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Introduction  

 

Medicinal plants have been grown and used since ancient times. Despite the growth of the synthetic 

medicine production, there is a growing demand for herbal remedies for the world market. Currently, at 

least 25% of medicines used in the world are derived from plants and many synthetic analogues are built 

on prototype compounds isolated from plants. Approximately two-thirds of new drugs in the past 25 years 

have originated from the discovery of particular secondary metabolites derived from natural 

biodiversity.[1] Historically, screening of natural materials for biological activity has worked well, but until 

recently, fewer than 15% of higher plant species have been examined for bioactivity.[2] There can be no 

doubt that observational knowledge about the effect of a plant on other organisms offers ideal 

opportunities to limit the huge diversity of possible leads to more promising ones (knowledge-based drug 

discovery).[3] Identification of plants with pharmacological activity can be successfully based on 

information gained through knowledge on their traditional use.[4] This is particularly true for biodiversity-

rich regions of the world such as the Caucasus. The Caucasus hotspot is home to about 6.400 plant species 

(including a great number of medicinal, aromatic and spice plants), more than 1.600 of which (25 percent) 

are restricted to the region. Armenia is a small mountainous country on the Armenian Plateau in the South 

of the Caucasus between the Black and Caspian Seas. Vavilov identified Armenia as one of the centers of 

biodiversity for wild relatives of cultivated plants and as one of the world minor centers of origin of 

cultivated plants.[5] The flora of Armenia includes about 3.500 species, a great number being medicinal 

and nutraceutical plants. Theoretically, about 800 species of Armenian flora can be used as medicinal and 

nutraceutical plants.[6] Although the species diversity of useful plants in Armenia has been investigated 

rather well, the metabolic profiles and biological activities of important species are not adequately 

investigated.[7] Until now, there is no complete information on bioactive compounds and pharmacological 

potential of endemic, rare and valuable medicinal and nutraceutical plants of Caucasus in spite of their 

long-time traditional (ethnobotanical) uses.[8–10] As far as the authors are aware, there is no work 

carried out on cytotoxic activities of selected Caucasian endemic plant species, while antioxidant 

properties and some bioactive compounds of a few species are only generally described in available 

literature. 

The aim of this research is to study the pharmaceutical potential (antioxidant and cytotoxic / pro-

apoptotic activities) and biologically active compounds (terpenoids and polyphenols) of selected 

https://pubs.acs.org/doi/abs/10.1021/np980028c


 3

Caucasian endemic medicinal and nutraceutical plants. Antioxidant effects were assessed using two 

different assays: ABTS-system, and lipid-peroxidation. In addition total phenolic content was determined 

by the Folin-Ciocalteau method. Cytotoxicity tests were carried out using human liver cancer (HepG2) 

cells. Terpenoids of selected species were extracted and analyzed by GC and GC-MS, and polyphenols 

were extracted and separated by HPLC. 

 

Materials and methods 

 

Selected species    

  

The following medicinal and nutraceutical plants were chosen as research objects having large application 

in traditional medicine of regional communities in Caucasus:[11–17]  

Armenian knapweed (Centaurea hajastana Tzvel.) – Asteraceae; Armenian hawthorn (Crataegus 

armena Pojark.) – Rosaceae; Transcaucasian Hogweed (Heracleum transcaucasicum Manden.) – 

Apiaceae; Armenian St John's-wort (Hypericum eleonorae Jelen.) – Clusiaceae; Armenian blackcurrant 

(Ribes armenum Pojark.) – Grossulariaceae; Transcaucasian rose (Rosa sosnovskyana Tam.) – Rosaceae; 

Armenian raspberry (Rubus takhtadjanii Mulk.) – Rosaceae; Armenian rowan (Sorbus hajastana 

Gabrieljan) – Rosaceae; Transcaucasian thyme (Thymus transcaucasicus Ronn.) – Lamiaceae. 

 

The selection criteria for these endemic plants are based on their long-time local (ethnobotanical) uses 

in combination with the local biodiversity issues. Voucher specimens are deposited at the Herbarium of 

the Institute of Botany of National Academy of Sciences of Armenia. 

