to continuously monitor the fan flow rate to 

immediately determine the impact of any remedial measures on the airtightness level. WOnly when 

the tester is confident that the dwelling will pass, a is a full test is then then carried out. This process 

is termed here as ‘tight feedback’, as the tester has constant knowledge of the air permeability at 50 

Pascals, and remedial measures can stop immediately upon reaching the design target and will 

therefore lead to a large number of dwellings with an air permeability immediately below the design 

target.  One of the key differences between the proposed “loose feedback” and “tight feedback” 

mechanisms is that only one full regulatory test would be carried out in the “tight feedback” case, 

whereas the number of number of full regulatory tests in the “loose feedback” case could range 

from one test to a number of tests.

Unfortunately, it is not possible to separate out these two different feedback mechanisms from this 

data alone, as it is impossible to know how much of which feedback mechanism is being used. We 
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therefore expect a permeability distribution which is a mixture of the as-built, tight and loose 

feedback distributions. The distribution for a particular design target is expected to be similar to the 

as-built distribution up to the design target with a sharp peak just below the design target if there is 

significant tight feedback.

Figure 2. Conceptual model of the airtightness testing process, showing ‘loose feedback’ (left) and ‘tight feedback’ (right).

The aim of the analysis in this article is to use the distribution of ‘Final Value’ data, shown at the 

bottom of Figure 2, to estimate the initial as-built air permeability distribution of the sample, shown 

at the top of Figure 2, and to estimate what proportion of dwellings have undergone sealing 

Page 10 of 30International Journal of Building Pathology and Adaptation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Building Pathology and Adaptation

interventions post-completion to enable them to meet their airtightness target. To undertake this, 

the conceptual model in Figure 2 is first expressed as a statistical model, below.

5. Statistical model of airtightness testing process

We now express the above conceptual model of the testing process in terms of probability 

distributions. Two distinct phases of the process for constructing dwellings to a certain airtightness 

have been identified above and are treated separately in this model: dwelling construction itself, 

and post-construction sealing and remedial measures.

It is assumed that dwelling construction results in an air permeability taken from an initial as-built 

background distribution, as shown in the top box in Figure 2. Previous work on Finnish dwellings by 

Vinha et al (Vinha et al., 2015) discovered a non-normal distribution for the background distribution, 

but did not propose a specific mathematical form. Therefore, a lognormal distribution with 

parameters μ and σ is selected here, since it has characteristics consistent with the expected 

distribution of measurements discussed in previous work (Love et al., 2017);: it is broad, smooth, has 

a single mode, is always positive and has a long tail. The background probability distribution of any 

air permeability, , is therefore given by:𝑝𝑒𝑟𝑚

( )𝑃𝑏(0 < 𝑝𝑒𝑟𝑚) =
1

𝑝𝑒𝑟𝑚
1

𝜎 2𝜋𝑒
―

1
2(𝑙𝑛(𝑝𝑒𝑟𝑚) ― 𝜇

𝜎 )2

1

Equation  represents the as-built distribution of air permeability of dwellings before any testing or 1

intervention. The use of a single mode distribution implies a simplistic assumption that all dwellings 

are originally built to the same standard regardless of the design target associated with the building; 

the validity of this assumption is returned to later.

Using the background distribution, it is then possible to determine the fraction of dwellings, F, that 

do not meet their airtightness target when they are first measured by the tester. This is the fraction 

of dwellings that would have a permeability above a design target , expressed in Equation 2 using 𝑡𝑛

the error function ERF.
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)𝐹(𝑡𝑛 < 𝑝𝑒𝑟𝑚) =
1
2(1 + ERF(𝜇 ― 𝑙𝑜𝑔(𝑡𝑛)

𝜎 2 ))      (2

Next, it is hypothesised that dwellings whose as-built air permeability is above their design target 

undergo an intervention to bring the air permeability down to the target or below; this mechanism is 

represented in Figure 2 as the ‘interventions’ box.  This is modelled using an intervention distribution 

for each design target, of exponential form, with a rate parameter λ m2h/ m3. The intervention 

distribution for each design target is given by:

)𝑃𝐼(0 < 𝑝𝑒𝑟𝑚 ≤ 𝑡𝑛) = 𝜆 (1 + 𝑒 ―𝜆𝑡𝑛)𝑒( ―𝜆(𝑡𝑛 ― 𝑝𝑒𝑟𝑚))     (3

The exponential distribution attempts to capture both the tight feedback and loose feedback 

mechanisms described in Section 4, as it allows re-tests or in-test checks to fall either exactly on the 

target or to overshoot it. Note that a normalisation factor  has been included to account  (1 + 𝑒 ―𝜆𝑡𝑛)

for the tail of the exponential distribution which extends beyond zero.

