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Abstract

Many economic models of consumer demand require researchers to partition

sets of products or attributes prior to the analysis. These models are common

in applied problems when the product space is large or spans multiple cate-

gories. While the partition is traditionally fixed a priori, we let the partition be

a model parameter and propose a Bayesian method for inference. The challenge

is that demand systems are commonly multivariate models that are not condi-

tionally conjugate with respect to partition indices, precluding the use of Gibbs

sampling. We solve this problem by constructing a new location-scale partition

distribution that can generate random-walk Metropolis-Hastings proposals and

also serve as a prior. Our method is illustrated in the context of a store-level

category demand model where we find that allowing for partition uncertainty

is important for preserving model flexibility, improving demand forecasts, and

learning about the structure of demand.

Keywords : Bayesian inference, location-scale family, Pólya urn, Markov chain
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1 Introduction

At the core of any empirical demand analysis is the measurement of how consumers substitute

between goods in response to changes in price, promotion, or other product features. Demand

parameters are then commonly used as inputs to a variety of managerial tasks such as setting

optimal prices and promotion schedules, determining the size and scope of assortments, and

arranging physical or online product displays. A practical challenge to the accurate and

precise measurement of consumer preferences is that the space of relevant products is often

large, spanning multiple product categories or high-dimensional sets of product attributes.

One approach to modeling demand in this context is to partition the set of products or

attributes into a lower-dimensional set of groups prior to the analysis. In fact, most empirical

work begins with this problem as researchers must choose sets of products or categories to

include and exclude from their analysis. Many demand models are also parameterized in a

way that formally conditions on this partitioning of goods or attributes. Examples include

models of separable demand (Strotz, 1957; Gorman, 1959; Goldman and Uzawa, 1964), cross-

category demand (Chib et al., 2002; Song and Chintagunta, 2006; Mehta, 2007; Thomassen

et al., 2017), and nested logit demand (McFadden, 1978; Train, 2009). In each case, the

partition defines rigid boundaries for the ways that consumers perceive products to compete.

The advantage offered by partitioning demand is one of dimension reduction – both for the

researcher wanting to reduce the number of model parameters and for the retailer or brand

manager wanting reduce their decision/action space to a lower-dimensional set of product

groups. However, doing so can also lead to unrealistic substitution patterns and demand

forecasts unless the right grouping structure is chosen a priori.

In this paper, we let the partition be an unknown model parameter and propose a

Bayesian method for inference. Formally, let πn = (g1, . . . , gn) denote a partition of n

products or attributes where gi indicates the group to which item i belongs. Our aim is to

make joint inference about πn and a vector of other demand parameters θ (e.g., sensitivity to

price or advertising) through the posterior distribution p(θ, πn|data). This inference problem
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is challenging for three reasons. First, it requires the specification of a probability model

p(πn) that is defined on the space of possible partitions Pn. Constructing coherent and useful

probability models on Pn is generally difficult because the space is high-dimensional, non-

Euclidean, and discrete. The second challenge is that πn is defined over a correlated space

of products rather than a conditionally independent space of data points. Therefore, and

in contrast to most clustering applications, partitioned demand models are unlikely to be

conditionally conjugate with respect to the set of item-group indicator variables g1, . . . , gn.

The third challenge, which is specific to the problem of joint inference, is that the dimension

of θ may depend on πn. The consequence of latter two challenges is that the traditional

Gibbs-style posterior sampling routines which move incrementally through the posterior by

updating gi conditional on g−i and θ will no longer apply.

Our main contribution is to develop a random partition model that facilitates efficient

posterior sampling for multivariate partitioned demand systems. To do this, we apply and

extend recent work on covariate-dependent random partition models – specifically Park and

Dunson (2010) and Müller et al. (2011) – to develop a new model called the location-scale

partition (LSP) distribution. The LSP model is characterized by a location partition ρn ∈ Pn

and a scale parameter τ > 0. Partitions sampled from the LSP(ρn, τ) distribution will be

close to ρn with proximity measured by τ . The key innovation is that the location-scale

feature allows us to implement a random-walk Metropolis-Hastings (MH) algorithm in which

candidate partitions π∗n are sampled from an LSP distribution centered around the current

state π
(r)
n with step size v. We can then accept/reject the entire partition vector in one joint

update rather than n incremental updates, as is traditionally done in Gibbs-style updating.

We also show how the LSP distribution can be used as a prior and extended to incorporate

information from other observable covariates.

The value of the LSP distribution is demonstrated empirically using store-level grocery

retailer data from the salty snack product category. We consider an aggregate demand

model in which the partition of products identifies isolated demand groups where the isolated
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condition restricts the cross-group price elasticities to be zero. By doing inference on the

partition itself, we are able see how product groups with high posterior probability compare

to retailer subcategories. We find that the differential shrinkage imposed by our model

improves both estimates of price elasticity parameters as well as demand forecasts.

The remainder of this paper is organized as follows. Section 2 reviews related literature.

Section 3 outlines the development of the LSP distribution. Section 4 provides a general

MCMC routine for sampling from a posterior distribution using LSP proposals. Section 5

presents the results of our empirical application. Section 6 discusses limitations and possible

extensions of the current work.

2 Related Literature

2.1 Random Partition Models

Random partition models have a long history, much of which is due to the development of

Bayesian nonparametric models and methods (see Müller et al. 2015 for a review). Consider

a hierarchical representation of the typical Bayesian nonparametric model:

yi|φi ∼ p(yi|φi), φi|G ∼ G, G ∼ Q (1)

where p(yi|φi) is the likelihood for observations i = 1, . . . , n indexed by unit-level parameters

φi, G is a discrete random probability measure serving as a nonparametric prior for φi, and

Q is the directing measure serving as a prior on the space of random probability measures.

The fact that G is discrete gives rise to a clustering of the φi’s and therefore induces a

probability model over Pn. For example, consider choosing Q to be the Dirichlet process

(DP) of Ferguson (1973) with scaling parameter α > 0 and base distribution G0. The

induced partitioning of the φi’s can be seen using the Pólya urn representation of Blackwell

and MacQueen (1973).
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φi|φ<i ∼ w0G0(φi) +
K(i)∑
k=1

wkδφ∗k(φi)

w0 =

(
α

α + i− 1

)
; wk =

(
nk

α + i− 1

) (2)

Here the items φ1, . . . , φn are generated sequentially where each φi is a new draw from

the base distribution G0 with probability w0 or exactly equal to one of k = 1, . . . , K(i) unique

previous values φ∗k with probability wk. The weights satisfy w0+
∑K(i)

k=1 wk = 1 and nk denotes

the number φi’s assigned to group k. The discreteness of G ensures that ties among the φi’s

occur with positive probability, so the vector (φ1, . . . , φn) can be used to create a partition

πn = (g1, . . . , gn) by letting gi = k if φi = φ∗k. In some cases it becomes more convenient

to write πn = {G1, . . . , GK} where Gk = {j : gj = k}. In either case, this mapping from

φi to gi induces a valid probability model defined over Pn (Müller et al., 2015) and is often

referred to as the Ewens distribution (Ewens, 1972; Pitman, 1995).

p(πn) =
αK−1

∏K
k=1(nk − 1)!

(α + 1) · · · (α + n− 1)
(3)

There is a growing list of choices for p(πn) beyond that which is induced by the DP. One

example is the class of species sampling models (SSMs) developed by Pitman (1995, 1996)

which extends the DP by specifying the weights in (2) as nonnegative functions of the vector

of cluster sizes n = (n1, . . . , nK(i)).

φi|φ<i ∼ w0(n)G0(φi) +
K(i)∑
k=1

wk(n)δφ∗k(φi) (4)

This modified sampling scheme characterizes a species sampling sequence φ1, . . . , φn and,

like the Pólya urn scheme in (2), induces a model p(πn). In this case, the partitioning model

takes the form p(πn) = p(n1, . . . , nK) and depends on πn only through the cluster sizes

(Quintana, 2006). If the weights are chosen to be wk(n) ∝ nk and w0(n) ∝ α then the SSM

reduces to the DP and the induced model p(πn) is the Ewens distribution in (3). Similarly,

if wk(n) ∝ nk − δ and w0(n) ∝ α + δK(i) then the SSM reduces to the two-parameter
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Poisson-Dirichlet process of Pitman and Yor (1997) and the induced model p(πn) is the

Ewens-Pitman distribution.

Both the DP and the class of SSMs serve as nonparametric priors in (1) and induce

exchangeable partition distributions in that p(πn) is invariant under permutations of the

indices {1, . . . , n}. Requiring p(πn) to be exchangeable matters in Bayesian nonparametric

models because it guarantees that p(πn) can be rationalized by some underlying random

measure Q. In some situations, however, insisting on exchangeability is not appropriate

such as when the items being clustered have a natural ordering in time or space. Airoldi

et al. (2014) relaxes this property and develops a family of nonexchangeable species sampling

sequences in which the weights in (4) depend on realizations of latent variables instead

of cluster sizes. Exchangeability is also relaxed in the Ewens-Pitman attraction (EPA)

distribution of Dahl et al. (2017), where the weights in the species sampling sequence depend

on pairwise distances between items. The EPA distribution closely resembles the distant-

dependent Chinese restaurant process (ddCRP) of Blei and Frazier (2011), however the

ddCRP defines a probability distribution over graphs instead of partitions and only indirectly

defines a partitioning model p(πn). We revisit the comparison between these distributions

in the next section.

The product partition models (PPMs) of Hartigan (1990) and Barry and Hartigan (1992)

present another class of random partition models. Rather than define p(πn) by way of some

underlying discrete random probability measure, a PPM defines p(πn) directly:

p(πn) ∝
K∏
k=1

c(Gk) (5)

where c(Gk) ≥ 0 is a cohesion function measuring the similarity between the elements of

Gk. Since c(Gk) can be any nonnegative function, PPMs give rise to a very general class of

partitioning models. Quintana and Iglesias (2003) show that PPMs nest the DP partitioning

model as a special case if the cohesion function is chosen to be c(Gk) = α× (|Gk|−1)! where

|Gk| = nk counts the number of items in group k. Moreover, Quintana (2006) shows that
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if the cohesion functions depend on Gk only though the cluster sizes, then the PPM is

exchangeable and a special case of the distribution induced by SSMs.

Extensions of PPMs have since been developed to account for different types of prior

information on πn. For example, Park and Dunson (2010) and Müller et al. (2011) modify

the cohesion functions in (5) to allow for effects of covariates. Therefore, items that are

closer in the covariate space will also have a higher probability of being grouped together a

priori. This leads to a nonexchangeable PPM and is useful whenever the researcher wants to

incorporate covariates into the prior model for πn. The empirical application of Müller et al.

(2011), for example, uses covariates like treatment dosage, age, and tumor size to better

cluster and predict survival times of breast cancer patients in a clinical trial. In addition

to covariate effects, there have also been extensions to PPMs that account for temporal

dependence within clusters (Monteiro et al., 2011), correlations across clusters (Ferreira

et al., 2014), and spatially dependent clusters (Page and Quintana, 2016).

