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Passeig Llúıs Companys 23, Barcelona 08010, Spain

E-mail: sbird@ucr.edu, keir.rogers@fysik.su.se, h.peiris@ucl.ac.uk,
liciaverde@icc.ub.edu, a.font@ucl.ac.uk, a.pontzen@ucl.ac.uk

Abstract. We present methods for interpolating between the 1-D flux power spectrum of
the Lyman-α forest, as output by cosmological hydrodynamic simulations. Interpolation is
necessary for cosmological parameter estimation due to the limited number of simulations
possible. We construct an emulator for the Lyman-α forest flux power spectrum from 21
small simulations using Latin hypercube sampling and Gaussian process interpolation. We
show that this emulator has a typical accuracy of 1.5% and a worst-case accuracy of 4%,
which compares well to the current statistical error of 3 − 5% at z < 3 from BOSS DR9.
We compare to the previous state of the art, quadratic polynomial interpolation. The Latin
hypercube samples the entire volume of parameter space, while quadratic polynomial emula-
tion samples only lower-dimensional subspaces. The Gaussian process provides an estimate
of the emulation error and we show using test simulations that this estimate is reasonable.
We construct a likelihood function and use it to show that the posterior constraints generated
using the emulator are unbiased. We show that our Gaussian process emulator has lower
emulation error than quadratic polynomial interpolation and thus produces tighter posterior
confidence intervals, which will be essential for future Lyman-α surveys such as DESI.
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1 Introduction

Modern cosmological surveys have extracted a large fraction of the information available
from scales where structure formation is well described by perturbation theory [1]. Hence,
to resolve the unsolved problems of cosmology, such as the nature of the inflaton or the
mass of the neutrino, we turn to measurements of small scale structure. One such probe
is the Lyman-α forest flux power spectrum1, which measures correlations between neutral
hydrogen along sightlines to luminous quasars [2]. As the hydrogen gas clusters within dark
matter potential wells, these correlations also measure dark matter structure formation and
so contain information about the underlying cosmology [3]. The Lyman-α forest is a uniquely
powerful probe of cosmology because it is able to constrain the matter power spectrum over
a wide range of scales, from those of the Baryon Acoustic Oscillations (BAO) to some of
the smallest currently available, k ∼ 10 Mpc−1. Furthermore, it measures regions with only
moderate over-density of 1−100, which are minimally affected by the uncertain astrophysics
of galaxy formation and thus can robustly infer primordial fluctuations [4].

The Lyman-α forest 1D flux power spectrum, which measures correlations along the line
of sight to the quasar, has been used to measure cosmological parameters [5, 6], measure the
primordial perturbations [7], constrain the number of neutrino species and the neutrino mass

1Strictly speaking, the power spectrum of the transmitted flux.
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[8, 9], the temperature of dark matter [4], the redshift of reionization [10, 11] and the mass
of fuzzy dark matter [12, 13]. The current best measurements of cosmological parameters
use large samples of low resolution quasar spectra obtained by the Sloan Digital Sky Survey
(SDSS), both SDSS-II [3] and SDSS-III [14–16]. Yet tighter constraints can be achieved by
adding information on the thermal history of the intergalactic medium (IGM) from higher
resolution spectra [17, 18]. On larger scales (0.01− 0.1hMpc−1), the position of the Baryon
Acoustic Oscillation peak in the 3D Lyman-α forest correlation function has been used to
constrain the expansion rate at z > 2 [19–21].

In this paper we are concerned not with inferring the flux power spectrum from a
survey, but in using current measurements to estimate cosmological parameters. To do this,
it is necessary to model the growth of cosmological structure, including the distribution of
the gas in the IGM, on scales smaller than those described by linear perturbation theory.
Cosmological hydrodynamic simulations are the only method able to model this process at the
percent level accuracy required by current data. Unfortunately, Lyman-α forest simulations,
while much cheaper than simulations with a full galaxy formation model, are several orders
of magnitude more computationally intensive than evaluating a cosmological perturbation
theory2. This sharply limits the number available, conflicting with the ∼ 106 cosmological
likelihood samples required in a standard Markov chain Monte Carlo (MCMC) approach to
estimate parameter values. We thus wish to find a way to choose a small number of points
at which we can sample parameter space, evaluate the model at these values, and interpolate
between them with maximum accuracy for a given number of simulations.