The combination of the background and intervention distributions then gives a probability 

distribution with a sharp peak at the design target. This is given for one design target  by : 𝑡𝑛

𝑃𝑛(0 < 𝑝𝑒𝑟𝑚 ≤ 𝑡𝑛) = 𝑃𝑏 + 𝐹𝑃𝐼

)𝑃𝑛(𝑡𝑛 < 𝑝𝑒𝑟𝑚) = 0      (4

The effect of Equation  is that all dwellings in the background distribution which are greater than 4

their design target are relocated to the intervention distribution. This is illustrated graphically in 

Figure 3 for an example target of 7 m3/m2h, with arbitrary parameters for the background 

distribution.
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Figure 3. Illustration, using arbitrary parameters, of dwellings moving from the background to the intervention distribution, 
simulating the intervention part of the airtightness testing process.

To complete the mathematical description, the background and intervention distributions at 

different design targets are combined. Each design target has a fraction  of the total number of 𝑓𝑛

dwellings aiming for it. The set of design targets, and the fraction of dwellings aiming for each one, 

are predicted by the model, i.e. they are outputs not inputs. The ATTMA metadata contains a design 

target for each dwelling, but as stated in Section 2.1 there is evidence that this is often not the 

design target the builder was working towards. Allowing the model to predict the design targets and 

associated fractions of dwellings removes the need to trust the declared design targets. 

Equation  gives the complete simulated distribution of recorded test results. The  term is 5 𝑓𝑐𝑃𝑏

included as a catch-all distribution for those design targets not included in the model. We assume 

that these dwellings are randomly taken from the background distribution, . Equation 5 then 𝑃𝑏

represents the distribution of simulated test results, or the ‘Final Value’ box in Figure 2.
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)𝑃(0 < 𝑝𝑒𝑟𝑚) = ∑𝑁
𝑛 = 1𝑓𝑛𝑃𝑛 + 𝑓𝑐𝑃𝑏      (5

Finally, the rate parameter  is not necessarily the same for dwellings aiming for different design λ

targets. Dwellings which are constructed relatively airtight are expected to have smaller and 

potentially fewer defects (e.g. large cracks) than those that are leaky, reducing the impact of 

interventions on the permeability. For this reason, the modelled rate parameter was allowed to vary 

for different design targets. However, in order not to introduce too many extra parameters, we 

specify that the rate parameter must be a linear function of design target, determined entirely by 

two parameters: gradient m and intercept c. m and c are then hyperparameters.

In summary of the above, the parameters associated with the mathematical model are listed in 

Table 1.

Table 1. Parameters of model of airtightness testing process.

Parameter name Interpretation

𝜇,𝜎 Parameters of the lognormal background distribution. Units: 

ln(m3/m2h)

mλ, cλ Hyper-parameters representing the gradient and intercept of 

the rate parameter λ of the intervention distribution. Units: 

h2/m2 and m2h/m3

t1,t2…tN Design targets. Units: m2h/ m3

𝑓1,𝑓2,⋯,𝑓𝑁 Fraction of dwellings aiming for each design target in the set of 

N targets

𝑓𝑐 Fraction of dwellings that have a design target not included in 

the model, so are instead in the catch all distribution. Note: 𝑓𝑐

= 1.0 ― ∑𝑁
𝑛 = 1𝑓𝑛

6. Analysis

The aim of the analysis was to estimate the following outputs:
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- The mode of the background distribution representing the construction process;

- The fraction of dwellings which met their target in their as-built state, and those which did 

not meet the target and then underwent extra sealing;

- The improvement of the ATTMA background distribution from the comparison dataset 

collected before compulsory testing.