In practice, the choice between partitioning priors is based on empirical context, data

availability, and a tradeoff between flexibility and tractability. Empirical context can suggest

whether the data or unit-level parameters should have any natural ordering, and can therefore

offer guidance as to whether assumptions of exchangeability should hold. For example, the

development of the ddCRP in Blei and Frazier (2011) is in part motivated by a language

modeling application in which news articles published around the same time should tend

to be more similar. When item-level covariates are available, researchers may also want to

exploit them when specifying p(πn) akin to the covariate-dependent PPMs or distance-based

models. As the partitioning model becomes more flexible or enriched with additional prior

information, however, the challenge is to ensure that posterior sampling remains feasible.

This is why the random partition model induced by the DP, even with its relative inflexibility,

remains a popular choice, as it is a model for which posterior simulation methods are well

developed (Müller et al., 2015).

In summary, this stream of literature has generated more flexible classes of partitioning
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models, some of which we directly build on when constructing the LSP model. Beyond this

methodological overlap, however, our work differs in three ways. First, the demand models

we estimate are not Bayesian nonparametric models in the sense of (1). Instead, we consider

parametric models of the form:

yt|θ, πn ∼ p(yt|θ, πn), θ|πn ∼ p(θπn), πn ∼ p(πn) (6)

where the response yt = (yt1, . . . , ytn) is a vector of demand across n products at time t,

p(yt|θ, πn) is the likelihood indexed by a vector of demand parameters θ (whose dimension is

independent of t) and the partition πn, and both the conditional prior of θ|πn and marginal

prior of πn are specified parametrically. We specify θ conditional on πn to allow potential

dependence between the two. The yti’s are assumed to be conditionally iid over time periods

t = 1, . . . , T but not over products i = 1, . . . , n. This reflects the fact that products may

exhibit unobservable similarities which could manifest themselves through some correlation

structure in the model likelihood.

The second way our work differs is based on how the clustering is imposed. In (1),

the clustering arises through ties in the unit-level parameters φ1, . . . , φn which are induced

through the discrete random probability measure G. This implies a partitioning of the space

of observational units. In contrast, the partitioning in (6) is not imposed on the space

of observational units but rather the space of products. The clustering arises through πn

directly and there is no notion of a random measure G from which elements of θ are drawn

or clustered. For our purposes, the process of sampling from a random probability measure

as in (2) only serves to define the LSP model and is entirely independent from the assumed

distributions of yt or θ.

Lastly, many of the posterior sampling methods that exist for models of the form in (1) are

not applicable to the model structure in (6). For example, the usual suite of Gibbs sampling

routines associated with DP mixture models (Escobar and West, 1995; MacEachern and

Müller, 1998; Neal, 2000) rely on closed-form expressions of p(gi = k|g−i,θ, else). However,
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this expression is not well-defined in our case because of the potential dependence between

θ and πn and because we partition the correlated rather than the conditionally independent

dimension of the data. Therefore, while the literature mentioned above has mostly focused

on the development of more flexible partitioning priors, we develop the LSP model mainly

as a computational device to facilitate posterior sampling from the class of models in (6).

More general Metropolis-Hastings based posterior sampling routines for partitions have

also been proposed, including Algorithms 5-7 in Neal (2000) and the split-merge algorithms

of Green and Richardson (2001), Jain and Neal (2004), and Dahl (2003). Since these methods

are based on MH updates, they can in principle be used to sample from the posteriors of

partitioned demand models. However, these methods are still characterized by (group-wise)

incremental moves in which the proposed partition can differ from the partition in the current

state by one item (or group of items) at a time. In contrast, LSP proposals allow for more

radical restructuring in which multiple items can change groups in each update (where the

extent of the difference is controlled by a step size parameter). In a simulation study, we

find that LSP proposals offer advantages in mixing over incremental updates when partitions

with high posterior probability are separated by valleys of low posterior probability.

2.2 Partitioned Demand Models

One of the earliest examples of partitioning demand comes from the work on economic

separability by Strotz (1957), Gorman (1959), and Goldman and Uzawa (1964) among others.

Separability offers a set of conditions under which a consumer’s utility function defined over a

n-dimensional commodity bundle can be expressed with respect to a lower-dimensional set of

product groups. The empirical advantage of assuming separable demand is a reduction in the

number of the cross-price effect parameters. However, the consequence is that separability

implies strong restrictions on cross-group substitution patterns when the partitioning of

goods is fixed. While this limitation is well-known (Deaton and Muellbauer, 1980; Pudney,

1981), there has been little progress in the way of formal inference on πn.
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Another form of partitioning arises in the class of demand models with structured product

covariance matrices. To illustrate, consider the model yt = h(X t,θ) + εt where yt is an

n-vector of demand at time t, X t is n × p matrix of product covariates like price, θ is a

p-vector of demand parameters like price-effects, and Var(εt) = Σ. This stream of work

either parameterizes Σ or the prior covariance matrix on θ to account for similarities among

products due to shared attributes or correlated unobservables. Examples of adding structure

to an error covariance matrix include nested logit models (McFadden, 1978; Train, 2009) and

the source-of-volume probit model (Dotson et al., 2018). Ainslie and Rossi (1998) and Hansen

et al. (2006) provide examples of adding structure to the prior covariance matrix to capture

correlated preferences across categories.

In either case, our methodology applies whenever the covariance matrix is parameterized

by a “hard constraint” (e.g., related or not). Our belief is that allowing for uncertainty in

models with hard constraints like partitions will yield a level of flexibility similar to that

of continuous parameterizations of item similarity. An additional benefit of modeling hard

constraints is that they may more closely map to the decision space of managers who must

think in discrete terms (e.g., deciding which products should be grouped together on a shelf).

Our approach can also be used to model grouping structures that are imposed by way of

the conditional mean function. That is, instead of parameterizing a prior or error covariance

matrix, one could directly impose restrictions on the functional form h(X t,θ) or on the

model parameters themselves. Examples of this approach include adding restrictions to the

functional form of utility (Song and Chintagunta, 2006; Mehta, 2007; Kim et al., 2017) as

well as price-effect parameters (Montgomery and Rossi, 1999; Wedel and Zhang, 2004). Our

aim is to provide an inference method for the class of partitioned demand models, regardless

of whether the partition enters the model through a covariance matrix or restrictions to

parameters and functional forms.

Finally, there is relatively little work which allows for partition uncertainty in applica-

tions to marketing and econometric models. One exception is Hui and Bradlow (2012), who
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estimate partitions of contiguous areal units, such as states and retail store shopping zones,

in the context of a multi-resolution spatial analysis. Although their application is outside of

the scope of a traditional demand analysis, their work is similar in spirit, as they relax the

assumption that the spatial configuration is known a priori and propose a method for esti-

mation. However, one primary difference is that they use a simulating annealing algorithm

to search for the partition with highest posterior probability. This approach will generate

a point estimate of the partition parameter, but is unsuitable for inference. Our belief is

that inference for partitioned demand models is desirable, especially when model output is

used to inform policy decisions. For example, a maximum a posteriori estimate of πn could

still have very low posterior probability since the space of possible partitions is so large.

Managerial actions that condition on a point estimate in the presence of great uncertainty

will likely be suboptimal. Moreover, inference allows managers to improve demand forecasts

by integrating over the posterior of πn, akin to classic Bayesian model averaging.

3 The Location-Scale Partition Distribution

The LSP distribution is constructed using a variant of the Pólya urn scheme in (2). First

define a location partition ρn = (s1, . . . , sn) ∈ Pn and scale parameter τ > 0. We then

modify (2) so that the φi’s are generated using the information in (ρn, τ).

φi|φ<i, ρn, τ ∼ w0(ρn, τ)G0(φi) +
K(i)∑
k=1

wk(ρn, τ)δφ∗k(φi) (7)

Here w0(·) and wk(·) are positive similarity functions that satisfy w0(·) +
∑

k wk(·) = 1. Just

as before, the partition πn is formed by letting gi = k if φi = φ∗k. The sequential nature of

(7) imposes an order restriction on partitions in Pn: g1 = 1 and gi ∈ {1, . . . , K(i) + 1} where

K(i) = max{gj : j < i}. In contrast to (2), the composition of groups is now controlled by

the information in ρn and τ . Holding τ fixed, we choose w0(·) and wk(·) so that items that

are grouped together in ρn are also more likely to be grouped together in πn.
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3.1 Similarity Functions

Our choice of functional forms for w0(·) and wk(·) follows from Park and Dunson (2010) and

Müller et al. (2011) who develop covariate-dependent PPMs. The idea is to let the item-

group assignment probabilities be defined by an auxiliary probability model for the elements

of ρn.

w0(ρn, τ) ≡ w0(si, τ) = c̃i

∫
p(si|ξ)f0(ξ|τ)dξ (8)

wk(ρn, τ) ≡ wk({si, Sk}, τ) = c̃i

∫
p(si|ξ)fk(ξ|τ, Sk)dξ (9)

Here Sk = {sj : gj = k and j < i}, C(i) = max{s1, . . . , si−1}, ξ is a (C(i) + 1)-dimensional

vector, and c̃i is a normalizing constant. In the context of Park and Dunson (2010) and

Müller et al. (2011), we take elements of ρn to be “covariates” and then define similarity

using a marginal probability model for si. Since each si ∈ {1, . . . , C(i) + 1}, we specify the

following Dirichlet-categorical model:

p(si|ξ) = Cat(ξ1, . . . , ξC(i) , ξC(i)+1) (10)

f0(ξ|τ) = Dir(τ1, . . . , τC(i) , τC(i)+1) (11)

fk(ξ|τ, Sk) = Dir(τ ∗1 , . . . , τ
∗
C(i) , τ

∗
C(i)+1) (12)

where τc = τ , τ ∗c = τ + ncSk
, and ncSk

counts the number of elements in Sk equal to c. We

also let nk denote the number of items in group k. The main advantage of specifying this

conjugate family of models is that the similarity functions have closed-form expressions.

w0(si, τ) ∝
∫

Cat
(
ξ1, . . . , ξC(i)+1

)
Dir
(
τ1, . . . , τC(i)+1

)
dξ =

τ + 1(si = C(i) + 1)

τC(i) + τ + 1
(13)

wk({si, Sk}, τ) ∝
∫

Cat
(
ξ1, . . . , ξC(i)+1

)
Dir
(
τ ∗1 , . . . , τ

∗
C(i)+1

)
dξ =

τ + nsiSk

τC(i) + τ + nk
(14)
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3.2 Properties of the LSP Distribution

We let LSP(ρn, τ) denote the probability distribution for πn that is induced by (7) with

similarity functions defined by (13) and (14). The sequential nature of the Pólya urn scheme

in (7) provides a simple structure for computing the LSP probability mass function. The

probability of observing a partition πn from an LSP(ρn, τ) distribution can be factored into

a sequence of conditional probabilities:

p(πn|ρn, τ) =
n∏
i=1

p(gi|g<i, ρn, τ) (15)

where p(g1) = 1 and

p(gi|g<i, ρn, τ) =


c̃i ·

τ + nsiSk

τC(i) + τ + nk
if i is assigned to group k

c̃i ·
τ + 1(si = C(i) + 1)

τC(i) + τ + 1
if i starts a new group.

