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Abstract  

Energy economy models are central to decision making on energy and climate issues 
in the 21st century, such as informing the design of deep decarbonisation strategies 
under the Paris Agreement. Designing policies that are aimed at achieving such 
radical transitions in the energy system will require ever more in-depth modelling of 
end-use demand, efficiency and fuel switching, as well as an increasing need for 
regional, sectoral, and agent disaggregation to capture technological, jurisdictional 
and policy detail. Building and using these models entails complex trade-offs between 
the level of detail, the size of the system boundary, and the available computing 
resources. The availability of data to characterise key energy system sectors and 
interactions is also a key driver of model structure and parameterisation, and there 
are many blind spots and design compromises that are caused by data scarcity. We 
may soon, however, live in a world of data abundance, potentially enabling previously 
impossible levels of resolution and coverage in energy economy models. But while big 
data concepts and platforms have already begun to be used in a number of selected 
energy research applications, their potential to improve or even completely 
revolutionise energy economy modelling has been almost completely overlooked in 
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the existing literature. In this paper, we explore the challenges and possibilities of this 
emerging frontier. We identify critical gaps and opportunities for the field, as well as 
developing foundational concepts for guiding the future application of big data to 
energy economy modelling, with reference to the existing literature on decision 
making under uncertainty, scenario analysis and the philosophy of science. 
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1.0 Introduction 

The use of quantitative models to assist decision making in energy policy started in the 
1970s [1]. Prior to this, energy use had been observed to increase more or less in lock-step 
with economic growth, so the links between energy prices and demand were largely left 
unquestioned. This thinking was overturned by the response of industrialised countries to 
the 1973 and 1979 energy crises, both of which showed decision makers that there was 
actually significant capacity within their economies for energy efficiency and switching to 
alternative fuels. Energy economy models, which were enabled by the rapid rise in 
affordable computing power around the same time period, were initially developed to 
explore these options [2]. Since the 1970s the scope of application for such models has 
grown far beyond their original roots, and they now underpin much of the evidence base for 
energy and climate mitigation policies at the global level [3], and also long term 
greenhouse gas (GHG) reduction strategies at the national level [4]. Energy economy 
models are critical to strategic planning by governments, who are responsible for delivering 
energy security, economic development and environmental protection within an uncertain 
and rapidly changing landscape of international relations and natural environmental limits. 
A particularly challenging example, where models are critical, is decarbonisation planning 
under the 2015 Paris Agreement [5]. This commits nearly all governments to transition 
away from the combustion of fossil fuels to atmosphere by the end of the century, and 
likely by 2060-2080 to stay “well below [a] 2°C” increase from preindustrial temperatures 
[6]. 

Since their inception, energy economy models have been designed and developed to 
operate under conditions of data scarcity. Not only are such models used to inform 
decisions that are taken under future conditions characterised by deep uncertainty1 [7], and 
where there is insufficient information to reliably apply formal statistical methods, but the 
underlying baseline data used to characterise the current energy system are often sparse 
and contain critical gaps. Data scarcity, combined with historical computational limitations, 
has enforced a reductionist representation of many real world phenomena in models, with 
available data and tools often driving model structure and dynamics. For example, a lack of 
information on the spatiotemporal use of energy in the real world and discrete options to 
mitigate GHGs often leads to the use of representative load curves and idealized mitigation 
cost curves2 in engineering models. An example from economic modelling is the 
widespread use of optimisation and computable general equilibrium (CGE) type models, 
despite our awareness that real world firms and households are neither perfectly cost 
minimizing nor narrowly welfare maximizing, and that inputs cannot generally be smoothly 
substituted in response to price changes, as is common in these models. Data scarcity has 
dictated extensive idealization, abstraction and isolation of complex processes [8], and has 

                                                             
1 Paraphrasing Lempert et al.[150], we define deep uncertainty as the condition in which 
analysts do not know or the parties to a decision cannot agree upon: (1) the appropriate models 
to describe interactions among a system’s variables; (2) the probability distributions to 
represent uncertainty about key parameters in the models, and/or; (3) how to value the 
desirability of alternative outcomes 
2 The industrial end-use portion of the primary model used by the US government, NEMS, is still 
constructed this way. See the 2018 NEMS industry sector documentation: 
https://www.eia.gov/outlooks/aeo/nems/documentation/industrial/pdf/m064(2018).pdf 

 



also split the energy modelling world into two fundamentally different paradigms. One is 
based on the use of top-down economic statistics to populate CGE or macroeconometric 
models, and the other features models built from the bottom-up, using information on the 
quantities, characteristics and usage patterns of buildings, vehicles and machines that 
transform and consume energy [9]. Data scarcity continues to present fundamental 
challenges to both strategies for applying models to policy problems.  

Current innovations in data collection, storage, retrieval and processing have already begun 
to transform science in a number of areas, notably high-energy physics and astronomy [10]. 
In the near future, these innovations may offer the potential to change the operating 
environment for energy models from one that is characterised by data scarcity to one that 
is instead characterised by data abundance. However, an extensive review of the literature 
(introduced in Section 2.0) finds no work addressing the application of so-called big data 
concepts and tools to energy economy modelling. Accordingly, we find that the energy 
modelling field has not yet begun to grapple with what future advances in data science 
might mean for established practices, tools and techniques. In this paper, we explore the 
potential for big data to contribute to the enhancement of existing energy economy 
modelling for policy analysis, both in the near future and over the longer-term. 

 

2.0 Big data and energy research: the status quo 

There is broad agreement that information is being created and captured digitally at 
unprecedented speed and scale [11]. There is however, less agreement on how to 
characterise this trend, and on what the potential implications are for society, industry, 
governments, and scientific research. While big data is a rapidly emerging field, there are 
several overlapping definitions of what exactly constitutes big data in general use [12]. We 
will return to our own taxonomy for data in energy economy models later in the paper 
(Section 3.1), but the contested nature of the concept (i.e. what exactly is “big” data, and at 
what size does data become “big?”) merits highlighting early in the discussion.  

As well as being contested in terms of precise definitions, an additional characteristic of the 
current research landscape for big data is that the scientific community as a whole is 
arguably lagging behind commercially motivated efforts, with a significant proportion of 
the innovation, conceptual development, and general discourse on the subject being driven 
by industry. Much of the existing interest in big data is therefore focused on commercial 
applications in specific sectors, particularly healthcare [13], through an enhanced 
understanding of consumer trends [14], visualisation of these trends [15], and analysing the 
resulting implications for marketing and ecommerce [16]. 