 

Plant collection  

 

Fresh medicinal plant materials (herbal material, shoots, flowers and fruits) from different ecological 

provenances in Armenia grown under natural soil conditions were collected (Table 1). The plants were 

gathered during July-September 2015. The fresh medicinal material was dried at 35 oC for 5-7 days. The 

plants were identified by comparison with the plant specimens at the Herbarium of the Institute of Botany 

of National Academy of Sciences of Armenia. The collection of samples is fully compliant with the 

international rules on the sustainable use of biodiversity and was performed in cooperation with the 

Institute of Botany of National Academy of Sciences of Armenia. According to the Armenian national 

CBD rules, the Institute of Botany of National Academy of Sciences, as state non-profit research 

organization, has full rights to collect and use the endemic plants for research purposes. 

https://en.wikipedia.org/wiki/Asteraceae
http://en.wikipedia.org/wiki/Apiaceae
http://en.wikipedia.org/wiki/Clusiaceae
https://en.wikipedia.org/wiki/Lamiaceae
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Measurement of antioxidant activities and lipid-peroxidation 
 

The ABTS-system was used to evaluate the antioxidative capacity of essential oils and polyphenol-rich 

extracts of selected species.[18,19] In this system, myoglobin (Sigma) and H2O2 (Merck) oxidise ABTS 

(Merck) to the green ABTS•+ radical cation. 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical 

cation (ABTS•+) is a stable chromophore which absorbs strongly at 734 nm. This reaction can be 

followed photometrically. The lower rate of ABTS•+ formation indicates reducing or Fe-chelating 

properties of the extract. Prior to use, the ABTS•+ working solutions for essential oil (1:20) and 

polyphenols (1:5) were prepared by diluting the stock solution with EtOH (Merck).  

The influence of bioactive substances on lipid peroxidation in human blood plasma was analyzed 

according to Schnitzer et al.[20] and Atkin et al.[21]. The analyses were performed with 3-4 replications.  

 

Measurement of cytotoxic / pro-apoptotic activities 

 

One gram of powdered dry plant material was kept in 50 mL conical flask and added 10 mL of solvent 

(80% ethanol). This extract was used for two reasons: (1) to obtain one extract covering a broader 

lipophilicity range of chemical constituents; (2) to use an extraction protocol analogous to decoction 

preparations employed by traditional healers or the general public. Plant materials were extracted in a 

shaking incubator (Grant OLS 200, UK) at 40oC for 4 hr. The residue was re-extracted under the same 

condition three times. Then, extracts were filtered by using Millex (Merck KGaA, Germany) sterile 

syringe filter (0.22 µm). The solvent from the extract was removed by using rotary vacuum evaporator 

(BÜCHI, Switzerland) with the water bath temperature of 40°C. Finally, all freeze dried extracts were 

then kept in glass bottles in a freezer (−20 oC) until used for the pharmacological testing. Thereafter, the 

extracts were redissolved in 100% DMSO (Sigma-Aldrich) at a concentration of 50mg/ml and stored in 

amber glass bottles for bioassays. 

HepG2, human hepatocellular carcinoma cell line was purchased from Sigma-Aldrich (ACC No 

85011430, Lot 11C013). The cells were maintained in Minimum Essential Medium Alpha + Glutamax 

(MEM) (Gibco) supplemented by 10% Foetal Bovine Serum (FBS) (Gibco) and 1% Penicillin-

Streptomycin (10,000 U/mL) (Gibco) in TPP 75 cm3 cell culture flasks at 37oC in 5% CO2/ 95% air. The 

fresh medium was replaced every two days. The cells were sub-cultured when they reached about 70-80% 

confluent. Cytotoxic activities were examined against human liver cancer HepG2 cells using Alamar Blue 

assay (AB). The assay was performed according to the company (AbD Serotec) instruction with some 

modifications. The cells were seeded at the density of 5,000 cells per well in 96-well black microplates 
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(Greiner Bio-One) and allowed to attach for 24 hours. The extracts (6.25 – 200 µg/ml), epigallocatechin 

gallate (EGCG) (Sigma-Aldrich) as positive control (0.1 – 10 µM), and control were then added.[22] After 

48 hours of extracts treatment, the medium was replaced with 100 µl of diluted AB solution (1:10 in 

complete medium) and the plates were incubated for 2 hours at 37oC. Then the fluorescence intensity (FI) 

was measured at 560 nm excitation and 590 nm emission by using a microtiter plate reader (Infinite 

M200, Tecan). The %cell viability was calculated as follows:  

 

 

This assay was carried out using three independent assays performed in triplicate. The average of 

%Viability and S.D. were calculated using Microsoft Excel 2016 and IC50 was calculated using GraphPad 

Prism 7 software (GraphPad Software, Inc.). 