(16)

Our parameterization of the similarity functions also leads to two noteworthy properties.

First, w0(·) and wk(·) guarantee that the resulting LSP distribution behaves like a location-

scale family. That is, as the scale parameter gets small, more mass is placed on the location

partition. We refer to this property as location-scale consistency.

Property 1 (Location-Scale Consistency). If πn ∼ LSP(ρn, τ), then for any number of items

n and location partition ρn ∈ Pn,

lim
τ→0

Pr(πn = ρn|ρn, τ) = 1. (17)

Proof. See Appendix A.

This property is illustrated in Figure 1. We generate 10, 000 samples from an LSP(ρn, τ)

distribution with n = 100, ρn equal to the partition with five contiguous groups of twenty

items each, and τ ∈ {0.05, 0.5, 5}. For each value of τ , we then plot the associated n × n

pairwise similarity matrix, which counts the proportion of times that two items are grouped
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together in the given set of draws. As suggested by the location-scale consistency property,

the LSP distribution shifts its mass towards ρn as τ gets small, but spreads its mass across

Pn as τ gets large.

(a) τ = 0.05
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Figure 1: Three pairwise similarity matrices are shown based on 10, 000 draws from an
LSP(ρn, τ) distribution with n = 100, ρn equal to the partition with five contiguous groups
of twenty items each, and τ ∈ {0.05, 0.5, 5}.

Moreover, we find that as τ gets small, Pr(πn = ρn|ρn, τ) not only converges to one

but also does so monotonically. To understand why, observe that when ρn equals πn, the

conditional probabilities in (16) reduce to

p(gi|g<i, ρn, τ) =


c̃i ·

τ + nk

τC(i) + τ + nk
if i is assigned to group k

c̃i ·
τ + 1

τC(i) + τ + 1
if i starts a new group

(18)

which are both positive, monotonically decreasing functions in τ . Since Pr(πn = ρn|ρn, τ)

is defined as a product of the conditional probabilities p(gi|g<i, ρn, τ), it itself will be mono-

tonically decreasing in τ .

The second property is marginal invariance. That is, it can be shown that the LSP

distribution for a partition πn can be obtained by marginalizing out item gn+1 from the LSP

distribution for πn+1.

Property 2 (Marginal Invariance). If πn ∼ LSP(ρn, τ), then for any number of items
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n, location partition ρn ∈ Pn, scale parameter τ > 0, and distribution p(sn+1) such that∑
sn+1

p(sn+1) = 1,

p(πn|ρn, τ) =
K+1∑
gn+1=1

C+1∑
sn+1=1

p(πn+1|ρn, sn+1, τ)p(sn+1) (19)

where K = max{g1, . . . , gn} and C = max{s1, . . . , sn}.

Proof. See Appendix A.

This result is also consistent with Park and Dunson (2010) and Müller et al. (2011), who

separately show that the only way for a Pólya urn induced partition distribution p(πn) to

satisfy marginal invariance is if w0(·) and wk(·) take the form of an auxiliary probability

model, as in (8) and (9).

3.3 A Covariate-Dependent LSP Model

In addition to having prior knowledge about the partition itself, researchers may have access

to other data that could help inform how the items are split into groups. For example, if the

partition represents a measure of economic competition between goods, then one may want

to let the partitioning model be a function of covariates such as product characteristics,

advertising levels, and in-store shelf position. This would allow products that are more

similar in the covariate space to be more likely to be grouped together a priori.

Our approach to accommodating covariates in the LSP model again follows from Park and

Dunson (2010) and Müller et al. (2011). Suppose the researcher has p continuous covariates

for the n items to be partitioned. Let X ∈ Rp be an n×p matrix and Λ = (λ1, . . . , λp) ∈ Rp
+

be a vector of p scale parameters measuring the strength of the influence of X on the

partitioning process. We then modify the original Pólya urn scheme in (7) to account for

the additional information in (X,Λ).

φi|φ<i, ρn,X, τ,Λ ∼ w̃0

(
{ρn,X}, {τ,Λ}

)
G0(φi) +

K(i)∑
k=1

w̃k
(
{ρn,X}, {τ,Λ}

)
δφ∗k(φi) (20)

14



Here {ρn,X} contain the “location” terms and {τ,Λ} contain the “scale” terms. The new

similarity functions w̃0(·) and w̃k(·) are positive and satisfy w̃0(·) +
∑

k w̃k(·) = 1, with

functional forms given by:

w̃0

(
{ρn,X}, {τ,Λ}

)
= w0(si, τ)

p∏
j=1

wx0(xij, λj) (21)

w̃k
(
{ρn,X}, {τ,Λ}

)
= wk({si, Sk}, τ)

p∏
j=1

wxk({xij, Xjk}, λj) (22)

where Xjk = {xij : gi = k}, wk(·) and w0(·) are the location-scale similarity functions defined

in (8) and (9), and wxk(·) and wx0(·) are new functions that measure the similarity among

each of the j = 1, . . . , p covariates.

The covariate similarity functions wxk(·) and wx0(·) are again defined as marginal distri-

butions from an auxiliary probability model for each xij. With real-valued covariates, we

specify the following conjugate normal-inverse-gamma family of models.

xij|µξ, σξ, λj ∼ N(µξ, σ
2
ξ/λj) (23)

µξ|σξ, λj ∼ N(m,σ2
ξ/λj) (24)

σ2
ξ ∼ Γ−1(a, b) (25)

Marginalizing over ξ = (µξ, σ
2
ξ ) in a normal-inverse-gamma model gives rise to a noncentral

t-distribution for xij:

wx0(xij, λ) ∝
∫
p(xij|ξ)f0(ξ|λj)dξ = t2a

(
m,

(λj + 1)

aλj
b

)
(26)

wxk({xij, Xjk}, λj) ∝
∫
p(xij|ξ)fk(ξ|λj, Xjk)dξ = t2a+nk

(
µ̃j,

(λj + nk + 1)

(a+ nk/2)(λj + nk)
σ̃2
j

)
(27)

where

µ̃j =
λjm+ nkx̄jk
λj + nk

(28)

σ̃2
j = b+

∑
i∈Gk

(xij − x̄jk)2 +
nk

λj + nk
(x̄jk −m)2. (29)
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Because the covariate similarity functions are constructed by way of assuming a paramet-

ric distribution on xij, there is a notion that we are treating covariates as random variables.

However, the use of conjugate parametric families here is done more out of convenience. That

is, the objective is to construct a function wxk(·) such that similar values of the covariates

induce higher values of wxk(·), and marginalized probability models in the form of (26) and

(27) satisfy this condition.1 Moreover, Müller et al. (2011) show that the similarity function

must be in the form of a marginalized probability model in order for the induced partition

distribution to satisfy marginal invariance. Thus, the form of the proposed covariate sim-

ilarity functions can still be useful even if the researcher wants to treat the covariates as

fixed.

In the presence of binary, categorical, or integer-valued covariates, other conjugate fami-

lies such as the beta-binomial, Dirichlet-categorical, and gamma-Poisson can be used. Again,

conjugate families are used only to simplify the integration present in (26) and (27). If the

researcher wanted to write down a more judicious choice of p(xij|ξ) for which conjugate

priors did not exist, we follow Park and Dunson (2010) and suggest using an approximation

to the marginal likelihood (e.g., the Laplace approximation).

The behavior of the covariate-dependent LSP (LSPx) distribution is illustrated in Fig-

ure 2. We consider an LSP
(
{ρn,X}, {τ,Λ}

)
distribution with n = 100, ρn equal to the parti-

tion with five contiguous groups of twenty items each, p = 1, and xi ∼ N(1(i > 50), .01). The

covariates are then scaled to have mean zero and unit variance. We let τ ∈ {0.05, 0.5, 5} and

λ ∈ {0.05, 0.5, 5} and consider all nine possible pairs (τ, λ). For each pair, we generate 10,000

draws from the corresponding LSPx distribution and plot the associated pairwise similarity

matrices. As shown in Figure 2, we find that when τ is small relative to λ (lower-diagonal),

more weight is given to ρn. Conversely, when λ is small relative to τ (upper-diagonal), then

more weight is given to the covariates X. Finally, as τ and λ jointly increase (diagonal),

then probability mass starts to spread more evenly across the full space of partitions.

1For example, the variance expression in (27) decreases as xij gets closer to x̄jk, implying that the density
evaluation increases in the similarity between xij and Xjk.
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Figure 2: Pairwise similarity matrices are shown based on 10,000 draws from an LSPx
distribution with n = 100, ρn equal to the partition with five contiguous groups of twenty
items each. The covariates are drawn as xi ∼ N(1(i > 50), .01) and we consider all possible
pairs of τ ∈ {0.5, 5} and λ ∈ {0.5, 5}.
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3.4 Comparison to Other Partition Distributions

We now compare the LSP distribution to three other partition distributions: (1) the partition

distribution induced by the standard DP; (2) the ddCRP of Blei and Frazier (2011); and

(3) the EPA distribution of Dahl et al. (2017). The ddCRP and EPA distributions are of

particular interest, as they can generate partitions centered around a prespecified grouping

structure. The ddCRP distribution is parameterized by a mass parameter α > 0, an n × n

distance matrix D = {dij}, and a decay function f(dij) controlling the degree to which the

pairwise distances affect the resulting distribution over partitions. The EPA distribution

is also indexed by a distance matrix D and decay function f(dij), as well as a discount

parameter δ ∈ [0, 1) controlling the distribution of group sizes and a mass parameter α > −δ

controlling the number of groups. In both cases, the pairwise distances can be parameterized

in order to center and scale the resulting distribution around a particular partition.

Comparisons among partition distributions are often made by assessing differences in

the induced distribution over group numbers, sizes, or composition. Given that one of our

primary goals is posterior sampling via random-walk-type MH proposals, we will study how

well other models can be “centered” around a partition of interest. We do this with a

simulation study in which we set the number of items to n = 10, the location partition to

ρn = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2), and consider scale parameters in the range τ ∈ (0, 5). For each

value of τ , we generate 10,000 draws from the LSP, EPA, ddCRP, and DP distributions

and compare each draw to ρn using the adjusted Rand index (Hubert and Arabie, 1985),

where a value of 1 indicates equality. For both the EPA and ddCRP distributions, we define

pairwise distances based on ρn: if i and j are grouped together in ρn, then dij = 0, otherwise

dij = 1. We also use an exponential decay function f(dij) = e−dij/τ in both cases so that the

pairwise distances have more influence on the partitioning process as τ gets small. The mass

parameter in the EPA, ddCRP, and DP models is set to α = max(ρn) = 2 and the discount

parameter for the EPA model is set to δ = 0.