For this study we carried out a systematic keyword search across the web’s major scientific 

databases, including Scopus, Web of Science, and Google Scholar [17]. For Scopus and Web 

of Science, which index mainly abstracts and titles, we used the Boolean search term “big 

data” + “energy model*”, while for Google Scholar, which searches full text entries for 

published works, this was refined to be more specific; we used “big data” + “energy 

modelling”. This exercise was initially carried out in March 2018 and repeated again in 

December 2018. The literature review followed a multi-stage process whereby the initial 



keyword searches were subsequently followed by a human review of all papers to evaluate 

and classify relevant content, as well as filtering out duplicate entries that appeared in more 

than one database. In total, 283 unique works were analysed. Of these, 146 were found to 

have the key search terms located only in their reference lists or to mention them only 

briefly, without detailed analysis or discussion. A quantitative summary of the remaining 

137 papers, coded by thematic area, is presented in Figure 1. 

 

Figure 1 – Thematic distribution of reviewed literature, n=137 

 

The existing scientific literature links big data to energy and technology policy in a few 
specific domains. The largest group of papers explored energy efficient computing, such as 
techniques for maximising performance-per-watt in while processing large datasets [18] or 
the potential to reduce energy consumption from datacentres [19]. The second largest 
group focused on the possible contribution of big data to achieving an enhanced 
understanding of the energy performance of buildings (e.g. Zhou and Yang [20], Linder et 
al. [21], Edwards et al. [22]) and the new modelling and decision making possibilities this 
may enable [23]. The third largest group of publications discussed big data in the context of 
“smart” cities and urban energy planning, where the collection of large datasets from 
smartphones and autonomous sensors is an oft-cited example of how a step-change in data 
availability might transform policymaking and city governance (e.g. Batty [24], Rathore et 
al. [25]). The fourth significant group investigated the potential of big data for sustainable 
manufacturing and reducing industrial energy use [26], including specific studies on 
individual processes like steelmaking [27] and machining [28]. Taken together these four 
large thematic categories comprised 88% of the review sample.  

The remaining 12% of the sample reveals several interesting use cases for big data and 
energy research. One of these is the electricity system, where scientists are investigating 
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the possible design configurations for future “smart grids” and exploring the benefits for 
system management, stability, and operational flexibility that might be achieved (e.g. 
Alahakoon and Yu [29], Akhavan-Hejazi and Mohsenian-Rad [30]); this could be important 
in future grids that combine intermittent renewable generation (both distributed and 
centralised) with other generation types. Another is a nexus of big data research centred on 
the analysis of complexity in transport patterns as a means of anticipating how they might 
shift or be managed in future (e.g. [31]). The two final areas of interest that appeared in the 
review were the application of big data techniques to explore renewable energy potential 
[32] and the design and operation of heat networks [33]. 

There is clear evidence therefore, that big data platforms and concepts have already begun 
to be applied in various sub-domains of the energy system. However, our 200+ paper 
review finds that the application of modern data science specifically to energy economy 
modelling and the implications for strategic decision making on energy and climate 
mitigation policy remain entirely unexplored. A recent meta-review of big data research 
covering the period 1996-2015 also analysed over 200 relevant papers [34], but similarly, 
found no examples which discussed the future prospects and challenges posed by the 
emergence of big data for energy economy modelling. We find that highly cited, forward 
looking perspectives on the potential application of big data to problem solving in industry 
and in scientific research (e.g. [35]) and many reference texts (e.g. [36]) also continue to 
overlook this critical area. This means that there is no precedent for applying big data 
research concepts to the energy economy modelling domain, no guidelines for best 
practice, and no research outlook to identify priority areas for future investigation. Clearly, 
it is prudent for energy economy modellers to think ahead, anticipate, and plan for a near-
future environment where data may be much more available than it has been in the past. It 
is the hope of the authors that our efforts in this paper go some way towards bridging this 
gap. 

 

3.0 Foundational concepts 

3.1 Data for building energy economy models 

The term big data is found to have multiple definitions when discussed by various industrial 
and research groups. A number of attempts to define big data are driven by commercial 
speculation rather than scientific enquiry, and there is a lack of consensus on a universal 
definition [37]. However various taxonomies in the literature attempt to incorporate volume 
(quantity of information), variety (heterogeneity or complexity of information), velocity 
(speed of information production and dissemination), value (novelty of information), and 
veracity (quality or pedigree of information) as key characteristics of big data [38]. These 
are styled in the literature using “*V” or “the “*V’s”, where “*” refers to the number of 
dimensions i.e. “3V” or “the 3V’s of big data”. This has become enough of an established 
trope to the extent that there are now even papers that discuss up to 10 different “V” 
dimensions [39].  

This approach is potentially problematic because different taxonomies adopt different 
interpretations (e.g. what veracity or value really means), and because some descriptors, 
such as what size constitutes “big”, are relative and may evolve over time [40]. For our 



purposes here, we have therefore steered away from creating a taxonomy that attempts to 
have more (or better) “V’s” than other research efforts. Instead, we are focused on 
exploring how data scarcity or data abundance might affect how models are designed and 
used in energy economics, especially for energy and climate policy analysis. This requires 
first developing a framework to highlight exactly how and for what purposes data are 
commonly used in energy economy models today, before progressing to discussions about 
how radical shifts in data availability might change the established paradigm. For the 
purposes of informing our discussion here, we make the distinction between four major 
categories of information that are used in building energy economy models, summarised in 
Table 1:  

 Table 1 – Information for building energy economy models 

# Category Description Human Input Example for typical top-
down energy models 

Examples for typical 
bottom-up energy 
models 

0 Raw Data Unprocessed, 
information from 
automated sensors or 
accounting systems 

Minimal other than initial 
configuration 

Electricity market 
transaction records 

Import/export records 
showing value of 
commodities by individual 
shipments 

Electricity meter 
readings 

Electronic traffic 
monitoring records 

Weather monitoring 
station readings 

1 Primary 
Data 

Empirically grounded 
data on observed real 
world quantities, 
inventories, and 
physical assets, held in 
structured databases 

Error checking, “cleaning” 
of raw data, input to 
structured databases, 
summary statistics i.e. 
“models of data” [41] 

Annual, seasonal or other 
time-indexed values of 
fuel imports and exports 
($) 

Econometrically derived 
estimates of behavioural 
variables over time (e.g. 
price elasticities) 

Annual summary of 
physical assets (e.g. 
millions of vehicles) 

Up front capital, 
labour, material, and 
energy input costs. 