Similar problems exist in other branches of science. In particular, engineers are fre-
quently confronted with the need for finding the parameter values which optimize the results
of a complex non-linear model for, e.g. the flow of air over an aircraft wing. Techniques for
interpolating between sparse model outputs are known there as surrogate modelling, with the
interpolating routine itself known as a surrogate [22]. Reviews of these techniques as applied
in engineering can be found, for example, in refs. [23–25].

Engineers, who for reasons of economy must ultimately construct only one type of air-
craft, are concerned with finding a point estimate of a single optimal design. Cosmologists are
by contrast uninterested in a point estimate, wishing instead to construct accurate confidence
intervals on cosmological parameters. This means that accurately quantified errors in the
emulator should produce only loss of precision rather than a biased measurement. However,
in order to extract near-optimal constraints, an emulator must be accurate in a wider region
of parameter space corresponding to the measurement uncertainty.

Previous Lyman-α forest analyses [7, 14, 15, 26] have interpolated using a simpler
scheme: quadratic polynomial interpolation in each parameter, around a central “best guess”
simulation.3 While sufficiently accurate for current data, this scheme has several limitations,
which motivate the improvements presented in this paper. Most importantly, polynomial
interpolation provides no way to compute the uncertainty associated with the interpolation,
except by running multiple costly test simulations and assigning a global worst-case error.
With the statistical error that will be achieved by future Lyman-α forest surveys such as the
Dark Energy Spectroscopic Instrument (DESI) [28], the interpolation error must be quan-
tified, controlled and accounted for precisely in order to minimize parameter bias and not
significantly increase the resulting confidence intervals.

2The small simulations used in this paper required ∼ 400 core-hours per simulation on XSEDE’s Stampede
2 machine. A resolved 2 × 10243 simulation would take about 35000 core-hours on the same machine.

3Although see ref. [27] for a different approach.
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For a P dimensional parameter space, interpolating each parameter separately keeps the
number of simulations linear in P . If each parameter requires k simulations to estimate the
coefficients of the polynomial (k = 4 is a reasonable choice for quadratic interpolation), the
number of simulations required is P × k. However, because each parameter is interpolated
independently, this procedure neglects correlations between different parameters, which may
be significant. These correlations could be captured using a finely sampled regular grid in
parameter space, but the kP simulations required would be prohibitive.

Similar interpolation problems have been encountered in cosmological surveys using
other measurements of small-scale power. This has led to the construction of cosmological
emulators, which use simulations to make estimates which are uniformly accurate over a
broad range in parameter space, and aim to be applicable to a range of different experiments.
The first application of emulation techniques to cosmology was ref. [29], who calibrated an
emulator for the matter power spectrum with an accuracy of 1%. Refs. [30, 31] calibrated
emulators for weak lensing observables, while ref. [32] calibrated an emulator for a galaxy halo
occupation model. Emulation techniques have also been used for the halo mass function [33],
the galaxy correlation function [34], and the 21 cm power spectrum [35]. Most similarly to
our own work, ref. [36], who emulated the 1D flux power spectrum for varying IGM thermal
parameters at a fixed cosmology, to measure the temperature-density relation of the IGM.
They did not make use of the error estimate of the Gaussian process, instead calibrating
error using test simulations. Ref. [37] used Gaussian processes on top of a regular grid of
simulations to place constraints on the dark matter temperature.