 

Analysis of bioactive compounds  

 

Essential oils 

 

Essential oils from dry plant materials of selected species were extracted by steam distillation and pentane 

(Carl Roth) extraction for 1 h (SDE). The extracts were dried over sodium sulfate (Merck) and 

concentrated under a stream of nitrogen. The amount of essential oil was determined gravimetrically. The 

composition of the essential oil was analyzed by GC and GC-MS. The oil was diluted in acetone (Carl 

Roth) (split 1:40) with separation of the compounds by GC (Fisons Instruments Mega 5360, Italy) on a 

Supelco-Wax capillary column (60 m, i.d. = 0.32 mm, 0.25 m film thickness) with helium as carrier gas 

(0.8 ml/min) and a temperature program: 50 °C (3 min), 10 °C/min, 120 °C (2 min), 2 °C/min, 155 °C (0 

min), 8 °C/min, 240 °C. Identification of essential oil main compounds was performed with a GC-MS 

system (HP 5890 Series II/HP 5971 A) on the same column and with the same temperature program by 

electron impact ionization at 70 eV. Mass spectra were evaluated by comparison of retention times and 

mass spectra[23] and with an own terpenoid mass spectra database. 

 

Polyphenols 

 

Polyphenols were extracted from 0.4 g dry material (powder) with 80% MeOH (Carl Roth) followed by 

ethylacetate and separated by HPLC. Extracted polyphenols were resolved in 500 µl CH3CN (Merck) and 
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500 µl EtOH (Merck), injection volume was 100µl. The analytical HPLC was carried out on a dionex 

system (pump P580, autosampler Gina 50) using a 250 mm x 4,6 mm RP-18 column (phenomenex Hydro-

RP) with guard column. A gradient sequence using (A) water, acetonitrile and acetic acid (Merck) 

(97:2:1) and (B) acetonitrile in the following proportions: 0 % B (0min), 50 % B (5min), 95 % B (10min), 

0 % B (14min) at a flow rate of 1 ml/min. Detection and quantification were performed using a Diode 

Array detector (Dionex UVD 340S) and chromeleon (Dionex) software. Folin-Ciocalteu-test (Merck) 

applied to determinate the total content of polyphenolics in plant material.[24]   

 

Statistical analysis  

 

GraphPad Prism 8 software (GraphPad Software, Inc., San Diego, CA) was used for statistical 

analysis. Data were subjected to the Kruskal-Wallis test followed by Dunn's multiple comparison 

test. A value of P<0.05 was considered statistically significant.  The average of %Viability and S.D. 

were calculated using Microsoft Excel 2016. All the experiments were conducted in triplicates.  

 

Results  

 

Antioxidant activity and lipid-peroxidation of plant extracts 

 

The highest antioxidant activities by ABTS model system were found in Thymus transcaucasicus, 

Heracleum transcaucasicum, Ribes armenum and Crataegus armena followed by Centaurea hajastana 

and Hypericum eleonorae. We found also that all endemic species studied showed comparatively strong 

inhibition and overall enhanced antioxidative capacity in the ABTS system (Figure 1).  

On the other hand, Rubus takhtadjanii, Crataegus armena and Thymus transcaucasicus showed the 

most potent inhibition of lipid-peroxidation, followed by Rosa sosnovskyana and Hypericum eleonorae 

(Figure 2). 

 

Cytotoxicity of plant extracts 

  

During the pre-screening for cytotoxic / pro-apoptotic effects, four plant extracts exhibited interesting 

activity by inhibiting the cell proliferation for more than 50% at 200µg/ml. Crataegus armena showed the 

strongest effect followed by Thymus transcaucasicus, Rubus takhtadjanii and Centaurea hajastana 
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(Figure 3). Therefore, these four species were selected for further studies on the cytotoxic / pro-apoptotic 

activity as a basis for potential anticancer effects. 

Crataegus armena strongly inhibited the cell proliferation with IC50 of 8.66 µg/ml. Thymus 

transcaucasicus moderately inhibited the cell proliferation with IC50 of 44.25 µg/ml, while Rubus 

takhtadjanii and Centaurea hajastana exhibited weak cytotoxicity with IC50 of 158.43 and 164.44 µg/ml, 

respectively. For example, at the concentration of 25 µg/ml the ethanolic extracts of C. armena expressed 

the highest cytotoxicity followed by extracts of T. transcaucasicus, R. takhtadjanii and C. hajastana 

(Table 2).   

 

Bioactive compounds of selected species 

 

The content of essential oils and polyphenols of selected species (Centaurea hajastana, Crataegus armena 

and Thymus transcaucasicus) was analysed. The Folin-Ciocalteu expressed as gallic acid equivalents 

showed remarkably high amounts of phenolics in C. armena followed by C. hajastana and T. 

transcaucasicus, while the results showed that the highest content of essential oils were provided by T. 

transcaucasicus and C. hajastana (Table 3).  