Wind and solar energy 
availability over 
different time periods 

2 Secondary 
Data 

Data derived from 
multiple Primary Data 
sources 

Often the inputs into 
energy economy models 
are actually simulated 
outputs from other 
models. Energy modellers 
must often combine 
empirical data with 
conditional assumptions 
or theory in order to 
obtain useful parameters. 

Diffusion or adoption 
curves for different 
technologies based on 
multi-criteria decision 
models derived from 
surveys of consumer 
preferences and 
assumptions about the 
psychology of decision 
making (bounded 
rationality, utility 
maximisation etc.) 

Transport activity 
patterns (e.g. 
passenger kilometres 
by population 
segment) based on 
data on fuel use and 
vehicle efficiency data 
combined with 
assumptions about 
average trip distances. 

3 Projections Model inputs which 
represent analyst 
assumptions about 
possible or plausible 
future system 
conditions  

In the absence of 
empirical data about the 
future, model builders 
often test plausible ranges 
of future values informed 
by expert elicitation and 
judgements [42].  

Future economic growth 
(GDP) over time 

The rate of autonomous 
energy efficiency 
improvement (AEEI) [43] 
from innovation and 
capital stock turnover in 
the energy system 

The rate of future 
growth in households 

The date of first 
commercial availability 
for a future technology  



Energy economy models often contain hundreds of different parameters. Data scarcity in 
many areas presents particular challenges for model builders. From a practical standpoint, 
data scarcity means that modellers must often construct models of the energy system to 
use whatever data are available, and then fill in the blanks as best they can, often relying on 
expert judgement (Category 3) or evidence from prior studies using other models (Category 
2). As with most applied models in science [44], this means that energy economy models 
typically represent a hybrid between observed data and theories about the functioning of 
the world. Data scarcity also imparts a great degree of uncertainty into model based 
analysis, because in addition to dealing with simple unknowns and quantifiable risks that 
arise about the future, modellers must also contend with fundamental uncertainty about 
how well their models represent the real world in the first instance. A comprehensive 
review of the literature on characterising these kinds of uncertainties is beyond the scope of 
this piece, but a range of useful concepts for grappling with these challenges can be found 
in the work of Knight [45], Wynne [46], and Stirling [47] to name a few.  

 

3.2 Data, models, and reality: what can be achieved with “more” or “better” data? 

Given its potential for making the real world intersection of energy supply and demand and 
the economy more directly observable and measurable, the availability of big data and 
conditions of data abundance could force energy economy modellers to confront their basic 
assumptions about what their models represent and how useful they are for policy analysis. 
To quote a seminal paper by Boyd and Crawford, “Big Data reframes key questions about the 
constitution of knowledge, the processes of research, how we should engage with information, 
and the nature and the categorization of reality” [48]. Addressing these issues in a 
comprehensive fashion requires leveraging the existing literature on decision making under 
uncertainty, scenario analysis and the philosophy of science. 

From a philosophical standpoint, using complex system models for scientific enquiry is 
often described as an exercise in conducting thought experiments [49] on a reduced 
representation of reality in order to infer useful knowledge about reality itself (see the work 
of Frigg [44], Hughes [50], Parker [51] and Mäki [52]). Much in the same way that past 
explorers made maps, which are themselves abstract approximations of real terrain, to 
make navigational choices, energy economy models can provide an overview of the 
strategic decision space upon which energy policy operates [53]. We call this the models-as-
maps analogy, which has come to feature strongly in the literature on energy 
decarbonisation pathways [54]. In the same way that the quality of a map affects the ability 
of an explorer to chart a course through an uncertain landscape, the quality of an energy 
model influences the decision maker’s understanding about the dynamics and available 
degrees of freedom that might exist in the future energy economy.  

At the deepest level, our understanding of data is comprised by the relationship between 
our theories of how the world is structured and functions, which determines what we 
consider worthy of measurement, and our capability to measure data. Clearly, any given 
model component, such as an oil price, can be characterised with information from the 
categories in Table 1. But as modellers move along the scale from Category 0 data (raw 
information) to Category 3 data (projections), an increasing reliance on human value 
judgements is required. This increases the potential for bias, and consequently, the need to 



draw conditional inferences from the model outputs, i.e. more and more model-derived 
observations can only be said to be true if all other theoretical dependencies input by the 
model operator (including their opinion and judgement calls) are also held to be true [55]. 
There are therefore fundamentally different epistemic (or knowledge) claims that can be 
made on the basis of models built from primary data (Category 1) as compared to models 
that are built from the analytical outputs of other models (Category 2), or from projections 
driven strongly by theory or analyst opinion (Category 3). Much of the promise of big data 
as conceived by its proponents lies in the potential for the increased availability of high 
resolution, granular information on a huge range of areas. In our taxonomy from Table 1, 
this could mean a large increase in empirical data (Category 1). 

We cannot know in advance exactly what future advances in big data might bring for 
characterising energy economy models, although we do discuss some of the possibilities in 
the next section (Section 4.0). We can however, conceive of various hypothetical states in 
terms of the relationship between data quality, systemic uncertainty and model realism. A 
stylised depiction of this relationship is featured in Figure 2. On the vertical axis we 
illustrate the resemblance of the model to the real world, while on the horizontal axis we 
depict the level of systemic uncertainty in the data used to create the model. We adopt 
here Walker et al.’s definition of uncertainty as “any deviation from the unachievable ideal of 
completely deterministic knowledge of the relevant system” [56]. We conceptualise the 
epistemic power of models as being somewhere on a spectrum between not capturing the 
target system at all, at one extreme, and being a virtual copy of reality at the other, a so-
called “digital twin” [57]. For the moment, we will leave aside the issue of whether a digital 
twin of a huge and complex system like the energy economy is feasible or not. 