Figure 3 plots the average adjusted Rand index across τ for each partition distribution.

18



We find that the LSP, EPA, and ddCRP distributions behave similarly for larger values of

τ , but differ as τ gets small. The location-scale consistency property of the LSP distribution

guarantees that this similarity measure converges to 1 as τ gets small. In comparison,

the similarity measure for the EPA and ddCRP distributions also increases as τ decreases,

but does not have the same limiting behavior near 0. As expected, the DP partitioning

distribution is uniform over τ because it is not parameterized in a way that allows it to be

centered around a particular grouping structure.
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Figure 3: The LSP distribution is compared to the EPA (with α = 2, δ = 0, and exponential
decay), ddCRP (with α = 2 and exponential decay), and DP (with α = 2) partition dis-
tributions. For each scaling parameter τ ∈ (0, 5), 10,000 random partitions are drawn from
each distribution and then compared to ρn using the adjusted Rand index.

Because the EPA and ddCRP also contain other model parameters and require a param-

eterization of the distance function, the role of the scaling parameter may differ across the

models we consider. It is then not clear as to whether the limiting behavior shown in Figure 3

is due to the statistical properties of the models or our own modeling choices (e.g., fixing

α = 2). We therefore carry out several robustness checks in Appendix B. For the ddCRP

distribution, we vary the mass parameter α with τ and show that when τ is small, the mean

similarity to ρn is still far from 1 for any α ∈ (0, 5). Similarly, for the EPA distribution,

we vary the mass parameter α and discount parameter δ with τ and again show that the

similarity to ρn remains far from 1 for any α ∈ (0, 5) and δ ∈ [0, 1). Although not reported,
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we have also repeated the analysis using a reciprocal decay function for the EPA distribution

and found little difference in the model’s limiting behavior.

In summary, we find that the LSP distribution behaves similarly to distance-based parti-

tioning models like the EPA and ddCRP distributions. These models are all parameterized

in a way that allows the researcher to center the partitioning process around some fixed

grouping structure. As a prior, the EPA and ddCRP models are generally more flexible than

the LSP distribution since they are both indexed by a full n×n distance matrix. The single

location partition in the LSP prior would (after appropriately reordering items) effectively

correspond to a block-diagonal distance matrix. However, this can be overcome by using

the LSPx model where covariates, in addition to the location partition, impact the prior

probability of two items being grouped together. The idea is that the presence of multiple

covariates creates a mixture over different grouping structures (as seen in equations 21 and

22) which in turn induces an n × n distance matrix that is no longer block-diagonal. The

differences between the LSP and EPA models are most apparent in terms of posterior com-

putation. Specifically, we find that the limiting behavior of the LSP distribution makes it

especially well-suited for random-walk MH proposal schemes.

4 Posterior Computation

Given the LSP probability model, we now describe approaches for sampling from a joint

posterior distribution of the form p(θ, πn|y) ∝ p(y|θ, πn)p(θ, πn). In particular, we use

MCMC methods to construct a Markov chain {(θ(1), π(1)
n ), (θ(2), π

(2)
n ), (θ(3), π

(3)
n ), . . . } whose

stationary distribution is p(θ, πn|y). For simplicty, we assume that θ is a priori indepen-

dent of πn and propose a Gibbs sampler which iteratively samples from the full conditional

distributions of πn and θ.

1. Draw πn|y,θ using a MH update with LSP proposals

2. Draw θ|y, πn using a Gibbs update
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Assuming independence between θ and πn allows us to focus our attention on Step 1 while

remaining agnostic towards the implementation of Step 2. Here, we simply assume that a

conjugate prior is available for θ which permits the use of a Gibbs draw.

That being said, θ and πn may exhibit some structural dependence in many demand

applications. In the demand model considered in our empirical application, for example, the

dimension the cross-price elasticity vector depends on πn. Other examples of dependence

would arise when modeling the within-group correlation parameters in nested logit models

(McFadden, 1978; Train, 2009) or allowing the screening rules of Gilbride and Allenby (2004)

to vary across product groups. In such cases, one can always factor the prior and proposal

distributions as p(θ, πn) = p(θ|πn)p(πn) and then jointly accept or reject (θ, πn). This is the

strategy we take in Section 5 and outlined in Appendix D. However, we simply maintain

the assumption of independence here for ease of exposition.

4.1 Single LSP Proposal

We first consider one MH update using LSP proposals for the entire partition πn. Let

(θ(1), π
(1)
n ) denote a pair of arbitrary starting values and simulate (θ(r), π

(r)
n ) for r = 2, . . . , R

according to the following algorithm.

Algorithm 1: Single LSP Proposal

1. Generate π∗n ∼ q(πn|π(r)
n , v) = LSP(π

(r)
n , v). Set π

(r+1)
n = π∗n with probability

A(π∗n, π
(r)
n ) = min

{
1,

p(y|θ(r), π∗n)p(π∗n)

p(y|θ(r), π(r)
n )p(π

(r)
n )
× q(π

(r)
n |π∗n, v)

q(π∗n|π
(r)
n , v)

}
.

Otherwise set π
(r+1)
n = π

(r)
n .

2. Draw θ(r+1)|y, π(r+1)
n using a Gibbs update.

The parameterization of the LSP distribution allows us to propose partitions in a random-

walk fashion. That is, we can generate a candidate partition π∗n from a distribution centered
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at π
(r)
n with a step size of v. The LSP distribution can be highly asymmetric, so the accep-

tance ratio must include the ratio of transition probabilities q(π
(r)
n |π∗n, v)/q(π∗n|π

(r)
n , v), which

can be easily calculated from the LSP probability mass function described in (15) and (16).

As with any random-walk MH algorithm, practical convergence and proper mixing of

the Markov chain is highly dependent on the choice of the tuning parameter v. If v is too

small, the algorithm will move in small increments and may fail to fully explore regions

of high posterior probability. If v is too large, the algorithm will reject a high proportion

of proposed moves and underestimate posterior uncertainty. In general, the choice of an

optimal step size depends on the dimension and shape of the target posterior. In our case,

efficient tuning with respect to both is challenging as existing optimal scaling results (e.g.,

Roberts and Rosenthal, 2001) measure mixing efficiency as a function of the integrated

autocorrelation time, which is not well defined on non-Euclidean spaces like Pn. These

results also only pertain to stationary distributions that are products of independent normal

densities, which is far from the discrete posteriors studied here. Mixing can still be monitored

by the algorithm’s acceptance rate, but care must be taken in computing the acceptance rate

to account for the fact that Pr(π∗n = π
(r)
n ) > 0 when π∗n ∼ LSP(π

(r)
n , v).

Even without access to formal optimal scaling results, we can still provide some guidance

on how to choose the scale parameter in order to account for differences in the dimension of

the parameter space Pn across analyses. For example, if the step size v = 1 leads to good

mixing for an analysis with n = 10 products, it may likely be too large of a step size for an

analysis n = 50 products, regardless of the shape of the posterior. This problem also arises

when choosing the prior scale parameter τ , as the probability mass placed on the location

partition will change as a function of n.

Formally, consider two distinct LSP distributions: an LSP(ρm, v) and an LSP(ρn, v)

where v > 0 is a common scale parameter and ρm ∈ Pm, ρn ∈ Pn, and (m,n) ∈ N. If

m = n but ρm 6= ρn, then any differences between Pr(πn = ρn|ρn, v) and Pr(πm = ρm|ρm, v)

can be attributed to differences in the group composition of ρm and ρn. However, if m < n
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then regardless of the structure of ρn and ρm, Pr(πn = ρn|ρn, v) will likely be smaller than

Pr(πm = ρm|ρm, v) simply because Pr(πn = ρn|ρn, v) is normalized over a higher-dimensional

domain which scales the LSP probabilities downward. While the same argument could be

applied to any well-defined neighborhood of ρn, we choose to focus on the probability assigned

to ρn alone in order to simplify the optimization below.

To account for this dimensional scaling of the LSP distribution, we propose using scale

parameters of the form v = s · f(n) where s > 0 and f(n) is a decreasing function of

n. The idea is that as n increases, any downward pressure on the LSP probabilities can

be countered with a smaller scale parameter. We then choose v so that, on average, the

probability assigned to the location partition is constant across dimensions. Doing so allows

us to roughly hold fixed the amount of information imposed by the prior for different n as

well as control the step sizes of LSP proposals across dimensions. More formally, we want

to find the scale parameter v which solves the following for any (m,n) ∈ N.

min
v>0

∣∣∣∣∣ 1

|Pm|
∑

ρm∈Pm

Pr(πm = ρm|ρm, v)− 1

|Pn|
∑
ρn∈Pn

Pr(πn = ρn|ρn, v)

∣∣∣∣∣ (30)

Formal optimization of (30) would require enumerating the entire space of partitions Pn

for various n, which becomes unwieldly for even a moderate number of items. Instead, we

generate Monte Carlo estimates of the high dimensional sums by sampling n2 partitions from

Pn for each n ∈ {25, 50, . . . , 200} and then averaging Pr(πn = ρn|ρn, v) across draws within

Pn. Figure 4 plots these averaged LSP probabilities with s = 1 and five types of scaling

functions: logarithmic f(n) = 1/ log(n), linear f(n) = 1/n, linearithmic f(n) = 1/(n log(n)),

polynomial f(n) = 1/na, and exponential f(n) = 1/an. We find that the linearithmic

function v = 1/(n log(n)) scales the LSP distribution best, as it minimizes the change in

probabilities across dimensions.

To reiterate, we are not claiming that the choice of v = 1/(n log(n)) will guarantee optimal

posterior mixing. Rather it only serves as a guide for how to control the neighborhood of LSP

proposals across analyses with different n. Given a specific data set, more experimentation
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Figure 4: Monte Carlo averages of Pr(πn = ρn|ρn, v) are plotted across dimensions n for
different scaling functions v = f(n).

can be done in choosing s, for example, to ensure proper mixing.

4.2 Sequential Block LSP Proposals

The algorithm described above is subject to the same scaling limitations as any random-

walk MH algorithm. That is, one may be concerned that for large n, the algorithm will get

stuck in local modes of the posterior and yield low acceptance rates. Given the challenges

of deriving optimal scaling results for Markov chains on non-Euclidean discrete spaces, we

propose a second algorithm that uses a blocking strategy to improve mixing. The idea of

blocking is to split the parameter vector (in our case the partition) into mutually exclusive

blocks and then propose updates one block at a time.

The theoretical advantages of block sampling are well documented, both for Gibbs sam-

plers (Liu et al., 1994; Roberts and Sahu, 1997) and more general MH-based algorithms

(Sargent et al., 2000; Turek et al., 2017). These advantages have also been illustrated em-

pirically. For example, Chib and Ramamurthy (2010) use block sampling to address the

high dimensionality and multi-modality in dynamic stochastic general equilibrium (DSGE)

models for macroeconomic data. Additionally, Musalem et al. (2009) and Chen and Yang

(2007) discuss advantages of block sampling high-dimensional vectors of latent individual
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choices when estimating individual-level consumer preferences from store-level sales data.