In order to estimate the above outputs, the parameters of the mathematical model listed in Table 1 

must first be estimated from the data. Bayesian inference was used to estimate the most likely 

values of the parameters using a method closely following that applied by Biddulph et al 

(2014Biddulph et al., 2014) and Elwell et al (Elwell et al., 2015). Model parameters, , may be 𝜃

estimated from their joint probability distribution, , given the applied model, H, and the  𝑃(𝜃|𝑦,𝐻)

data, y, using the Bayes equation:    

(6)𝑃(𝜃|𝑦,𝐻) =
𝑃(𝑦|𝜃,𝐻) × 𝑃(𝜃|𝐻) 

𝑃(𝑦|𝐻)     

 is the likelihood function, the probability of measuring the recorded data given the 𝑃(𝑦|𝜃,𝐻)

estimated parameters and model.   is the prior distribution, the estimated initial probability 𝑃(𝜃|𝐻)

distribution of the parameters and  is the evidence, the probability of observing the recorded 𝑃(𝑦|𝐻)

data given the model. 

To compare model and data required the ability to compare a continuous function (the model) with 

a large set of discrete number in bins (the data). Since the model is continuous and the data is a 

histogram of a large set of discrete numbers of dwellings falling into each permeability bin of width 

0.01 m3/m2h, the This was possible using the Binomial distribution was used as the likelihood 

function. This  to related the number of dwellings within each bin in the data, k, to the average 

predicted number of dwellings given by the model over the bin’s range, a: 

    (7)𝑃(𝑦|𝜃,𝐻) =
𝑎𝑘𝑒 ―𝑎

𝑘!
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Flat non-informative uniform priors with realistic ranges were used, since there was no information 

available on the values of ,  and . In principle, priors for  could have been formed using the µ 𝜎 𝜆 𝑓𝑛

number of dwellings associated with each declared design target. However, due to the large size of 

the dataset, the relative influence on the analysis of priors is very small, so uniform priors were used 

for simplicity.

A maximum a posteriori probability (MAP) estimate, the mode of the posterior distribution space, 

was obtained. This gives the most likely values of the parameters listed in Table 1, and their 

statistical error. However, the statistical error only relates to the particular model applied and does 

not mean that a model is ‘right’, or the best way of generating the data. Although there is no way to 

tell if a model is ‘right’, i.e. represents the actual processes occurring in the data, it is possible to 

compare alternative models against each other to find the most appropriate out of those tested. 

Specifically, the most appropriate model is that which explains the greatest amount of structure in 

the data with the lowest number of parameters. Within the Bayesian analysis framework, this is 

known as Bayesian Model Comparison .  This enables comparison of the relative probability of 

different models describing the observed data, accounting for the increased size of the posterior 

parameter space in more complex models by penalising such models, and thus reducing the risk of 

choosing models which overfit the data.

Model comparison was applied in this case by creating a suite of nested models each incorporating a 

different number of design targets. For example, the simplest model was not allowed to incorporate 

any design targets, the second simplest was allowed to incorporate one target, and the most 

complex model was allowed to incorporate 15. As stated above, the targets were not provided as 

inputs but were instead found by the models. However, once a target had been found by the model 

with n parameters, the model with n+1 parameters also assumed the presence of this target.  The 

Bayesian model evidence was calculated for each variant of the model, allowing quantitative 

comparison of which number of design targets best describes the data without overfitting it.

Page 16 of 30International Journal of Building Pathology and Adaptation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Building Pathology and Adaptation

7. Results

The most suitable model is shown in Section 7.1. Its parameters are given in Section 7.2 which gives 

insight into the current status of airtightness construction in the UK. The progress made since 

compulsory testing began is then explored in Section 7.2.

7.1 Model comparison

The model using 5 design targets was shown to be the one with the highest Bayesian model 

evidence, as shown in Figure 4.

Figure 4. Model evidence for models with different numbers of parameters (design targets).

The set of design targets found by the model was, in order of number of dwellings associated with 

each target,: [5,6,7,4,3] m3/m2h. Table 2 shows the model’s prediction that 85% of dwellings are 

aiming for one of these 5 targets. This leaves 15% of dwellings associated either with a different 

target or no target. Whilst it is clear from the data that additional design targets do exist, the result 

of the model comparison shows that the data available does not justify the use of a model with the 

additional complexity introduced by more targets. 

Page 17 of 30 International Journal of Building Pathology and Adaptation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Building Pathology and Adaptation

Table 2. Set of 5 targets as predicted by the best performing model. Modelled proportion of dwellings aiming for each 
target, and statistical error on this estimate.