Figure 2 – data, uncertainty, and model realism 

 

As well as the two extreme states of (1) perfect replication and (2) a model of negligible 
utility, we also show various intermediate states. To describe these, we rely on Mäki’s 
taxonomy of model realism [58], and distinguish between those models that can only serve 
as substitutes for reality, and those which qualify as surrogate representations of reality. 
Mäki characterises substitute models as those that are disconnected from the real world but 
which nevertheless may be used as test beds for developing novel techniques. Surrogate 
models, on the other hand, are close enough to reality to be potentially useful for decision 
making. In philosophical terms, these models are said to provide epistemic access beyond 
themselves and can serve as a bridge to understanding the real world system (as discussed 
for example, by philosophers such as Godfrey-Smith [59] and Frigg [60]). Surrogate based 
analysis is a common concept in advanced engineering design [61], and the term is now 
also entering the language of complex economic modelling [62]. 

But what distinguishes a substitute model, useful only for testing theories, from a surrogate 
model, useful for politically robust decision making? The pragmatic response found in much 
of the literature is that models start to be used for decision making when the audience is 
sufficiently convinced by the resemblance of the model to the real world system for the 
specific problem being investigated [63]. The resemblance between the model world and 
the real world is therefore critical to this process [64], with its importance not only observed 
to be true in economics but also in other applied research fields like biology [65]. In Figure 2 
we therefore postulate that there is a credibility threshold beyond which models resemble 
reality well enough to be used by decision makers as surrogate systems, useful for 
productively informing real world decisions.  
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We argue that the main vector by which big data could transform energy modelling in 
practice is to enable their construction using more primary data (i.e. Category 1), and 
reducing their reliance on Category 2 or Category 3 information. By moving the modelled 
system representation to one which more closely approximates reality, model findings 
might be viewed as more credible, salient and legitimate [66] for the purposes of decision 
making. This could take models over the credibility threshold across a wider range of 
sectoral, national, sub-national, and policy analysis areas with fewer caveats or warning 
labels attached to their outputs.  

 

4.0 Applying big data concepts and platforms to energy economy modelling 

4.1 Data gaps and opportunities 

Table 2 gives an overview of some of the blind spots in existing energy economy models 
that are caused by data scarcity, together with examples of contemporary practice and the 
challenges that this raises for policy research. We first return briefly to the models-as-maps 
metaphor originally introduced in Section 3.2. While modern maps are in most cases 
excellent 2-dimensional reproductions of physical geography, we can highlight that this 
was certainly not always the case. Historically, some maps were incomplete, others were 
vague on detail, and some even contained incorrect or misleading information. Maps 
improved over time, with new information allowing map makers to show details that were 
previously not there, and also to represent regions that were previously unmapped. We can 
think of big data then, in terms of its potential for: 

a) Increasing the resolution of energy models, resolving energy, material 
and financial flows at hitherto impossible levels of detail, or;  

b) Widening the coverage of such models, expanding system boundaries 
and enabling the characterisation of energy economy phenomena that 
were previously either uncaptured or only handled in an extremely 
abstract fashion 

Table 2 – Typical blind spots in existing energy economy models caused by data 
scarcity 

Data Types Status Quo Examples of Typical 
Contemporary Practice 

Challenges 

Spatial Insights typically focused at 
national or global scales, with 
highly aggregated 
geographical coverage. Some 
models are multi-region but 
only representing large regions 
e.g. USA, China, India, Europe 
in global models.  

The UK’s ESME model has 
21 onshore and offshore 
model nodes, each 
representing areas 
administered by sub-
national governments or 
former administrative 
regions [67] 

The TIAM-UCL model 
employs 16 regions [68] and 
for example aggregates all 
of Africa together. 

Spatial aspects of energy 
transitions (infrastructure, 
location of resources, local 
decision making, socio-
cultural differences) are 
difficult to represent 
without detailed spatial 
disaggregation. 



Temporal Typically, models use a 
number of representative 
diurnal and/or seasonal time 
periods within each projected 
future year to characterise 
dynamic phenomena like 
changing demand or supply 
conditions. 

The Irish TIMES model uses 
12 time slices to 
characterise 3 diurnal 
periods (night, day, peak) 
and the four seasons [69]. 
Only a limited number of 
models have been used 
with increased temporal 
characterisation (see [70] or 
[71]). 

The low temporal 
resolution of models 
makes it difficult to 
explore the implications of 
high variable renewable 
systems, demand 
response policies like time 
of use pricing, and the role 
for energy storage. 

Technological Typical practice is to 
aggregate the engineering 
detail of different types of 
physical stocks (buildings, 
power stations, vehicles, 
industrial plants etc.) into 
broad categories of 
representative technologies. 

The UKTM model [72] 
represents offshore wind 
plants (which differ in age, 
size, design, operation, 
manufacturer etc.) using a 
single reference plant with 
average performance and 
cost characteristics 
although differentiated 
depending on resource 
area. 

Technology aggregation 
can lead to simplification 
of the existing energy 
asset base, and not 
adequately differentiate 
on cost / performance 
grounds between new 
technology investments. 

A good example is that 
energy economy models 
represent poorly new tech 
such as smart appliance, 
how they may be 
networked, and their 
operation. 

Socio-economic 
and demographic 

Many models employ an 
abstract representation of an 
“average” person per country, 
which can hide significant 
differences in energy use 
across socio-economic groups 
e.g. income, age, household 
size, behavioural 
characteristics etc. 

Most bottom-up energy 
economy models, unlike a 
number of top-down CGE 
models (e.g. [73]), do not 
distinguish different 
households by income 
brackets or other 
differentiations in 
population energy use. 

 

 

Different social 
characteristics are all 
linked to varying patterns 
of energy use (see Lamb et 
al. [74] and Crespo [75]), 
and it is challenging to 
capture this in models 
without the data to study 
or characterise these 
relationships. It is also 
challenging to explore the 
distributional impacts of 
different policies (e.g. 
[76]).  

Actor behaviour 
and preferences 

Decisions made by individuals 
are typically simplified in 
models to reflect neoclassical 
economic assumptions about 
demand and supply, without 
integrating more complex 
insights from fields such as 
behavioural economics, which 
are known to be critical [77]. 

The widely used TIMES 
model family employs cost 
minimisation or welfare 
maximisation as simple 
decision rules to explain 
how different options are 
traded-off against one 
another [78]. 