In our context, the idea is to divide πn into L contiguous blocks πn = (B1, . . . , BL) and

use a sequence of MH updates with LSP proposals for each B`|B−`. For example, we could

divide a partition of n = 20 items into L = 4 equally-sized blocks.

πn = (g1, g2, g3, g4, g5︸ ︷︷ ︸
B1

, g6, g7, g8, g9, g10︸ ︷︷ ︸
B2

, g11, g12, g13, g14, g15︸ ︷︷ ︸
B3

, g16, g17, g18, g19, g20︸ ︷︷ ︸
B4

)

In this case, each of the ` = 1, . . . , 4 MH steps would propose a new partition π∗n =

(B1, . . . , B
∗
` , . . . , BL) such that only the elements in block ` are allowed to change.

Formally, let LSP{b`,b`}(ρn, τ) denote a block LSP distribution that is defined for all items

i ∈ B` = {b`, . . . , b`}. Partitions can be sampled from the LSP{b`,b`}(ρn, τ) distribution as

follows.

1. Set gi = si for all i < b`.

2. Sample gi according to (7) for i = b`, . . . , b`.

3. Set gi = si for all i > b` and, if necessary, relabel gi so that: (i) the sampled partition
conforms to the order restriction of Pn; and (ii) if si > sj for any j ≤ b`, then gi > gj.

The final step ensures that a partition sampled from LSP{b`,b`}(ρn, τ) is a valid partition in

Pn and preserves the grouping for all items not in B`. Examples of relabeling according to

these two conditions are provided in Figure 5.

Relabeling due to (i)

ρn = ( 1 2 2 3 1 4 )−→ −→

1 2 1 1 1 499K

99K

πn = ( 1 2 1 1 1 3 )

Relabeling due to (ii)

ρn = ( 1 2 2 3 1 4 )−→ −→

1 2 3 4 1 499K

99K

πn = ( 1 2 3 4 1 5 )

Figure 5: Examples of relabeling required when block sampling partitions. Solid lines indi-
cate probabilistic sampling and dashed lines indicate deterministic relabeling.

An MCMC routine that uses sequential block LSP proposals to draw πn is outlined below.

The sampler integrates over the block configuration by randomly generating a new number
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of blocks L and associated cutpoints {(b1, b1), . . . , (bL, bL)} in each iteration.

Algorithm 2: Block LSP Proposals

1. (a) Randomly generate the number of blocks L and cutpoints {(b1, b1), . . . , (bL, bL)}.

(b) For each block ` = 1, . . . , L generate π∗n ∼ q(πn|π(r)
n , v, b`, b`) = LSP{b`,b`}(π

(r)
n , v).

Set π
(r+1)
n = π∗n with probability

A(π∗n, π
(r)
n ) = min

{
1,

p(y|θ(r), π∗n)p(π∗n)

p(y|θ(r), π(r)
n )p(π

(r)
n )
× q(π

(r)
n |π∗n, v, b`, b`)

q(π∗n|π
(r)
n , v, b`, b`)

}
.

Otherwise set π
(r+1)
n = π

(r)
n .

2. Draw θ(r+1)|y, π(r+1)
n using a Gibbs update.

The block configuration moves in step 1(a) will leave the stationarity distribution p(θ, πn|y)

invariant as long as the proposal mechanism is independent of the output from previous

iterations. We generate block configurations as follows: first set b1 = 1 and draw b1 ∼

Unif{b1 + 1, n}; if b1 < n, then set b` = b`−1 + 1 and draw b` ∼ Unif{b` + 1, n} for each ` > 1

until b` = n. The last piece is the transition probabilities in step 1(b), which take the form

q(πn|ρn, τ, b`, b`) =
∏
i∈B`

p(gi|g<i, ρn, τ, b`, b`) (31)

where each p(gi|g<i, ρn, τ, b`, b`) comes from the LSP probability mass function in (16).

One potential drawback of block sampling is that it requires L (instead of 1) likelihood

evaluations per iteration. The gains in efficiency from block LSP proposals are therefore

bound by the time it takes to evaluate the likelihood, prior, and proposal densities. In cases

with lots of data or where evaluating the likelihood requires the inversion of large matrices

or integration over irregular regions, block LSP proposals will yield much longer run times

than single LSP proposals. However, alternative block configuration sampling schemes can

always be used to alleviate the additional computational burden. For example, minimum

block sizes can be imposed or distributions other than the uniform can be used when sampling
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the cutpoints (b`, b`) in order to keep the number of blocks L small. We propose one such

modification in the following simulation study.

4.3 Simulation Study with Alternative Proposals

We compare single LSP and block LSP proposals to two alternative proposal mechanisms.

The first is standard Gibbs sampling where each item-group indicator variable gi (rather

than the entire partition πn) is drawn from its full conditional distribution. The second is

the split-merge algorithm of Jain and Neal (2004). Both of these proposals are characterized

by incremental moves. That is, when generating a candidate partition π∗n = (g∗1, . . . , g
∗
n), at

most one element (or group of elements) of π∗n can differ from π
(r)
n . This can pose significant

mixing problems for models that place high posterior probability on partitions that are

separated by valleys of low posterior probability, as measured by the number of incremental

moves it would take to move from one to the other. To this extent, we expect LSP proposals

to offer an advantage over existing methods in their ability to navigate complicated posterior

distributions. This is because the step size v in LSP proposals permits the generation of

candidate partitions that can be radically different from the partition in the current state.

For the purpose of illustration, we compare the effectiveness of different proposal distri-

butions using data generated according to the following regression model.

yt = h(xt,β, πn) + εt =
K∑
k=1

( ∑
j∈Gk

xjtβj

)2
+ εt, εt ∼ N(0, σ2) (32)

Here the n-dimensional covariate vector xt = (x1t, . . . , xnt) is partitioned into K ≤ n groups,

which introduces nonlinearities into the conditional mean function h(xt,β, πn). We assume

a uniform prior for πn so that the conditional posterior reduces to

p(πn|y,x,β, σ2) ∝
T∏
t=1

N
(
h(xt,β, πn), σ2

)
. (33)

We simulate D = 25 data sets from the model in (32), each with n = 6 covariates and

T = 20 observations. For each data set, we fix β1 = · · · = βn = 1 and the error variance
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σ2 = 1, and generate the true partition from an LSP distribution with ρn = (1, 1, 1, 1, 1, 1)

and τ = n. We generate the covariates xit from either a Unif(-1,1) or a Unif(0,2) distribution,

with each distribution giving rise to likelihood surfaces of different complexities.

Each Markov chain is run for R = 2000 iterations and we discard the first 50% of draws

as burn-in. The step size for both types of LSP proposals is taken to be v = 1/(n log(n)).

To address concerns of dependence on parameter starting values, the initial value of the

partition for each chain is randomly drawn from an LSP distribution with ρn equal to the

partition with n groups and τ = n. For the Gibbs sampling routine, we also fix the number

of groups to be the true number of groups for each data set. The performance of the Gibbs

sampler will thus be overstated, as the number of groups is almost always unknown.

The top panel of Figure 6 plots a sample log likelihood for each distribution of the

covariates. The x-axis is sorted according to the adjusted Rand index where each πn ∈ Pn

is compared to the partition with one group – i.e., the partition with one group is farthest

on the left and the partition with n groups is farthest on the right. The vertical black line

marks the position of the partition used to generate the data. The bottom panel of Figure 6

plots the similarity between the true partition and π
(r)
n for each post-burn-in draw using the

adjusted Rand index.2

We find that the performance of the samplers is highly dependent on the complexity of

the likelihood surface. When the covariates are in the range (-1,1), the likelihood is relatively

flat over Pn and the samplers do equally well in exploring the conditional posterior. However,

the likelihood exhibits significant peaks and valleys when the covariates are positive. While

this poses a problem for samplers that use (group-wise) incremental moves, LSP proposals

remain effective in navigating the complicated likelihood surface to find regions of high

probability. An alternative explanation for low values of the adjusted Rand index is that the

2The Rand index measures the similarity between two partitions on the basis of how often items get
assigned into the same/different groups. The adjusted Rand index is just the Rand index accounting for
chance of co-clustering under some null model. Specifically, it measures the normalized difference of the Rand
index and its expected value under the null hypothesis that the induced contingency table (from comparing
the two partitions) is generated from a hypergeometric distribution (Hubert and Arabie, 1985).
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Figure 6: The top panel plots a sample log likelihood for each set of covariates. The vertical
line indicates the position of the partition used to generate the data. The bottom panel plots
the Rand-similarity between the true partition and each post-burn-in draw π

(r)
n .

Markov chain has yet to reach its stationary distribution. Formally testing for convergence

here is challenging because the high-dimensional discrete parameter space precludes the use

of traditional convergence diagnostic tools. However, Figure 6 still indicates the relative

speed at which the different samplers navigate to regions of high posterior probability. It

has also been our experience that the patterns shown in Figure 6 change very little as the

number of iterations grows.

We repeat the simulation study described above in a higher-dimensional setting where

n ∈ {25, 50, 75, 100}. For each value of n, we generate D = 25 data sets where the amount of

information is either high (T = 10n) or low (T = 5n). The step size is set to v = 1/(n log(n))

and we let R = 500n so that the run length increases with the dimension of Pn. For block

LSP proposals, we add an additional constraint to the block configuration sampling scheme.

In each iteration of the chain, the block structure will have one group (reducing to a single

LSP proposal) with probability θ or will be drawn from the scheme proposed in Section 4.2

with probability 1−θ, where we fix θ = 0.5. This strategy takes advantage of gains in mixing

associated with block sampling while minimizing the costs of longer run times.
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Each sampler is then evaluated in two ways: (1) how well it recovers the true partition,

which we measure by computing the adjusted Rand index between the posterior draws

associated with each data set π
(r)
n,d and the true partition πtrue

n,d ; (2) how well it recovers the

true number of groups, as measured by the difference between the posterior draws K
(r)
d and

the true value Ktrue
d = max(πtrue

n,d ). The results are shown in Table 1.

Table 1: Results from a high-dimensional simulation study. The LSP and block LSP samplers
are evaluated based on how well they can recover the true partition (measured by computing
the average adjusted Rand index (ARI) between posterior draws of πn and the true partition)
as well as the true number of groups (measured by computing the average difference between
posterior draws of K and the true number of groups).