Here, we shall adapt several ideas from these earlier emulators to the problem of in-
terpolating the 1D Lyman-α forest flux power spectrum for a full set of parameters, both
cosmological and related to the astrophysics of the IGM. We shall use Gaussian processes [38],
a non-parametric Bayesian regression method, to interpolate between simulations. Gaussian
processes produce not just a point estimate of the interpolated function at the desired param-
eter values, but an estimate of the interpolation error. We shall add this error in quadrature
to the data covariance matrix, allowing the likelihood to account for the uncertainty in our
emulated values. Instead of varying one parameter at a time, the parameter values sampled
by our simulations will be chosen to fill a Latin hypercube in parameter space, which ensures
that each parameter value is unique within the simulation suite. This minimizes redundancy
and maximizes the parameter support. Since our aim in this paper is to prove our emulation
methods, we use small simulations which are not fully numerically converged. This allows
us to quickly iterate emulation tests without using an undue amount of computer time. The
lack of numerical convergence does not affect our results since we only compare our emulator
results to test simulations with the same resolution.

A major advantage of our techniques is that they are designed to allow later optimization
of the emulator with the addition of further simulations. Our algorithms and techniques for
this Bayesian emulator optimization are presented in a companion paper, ref. [39]. Bayesian
emulator optimization allows building the interpolating function iteratively, focusing extra
parameter evaluations in regions of high posterior probability and high interpolation uncer-
tainty where they can be most useful.

In this work, we have constructed our emulator for the Lyman-α forest 1D flux power
spectrum. Several of the techniques developed here are applicable to other datasets, such
as weak lensing surveys, galaxy clustering and future 21cm measurements. These include
especially the optimization techniques presented in our companion paper, our use of Latin
hypercube sampling which maximizes the coverage of simulations in parameter space and
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our investigation of the conditions under which an emulator produces unbiased results.
We present our methods in section 2. We describe the simulations used in section 2.1,

the parameters of the emulator in section 2.2, the construction of the emulator and the
Gaussian process kernel in section 2.3 and the Latin hypercube sampling strategy in section
2.4. Section 2.5 describes our likelihood function, including the Gaussian process error.

Section 3 presents our results. section 3.1 shows the accuracy of our emulator by compar-
ison to test simulations. We compare our Gaussian process emulator explicitly to a quadratic
polynomial emulator with the same number of points in section 3.2. Section 3.3 shows pos-
terior distributions given mock data. We conclude in section 4 and in appendix A we show
the effect on the flux power spectrum of varying each emulator parameter.

2 Methods

In this section we describe our methods for building a Lyman-α forest emulator. Section 2.1
describes the simulations we perform. Section 2.2 describes the parameter space they sample,
including our method for sampling the mean flux in post-processing. These sections describe
standard methods for Lyman-α forest simulations and so readers who are familiar with them
may wish to skip to sections 2.3 and 2.4 where we describe how we build our emulator from
these simulations. Section 2.3 describes how we interpolate between our simulations, while
section 2.4 describes how we choose which simulation points to sample. We describe both our
new Gaussian process based emulator and, for comparison, a standard quadratic polynomial
emulator similar to that used by ref. [7].

2.1 Simulations

We use a number of cosmological hydrodynamic simulations performed with the massively
parallel code MP-GADGET[40].4 MP-GADGET is a variant of the TreePM code GADGET-3,
last described in [41], which has been extensively modified to scale to ∼ 105 MPI ranks and
25 threads. Gravitational dynamics is followed using a Fourier transform based particle-mesh
algorithm on large scales and a Barnes-Hut tree on small scales. Pressure forces from the
gas are computed with the density-entropy formulation of smoothed particle hydrodynamics
(SPH) with a cubic spline kernel and 33 neighbours, following ref. [41]. MP-GADGET also
implements pressure-entropy SPH [42], but we opt not to use it as it makes minimal difference
for the low-density, largely adiabatic, gas of the Lyman-α forest [43]. Following ref. [44], we
use the simplified quick lya star formation criterion, which immediately turns all gas with
an over-density ∆ > 1000 and a temperature T < 105 K into stars. Denser gas has a small
volume filling fraction and thus contributes minimally to the Lyman-α forest. The heating
and cooling of the gas is computed following ref. [45], including an externally specified uniform
meta-galactic ultra-violet background from ref. [46].