An emerging class of 
experimental model 
variants, such as 
MESSAGE-Transport [79], 
is seeking to better 
characterise consumer 

Past studies reveal that 
changes in assumptions 
about behaviour can have 
large effects on the 
outcomes of energy 
transition pathways [80]. 
However, models typically 
have limited data on 
consumer preferences.  



preferences in specific sub 
sectors 

Type and 
condition of 
existing stock 
(physical assets) 

In many countries there is a 
fundamental lack of data to 
characterise the energy 
system in many sectors [81]. 
This is typically the case in 
countries with limited 
resources to develop and 
maintain statistical databases. 

In most circumstances, a 
model will be built based on 
an existing annual energy 
balance, with 
characterisation of the 
technology stock then 
fitted to the energy balance 
and furnished via other 
datasets e.g. car tax 
records, utility bills, building 
stock registers etc. 

 

A lack of detailed data can 
make it challenging to 
target policies and 
resources at specific stocks 
e.g. improving conditions 
for vulnerable energy 
users in poorly insulated 
homes, retrofitting old and 
polluting industries, or 
targeting older and less 
efficient vehicles.  

Typically, across all data types, it is the power sector and other utilities that hold the most 
comprehensive and detailed datasets. This particularly the case in those countries with 
competitive power pools, because a transparent market structure is needed to limit the 
potential for market manipulation. The high quality datasets for power and other forms of 
energy production (with the key exception of self-consumption of product, which is 
considerable in some sectors) usually makes the supply side of the energy system 
straightforward to characterise when building models. In contrast however, the resolution 
of time series information and cross sectional data density for representing energy end-use 
demand can often be quite poor, even in advanced economies. While many countries have 
registers or databases on their domestic building stock, it remains difficult to characterise 
micro-scale patterns in household activity [82] in terms of the technologies used, the time 
of use, and how these differ across regions and demographic groups. The same is true in 
the commercial and industrial sectors, where energy use is extremely heterogeneous, data 
availability is typically much poorer, and where there are few centrally held datasets in 
most countries. 

Big data potentially offers multiple opportunities for increasing the resolution and coverage 
of information for characterising energy models. Potential sources include real-time 
feedback from electric power grids [83], mobility data on travel patterns from public metro 
transit authorities or private transportation network companies [84], smart utility meters in 
the residential sector [85], advanced databases on buildings [86], satellite imaging [87], and 
social data from the world wide web [88]. In private road transport and commercial freight, 
smartphones or embedded networked sensors could potentially serve as data acquisition 
tools under the internet of things paradigm, which is a concept that is itself facilitated by 
big data technologies and concepts [89]. High spatial and temporal resolution data could 
potentially give decision makers a clear idea of how energy is being used and produced at a 
very granular level with very fine time slices. This could unlock the door to multiple 
possibilities for policymaking, possibly even in real time as the incidence is imposed. Table 3 
gives an overview of potential future big data sources, their application to energy economy 
models, and examples of current gaps that can be addressed.  

 



Table 3 – Potential big data sources for addressing gaps in models 

Big data sources Modelling application Examples of current gaps that can be 
addressed 

Smart meters, 
intelligent grid 
management systems, 
non-intrusive load 
monitoring [83] 

Exploring grid flexibility and 
the impact of smart systems 
and demand-side 
management 

Improved representation of 
micro-scale patterns in 
energy use 

Targeting efficiency policies 

Impacts of socio-
demographic changes on 
energy consumption. 

Timing, type, and level of energy use [90] 

Technical – quantified, high resolution, 
understanding of the contributing factors to 
overall home energy consumption, the 
contribution of appliances and potential for 
adaptation [91]  

Understanding the variation in energy use 
across population groups and the impact of 
shifts in population composition [92], insights 
into socio-demographic factors on energy 
use [93], willingness-to-pay for energy [94] 

Distributed ledgers, e.g. 
blockchains [95] 

Distributed community 
energy 

Energy trade between “prosumers” [96]  

High resolution spatial 
data from satellite 
imaging, cubesat 
(miniaturised satellites) 
sensor data, LIDAR data  

Improved emissions, air 
quality and pollution 
modelling, such as fugitive 
methane and oil and gas 
extraction auto-consumption 
(self-use) 

Quantifying weather 
dependent renewable energy 
potential e.g. rooftop solar 

Improved land use tracking 
and modelling over time 

Improved resource potential 
modelling e.g. bioenergy 

Improved spatial and 
geographical representation 
of population and energy 
consumption 

Identification and quantification of true 
power plant emissions [87] or geospatially 
granular fugitive methane monitoring e.g. 
from: https://www.ghgsat.com/ 

Identification of electricity generation 
options and viability [97] 

Air quality and pollution tracking [98]  

Data source for developing countries, urban 
population concentration, access to energy 
[99]  

3D city modelling, large scale urban 
modelling [100], building stock modelling 
[101], and urban environmental accounting 
tools (e.g. Google’s Environmental Insights 
Explorer: 
https://insights.sustainability.google/) 

Agricultural and forestry stocks [102] 

Personal mobility data 
from: mobile phone 
location records, metro 
transit card data, traffic 
video analysis 

Improved modelling of travel 
patterns, modal choices, and 
costs  

 

Improved understanding of socio-economic 
factors influencing transport patterns and 
energy consumption and their evolution 

Understanding trip distances by purpose and 
mode e.g. origin-destination matrices [24] 

Understanding human mobility [103] and 
migration patterns [104]  



Web site and social 
media data: e.g. Twitter, 
Facebook, newspapers, 
comment pages 

Textual analysis and 
quantification of societal 
trends and public opinion  

Characterisation of policy and 
decision-making environment  

Perceptions and attitudes to energy 
technologies such as CCS [105] 

International sentiment and debate on 
climate change [88] 

Quantifying uncertainty regarding the policy 
environment [106] 

The increasing availability of these sources of data, combined with advances in machine 
learning and artificial intelligence that enable insights to be extracted from them (e.g. 
cluster analysis [107]), potentially opens up new horizons in the energy modelling 
landscape. For example, the vast quantities of smart meter data which are becoming 
available offer the opportunity to build models based on energy consumption patterns 
from a population of heterogeneous groups [92] rather than relying on a single “average” 
usage pattern. This could not only improve demographic, spatial and temporal realism but 
also the ability of models to quantify policy interventions such as demand side response 
measures (e.g. optimising vehicle charging [108]). New data sources also potentially enable 
policy to go deeper than simply the household level through the disaggregation of 
household energy consumption profiles into usage by individual appliances [109]. This 
could allow for more granular models which could explore the impact of energy efficiency 
policies targeted at the appliance level. 