Target Value 
(m3/m2h)

Modelled 
percentage of 

data 
associated 
with target 

(%)

Statistical 
error (%)

5 44 0.3
6 18 0.3
7 18 0.4
4 4 0.1
3 0 0.7

% dwellings 
aiming for 
one of above 
targets

85

% dwellings 
not aiming for 
one of above 
targets

15

7.2 Values of parameters using best model

Using the most probable model from the above model selection, the best estimate of the 

parameters are given in Table 3 with their statistical error. A plot of the model using these 

parameter estimates is shown in Figure 5, superposed on the data to allow visual comparison 

between the two.: Tthe fit is very good.

Table 3. Estimated background lognormal distribution and the intervention exponential distribution parameters for the 
model form the analysis.

Parameter Value Statistical error Units
µ 1.60 0.00 log(m3/m2h)
σ 0.35 0.00 log(m3/m2h)

mλ -1.80 0.00 m2h/m3
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cλ 12.76 0.02 h2/m2

 

Figure 5. Model (green) superposed on data (black), showing the model for the air permeability of dwellings fit to the 

ATTMA data. 

One important component of the model superposed on Figure 5 is the background distribution, 

representing our best estimate of the distribution of dwelling airtightness at the point of building 

completion. This is shown on its own in Figure 6. The background distribution, assumed to be log-

normal, is defined by the two parameters  and ; however, these do not have a convenient physical 𝜇  𝜎

interpretation. It is more meaningful to use these parameters to calculate the mode of the 
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distribution, the mean, and a descriptor of the width of the distribution: the confidence interval1 (a 

descriptor of the width of the distribution). The mode of the distribution is 4.38 0.01 m3/m2h, the ±

mean is 4.95 0.01 m3/m2h, and the 67% confidence interval is 3.0-6.3 m3/m2h. ±

 

Figure 6. Predicted background distribution of dwelling airtightness, prior to any interventions. Distribution inferred from 
the model of the testing process and the data.

The second important component of the model is the representation of dwellings undergoing 

sealing interventions due to not meeting their design targets after construction. This is associated 

with the spikes in the model predictions in Figure 5. For the subset (85%) of dwellings aiming for one 

of the 5 most common targets, Table 4 shows the predicted result that shows the model suggests 

that 39% of the modelled sample of dwellingsse dwellings have undergone this process. 

1 Within the Bayesian framework, a 67% confidence interval is the smallest permeability interval which 
contains 67% of the data.
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Table 4. Estimated percentage of dwellings requiring post-construction sealing. Note that this result only applies to the 
dwellings aiming for one of the 5 most common design targets.

Dwellings meeting 
target after construction 
(%)

Dwellings not meeting 
target after construction 
(%)

Statistical error (%)

61 39 0.4

The negative value of the parameter m in Table 3 suggests that a narrower intervention distribution 

is predicted for lower design permeability targets (the parameter m is negative). In practical terms, 

this could constitute evidence for the proposition in Section 5 that as buildings become more 

airtight, there are fewer opportunities for major additional sealing, since there are fewer obvious 

gaps in the building fabric. It is likely that design and construction teams that aim for targets below 

4 m3/m2h are more knowledgeable and for the lowest levels, adopt different construction systems 

from those associated with the majority of dwellings.

7.2 Progress in airtightness of UK dwelling construction over time

In this section, the ATTMA background distribution inferred above is compared to the EST data 

described in Section 2.2. We use a very simple model developed by (Lowe et al., (2000) to anticipate 

the effect of compulsory testing on the distribution of air permeability. Lowe et al proposed a simple 

scaling of the air permeability distribution, in which the mean and width both decrease. Their 

equation is given in Equation 8, where  is the distribution before introduction of compulsory 𝑃𝑜

testing,  is the distribution afterwards and  is a scaling factor.𝑃 𝑎

𝑃(𝑝𝑒𝑟𝑚) = 𝑎𝑃𝑜(𝑎 × 𝑝𝑒𝑟𝑚)      (8)

In order to utilise this model in the current study, firstly a lognormal curve was fitted to the EST data 

so that it had the same form as the ATTMA background distribution (as required by Equation 8). 

Secondly, the relationship between the EST and ATTMA lognormal curves was investigated. It was 

found that these curves scale very well: a single parameter (a=0.45) can highly accurately transform 

the EST distribution into the ATTMA background distribution, as is illustrated in Figure 7. Here, the 

EST data is displayed as a solid histogram, its lognormal curve as a solid line and the ATTMA 
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background distribution as a dot-and-dash line. This supports the suitability of Equation 8 to 

describe the evolution of airtightness in the dwellings with the data analysed and models developed 

here.