The purpose of this paper is to investigate methods for emulation, rather than produce
a fully realized suite of simulations of the IGM. In order to allow us to quickly construct test
emulators we have used relatively small, fast, simulations, containing 2 × 2563 dark matter
and SPH particles within a 40 Mpc/h (comoving) box. This small box size barely covers the
scales probed by the BOSS flux power spectrum, and the low resolution means that small
scales and high redshifts are not numerically converged [9]. However, since in this paper
we shall only compare our results to simulations of the same box size and resolution with
different cosmological parameters, this will not affect our conclusions.

4https://github.com/MP-Gadget/MP-Gadget/
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Our simulations are initialized with a Gaussian random field using the Zel’dovich ap-
proximation [47]. Simulations are initialized at z = 99 from linear matter power spectra
generated using CLASS [48]. We use the same transfer function for both dark matter and
baryon particles. Each simulation uses the same random realisation of cosmic structure,
which has random phases, but individual modes are not scattered [49]. Radiation density,
assuming massless neutrinos, is included in the background evolution.

Each simulation generates 10 output snapshots evenly spaced every ∆z = 0.2 between
z = 4.2 and z = 2.2, matching the redshift bins of BOSS DR9. These snapshots are post-
processed by our artificial spectral generation code “fake spectra”5 [50] to generate 32000
Lyman-α absorption spectra parallel to the x-axis of the simulation box. The positions of the
spectra are chosen randomly but designed such that they are the same for each simulation
and snapshot. We finally Fourier transform each spectrum along the quasar sightline and
average the flux power spectrum over all sightlines to compute the mean one-dimensional
flux power spectrum of the Lyman-α forest. We generate our flux power spectra with a
pixel width of 10 km/s (and an infinite resolution spectrograph), substantially finer than
the 69 km/s pixel width of the BOSS spectrograph, which means the pixel window function
correction is negligible.

There is a subtlety regarding the binning of the flux power spectrum. The conventional
units for the flux power spectrum are velocity units, physical km/s, which are related to the
simulation box units of comoving Mpc/h by the Hubble rate:

1km/s =
100
√

Ωm(1 + z)3 + ΩΛ

(1 + z)
Mpc/h . (2.1)

This relation depends on the matter density Ωm, one of the parameters which we wish to
include in our model. Thus, as we change Ωm, the specific modes sampled by each bin in the
flux power spectrum also change. On scales close to the box size the low number of modes per
bin induces some scatter in the flux power spectrum. In order to avoid this scatter affecting
our emulator we emulate flux power spectra using bins spaced as a fraction of the simulation
box. Once an emulated flux power spectrum has been generated we convert to velocity
(km/s) units and interpolate onto the bins used by the BOSS 1D flux power measurement.

2.2 Simulation parameters

In this section we describe the parameter space spanned by our simulations. Lyman-α forest
simulations include both cosmological parameters and parameters to model the uncertain
thermal state of the gas, which may be affected by helium reionization. Our main purpose in
this paper is to test and improve the interpolation method used. Our choice of parameters is
thus similar to earlier work, in particular ref. [14]. In total we have five simulation parameters
for our emulator, three cosmological and two astrophysical. The cosmological parameters are
defined in section 2.2.1 and are ns, AP and h. The astrophysical parameters are defined in
section 2.2.2 and are HA and HS . There are also two parameters for the mean flux which do
not require simulations, τ0 and dτ0, discussed in section 2.2.3. These parameters and their
prior limits are summarized in Table 1.

2.2.1 Cosmological parameters

We model the primordial power spectrum with two cosmological parameters, a slope ns and
an amplitude AP. In order to minimize degeneracies between the cosmological parameters,

5https://github.com/sbird/fake_spectra/
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Parameter Lower Limit Upper Limit

ns 0.8 0.995
AP 1.2× 10−9 2.6× 10−9

h 0.65 0.75
HA 0.4 1.4
HS −0.7 0.1
τ0 0.75 1.25
dτ0 −0.25 0.25

Table 1. Summary of emulator parameters and their prior limits.

we have introduced the parameter AP, which describes the power spectrum amplitude on 8
Mpc scales. Our primordial power spectrum is thus given by