 
Centaurea hajastana 

 

It was found the main constituents of C. hajastana essential oil were β-eudesmol (24.65 %), -

caryophyllene (19.12 %), d-germacrene (17.33 %), caryophyllene oxide (10.12 %) and γ-elemenel (9.13 

%). 17 compounds representing about 92 % of the total oil were identified (Table 4). Flavonoid aglycones, 

such as kaempferol, quercetin, isorhamnetin, apigenin, and caffeic, chlorogenic, neochlorogenic, 

protocatechuic, ferulic, chicoric acids, as well as other polyphenols have been isolated from the C. 

hajastana (Table 5).  

 

Crataegus armena 

 

The main components of C. armena essential oil are butyraldehyde (15.21 %), hexanol (14.38 %), 

benzaldehyde (13.86 %), capronaldehyde (8.14 %), -myrcene (4.75 %) and -caryophyllene (3.38 %). 17 

volatile compounds representing about 72 % of the total essential oil were identified (Table 6). 

Polyphenolics of C. armena mainly consisted of kaempferol, apigenin, quercitrin, isovanillic acid, 

hyperoside, ursolic acid and arbutin (Table 7).  
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Thymus transcaucasicus  

 

T. transcaucasicus essential oil consisted mainly of borneol (19.70 %), -terpineol (17.37 %), thymol 

(11.18 %) carvacrol (10.05 %), linalool (9.34 %), geraniol (8.93 %), 1,8-cineole (7.10 %) and geranyl 

acetate (4.57%). 22 compounds representing about 99 % of the total oil were identified (Table 8). We 

found that polyphenolics of Thymus transcaucasicus mainly consisted of phenolic acids and the major 

compound was rosmarinic acid. At the same, we identified considerable amounts of other polyphenols, 

such as quercetin, caffeic acid and cryptochlorogenic acid (Table 9).  

 

Discussion 

 

The region of Caucasus remains unexplored in terms of bioactive compounds and pharmacological 

potential of many endemic, rare and valuable medicinal and nutraceutical plants in spite of their long-time 

traditional uses. This study confirms the antioxidant and antiproliferative capacity of some studied 

Caucasian endemic medicinal and nutraceutical plants, most importantly Crataegus armena and Thymus 

transcaucasicus. Correlation of metabolite profiles with biological activities showed the nature of 

biologically active compounds of medical interest.   

The antioxidant properties of Crataegus armena, Ribes armenum, Rosa sosnovskyana, Rubus 

takhtadjanii and Sorbus hajastana have not been reported before, while antioxidant activities of other 

species of Crataegus, Ribes, Rosa, Rubus and Sorbus genera have been well documented. A significant in 

vitro antioxidant potential of different extracts and essential oil of Thymus transcaucasicus, Centaurea 

hajastana and Hypericum eleonorae was already reported by Manukyan[7] and Bektas et al.[25], while 

antioxidant activity of essential oil of Heracleum transcaucasicum was described by Torbati et al. [26] 

Although in the last years the pharmacological relevance of antioxidant assays of plant extracts is under 

controversial discussion, the antiproliferative activities of medicinal plants are increasingly in the focus as 

potential source of new anticancer drugs from natural sources. 

Cytotoxic activities of Crataegus armena, Thymus transcaucasicus, Rubus takhtadjanii and Centaurea 

hajastana have not yet been reported previously. Cytotoxicity of other species from Crataegus, Thymus, 

Rubus and Centaurea genera have been reported elsewhere. In particular, two Crataegus species – C. 

pinnatifida Bunge [27-29] and C. cuneata Sieb et. Zucc.[30] showed cytotoxicity against human cancer cells.  

https://pubs.acs.org/doi/abs/10.1021/np980028c
https://www.thesaurus.com/browse/described
https://pubs.acs.org/doi/abs/10.1021/np980028c
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The essential oils of Thymus caespititius Brot., Thymus mastichina L., Thymus pulegioides L. and 

Thymus villosus subsp. lusitanicus (Boiss.) Cout. showed antiproliferative activity by preventing the 

growth of THP-1 leukemia cells, [31] while Thymus munbyanus subsp. coloratus (Boiss. & Reut.) Greuter 

& Burdet showed noteworthy cytotoxicity on A-375 human melanoma cells[32]. The essential oil of T. 

alternans Klokov exhibited significant antiproliferative effects on melanoma (A375), breast (MDA-MB 