Figure 7. EST data, lognormal curve fitted to EST distribution and ATTMA background distribution. Y-axis for data on the 
left, y-axis for models on the right.

Figure 7 firstly shows that a lognormal curve is an appropriate distribution to represent the EST 

data;, given the limited size of this dataset there is no evidence to suggest that an alternative 

distribution is a better representation of the data. Secondly, by comparing the EST modelled 

distribution with the ATTMA curve, the progress in airtightness construction can be observed. 

Between 2004 and 2017, the mode of the background permeability distribution changed from 8.0 to 

4.4 m3/m2h: a decrease of 3.6 m3/m2h.

Following Lowe et al’s method [22], we have taken Equation 8 together with the current background 

distribution to predict the required mode of a distribution that would enable 90% of dwellings to 
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pass an airtightness test. This is equivalent to asking by how much the background distribution must 

improve to reduce the intervention rate to 10%. Two simple scenarios were used: in the first all 

dwellings aim for a target of 5 m3/m2h and in the second the target was 10 m3/m2h. Figure 8 shows 

the results of applying Equation 8 to these scenarios. Achievement of a 10% failure rate under a 

universal target of 5 m3/m2h requires a mode of 2.8 m3/m2h compared to its current mode of 4.38. 

Otherwise stated, since the background distribution contains a certain level of spread, then in order 

to ensure the performance of a stock of dwellings is below a required value, the mode of the 

background distribution must be well below that value.

Figure 8. Application of the scaling rule to calculate the required mode to achieve different failure rates, for two design 
targets.

8. Discussion

It has been possible to recreate the unusual shape of the ATTMA data distribution (Figure 1) using a 

simple model which learns its parameters from the dataset. The model consisted of a lognormal 
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background distribution and a set of exponential intervention distributions at five design targets 

located by the model. Figure 5 demonstrated that this model can recreate the main structure 

observed in the data, using 10 parameters. 

The model recreates the sharp increase up to each main design target observed in the data, which is 

believed to be caused by post-construction sealing interventions. However, the model does not 

differentiate between types of intervention, nor the extent to which different types are permitted 

under the ATTMA protocol. It is likely that both types of intervention cycle shown in Figure 2 are 

present: the tight feedback cycle described by in-test checks and sealing, and the loose feedback 

cycle described by testing, remedial measures and re-testing, but we cannot determine what 

proportions. 

8.1 Appropriate interpretation of model predictions

Before discussing the findings, it is important to highlight that these results are associated with one 

particular conceptual model of the airtightness testing process through one mathematical 

representation. Although different versions of the model were compared to select the one with the 

highest probability given the data, this does not render the chosen model ‘valid’. Instead, we 

observe from Figure 5 that the chosen model provides a very good fit to the data using only 10 

parameters, and therefore that the theory of interventions (possibly in-test) occurring before tests 

are reported is consistent with the data. However, the conceptual model in Figure 2 is a highly 

simplified description of the real testing process and does not capture other mechanisms likely to be 

present in the dataset, such as secondary sealing occurring after construction but before any 

airtightness testing is carried out. As such, the results are likely to be a conservative estimate of the 

number of dwellings undergoing secondary sealing. 

With these important caveats noted, the results are now discussed.
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8.2 Discussion of findings

Application of the model predicted that dwellings in the ATTMA dataset were constructed with a 

lognormal distribution with a modal air permeability of 4.38  0.01 m3/m2h, and that 39% of the ±

dwellings aiming for the five targets modelled had undergone some form of sealing intervention 

after an initial airtightness test.  We did not estimate the proportion undergoing secondary sealing 

before any testing took place.

Considering first the distribution of airtightness before post-build interventions, the background 

distribution predicted from the ATTMA dataset may be compared to its equivalent before the 

introduction of mandatory testing in 2006. Results suggest that the modal air permeability in the UK 

has decreased by around 3.6 m3/m2h over the past 10 years and the distribution has narrowed by 

approximately 45%. This suggests that the combination of compulsory testing, design targets and 

the maximum regulatory air permeability limit of 10 m3/m2h have had a positive impact on 

airtightness performance. 