P (k) = AP

(
k

kP

)ns−1

, (2.2)

where we use a pivot of kP = 2π/8 = 0.78 Mpc−1. We have chosen 8 Mpc because it is close
to the mid-point of the scales measured by the 1D BOSS Lyman-αpower spectrum. These
scales are 1.1× 10−3 − 2.0× 10−2 s/km, corresponding to k = 0.075− 1.4 Mpc−1 at z = 2.2
and k = 0.094− 1.7 Mpc−1 at z = 4.2. AP is related to the standard CMB power spectrum
amplitude parameter, ACMB

s , which is evaluated at a pivot scale of 0.05 Mpc−1, by

ACMB
s =

(
1.6× 10−2

2π

)ns−1

AP . (2.3)

We also add one parameter for the expansion history. We choose to vary the dimensionless
Hubble parameter h while fixing Ωmh

2, which is well-measured by the CMB at z = 1100
[1] and by Lyman-α BAO at z = 2.3 [51]. This means that changing h also changes the
total matter density Ωm and thus affects the mapping between km/s and Mpc/h units, as
described in section 2.1. We fix Ωb = 0.0483, as this is degenerate with the mean flux (see
section 2.2.3). We vary ns between 0.8 and 0.995, AP between 1.2−2.6×10−9 and h between
0.65 and 0.75. These limits are chosen so that they are centered on the current cosmological
measurements from the BOSS DR9 1D Lyman-α forest; ns = 0.929± 0.012, σ8 = 0.84± 0.03
(corresponding to AP = 1.9 × 10−9) [15]. The prior limits on ns and AP are chosen so that
our emulator encompasses a parameter space approximately double the three-σ limits from
the Lyman-α forest in each parameter as inferred by ref. [15].

There is nothing in our modelling which requires our particular choice of cosmological
parameters. As long as parameters affect the flux power spectrum in a continuous fashion
and are not highly degenerate, interpolation should work as for our tests. For example, we
may in future consider a second-order scale dependence or “running” to the primordial power
spectrum, or non-cold dark matter models [4].

2.2.2 Astrophysical parameters

We include several astrophysical parameters to model the thermal history of the IGM. Fol-
lowing ref. [44, 52], we attempt to account for the uncertain effect of helium reionization on
the IGM temperature by rescaling the photo-heating by a density-dependent factor

ε̃ = HAε∆
HS , (2.4)
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where ∆ is over-density. HA and HS are free parameters of the emulator.6 HA controls
the IGM temperature at mean density, T0. HS controls the slope of the IGM temperature-
density relation, γ. We choose to use these photo-heating rates, HS and HA, rather than
the output thermal state of the IGM, γ and T0. Our choice means that our parameter
choices are all input parameters to the simulation code, which is essential for the refinement
algorithm presented in ref. [39]. It also has strong practical advantages when implementing
the emulator. However, our final parameter constraints will be in terms of HS and HA and
must be related to constraints on γ and T0.7 We fix the redshift of hydrogen reionization.

A change of 0.4 in HA corresponds to a 3000K shift in T0, while a change of 0.2 in HS

corresponds to a 0.8 shift in γ. We vary HS between −0.7 (γ = 1.22 at z = 2.2) and 0.1
(γ = 1.6 at z = 2.2), which corresponds to the approximate theoretical range expected from
helium reionization [53]. HA varies between 0.4 (T0 = 7600 K at z = 2.2) and 1.4 (T0 = 17000
K at z = 2.2).

2.2.3 Mean flux

In addition to the parameters of the simulation, we also marginalize over uncertainty in the
observed mean flux in post-processing. Assuming photo-ionization equilibrium, the mean
flux of the Lyman-α forest is proportional to the ionization fraction of neutral hydrogen and
thus degenerate with the uncertain amplitude of the meta-galactic ultra-violet background
(UVB). Mean flux rescaling is implemented by multiplying the optical depth in each spectral
pixel by a constant so that the mean flux matches the desired value

F̄ = 〈exp (−Aτi)〉 , (2.5)

We generate ten sets of spectra for each simulation with different mean flux values, evenly
spaced between the 68% confidence intervals from ref. [54] for each redshift bin, which are
given by

τ̄ = (23± 7)× 10−3(1 + z)3.65±0.21 . (2.6)