231), colon (HCT116) cell lines.[33] The antiproliferative activity of T. vulgaris L. essential oil as well as 

thymol and carvacrol against THP-1 cells was reported by Aazza et al. [34] The essential oil of T. vulgaris 

inhibits head and neck squamous cell carcinoma (HNSCC) cell growth.[35] T. parnassicus Halácsy was 

found to have cytotoxic activities against Caco2, HepG2 and MCF7 cell lines.[36] In this study, we found 

similar activities against HepG2 cells in case of T. transcaucasicus. Furthermore, essential oils from 

different Thymus species induced cell death in both human epitheloid cervix carcinoma and histiocytic 

leukemia cell lines. [37]  

A number of Rubus species showed cytotoxic activities. For example, the fruits of R. chingii Hu 

showed cytotoxic activity against HepG2, Bel-7402, A549 and MCF7 human cancer cell lines, [38,39] while 

R. idaeus L. revealed higher cytotoxic activity towards the human leukemia cell lines: J45 and HL60.[40,41] 

In the current study, R. takhtadjanii, like R. chingii, showed similar cytotoxic activity against HepG2 cell 

lines. Ellagitannins from R. idaeus were found to be active against human colon adenocarcinoma cell line 

Caco2.[42] It was also found that colon adenocarcinoma (SW 480) cells are more susceptible to R. idaeus 

leaf extract in comparison with human laryngeal carcinoma (HEp2) cells.[43] Phenolics from R. 

fairholmianus Gardner induces cytotoxicity and apoptosis in human breast adenocarcinoma (MCF7) 

cells.[44] R. fairholmianus inhibits human melanoma (A375) and lung cancer (A549) cells.[42] and induced 

toxic effects in human colorectal cancer (Caco2) cells.[43] R. ellipticus Sm. extracts showed potent 

antiproliferative activity against human cervical cancer (C33A) cells.[43] R. phoenicolasius Maxim. was 

found to be active against MCF7 and NCI-H460 tumour cell lines.[44] R. rosaefolius Sm. showed selective 

activity against the multidrug-resistant ovary cancer cell (NCI-ADR/RES) line,[45] while R. parvifolius L. 

was found to be active against leukemia K562 cells.[46]  

Different Centaurea species showed cytotoxic activities against diverse types of cancer cells. It was 

reported that C. schischkinii Tzvelev exhibited promising in vitro cytotoxic activity against CaCo2 colon 

cancer cell lines.[47] Sesquiterpene lactones isolated from the aerial parts of C. zuccariniana DC. und C. 

Achaia Boiss. & Heldr. exhibited growth inhibiting effect against a number of human cell lines (i. e., 

DLD1, SF268, MCF7, H460 and OVCAR3).[48] Cytotoxic activity of C. calolepis Boiss. was observed 

toward pig kidney epithelial (LLC-PK11), human malignant melanoma (SK-MEL) and human ductal 

carcinoma (BT-549) cells.[49] C. africana Lam. showed cytotoxicity against the human myeloid leukaemia 

cell line HL-60,[50] while C. bruguierana subsp. belangeriana (DC.) Bornm. demonstrated significant 
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cytotoxicity against colon adenocarcinoma and breast ductal carcinoma cell lines.[51] C. aegyptiaca L. 

demonstrated outstanding results against HepG2, MCF7, HCT-116 and HELA cell lines,[52] as well as 

against Hep-2 cell line.[53] In case of HepG2 cell lines we found weak cytotoxic activity of C. hajastana in 

our study as well. C. nerimaniae Kültür had a significant antiproliferative effect on HeLa and MDA-MB-

231 cells.[58] C. albonitens Turrill showed potential cytotoxic effects in NALM-6, REH, NB4 and KMM-1 

cell lines[59] and C. scoparia Sieber ex Spreng. demonstrated strong cytotoxicity against HeLa cells.[60] C. 

ragusina L. showed significant cytotoxic activity against human bladder (T24) and human glioblastoma 

(A1235) cancer cell lines.[61] It was found that C. drabifolia subsp. detonsa (Bornm.) Wagenitz showed a 

potent activity against two cancer cell lines, namely acute lymphoblastic leukemia (CCRF-CEM) and its 

multidrug-resistant subline CEM/ADR5000.[62] It is shown that C. solstitialis L. ssp. solstitialis exhibited 

very high antiproliferative activity on C6 and HeLa cells.[63] C. kilaea Boiss. showed fairly strong activity 

against MCF7 and PC-3 human cancer cell lines,[64] while C. arenaria M.Bieb. ex Willd. demonstrated 

antitumour effects against HeLa, MCF7 and A431 cell lines[65] and C. deflexa Wagenitz showed 

antiproliferative activity against human pancreatic and colonic cancer cells.[66] 