Partitions: ARI(π
(r)
n,d, π

true
n,d ) Groups: K

(r)
d −Ktrue

d

LSP block LSP LSP block LSP
Observations Dimension Mean SD Mean SD Mean SD Mean SD
High n = 25 0.98 0.05 1.00 0.01 -0.02 0.18 0.00 0.00

n = 50 0.98 0.04 0.99 0.02 0.36 0.76 0.33 0.77
n = 75 0.95 0.04 0.98 0.03 0.04 0.21 0.04 0.20
n = 100 0.90 0.10 0.96 0.05 2.82 2.27 2.22 2.10

Low n = 25 0.82 0.30 0.88 0.27 0.33 0.64 0.17 0.49
n = 50 0.53 0.33 0.65 0.30 5.96 1.45 5.09 1.98
n = 75 0.33 0.19 0.41 0.24 1.90 2.46 0.72 1.37
n = 100 0.22 0.15 0.25 0.13 6.63 2.35 6.93 2.03

We find that LSP proposals do well in navigating high-dimensional posteriors with a suffi-

cient amount of data. However, when the amount of data is small relative to n, the posterior

of πn tends to concentrate in areas farther away from the true partition and overestimate

the number of groups K. Although these results are conditional on the likelihood defined

by (32) and the uniform prior on πn, our approach is likely best suited for empirical settings

where T is large relative to n. In even higher-dimensional settings where T < n and/or n

is in the hundreds or thousands, further item-level restrictions would be necessary to ensure

good mixing and convergence.
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5 An Application to Store-Level Category Demand

Category managers face the task of setting price and promotion schedules, arranging end-aisle

displays, allocating shelf-space among national and store brands, and forecasting category

demand. These activities all depend on the estimation of a demand system that relates

prices to quantities purchased among the set of goods within the category. The challenge is

that categories are often broadly defined (e.g., juice, salty snacks, cereal), spanning a large

set of products and product attributes. This gives rise to product subcategories, which are

usually more homogeneous in at least one attribute dimension like flavor (e.g., pretzels).

When optimizing marketing actions for a category, managers must consider if and how

demand is related across subcategories. For instance, if price changes of potato chips tend

to have appreciable effects on the demand for other salty snacks, then optimal marketing

actions must be solved for as a function of all products in the entire salty snacks category.

However, if demand is completely isolated by subcategory (e.g., demand for potato chips is

unaffected by price changes to pretzels and vice-versa), then the manager could simplify the

problem by separately solving for optimal policies within each subcategory. The extent to

which subcategories are related or isolated is ultimately an empirical question, and one we

will address using the partitioning methodology outlined above.

We start with a flexible category demand model which regresses the log of total purchase

volume for products i = 1, . . . , n on the set of log prices for all related goods as well as other

product-specific covariates zjt for j = 1, . . . , p using t = 1, . . . , T weeks of data.

log yit =
n∑
j=1

βij log pjt +

p∑
j=1

ψijzjt + εit (34)

This results in a system of n demand equations that are related through the joint error vector

εt = (ε1t, . . . , εnt) ∼ N(0,Σ). Although the errors could also exhibit some dependence over

time, the typical approach in the demand modeling literature is to maintain the assumption

of independence while accounting for various time trends in the set of controls zjt (e.g.,

Montgomery, 1997; Wedel and Zhang, 2004). In our application, we include year dummies
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in addition to product intercepts as controls. The log-linear demand specification in (34) is

popular in practice for three reasons: (1) the model parameters βij represent price elasticities

which measure the percent change in demand for product i given a one percent increase in

price for product j; (2) the system is flexible, as it can admit substitution patterns consistent

with both substitutable (βij > 0) and complementary (βij < 0) goods; (3) the model is linear

in βij so estimation of model parameters is straightforward.

Model flexibility becomes especially important as the size and scope of the product cate-

gory grows. For example, while all potato chips may be substitutes, it may be the case that

some potato chips and pretzels are complements. If the goal is to forecast demand for the

entire salty snack category, a model assuming unit demand among substitutable goods (e.g.,

logit-based demand systems) would be inappropriate. However, flexibility comes at a cost

of estimating the n2 parameters making up the full n× n price elasticity matrix B = {βij}.

Since many pricing/promotion schedules are customized to the store level, it is also impor-

tant to be able to generate precise parameter estimates and demand forecasts even for a

relatively short panel of observations. The demands on the data can therefore be significant

when the number of products in a given category is large.

One way to improve the precision of elasticity estimates is to impose prior restrictions on

the elasticity parameters (Blattberg and George, 1991; Montgomery and Rossi, 1999). Here

we propose a “grouped isolation” restriction in which demand is unaffected by changes in

price of products in different groups. The partition πn = (g1, . . . , gn) then imposes equality

restrictions on cross-price elasticities such that βij = 0 if gi 6= gj and is left unrestricted

otherwise. Conditional on any single partition, the model imposes very strict restrictions

on cross-price effects. Therefore, the benefits of dimension reduction may be limited if the

shrinkage patterns induced by the partition are misspecified. By letting the partition be a

model parameter, we can both learn about the structure of demand from the data as well as

average over any uncertainty in πn when forecasting demand.3

3It could also be argued that a partition with one group, in which everything relates to everything
else, is always the “true structure.” However, we focus on situations where it is desirable to impose some
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An alternative approach to reducing the dimension of the cross-price elasticity matrix is

to rely on other shrinkage and regularization methods. Classical examples include ridge

regression (Hoerl and Kennard, 1970), the lasso (Tibshirani, 1996), and the elastic net

(Zou and Hastie, 2005). Bayesian regularization arises through the specification of various

sparsity-inducing priors on the regression coefficients. Examples include spike-and-slab priors

(Mitchell and Beauchamp, 1988; George and McCulloch, 1997), Student-t priors (Tipping,

2001), Laplacian priors (Park and Casella, 2008; Hans, 2009), orthant normal priors (Hans,

2011), Horseshoe priors (Carvalho et al., 2010), and spike-and-slab lasso priors (Ročková and

George, 2018).

While each of these methods produces different sparsity patterns, a common theme is

that they all assume independence between regression coefficients a priori. When applied to

demand models in the form of (34), this implies that the shrinkage imposed on one cross-

price elasticity βij is entirely independent of the shrinkage imposed on any other elasticity

a priori. In contrast, our approach shrinks cross-price elasticities to zero at the group level,

which effectively sets blocks of cross-price elasticities to zero. Our approach is therefore

closest to other group-level regularization methods, such as the group lasso (Yuan and Lin,

2006) and sparse-group lasso (Simon et al., 2013). These methods have been shown to work

well when the covariates exhibit a natural grouping structure. One key difference is that we

also treat the partitioning of items into groups as a model parameter.

The regularization literature has also focused on fixed shrinkage points set to zero. This

may not be ideal in a demand modeling context because the Slutsky equation suggests

that price effects are comprised of both substitution effects and income effects (Deaton and

Muellbauer, 1980). Thus, even when substitution effects are zero, non-zero income effects

imply non-zero price effects. Although we have assumed zero shrinkage points to simplify the

analysis, our restrictions on βij can be extended to include (non-zero) group-level parameters

that provide differential shrinkage across product groups.

restrictions on model parameters either because of data limitations or to improve the precision and reliability
of estimates.
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5.1 Data Description

We apply the demand model described above to store-level data from the IRI Marketing data

set (Bronnenberg et al., 2008). We use five years of weekly price and purchase volume data

from one store in Eau Claire, Wisconsin. Four years of data (T = 208) are used for estimation

and one year (T = 52) is used for prediction. We focus on the salty snacks category and

include UPCs from all subcategories: potato chips (PTOCHP), pretzels (PRETZL), tortilla

chips (TTACHP), corn snacks (CRNSNK), cheese snacks (CHESNK), popcorn (POPCRN),

and other salted snacks (OTHER). We aggregate UPCs to the brand level within each

subcategory due to the high collinearity of prices within a brand’s product line (e.g., Classic

Lay’s vs. Barbecue Lay’s). Weekly volume for each brand is taken to be the sum of UPC-

level volumes, while weekly prices are volume-weighted averages of UPC-level prices. Brands

with low within-subcategory market share are also discarded due to the abundance of missing

data. A description of the resulting n = 40 products (which correspond to 454 unique UPCs)

is provided in Table C.1.

5.2 Prior Specification

A fully unrestricted log-linear model and a log-linear model subject to isolation restrictions

are fit to the data. Conjugate but diffuse priors are placed on parameters in the unrestricted

multivariate regression model: ψij ∼ N(0, 100), vec(B)|Σ ∼ N(β̄,Σ ⊗ A−1), Σ ∼ IW(ν, V ),

β̄ = 0, A−1 = 10I, ν = n+ 3, and V = νI. Note that the prior for all elasticity parameters

is centered at 0 with a variance of 10, which implies that the prior places roughly 95% of its

mass on the range (-6,6). We believe this is reasonable as own-price elasticities do not usually

fall below -6% and cross-price elasticities do not usually exceed 6%. Prior information about

the sign of the elasticities can also be imposed by specifying elements of β̄ to be non-zero.

Doing so can help improve the practical validity of the model by ensuring that the sign of

the estimated elasticities conforms with economic theory (e.g., substitutes exhibiting positive

cross-price elasticities). However, given the wide assortment of goods we study, not all goods
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may be strict substitutes so we maintain a relatively uninformative prior with β̄ = 0.

In the restricted model, the joint prior for the elasticities and partition is specified as

βπn|πn ∼ N(β̄πn , a
−2Iπn) (35)

πn ∼ LSP(ρn, τ) (36)

where Iπn denotes a diagonal matrix of dimension equal to the number of unrestricted elas-

ticities conditional on πn. For example, if there are n = 4 goods and πn contains K = 2

groups each having two products, then the dimension of βπn will be 22 + 22 = 8. In gen-

eral, the dimension of βπn increases as the number of groups K decreases since fewer groups

implies more within-group cross-elasticities. The dimension of this conditional posterior is

important because any MH algorithm that jointly updates (βπn , πn) will evaluate an accep-

tance probability that includes the ratio of prior densities evaluated at the proposed and

current values: p(β∗π∗
n
|π∗n)p(π∗n)/

(
p(βπn|πn)p(πn)

)
. However, if dim(β∗π∗

n
) > dim(βπn) and

these conditional priors are specified to be diffuse, then the ratio of prior densities will favor

βπn simply because it contains fewer elements than β∗π∗
n
. In other words, diffuse priors will

give more weight to models with fewer dimensions, effectively penalizing models with fewer

groups and many unrestricted elasticities. This effect can be countered by specifying a more

informative conditional prior p(βπn|πn) or by choosing the LSP hyperparameters to favor

models with fewer groups (e.g., letting ρn have one group and choosing a small value of τ).

In our restricted models, we specify the same prior for ψij and Σ as the unrestricted

models. We then let β̄πn|πn ∼ N(0, 10Iπn) and consider a variety of prior specifications

for πn. The first is the prior distribution on partitions that is induced by the DP with

concentration parameter α = 1. This prior will be relatively flat over the space of pairwise

assignment probabilities, but will tend to favor partitions with a few large groups and many

small groups. Then we consider different LSP priors where ρn is either a partition with

one group (LSP-one), a partition based on predefined subcategories (LSP-category), or a

partition based on brands (LSP-brand). In each case, we make the prior informative by
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setting τ = 0.1/(n log(n)). Finally, we specify a covariate-dependent LSP prior with two

covariates: end-aisle display advertising frequency and in-store circulator feature advertising

frequency. We also let the location partition for this prior have one group. Moreover, the

covariates are rescaled to have mean zero and unit variance, and the scaling parameter for

both covariates is set to λ = 0.1/(n log(n)).