Satellite imagery is a globally available resource which is finding increasing uses as a means 
of addressing a number of questions for which accurate data is often hard to come by. In 
developing economies it is becoming an invaluable tool for accelerating data gathering, 
identifying energy resources for development [97] and assessing levels of energy access 
[99]. The large-scale global trend towards increased urbanisation [110] makes cities an ever 
more vital application area for energy models and data, and increases the need for an 
improved understanding of urban-scale issues such as the travel patterns of city inhabitants 
[24] and quantifying the extent and condition of the existing building stock [111]. Finally, 
advances in text-based analytics are beginning to enable more abstract information to be 
drawn from internet sources such as newspaper and social media websites. This can be 
used to assess and quantify estimates for a range of issues such as public opinion towards 
technologies [105], the relative levels of acceptance of climate change science in different 
countries [88] and even the levels of uncertainty surrounding economic policy [106].  

 

4.2 Integrating big data into bottom-up hybrid energy economy models  

In this section, we identify a specific family of energy economy models which potentially 
have the most to gain from future conditions of data abundance. Energy economy models 
are complex mathematical constructs that aim to represent the key relationships that drive 
energy demand and supply, including dynamics in household end-use demand and demand 
by firms, energy transformation, and primary supply. This typically includes distinct, linked 
sub-modules depicting activity in residences, commercial buildings, personal and freight 
transport, industry, and energy supply and transformation facilities (like power plants or 
refineries). As mentioned briefly in the introduction, there have historically been two broad 



schools of thought used for characterising the energy system since the 1970s, which are 
typically referred to as being the top-down and the bottom-up approaches [9]. Both 
techniques rely on different kinds of data to build a representation of the real world system.  

Top-down models (e.g. MIT-EPPA [112], MRN-NEEM [113], etc.) are built primarily from 
national economic statistics and macroeconomic projections, including input-output tables, 
labour force volume and productivity forecasts, and mandatory reporting of accounts such 
as fuel sales. Bottom-up models on the other hand (e.g. MARKAL [114]), tend to rely on 
physical observation of engineering systems, such as government records or monitoring by 
utilities on the location, condition and characteristics of power plants, buildings, and 
vehicles. Both approaches have their strengths and weaknesses. In general, top-down 
models provide a better understanding of policies that drive changes in economic structure 
and are sensitive to monetary flows, while bottom-up models are much better at depicting 
the effects of technology orientated regulations or the impacts of mixed regulatory and 
pricing strategies. 

The energy policy landscape in most countries has become more complex and increasingly 
fraught with uncertainty over time. To chart a course towards 2°C compliant futures, there 
is a need for modelling systems that can represent the complex interactions between 
command and control approaches and more market-driven, performance based 
technology regulations, energy and carbon pricing (and associated revenue recycling). At 
the same time, there is a need to capture the granular details of differentiated sectoral 
policies and responses, all while also still being able to represent general economic effects 
in areas like GDP, employment, and trade. These demands have greatly increased the need 
for strategic analysis using hybrid energy economy models.  

Top-down macroeconometric or CGE models have had their technical detail progressively 
increased so that they can be used for energy policy purposes such as investigating issues 
around security of energy supply, air quality, and GHG emissions, in a process called top-
down hybridisation. Simultaneously, researchers have grafted technically detailed bottom-
up models of physical energy infrastructures (e.g. buildings, transport, the power sector 
etc.) on to an overarching understanding of how the economy functions so that changes in 
pricing, demand and feedbacks from resource scarcity can be explored. This process is 
known as bottom-up hybridisation [81].  

Top-down hybrids have proven challenging to construct because their general equilibrium 
structure forces a simplification of decision making agents. Most models make do with one 
aggregate household that maximizes welfare, while sector firms maximize profits using a 
stylized “production function” to represent technology in an environment where returns-
to-scale are constant. To add transformative technological detail, new sectors or variants 
on the existing production functions must be added in a way that reflects a discrete shift 
from the existing production function [115]. However, once users try to incorporate a large 
number of cumulative policies, sectors, regions, and transformational technologies into the 
analysis (e.g. alternative low GHG electricity generation technologies [116]), this approach 
eventually creates computational challenges that are difficult to surmount. To model 
significant transformations in the energy economy system, such as that required by 2°C 
compliant decarbonisation, top-down models require the addition of capital vintaging and 
typically an almost complete duplication of their production function structures (which are 



largely calibrated to existing technologies), with alternative low carbon equivalents, or the 
large scale modification of their existing input substitution structures (with elasticities that 
change through time, etc.). They also face a fundamental challenge when attempting to 
account for sector behaviour that does not maximise household welfare though 
maximizing consumption and leisure, or maximising firm profits [9]. 

We believe that the most promising pathway for the future development of next 
generation energy economy modelling is to employ big data with bottom-up hybrids [81]. 
Examples of this emergent energy system model family include BLUE [117], CIMS [118] and 
IMACLIM [119]. These models combine most of the technical detail of bottom-up models 
with much of the behavioural realism of top-down models, e.g. CIMS is designed to handle 
intricate mixes of real world technology regulations and energy/carbon pricing while 
clearing energy and end-use markets, while IMACLIM does all of the above while going one 
step further and also adjusts the long run structure of the economy in response. All bottom-
up hybrids are intended to represent decision making by actors in response to policy action, 
directly where it is made in the economy, be it by firms, households, or government; in this 
sense, they are agent based (though some prefer the term “actor based”, see [120]). They 
can capture the conditions found in sub-optimal second-best policy environments where 
there are market externalities and political barriers to action [121], and can be used for 
measuring the difference between “cost optimal” (i.e. neoclassical) and “revealed” 
behaviour [122]. The increased resolution and coverage afforded by big data could in the 
future enable these tools to provide an extremely detailed representation of the real world 
system, perhaps even approaching that of a convincing surrogate model in many areas 
(Section 3.2). 