The results on bioactive compounds in this study are in good accordance to previous investigation with 

C. hajastana,[7] although in our study we have recorded some significant variations in percentage of 

terpenes and polyphenols in this Caucasian endemic medicinal plant. The composition of essential oil and 

polyphenols of C. armena have not yet been reported, so we could not find any literature that is relevant to 

our results. Our results on T. transcaucasicus are also mainly in line with the findings reported by 

Manukyan,[7] although the composition of terpenes in T. transcaucasicus varies. Kutzner et al.[54] found 

that one year old full blooming plant of T. transcaucasicus from controlled greenhouse soilless culture 

was predominantly (more than 90% in the overall intensity of all detected peaks) composed of 

monoterpenes including thymol, γ-terpinene, α-pinene, 1,8-cineol and borneol. Sesquiterpenes were only 

detected at minor amounts, e.g. caryophyllene, germacrene D, α-bisabolene and β-ocimene. In another 

study, researchers found that thymol was the only dominant component in T. transcaucasicus.[25] 

Ezzatzadeh et al.[55] reported that the main volatile constituents from leaf, flower, stem and root of T. 

transcaucasicus were thymol, α-terpineol, geraniol, p-cymene, carvacrol, pentacosane and 1.8-cineole.  

Although in our study we used the whole extracts of medicinal plant materials, correlation of 

metabolite profiles with biological activities showed the nature of biologically active compounds of 

medical interest. In this respect, terpenes and polyphenols as bioactive compounds are in particular 

interest as potential antioxidant and cytotoxic agents. From nine plant species only Crataegus 

armena and Thymus transcaucasicus showed comparatively strong antioxidant, as well as high to 

moderate cytotoxic activities. Some of identified main terpenes and polyphenols, such as -

caryophyllene,[56] kaempferol,[57] quercitrin,[57] apigenin,[58] hyperoside,[59] and ursolic acid[60] in C. 
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armena and borneol,[61] carvacrol,[62] thymol,[62-63]  linalool,[64] geraniol,[65] 1,8-cineole,[66] rosmarinic 

acid,[67] quercetin[57] and caffeic acid[68] in T. transcaucasicus were found to have antioxidant and 

cytotoxic activities. It should also be mentioned that borneol, linalool and rosmarinic acid, like plant 

extracts of C. armena and T. transcaucasicus in this study, showed similar cytotoxic activity against 

HepG2 cell lines. It can be hypothesized that these bioactive constitutions are some of the major 

compounds responsible for antioxidant and cytotoxic activities in our medicinal plant mixtures. At 

the same time, synergistic effects of different bioactive compounds could be a significant factor 

related to bioactivities.  

 

Conclusion 

 

Ethnopharmacological knowledge is beneficial in guiding which plants may have potentials to yield 

antioxidant and/or anticancer products. Based on this study, Thymus transcaucasicus, Heracleum 

transcaucasicum, Ribes armenum, Rubus takhtadjani and Crataegus armena could be developed further 

based on their strong in vitro antioxidant effects, while Crataegus armena and Thymus transcaucasicus 

might yield novel natural compounds with anticancer effects. This study also suggests that the plant 

extracts might yield valuable adjuncts for use in standard chemotherapy. The study also showcases the 

tremendous phytochemical potential of the Armenian flora. However, further detailed phytochemical, 

pharmacological and in vivo studies should be the next step in the identification of other active compounds 

of the lead plants, +particularly Crataegus armena, Thymus transcaucasicus and Heracleum 

transcaucasicum, which are currently ongoing. 
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Table 1 Collection sites of selected Caucasian endemic medicinal and nutraceutical species and 

percentage yield of ethanol solvent (values represent means ± S.D., n=3) 

Species (plant material) Locality  

(province in Armenia) 

Yield of ethanolic extracts  

(g/100 g of dry weight) 

Centaurea hajastana (flowers) Shirak 6.89 ± 0.15 

Crataegus armena (fruits)  Syunik 9.22 ± 0.22 

Heracleum transcaucasicum (shoots) Vayots Dzor            11.41 ± 0.34 

Hypericum eleonorae (herbal material) Tavush 1.99 ± 0.05 

Ribes armenum (fruits) Vayots Dzor 4.82 ± 0.13 

Rosa sosnovskyana (fruits) Kotayk 5.89 ± 0.14 

Rubus takhtadjanii (fruits) Syunik 2.77 ± 0.07 

Sorbus hajastana (fruits) Yerevan 9.89 ± 0.32 

Thymus transcaucasicus (herbal material) Kotayk 3.58 ± 0.12 
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Table 2 Cytotoxic activities of ethanolic extracts of Caucasian endemic medicinal and nutraceutical 

species in the Alamar Blue assay (values represent means ± S.D., n=3) 