The Lyman-α forest 1D flux power spectrum measures the mean flux substantially more
accurately than the results of ref. [54], so this represents a weak prior. We have explicitly
checked that our results do not change if we decrease the number of mean flux samples.
Our emulator operates on 10Nsim flux power spectrum realizations in total. We found the
emulator accuracy did not improve by increasing the number of samples.8

The mean optical depth is observed to be a power law with redshift. Our likelihood
function thus assumes a power law mean optical depth and marginalizes over the amplitude
and slope of this power law. The mean flux at each redshift is thus given by

τi = τ0(1 + z)dτ0 × 23× 10−3(1 + z)3.65 , (2.7)

where τ0 and dτ0 are the amplitude and slope of the redshift evolution of the mean flux.
They have the parameter limits 0.75 to 1.25 and −0.25 to 0.25, respectively. Given values for
τ0 and dτ0, the mean flux in each redshift bin, τi, is computed and an emulated flux power
spectrum generated in each redshift bin. The same emulator is thus able to use more general
parameterisations of the evolution of the mean flux with redshift, including marginalizing
over a separate mean flux in each redshift bin.

6In ref. [52], α and β respectively.
7The alternative, using γ and T0 as emulator parameters, was implemented by ref. [36].
8To avoid potential aliasing in the emulator, the mean flux values sampled are offset by a small uniformly

distributed random number which is different for each simulation. In practice, this reduced the standard
deviation of the Gaussian process by only ∼ 0.1%.
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2.3 Interpolation and construction of the emulator

The central purpose of this paper is to introduce a new Gaussian process based emulator for
the Lyman-α forest. Gaussian processes can be viewed as a framework for Bayesian function
prediction: given a set of function evaluations fi at points xi, the Gaussian process provides
a prior for estimating the function probability distribution at other points xj : this is the
conditional probability P (f(xj) = fj |fi = f(xi)). The Gaussian process prior itself is not
particularly informative, corresponding to a constant function with zero mean and unit vari-
ance. In order to use Gaussian processes in practice, we specify a covariance function. This
provides a probability structure for the function space, and describes correlations between
neighbouring points. For full generality, the covariance function may be learned from the
data itself [e.g. 55]. Any other choice represents an additional (but very weak) prior on the
structure of the data and should be motivated by a physical understanding of the problem
in question.

In practice it is best to experiment with different covariance functions and see which
most accurately models the data. If one were fitting to noisy data, one would need to guard
against over-fitting. However, since in this case we are performing interpolation there is no
noise to fit and thus no danger of over-fit. We are free to choose the best covariance function
we can find.

Covariance functions generally have one or more free (hyper-) parameters. These are
estimated using optimization to maximize the marginal log-likelihood of the data given a
particular hyperparameter. For further details on Gaussian process hyperparameter opti-
mization methods, see ref. [38], Eq. 5.4.

After some experimentation, we chose a radial basis function (RBF) kernel, combined
with a dot, a.k.a. linear kernel. The radial basis function (RBF) kernel9 assumes that the
probability that a function has a given value is given by a normal distribution centered on
the value at the nearest points, with the length-scale of the variance a free parameter

K(xi, xj) = exp

(
−|xi − xj |

2

2l2

)
. (2.8)

This kernel is a good default; it prefers smooth functions, like those which often occur in
physical problems, yet it is flexible enough to accommodate many functional forms. The
kernel weight is peaked locally, which means it avoids imposing strong priors on the global
shape of the function.

We augment the RBF kernel with a dot kernel. This kernel is equivalent to Bayesian
linear interpolation. We include it because linear interpolation has already been shown to
perform well for the 1D Lyman-α forest flux power spectrum [17]. Since our Gaussian process
emulator includes linear interpolation as a special case, it should perform at least as well.
Our final kernel is thus

K(xi, xj) = σ2
0 exp

(
−|xi − xj |

2

2l2

)
+ σ2

i |xi.xj | , (2.9)

where l, σ0 and σi are free hyper-parameters of the kernel, found by optimizing for the training
data. In our Gaussian process emulator, the optimal values of these hyper-parameters were
l = 2.5 − 3, σ2

0 = 0.85 − 1.2 and σ2
i = 0.3 − 0.04, with different values within each range

depending on redshift. We found that in practice interpolation accuracy is insensitive to

9Sometimes referred to, somewhat confusingly, as the Gaussian process or squared exponential kernel.
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small changes in the hyper-parameters. Our interpolation code, flux power spectra, and
simulation parameters are publicly available at https://github.com/sbird/lya_emulator/
and https://github.com/sbird/lya_emulator_training/.