Transforming a bottom-up hybrid into a convincing surrogate model would require very 
large amounts of revealed empirical data, which would differ highly by sector. As the name 
implies, bottom-up hybrids build up their representation of the energy system from detailed 
sectoral sub-models, representing decision making at the point of investment and 
operation. As a result of this granular-scale detail, they rely on a lot of technical data as well 
as behavioural parameters (e.g. decision specific discount rates [123], end-use demand 
elasticities [43], non-financial welfare costs for modes [124] or technologies [125]). While 
open source databases can be built for technical performance and equipment pricing data 
relatively quickly from manufacturing catalogues, behavioural parameters are notoriously 
onerous and expensive to gather. This is typically achieved through stated and revealed 
choice studies [123] in specific areas. For example, looking at household purchasing 
behaviour for heating systems [126] or transport mode choice [127]. These are complicated, 
time consuming, and expensive to carry out. The onerous data requirements for bottom-up 
hybrids are one of the key impediments to the construction of these models. Near future 
advances in big data collection (Section 4.1) might offer simpler, more effective, and more 
comprehensive approaches to gathering the necessary behavioural data for their 
construction and calibration, potential spurring their more widespread adoption.  

 



5.0 Discussion 

5.1 Reasons for caution 

While the authors acknowledge the potential of big data technologies to challenge some of 
the long standing limitations of energy economy models, we are not blind to the potential 
barriers and pitfalls that face practitioners working in this area. First, there are critical 
questions to be addressed regarding the costs of data collection and the ownership of the 
resulting information. Data is central to the modern information economy and is highly 
prized by private companies who trade on their business intelligence or sectoral expertise. 
The incentives to maintain private for-profit databases are therefore extremely large. 
Accordingly, access to this data is unlikely to come at low costs to governments or 
researchers unless the data owners are effectively compensated. Government may be the 
only actor with the necessary size and agency to make large strides towards more open 
data in the public interest, but careful thought is required to understand how to implement 
large-scale data collection for the public good in order to achieve mutual societal and 
environmental benefits without violating individual privacy rights. The negative 
implications for society of data-related scandals such as that which discredited Cambridge 
Analytica in 2018 are all too apparent, and studies show that concerns over unauthorised 
access to personal data have been growing over time [128].  

The feasibility of directly measuring critical parameters from the population without 
violating their privacy or intellectual property is an important area for future research. A 
common existing technique is the re-aggregation of data for anonymization with 
monitored access over encrypted storage [129]. However, if these primary data are 
collected and stored in their original granular form then the risk of a data breach leading to 
re-identification of individuals may never be reducible to zero. It is apparent that traditional 
privacy and access control techniques that form part of established industry practices may 
be inadequate for big data warehousing [130], so clearly more work is needed in this area. 
Ultimately, the issue of balancing risks to individual autonomy against the potential for 
wider societal benefits from data collection is an issue not only for public and private 
research institutions but also for politicians, lawmakers and civil society to collectively 
resolve [131]. 

As noted in Section 4.2, the data used to construct complex next generation energy 
economy models must come from multiple sources and is likely to be highly 
heterogeneous. As data size alone is no guarantee of quality or utility [132], most big data 
must be specially prepared before it can be used [40]. The availability of big data on energy 
systems phenomena therefore not only creates new opportunities for increasing the 
resolution and coverage of energy models (see Section 4.1), but also creates a need for new 
tools and analytical disciplines to be brought to bear [10]. These include methods for 
revealing the underlying structures, patterns and relationships in data, such as data mining 
[133] machine learning [134], and advanced visualisation [135]; as well as combining the 
resulting multi-source, multi-relational information together into federated or composite 
databases, in a discipline known as data fusion [136]. Notable approaches for data fusion 
and integration include data warehousing [137], data virtualisation and “data lakes” [138]. 
The skills to make sense of massive heterogeneous datasets are currently in short supply 
relative to the potential demand [139], and may not be widespread in the energy systems 
modelling community. If the future emphasis in energy economics begins to shift away 



from theoretically grounded models that are populated with scarce data, and towards 
analysis that relies more on the discovery and exploration of useful patterns in abundant 
data, then a major priority for research will be skills development and capacity building to 
transition towards a more data-intensive approach. 

 

5.2 Reasons for optimism 

For discussion purposes, let us assume that big data privacy concerns could be 
comprehensively addressed, that the skills and techniques could be put in place to make 
use of large datasets, and that useful data could be collected in the first instance. Could big 
data resolve long-standing unknowns in energy economy models? Could conditions of data 
abundance radically transform the way in which energy economy models are built, used, 
applied and interpreted, and change how decision makers think about energy and climate 
policy? We speculate that this could indeed be the case on all counts, although we make no 
claims about the likely speed with which these developments might unfold. 

Economic modelling, and economics in general, has been called “an inexact and separate 
science” for decades, with an often fundamentally different outlook on issues such as truth, 
replicability, and validation to the natural sciences [140]. As previously discussed in Section 
4.2, one of the longest running unresolved challenges in energy economics is the inability of 
researchers to harmonise their understanding of the energy system from both a top-down 
(monetary flow) and bottom-up (physical system) perspective. These are currently 
extremely difficult to reconcile together and one approach can sometimes give highly 
divergent insights from the other [141]. The IMACLIM model has perhaps come closest in 
fusing the two perspectives, but its use has not yet become common due to the challenges 
of co-calibrating the physical and monetary input-output matrix that underlays the model 
[142]. 

Better data on the relationships between technology diffusion, prices, and regulation (i.e. 
empirical Category 1 data, as discussed in Section 3.1) could significantly enhance our 
understanding of energy system dynamics, including the actual tendencies of the system to 
equilibrium and disequilibrium, its response to shocks, and other non-linearities. 
Understanding these relationships could give new insights into how decision makers might 
manipulate the system to address critical challenges such as reducing emissions [5], 
improving air quality [143], or providing modern energy services to all [144]. In future, 
decision makers might even be able to design both short and long term policies that 
precision target individual sub-sectors or systems rather than being limited to applying 
broad based “shotgun” interventions. Finally, following the principles of adaptive 
management pioneered in fisheries by Holling [145], and subsequently adopted by many 
others (e.g. [146]), policies could also potentially be designed so that data on their effects 
could be collected and assessed in real time in order to allow continuous policy assessment, 
fine-tuning or wholesale adjustment. 