5.3 Computation

To facilitate posterior sampling, we first rewrite the multivariate normal likelihood as a

seemingly unrelated regression (SUR) model.
y1

...

yn

 =


X1,πn

. . .

Xn,πn



β1

...

βn

+


Z1

. . .

Zn



ψ1

...

ψn

+


ε1
...

εn

 (37)

The design matrix for product i, denoted X i,πn , now contains the columns of X for all other

products j such that gi = gj. The benefit of the SUR likelihood representation is that we

now have a model that is linear in the vector of unrestricted elasticities βπn . Assuming

a normal prior on ψ and a conditionally normal prior on βπn|πn gives rise to closed form

expressions for the associated full conditional distributions.

MCMC methods are used to sample from the posterior of each model. For the unrestricted

model, we use a Gibbs sampler that draws β|ψ,Σ,y using the normal posterior for conjugate

multivariate regression models and then draws ψ,Σ|β,y using the normal posterior for

conjugate SUR models (Rossi et al., 2005). For the restricted models, the same Gibbs step

is used to draw ψ,Σ|β,y. However, to sample from the posterior of βπn , πn|ψ,Σ,y, we use

a joint MH proposal described in Appendix D. Each chain is run for R = 500, 000 iterations

and then thinned by keeping every 100th draw to reduce autocorrelation. The first 50% of

draws are discarded as burn-in.
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5.4 Results

Table 2 reports in-sample and predictive fit statistics. In particular, we report the posterior

mean and standard deviation of the root mean-squared error (RMSE) statistic. We find

the in-sample fit to be similar across models, suggesting the restricted models can retain

flexibility when the partition is estimated. In terms of predictive fit, however, we find

the restricted models outperform the unrestricted model by roughly 5-6 percentage points.

Among the restricted models, the LSP-one prior performs best, although the differences are

relatively small.4

Table 2: Model Fit Statistics

In-Sample RMSE Predictive RMSE
Model Mean SD Mean SD
1. Unrestricted 0.542 0.004 0.668 0.011
2. Restricted w/ DP prior 0.538 0.002 0.611 0.005
3. Restricted w/ LSP-one prior 0.535 0.002 0.607 0.006
4. Restricted w/ LSP-category prior 0.542 0.002 0.614 0.005
5. Restricted w/ LSP-brand prior 0.542 0.002 0.613 0.004
6. Restricted w/ LSPx prior 0.535 0.002 0.612 0.005

One benefit of imposing isolation restrictions is a reduction in the number of estimated

parameters. For example, while there are 402 = 1600 price elasticities to be estimated in the

unrestricted model, there are only 135 elasticities on average (a posteriori) in the restricted

model with the LSP-one prior. We find this dimension reduction improves the precision of

demand forecasts, as the standard deviations of the predictive RMSEs are roughly cut in

half relative to the unrestricted model. Dimension reduction also provides gains in efficiency

of the elasticity estimates themselves. Figure 7 compares the estimated own-price elasticities

from the unrestricted model and the restricted model with the LSP-one prior. While we find

a high degree of correlation between the posterior means (≈ 0.97), the restricted model leads

to a reduction in the posterior standard deviation for all products.

4We also fit LSP-one priors where τ is scaled down and up by a factor of 1000. The fit of the more
informative prior is similar to the original LSP-one prior, while the fit of the diffuse prior is similar to that
of the DP prior.
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Figure 7: Posterior means and standard deviations of the set of n = 40 own-price elasticities
are plotted for the unrestricted model and the restricted model with an LSP prior centered
around the partition with one group.

Precision is important here because own-price elasticity parameters are a key input into

retailer optimal pricing problems (Montgomery, 1997; DellaVigna and Gentzgow, 2017).

Specifically, when a monopolist retailer sets prices to maximize total category profits, log-

linear demand models give rise to optimal markups of the form βii/(1 + βii). Given the

curvature of this function near zero, large posterior standard deviations in the own elasticities

can lead to a long upper tail in the distribution of optimal prices. More precise estimates of

βii can thus ensure more stable and reliable pricing.

Next, we examine the posterior distribution of partitions under the various restricted

models. Figure 8 plots the posterior pairwise similarity matrices for restricted models with

a DP prior, LSP-one prior, LSP-category prior, and LSP-brand prior. In each plot, the

upper left corner shows how often two products are grouped together in the posterior and

the bottom right corner shows the composition of product subcategories. This is done just

to help visualize the extent to which demand is or is not isolated across subcategories.

In general, we find evidence that demand is not perfectly isolated across subcategories.

The greatest cross-subcategory clustering is induced by the DP and LSP-one priors, which

both place appreciable mass on all pairwise clustering probabilities a priori. For example,
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Figure 8: Posterior pairwise similarity matrices are plotted for the restricted demand models
with a DP prior, LSP prior, LSP-category prior, and LSP-brand prior. The upper left corner
shows posterior similarity and the bottom right corner shows the composition of product
subcategories defined in the data.
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the LSP-one prior leads to a posterior similarity matrix that places positive probability on

64% of all off-diagonal elements. This is in stark contrast to the LSP-category and LSP-

brand priors, which only place positive posterior probability on 17% and 11% of off-diagonal

elements, respectively.

The differences in the posterior similarity matrices in Figure 8 also illustrate the role of the

prior partitioning model on posterior inference. In our data set, the number of observations

is still relatively small so the prior will more strongly inform posterior clustering. Retail

managers applying this methodology to shallow data sets will then want to make sure that

their partitioning prior reflects both current knowledge of market structure as well as the

strength of that belief. One benefit of the LSP prior is that its location-scale parameterization

directly facilitates this prior elicitation: market structure can be represented through ρn and

the strength of belief is reflected by τ . If one wants to guard against too much prior influence,

then priors can be placed on ρn and τ .

Figure 9 plots the induced posterior distribution over the number of groups K for the

same four restricted models. We find the ordering to be consistent with our expectation.

For example, there are K = 21 groups (unique brands) in the LSP-brand prior, which is

close where the corresponding posterior places most of its mass. In contrast, the LSP-

one prior concentrates its posterior mass around partitions with K = 13 groups, showing

how it can penalize models with many groups. The LSP-category prior imposes a similar

restriction, but to a lesser extent as there are seven unique categories in the data. The

posterior corresponding to the DP prior is centered closer to K = 22 and has a larger spread

than the other distributions. This is likely because the DP prior induces a distribution over

K that is more flat than the LSP prior.

Lastly, we examine the results from the restricted model with the covariate-dependent

LSP prior. Figure 10 depicts the influence of feature and display advertising on the posterior

partitioning behavior. For both covariates, we find a negative relationship between the

distance in covariate space between two products and their posterior probability of being
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Figure 9: The posterior distribution over the number of groups K is plotted for the restricted
models with a DP prior, LSP prior, LSP-category prior, and LSP-brand prior.

grouped together. That is, if two products tend to have similar frequencies of feature or

display advertising (i.e., low covariate distance), then they have a higher chance of being

grouped together a posteriori. In particular, this correlation is -0.18 for feature advertising

and -0.21 for display advertising. The negative correlations appear reasonable, as co-occuring

store circulator ads for two products may actually generate cross-price effects between them.
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Figure 10: Pairwise posterior grouping probabilities are plotted against pairwise covariate
similarity for the restricted model with the covariate-dependent LSP prior.
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6 Discussion

This paper presents a Bayesian method of joint inference for the class of partitioned demand

models. We build on previous nonparametric Bayesian models for random partitions to

construct the LSP distribution, which is a formal probability distribution on Pn indexed

by a location partition ρn and scale parameter τ . The LSP model serves two purposes.

First, it is used as a proposal distribution within a random-walk MH algorithm. We find

this approach to be especially effective in situations where incremental updates of the item-

group indicator variables are either inefficient or intractable. The LSP distribution is also

used as a prior which can be used to incorporate other covariate information.

The value of the LSP distribution is then illustrated empirically in the context of an

aggregate demand model applied to data in the salty snack category. We include products

that span many subcategories, which usually presents challenges in inference due to limited

data and quadratic growth in the number of demand parameters. This problem of modeling

and forecasting demand across a wide assortment of goods is common in retail settings. Our

solution is to partition the cross-elasticity matrix into groups of related and unrelated goods.

This induces equality restrictions on sets of cross-elasticity parameters while still retaining

model flexibility when the partition is estimated. We find that imposing these restrictions

improves demand forecasts, increases the precision of elasticity estimates, and allows us to

learn about the structure of category competition.

There are several limitations and possible extensions of the current work. First, we have

assumed throughout that the number of observations exceeds the number of products. In

many practical large-scale demand settings, this may not be the case. It would then be useful

to explore how other regularization priors, which are commonly used in high-dimensional

settings, could be used to generate similar group-level shrinkage patterns for really large-

scale demand problems. Additionally, while our empirical application has focused exclusively

on store-level sales data, partitioned demand models can also be estimated with household-

level choice data. When combined with a household-level partitioned demand model, the LSP
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distribution could be used as a hierarchical prior to model heterogeneity in the partition along

with the heterogeneity in usual set of demand parameters. However, the required number

of observations per household may be high in order to get traction on the household-level

posterior distributions.

This paper has also only considered single-layer, non-overlapping partitions. Other types

of partition structures (e.g., multi-layer partitions and/or partitions with overlapping clus-

ters) are common in areas of regression tree modeling and network analysis. The advantages

offered by these methods are likely to be problem and model specific. For example, if the

goal is to simply predict demand or find zero or non-zero cross price effects, then our model

is flexible enough and the particular topology of the random grouping structure is less im-

portant. We also believe that the ideas presented here could be used to modify more flexible

partitioning models such as the Indian buffet process (Griffiths and Ghahramani, 2011),

which allows items to appear in multiple groups.

Furthermore, in economic demand models it may also be the case that the covariates

included in the demand equation or LSPx prior (e.g., prices or promotion incidence and

frequency) are set strategically by the firm. That is, the firm may choose to coordinate prices

or promotions across products in anticipation of some marketplace response. To formally

control for these supply-side effects, we would need to integrate a supply-side model (i.e., a

likelihood function for the covariates) with the demand equation and then generate samples

from the resulting joint posterior. While simultaneous models of supply and demand have

been developed in the literature (e.g., Yang et al., 2003), price is usually the only strategic

variable of the firm. Extending this work into the class of partitioned demand models would

allow the firm to also affect the structure of product categories as perceived by the consumer.