Previous work has raised concerns about the longevity of post-construction sealing measures 

((Leprince et al., 2017)Love et al., 2017).The current analysis cannot directly determine the likely 

future deterioration rate of remedial measures, but the widespread extent of post-construction 

sealing predicted by the model, together with the uncertainty about the long-term performance of 

such measures, presents a concern for the durability of the airtightness of the new dwelling stock. 

It is expected that construction practices which ensure the effectiveness of the primary air barrier 

during construction are preferable to attempting to meet the airtightness target through post-

construction sealing. Quality assurance within the construction process is therefore central to this 

performance.  It is typical in manufacturing quality control and process improvement methodologies 

to ensure that the majority of the distribution of a measured parameter is well within any defined 

upper or lower performance specification limits. For example, in the Six Sigma process methodology, 

the ultimate objective is to achieve a process where the mean of a normally distributed process 
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dataset is at least six standard deviations from any specification limit (Tennant, 2001, Coleman, 

2008).  A good example of the effective use of statistical methods in the UK construction industry is 

the use of random testing and statistical process control charts by Robust Details to monitor trends 

in the measured field performance of the different acoustic construction details in the Robust 

Details catalogue ((Wingfield et al., 2011), (Smith et al., 2006)). 

If, as the model suggests, 39% of dwellings currently do not attain their targets upon construction, 

the QA processes of the industry are well below other sectors such as manufacturing. If a failure rate 

of under 10% were required, it was estimated in this analysis that the required background 

distribution mode would be 2.8 m3/m2h. Whilst this result provides a statistical estimate for 

illustrative purposes, it does not account for any significant changes to process in the construction of 

the primary air barrier (Johnston and Lowe, 2006) that could significantly change the shape of the 

distribution. 

The analysis presented in this article indicates that the distribution of as-built air permeability for 

dwellings in the UK has improved, but that there is further progress to be made to ensure that most 

dwellings meet their airtightness targets on completion. To improve the as-built airtightness of the 

stock, and minimise the need for post-construction interventions, which are potentially only 

effective in the short term, it is suggested that testing and interventions are carried out throughout 

the production process rather than only measuring the dwelling at the point of completion. This pre-

testing approach is normal for dwellings built to the Passivhaus standard, which recommends testing 

at three points in the building process: after construction of the primary air barrier, after main 

construction but before fitting out, and after fitting out (McLeod et al., 2014). This approach is 

however not common in mainstream house building in the UK. 

9. Conclusion

This article investigated the premise that a proportion of the dwellings with test results recorded in 

the UK’s largest dataset of airtightness test results, ATTMA, have already undergone post-
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construction sealing interventions to enable them to meet their design targets. The distribution of 

test data and a model of the testing process were used to infer the as-built air permeability of 

dwellings and the proportion not meeting their target in this state. 

The analysis estimated the mode of the background distribution, representing the as-built 

airtightness of the new build stock, as 4.38  0.01 m3/m2h. It was found that this distribution  ±

closely corresponds to a scaled transformation of an equivalent distribution obtained from data 

before design targets and compulsory testing were introduced. The improvement in air permeability 

between the EST data, recorded in 2004, and the ATTMA data, recorded in 2015/16 is a decrease of 

45% in both mode and width, indicating more tightly controlled construction processes. However, it 

is estimated that 39% of properties initially fail tests and are subsequently sealed to close the 

performance gap. This high failure rate may be better addressed through better quality control 

during the construction process, including airtightness testing, to avoid the significant use of 

secondary sealing measures, such as caulk, which may be less robust than measures applied to the 

primary air barrier during construction. If the simple scaling of the airtightness distribution observed 

between the two datasets analysed here continues to hold, a mode of 2.8 m3/m2h would be 

required to achieve 90% of dwellings with air permeability under 5 m3/m2h on completion. 

The statistical error on the quantitative results of this study is very low and the model was shown to 

perform better than a set of alternatives, but it is still a highly simplified representation of reality. 

The total uncertainty introduced by using this model to capture a complex and perhaps even 

unknown set of real world processes is unquantified. More comprehensive metadata and more 

reliable recording of data would allow a more sophisticated model to take other factors into 

account. These factors would include a better understanding of the theoretical form of the 

background distribution and whether it varies with different constructions, clearer understanding of 

the actual process involved when a dwelling fails a test and improved knowledge of how learning 

and experience from previous construction might influence the building process of subsequent 
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dwellings. Airtightness performance in the UK is improving and it is important that this trajectory 

continues. 
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