The use of energy models is already deeply intertwined with the practice of scenario 
analysis and the constructive application of the imagination to problem solving [60]. This is 
because forward-looking estimates of future system conditions will always contain 
elements of uncertainty, no matter how accurate the calibration of models to retrospective 



empirical data (even big data). Unsurprisingly, the possibilities explored in models have 
been shown to influence beliefs about future possibilities [147]. Better computation in the 
1970s and 1980s was central to spreading the idea that policymakers could outmanoeuvre 
threats to energy security through investing in energy efficiency and switching to 
alternative fuel sources instead of simply thinking of economic well-being in relation to oil 
use. In the same way, a step-change in data availability and quality might broaden 
policymakers’ thinking on the solution space for climate mitigation, such as the ability to 
test changes in economic structure or focusing on the provision of energy services instead 
of fuels and equipment (e.g. thinking in terms of supplying mobility rather than cars). 

 

5.3 Revolutionising the state-of-the-art 

Flowing from the findings of this review, we propose a set of short, medium and long term 
recommendations for future experiments with energy economy modelling and big data. 

Near-term: Our first, shorter term set of recommendations involves setting up experiments 
to test how big data can inform critical relationships used in energy economy models. At 
this stage there will be critical methodological developments and learning needed on both 
sides on issues such as on the data mining of existing databases to extract useful 
parameters for models, data curation, and the process of interchanging information 
between big data sets and energy economy modelling parameters. As a result of the need 
to prototype and standardise these kinds of working practices between big data experts 
and energy modelling practitioners, it is prudent to first start with a small set of tractable 
energy economy research questions. An excellent starting point could be to explore the use 
of big data to inform the behavioural choice algorithms of the type applied in transport 
mode choice models (e.g. [148]) and throughout behaviourally explicit whole system 
models such as the CIMS [43] modelling platform (i.e. derivative logit models), where 
behavioural components or preferences are added along with the standard capital, labour, 
energy and operating costs. There are several modelling teams operating globally that 
employ bottom-up hybrid models, and any one of them could begin the process of using big 
data to derive the parameters for their sector specific behavioural algorithms. This would 
involve a multi-step work program of assessing a prospective area of interest (e.g. urban 
transport mode choice), developing a big data set to work with, reformulating the mode 
choice algorithms in a bottom-up hybrid model to accommodate the big data, validating the 
model by testing how well it predicts history, and then beginning to use the model to 
explore the effects of both existing and prospective policy experiments.  

Mid-term: In the medium term, a more ambitious project for an experienced energy 
modelling team would be to collaborate with experts in big data and machine learning, 
using their combined experience to completely reconfigure an existing bottom-up hybrid 
model or to construct a completely new energy model using state-of-the-art data fusion 
and integration methods [136]. This would be then used for deriving (1) the underlying 
multi-level structure of energy supply and demand from actual empirical use data (i.e. 
Category 1, as discussed in Section 3.1), and (2) the key behavioural determinants of energy 
use in the economy. In all likelihood the energy system structure would need to be initially 
seeded with a hypothetical system (e.g. parts of an existing model), which machine 
learning algorithms would then be able to use to sequentially test against real data, thus 



revealing the underlying system. Early tests could begin with mode choice data for 
transport, due to the likely voluminous data that will be generated in this area (see Section 
4.1), but researchers might also be able to use large volumes of aggregated smart meter 
data on end-use demand in households and firms if it is available. 

Long-term: Finally, over the longer term, a more speculative set of research questions and 
programs can be imagined. As discussed earlier, energy modellers are arguably still working 
in a kind of “Henry Ford” era of modelling, where there is little customisation, and where 
research is often performed with general purpose, one-size-fits-all type frameworks, e.g. 
MARKAL/TIMES. As a result, energy models are currently extremely labour intensive to 
apply. Scientists are forced to build up large institutions behind general purpose models 
and then adapt them as best they can to meet the structure and data requirements of 
specific research and policy questions. Could a world of data abundance facilitate on-
demand construction of more useful “bespoke” models, built from real world empirical data 
(Category 1) at the appropriate social, economic and technical level of detail for any given 
policy problem? Could it be possible to conceive of a data and modelling structure that 
could adapt dynamically to the research question of the moment? Could scientists invoke 
semi-autonomous agents to both curate and mine databases [149], and have them 
construct energy models on-the-fly according to user-specified parameters, such as 
geographic scale, sectors of interest and overall theoretical structure (e.g. a top-down 
hybrid CGE framework, or a bottom-up hybrid simulation framework)? The possibilities are 
intriguing, and we encourage the energy modelling community to think beyond the 
constraints imposed by current modelling paradigms and imagine the cutting edge 
possibilities that might exist in this space.  

 

6.0 Conclusions 

While other fields of scientific research are working quickly to take advantage of the 
possibilities offered by big data, energy economy modelling is lagging, both in theory and 
in practice. In this paper, we have identified several areas where big data sources could help 
to add more detail in crucial areas for existing models. Additionally, we believe the 
tantalising prospect of completely revolutionising energy modelling may now lie on the 
horizon. Big data combined with other next generation information technologies might 
resolve long standing barriers between engineering-derived and economics-focused views 
of the energy system, and in a way that both eliminates critical blind spots and creates new 
possibilities for dynamic, adaptive climate policymaking. We suggest that one specific area 
in the near term where this could occur is through dynamic parameterization of an existing 
bottom-up hybrid model with situation specific behavioural algorithms derived from big 
data. Another, in the longer term, is where big data, combined with existing theory, is 
allowed to shape the structure and behavioural dynamics of energy supply and demand 
models to more accurately represent these complex and situation specific systems.  

While the human imagination and the use of scenario assumptions about the future will 
likely always be required for energy and climate policy analysis, big data could potentially 
reduce much of the reliance on data extrapolation and (fallible) expert judgement that 
exists in most models when characterising energy systems. For this potential promise to be 
fulfilled however, several developmental steps are required. First, issues surrounding data 



collection costs, ownership and privacy must be addressed. Second, energy modellers must 
become familiar with the data collection and analysis tools of big data. Third, energy 
modellers must be willing to look dispassionately at the basic dynamic assumptions and 
datasets underpinning their models, and answer honestly whether increased availability of 
Category 1 and Category 2 data can transform them from being theoretically interesting 
substitute models to policy useful surrogate models. Finally, there must be a willingness in 
the energy modelling community to embrace fundamental changes in their modelling 
paradigms, and to embrace the new spring of data abundance after living through a long 
winter of data scarcity. 
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