Finally, more work is needed on the convergence and scaling properties of Markov chains

on high-dimensional discrete spaces like Pn. The challenge is that many traditional diagnostic

statistics (e.g., Gelman and Rubin, 1992) are based on normal-theory approximations to the

posterior, which seem unreasonable given the non-Euclidean dimension of the posteriors

43



studied here. Visual inspection of trace plots can be a useful diagnostic tool, but can also

be unreliable as the number of items grows. For example, it is common in high-dimensional

settings for the Markov chain to not visit any partition more than once. This also challenges

the use of many conventional posterior summary statistics, such as maximum a posteriori

estimates. Recent work by Wade and Ghahramani (2018) develops posterior credible balls

for partition parameters to more formally characterize uncertainty, which would be a useful

extension to our empirical setting. We leave these extensions for future work.
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A Proofs

Property 1 (Location-Scale Consistency). If πn ∼ LSP(ρn, τ), then for any number of items

n and location partition ρn ∈ Pn,

lim
τ→0

Pr(πn = ρn|ρn, τ) = 1.

Proof. Since each item-group assignment variable gi is generated sequentially, we use math-

ematical induction to show that gi = si as τ → 0 for i = 1, . . . , n. Since g1 = s1 = 1 trivially,

we use i = 2 as a base case.

BASE CASE: There are two cases to consider.

(i) Suppose s2 = s1. We must show that as τ approaches zero, the probability that

item 2 starts a new group goes to zero (w0(·) → 0) and the probability that it

joins the first group goes to one (w1(·)→ 1).

w0(s2, τ) = c̃2 ·
τ + 1(s2 = C(2) + 1)

τC(2) + τ + 1
= c̃2 ·

τ

τC(2) + τ + 1
→ 0

w1({s2, S1}, τ) = c̃2 ·
τ + ns2S1

τC(2) + τ + n1

= c̃2 ·
τ + 1

τC(2) + τ + 1
→ 1

(ii) Suppose s2 = C(2) + 1 6= s1. We must show that as τ approaches zero, the

probability that item 2 starts a new group goes to one (w0(·) → 1) and the

probability that it joins the first group goes to zero (w1(·)→ 0).

w0(s2, τ) = c̃2 ·
τ + 1(s2 = C(2) + 1)

τC(2) + τ + 1
= c̃2 ·

τ + 1

τC(2) + τ + 1
→ 1

w1({s2, S1}, τ) = c̃2 ·
τ + ns2S1

τC(2) + τ + n1

= c̃2 ·
τ

τC(2) + τ + 1
→ 0

INDUCTIVE STEP: Assume that gi = si for i = 1, . . . , j − 1 where j < n + 1. We

wish to show that gj = sj. There are again two cases to consider.

(i) Suppose sj = c where c ∈ {1, . . . , C(j)}. We must show that as τ approaches

zero, the probability that item j starts a new group goes to zero (w0(·)→ 0), the
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probability that it joins group c goes to one (wc(·) → 1), and the probability it

joins any other group k 6= c goes to zero (wk(·)→ 0).

w0(sj, τ) = c̃j ·
τ + 1(sj = C(j) + 1)

τC(j) + τ + 1
= c̃j ·

τ

τC(j) + τ + 1
→ 0

wc({sj, Sc}, τ) = c̃j ·
τ + n

sj
Sc

τC(j) + τ + nc
= c̃j ·

τ + nc
τC(j) + τ + nc

→ 1

wk({sj, Sk}, τ) = c̃j ·
τ + n

sj
Sk

τC(j) + τ + nk
= c̃j ·

τ

τC(j) + τ + nk
→ 0

(ii) Suppose sj = C(j) + 1. We must show that as τ approaches zero, the probability

that item j starts a new group goes to one (w0(·) → 1) and the probability that

it joins group k goes to zero (wk(·)→ 0) for any k = 1, . . . , K(j).

w0(sj, τ) = c̃j ·
τ + 1(sj = C(j) + 1)

τC(j) + τ + 1
= c̃j ·

τ + 1

τC(j) + τ + 1
→ 1

wk({sj, Sk}, τ) = c̃j ·
τ + n

sj
Sk

τC(j) + τ + nk
= c̃j ·

τ

τC(j) + τ + nk
→ 0

Property 2 (Marginal Invariance). If πn ∼ LSP(ρn, τ), then for any number of items

n, location partition ρn ∈ Pn, scale parameter τ > 0, and distribution p(sn+1) such that∑
sn+1

p(sn+1) = 1,

p(πn|ρn, τ) =
K+1∑
gn+1=1

C+1∑
sn+1=1

p(πn+1|ρn, sn+1, τ)p(sn+1)

where K = max{g1, . . . , gn} and C = max{s1, . . . , sn}.

Proof. First pick an arbitrary value of sn+1 ∈ {1, . . . , C + 1}. By the sequential nature of
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the Pólya-urn scheme, we have

K+1∑
gn+1=1

p(πn, gn+1|ρn, sn+1, τ) =
K+1∑
gn+1=1

p(gn+1|πn, ρn, sn+1, τ)p(πn|ρn, sn+1, τ)

= p(πn|ρn, τ)
K+1∑
gn+1=1

p(gn+1|πn, ρn, sn+1, τ)

= p(πn|ρn, τ)
[
w0(·) + w1(·) + . . .+ wK(·)

]
= p(πn|ρn, τ).

Since p(πn|ρn, τ) does not depend on sn+1 and
∑C+1

sn+1=1 p(sn+1) = 1, it follows that

K+1∑
gn+1=1

C+1∑
sn+1=1

p(πn, gn+1|ρn, sn+1, τ)p(sn+1) =
C+1∑

sn+1=1

[
K+1∑
gn+1=1

p(πn, gn+1|ρn, sn+1, τ)

]
p(sn+1)

=
C+1∑

sn+1=1

p(πn|ρn, τ)p(sn+1)

= p(πn|ρn, τ)
C+1∑

sn+1=1

p(sn+1)

= p(πn|ρn, τ)

as desired.
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B Behavior of the ddCRP and EPA Models
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(d) EPA: scaling parameter = 0
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Figure B.1: Each plot shows the extent to which the ddCRP and EPA distributions can
be centered around a location partition ρn. For each partition distribution, 10,000 random
partitions of length n = 10 are drawn and then compared to ρn = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
using the adjusted Rand index. The EPA and ddCRP distributions are both parameterized
by an exponential decay function and by the pairwise distance matrix induced by ρn. The
surface of each plot then shows the averaged adjusted Rand index across values of the scaling,
mass, or discount parameters.
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C Product Descriptions

Table C.1: Salty Snack Product Descriptions

Brand Subcategory
Subcategory

Volume Share
Feature

Frequency
Display

Frequency
1 BARREL O FUN CHESNK 23.24 1.56 31.97
2 CHEETOS CHESNK 76.76 13.13 29.43
3 BARREL O FUN CRNSNK 13.12 0.48 66.46
4 BUGLES CRNSNK 19.17 18.63 20.53
5 FRITOS CRNSNK 38.42 22.14 30.84
6 FRITOS SCOOPS CRNSNK 26.97 0.18 34.04
7 OLD DUTCH CRNSNK 2.32 0.00 1.91
8 GARDETTOS OTHER 12.06 19.41 11.24
9 GENERAL MILLS CHEX MIX OTHER 47.07 16.84 18.49

10 MUNCHOS OTHER 1.26 0.00 0.00
11 PRIVATE LABEL OTHER 2.15 0.00 0.00
12 S & W PIK NIK OTHER 3.48 0.00 0.00
13 SUNCHIPS OTHER 33.99 21.05 47.58
14 BAKED LAYS PTOCHP 2.48 0.48 19.25
15 BAKED RUFFLES PTOCHP 2.45 6.70 19.40
16 BARREL O FUN PTOCHP 4.69 5.96 27.02
17 LAYS PTOCHP 27.14 35.09 58.54
18 OLD DUTCH PTOCHP 9.07 4.20 12.03
19 POORE BROTHERS PTOCHP 3.78 0.96 21.25
20 PRINGLES PTOCHP 14.89 5.47 6.34
21 PRINGLES CHEEZUMS PTOCHP 1.81 5.26 3.83
22 PRINGLES FAT FREE PTOCHP 1.40 0.00 0.00
23 PRINGLES RIGHT CRISPS PTOCHP 1.76 4.88 4.81
24 PRIVATE LABEL PTOCHP 8.80 9.61 11.35
25 RUFFLES PTOCHP 9.93 13.24 33.17
26 WAVY LAYS PTOCHP 11.81 34.98 51.96
27 BARREL O FUN PRETZL 4.07 0.00 25.84
28 OLD DUTCH PRETZL 12.42 11.31 0.69
29 PRIVATE LABEL PRETZL 27.19 13.46 14.99
30 ROLD GOLD PRETZL 45.32 11.09 37.28
31 SNYDERS OF HANOVER PRETZL 11.00 3.40 16.78
32 BARREL O FUN POPCRN 28.08 0.00 2.75
33 CRUNCH N MUNCH POPCRN 25.56 20.93 0.00
34 OLD DUTCH POPCRN 46.37 1.68 0.00
35 BAKED TOSTITOS TTACHP 3.03 0.96 20.57
36 BARREL O FUN TTACHP 18.21 2.92 32.96
37 DORITOS TTACHP 40.57 25.00 58.92
38 GARDEN OF EATIN BLUE CHIPS TTACHP 1.14 3.53 7.02
39 OLD DUTCH TTACHP 5.07 7.49 14.74
40 TOSTITOS TTACHP 31.98 12.90 37.84
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D MH Step for the Isolated Demand Model

1. Generate the candidate partition

π∗n ∼ q1(πn|π(r)
n , v) = LSP(π(r)

n , v)

where v = 1/(n log(n)). Then conditional on π∗n, generate β∗πn from its full conditional

distribution

β∗πn ∼ q2(β|y,Xπ∗
n
, π∗n,Σ) = N(β̃, (X̃

′
π∗
n
X̃π∗

n
+ Aπ∗

n
)−1)

where β̃ = (X̃
′
π∗
n
X̃π∗

n
+Aπ∗

n
)−1(X̃

′
π∗
n
ỹ+Aπ∗

n
β̄π∗

n
), X̃π∗

n
= ((U−1)′⊗I)Xπ∗

n
, and Σ = U ′U .

2. Set (π
(r+1)
n ,β(r+1)

πn ) = (π∗n,β
∗
πn) with probability

A(π∗n,β
∗
πn , π

(r)
n ,β(r)

πn )

= min

{
1,

p(y|Xπ∗
n
,β∗πn , π

∗
n,Σ)p(β∗πn|π

∗
n)p(π∗n)

p(y|X
π
(r)
n
,β(r)

πn , π
(r)
n ,Σ)p(β(r)

πn |π
(r)
n )p(π

(r)
n )
×
q2(β

(r)
πn |π

(r)
n )q1(π

(r)
n |π∗n)

q2(β
∗
πn|π∗n)q1(π∗n|π

(r)
n )

}
.

Otherwise, set (π
(r+1)
n ,β(r+1)

πn ) = (π
(r)
n ,β(r)

πn ).
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