We achieved similar results with other standard kernels, in particular the Matérn 3/2
kernel [38, 56], the rational quadratic kernel, the exponential kernel and higher powers of the
linear kernel, which are equivalent to higher order polynomial regressions [38]. We found,
however, that the increased ability of the emulator to fit functions was compensated by an
increased difficulty in estimating the kernel hyper-parameters and so more complex kernels
did not improve emulator performance. We thus chose to use the simplest kernel that ad-
equately predicted test simulations. In principle we should also allow separate RBF length
scale hyper-parameters for each emulator parameter. However, in our emulator the prior
ranges are chosen so that the flux power spectrum changes by a similar magnitude across the
range of each parameter (see Appendix A) and so one length-scale suffices.

Our problem differs from the treatment of ref. [38] in one important respect; we are
attempting to emulate a multi-output vector. We could build a Gaussian process for each
bin of the flux power spectrum. This would imply optimizing hyper-parameters separately
at each value of kF and z. Both for reasons of computational efficiency and to ensure that
the emulator hyper-parameters are better constrained, we instead optimize hyper-parameters
separately in each redshift bin. Thus we have 11 separate Gaussian processes in our emulator,
corresponding to the BOSS DR9 redshift outputs at z = 2.2, 2.4, ...4.0, 4.2. We considered
using a single Gaussian process for the entire emulator, but found that this was less accurate;
the hyper-parameters evolve substantially with redshift.10

In the Gaussian process implementation we use, GPy [57], the optimization technique
used is the (constrained) L-BFGS11 optimizer implemented in scipy. We have also verified
that an MCMC optimizer implemented using emcee gave similar results.12

We divide our flux power spectra by the sample median, P̃F, to approximate the Gaus-
sian process prior of zero mean before performing our fit. Thus we are interpolating

PF,red = PF/P̃F − 1 . (2.10)

2.4 Selection of simulation points

In this section we describe our algorithm for choosing the parameter vectors to simulate.
We describe two approaches. In section 2.4.1, the Latin hypercube design we use for our
Gaussian process emulator, and, in section 2.4.2, the single-parameter grid we use for our
traditional quadratic polynomial emulator.

2.4.1 Latin hypercube

The Gaussian process kernel described in section 2.3 has an uncertainty roughly proportional
to the distance between a parameter vector and the nearest simulation. In order to minimize
the maximum error, we would like to spread our simulations evenly throughout parameter
space. We would also like to avoid simulations clustered in low-dimensional sub-spaces, which
would be unable to reproduce parameter variations elsewhere.

10Note this also differs from many matter power spectrum emulators, which use separate hyper-parameters
in each scale bin [33].

11Limited-memory BroydenFletcherGoldfarbShanno.
12We further tried the optimizer of scikit-learn’s Gaussian process module. This did not correctly

converge to the optimum parameters at time of writing (scikit-learn version 0.20.0).
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Figure 1. Two possible Latin hypercubes in a two dimensional parameter space normalized to the
unit square. The left example covers only a one-dimensional subspace and hence would be rejected.
The right example has support throughout the whole two dimensional parameter space and would
produce a better emulator.

To ensure these properties, we choose the sampling points for our simulations using a
Latin hypercube, as have been used extensively in cosmological emulators [29]. This structure
divides a (normalized) parameter space into a regular grid, with as many rows in each dimen-
sion as sampling points. Thus for an emulator with n dimensions containing k simulations
we would first create a kn grid. The samples are placed in turn such that no sample overlaps
in any dimension. Each sample added thus blocks off one row in all n dimensions. This is
equivalent to choosing a random permutation of the integers 0−k [24] and ensures that once
the samples are projected to a single dimension, they evenly sample the unit interval. Note
that there is no restriction on the number of simulations that can be placed within a given
parameter space.