Species  HepG2 cells 

IC50 (µg/ml)  (% viability at 25 µg/ml) 

Centaurea hajastana  164.44 ± 2.15* 95.68 ± 0.98* 

Crataegus armena      8.66 ± 0.87* 21.25 ± 0.42* 

Rubus takhtadjanii 158.43 ± 1.09* 66.98 ± 0.7* 

Thymus transcaucasicus   44.25 ± 1.14* 57.04 ± 0.55* 

   * P<0.0001 
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Table 3 The content of essential oils and polyphenols of selected Caucasian endemic medicinal and 

nutraceutical plants (values represent means ± S.D., n=3) 

Species  Essential oils 

(% / dry weight) 

Polyphenols 

(mg gallic acid equivalent / g dry weight) 

Centaurea hajastana  0.46 ± 0.01 54.9 ± 1.64 

Crataegus armena  0.04 ± 0.001 93.8 ± 2.85 

Thymus transcaucasicus 0.55 ± 0.02 29.7 ± 0.64 
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Table 4 Chemical composition of Centaurea hajastana essential oil 

Constituents* 
 

Retention Time  
(min) 

Content in essential oil, % 

1-octen-3-ol 9.41 1.53** 

δ-elemene 11.11 0.62 

-copaene 11.67 0.75 

β-elemene 18.64 1.18 

-caryophyllene  21.68 19.12 

γ-elemene 24.20 9.13 

aromadendrene 24.30 1.02 

α-humulene 27.52 0.72 

β-farnesene 28.69 0.45 

d-germacrene 30.60 17.33 

β-selinene 32.37 0.24 

γ-cadinene 32.50 0.18 

β-eudesmol 36.99 24.65 

δ-cadinene  39.74 1.69 

α-cadinene 40.05 1.12 

b-germacrene 40.62 1.67 

caryophyllene oxide 
 

Total  
 

40.97 10.12 

91.52% 

* Only identified compounds are presented 
**Data are expressed as the mean ± S.D., n=3 
 
 
 
 

 



 22 

 

 

 
 

 
 
 
 
Table 5 Polyphenolic composition of Centaurea hajastana 

Compound* 
 

Retention Time  
(min) 

Crude extract 
peak area (%) 

 

Concentration  
(mg/g dried product) 

caffeoyl hexoside 1.63   1.18** 0.67 ± 0.02 

quinic acid        3.64 1.32 0.82 ± 0.02 

chlorogenic acid                12.51 21.82 15.16 ± 0.3 

protocatechuic acid  21.64 4.95 3.12 ± 0.06 

ferulic acid                 21.88 2.06 1.31 ± 0.03 

chicoric acid  41.65 3.46 2.42 ± 0.05 

isorhamnetin 44.26 7.46 5.12 ± 0.1 

kaempferol   44.59 5.69 4.26 ± 0.08 

quercetin 45.87 6.28 4.84 ± 0.8 

apigenin 48.24 2.41 1.82 ± 0.03 

apigenin C-glucoside 48.63 2.74 2.14 ± 0.04 

patuletin 49.33 2.98 2.42 ± 0.05 

isorhamnetin 3-O-hexoside     49.56  5.94 4.65 ± 0.08 

quercetin hexoside 49.89  5.82 4.57 ± 0.08 

* Only identified compounds are presented 
**Data are expressed as the mean ± S.D., n=3 
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Table 6 Chemical composition of Crataegus armena essential oil 

Constituents* 
 

Retention Time  
(min) 

Content in essential oil, % 

butyraldehyde 2.32 15.21** 

valeraldehyde 8.66 2.56 

capronaldehyde 9.52 8.14 

hexanol 10.31 14.38 

-pinene 10.56 2.82 

benzaldehyde 10.78 13.86 

-myrcene 10.94 4.75 

-terpinene 11.32 0.52  

cymene 11.46 0.28 

limonene 11.59 0.69 

1,8-cineole 11.97 0.32 

γ-terpinene 13.65 2.19 

-terpinolene 20.82 0.18 

-bourbonene 24.18 0.84 

-caryophyllene 27.34 3.38 

α-humulene 27.81 0.74 

-farnesene 28.89 1.38 

Total  72.24% 

* Only identified compounds are presented 
**Data are expressed as the mean ± S.D., n=3 
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Table 7 Polyphenolic composition of Crataegus armena 

Compound* 

 

Retention Time  

(min) 

Crude extract 

peak area (%) 

Concentration  

(mg/g dried product) 

ursolic acid 2.69   4.09** 1.12 ± 0.02 

arbutin 3.36 3.92 1.03 ± 0.02 

gentisic acid 6.54 0.15 0.04 ± 0.001 

chlorogenic acid 7.04 1.06 0.29 ± 0.006 

isovanillic acid 8.22 7.09 1.94 ± 0.04 

vitexin 11.05 1.39 0.38 ± 0.006 

hesperidin 17.33 0.29 0.08 ± 0.002 

isovitexin 17.67 1.55 0.42 ± 0.008 

hyperoside 18.55 4.97 1.36 ± 0.02 

isoorientin 20.45 0.81 0.22 ± 0.004 

myricetin 31.89 0.23 0.06 ± 0.001 

rutin 41.56 1.02 0.28 ± 0.004 

apigenin-7-O-glucoside 47.08 0.22 0.05 ± 0.001 

hesperetin 48.19 0.16 0.04 ± 0.001 

kaempferol   53.23 33.45 9.15 ± 0.2 

quercetin 58.29 0.41 0.11 ± 0.002 

quercitrin 63.36 8.18 2.21 ± 0.04 

apigenin 76.63 23.32 6.53 ± 0.01 

* Only identified compounds are presented 
**Data are expressed as the mean ± S.D., n=3 
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Table 8 Chemical composition of Thymus transcaucasicus essential oil 

Constituents* 
 

Retention Time  
(min) 

Content in essential oil, % 

-pinene 6.76 1.82** 

sabinene 6.84 0.54 

-myrcene 9.42 1.15 

-terpinene 10.33 0.88 

limonene 11.67 0.92 

1,8-cineole 13.03 7.10 

γ-terpinene 15.70 0.06 

p-cymene 16.73 1.14 

-terpinolene 20.61 0.15 

linalool 24.30 9.34 

linalyl acetate 26.69 0.34 

bornyl acetate 26.9-1 0.10 

-caryophyllene 28.46 0.02 

pulegone  29.03 1.60 

-terpineol 36.99 17.37 

borneol 39.74 19.70 

d-germacrene 40.05 1.99 

geranyl acetate 40.62 4.57 

nerol 42.92 0.22 

geraniol 44.56 8.93 

thymol 51.82 11.18 

carvacrol 54.25 10.05 

Total 
  

 99.17% 

* Only identified compounds are presented 
**Data are expressed as the mean ± S.D., n=3 
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Table 9 Polyphenolic composition of Thymus transcaucasicus 

Compound* 
 

Retention Time  
(min) 

Crude extract 
peak area (%) 

 

Concentration  
(mg/g dried product) 

chlorogenic acid 6,31   3.65** 1.91 ± 0.05 

cryptochlorogenic acid        15.84 4.61 2.41 ± 0.06 

caffeic acid                20.35 5.32 3.52 ± 0.05 

p-coumaric acid             35.54 3.82 1.03 ± 0.03 

ferulic acid                 39.14 3.85 1.26 ± 0.03 

rutin 41.65 3.88 1.19 ± 0.03 

quercetin-3-O-glucoside      43.96 2.68 0.95 ± 0.02 

apigenin-7-O-glucoside 47.03 2.23 1.54 ± 0.04 

rosmarinic acid 49.93 28.67 14.95 ± 0.4 

kaempferol   53.12 3.31 0.69 ± 0.02 

quercetin 58.23 10.01 5.43 ± 0.2 

apigenin 76.53 2.82 1.24 ± 0.03 

carnosic acid 88.97 2.28 0.74 ± 0.02 

* Only identified compounds are presented 
**Data are expressed as the mean ± S.D., n=3 
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Figure legends 
 
 

Figure 1 Antioxidant capacity by ABTS model system as affected by ethanolic extracts of Caucasian 

endemic medicinal and nutraceutical plants. 

 
Figure 2 Lipid peroxidation in human blood plasma as affected by ethanolic extracts of Caucasian 

endemic medicinal and nutraceutical plants. 

 

Figure 3 %Viability of HepG2 cells after the treatment with 200µg/ml of extracts of Caucasian endemic 

medicinal and nutraceutical plants (values represent means ± S.D., n=3). 
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