There are a large number of possible Latin hypercubes and not all of them ensure our
desired properties. Figure 1 shows two, for n = 2 and k = 5. We would like to avoid
Latin hypercubes which fill only a one-dimensional subspace of parameter space, as in the
left example. The most common technique for ensuring space-filling properties is to use
orthogonal Latin hypercubes, which enforce uniform sampling not just in each parameter,
but in each 2 or 3-dimensional subspace. However, these designs are inflexible and not suited
to adding extra simulation points.

Instead, we use a Monte Carlo approach. We generate 10, 000 hypercubes at random
and use the one which maximizes our space-filling metric, discarding the rest. Our space-
filling metric is the sum of the Euclidean distances between each point in the hypercube
and its closest neighbour. This approach is simple, computationally efficient, and allows for
the addition of extra simulation points to the design in a later refinement step, as in our
companion paper ref. [39]. The right panel of Figure 1 shows a simple Latin hypercube
generated using this procedure, demonstrating that these samples achieve good coverage of
parameter space.

2.4.2 Quadratic emulator: single parameter grid

In order to compare our new emulator techniques to prior work, we also generate a ‘quadratic’
emulator similar to ref. [7]. First a “best-fit” set of parameters is simulated, chosen to lie
at the midpoint of each dimension in the n-dimensional parameter space prior volume. For
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Figure 2. Locations of the sampling points for a quadratic emulator in a (normalized) two-
dimensional parameter space for a “best-fit” simulation at (0.5, 0.5). Our emulator uses 4n + 1
simulations.

our quadratic emulator, this parameter combination is: τ0 = 1, dτ0 = 0, ns = 0.8975, AP =
1.9× 10−9, HS = −0.3, HA = 0.9, h = 0.7. Each simulation varies only one parameter from
this midpoint. Each bin of the resulting flux power spectra is fit with a quadratic polynomial,
and interpolation evaluates each quadratic polynomial at the new parameters. We run four
simulations for each parameter, for a total of 4n + 1 simulations. Although this procedure
may seem simplistic, and does not capture variations involving multiple parameters, it can
work reasonably well [7], because the flux power spectrum varies almost linearly in the
Lyman-α forest parameters (see appendix A).

2.5 Likelihood

In this section we describe our likelihood function. The previous sections have described
how we can generate a flux power spectrum for arbitrary input cosmological parameters.
While we will see that our procedure can do this with a reasonable degree of accuracy, an
important advantage of the Gaussian process is that it also provides an estimate of the
error in the interpolation. This estimate can be used to propagate interpolation error into
posterior probabilities. In principle (as long as the actual interpolation error is approximately
Gaussian), this should cause moderate interpolation error to increase uncertainty, without
leading to a bias in the derived cosmological parameters. Our likelihood is sampled using the
emcee package [58].

We use a simple quadratic (log) likelihood function, given by

logL(pk) = −1

2
C−1
ij (pk)dPi(pk)dPj(pk)−

1

2
log detCij(pk) (2.11)

dPi(pk) = P sim
F (ki, pk)− P data

F (ki) , (2.12)

where Cij(pk) is the total covariance matrix and P sim
F (ki, pk) the simulated flux power spec-

trum for a set of parameters pk. P
data(kj) is the flux power spectrum of the mock data. We

impose a hard prior on all parameters that they must be within the parameter bounds of the
simulated emulator given in Table 1.

The covariance matrix Cij is the sum of the total BOSS DR9 covariance from ref. [14]
and the emulator error generated by the Gaussian process

Cij(pk) = CBOSS
ij + CGP

ij (pk) . (2.13)
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While CBOSS
ij does not depend on cosmology, CGP

ij (pk) does, depending primarily on the
distance between pk and the nearest simulation point, and has an amplitude which is related
to a hyper-parameter of the Gaussian process (σ0). Because Cij(pk) thus depends on pk,
every likelihood evaluation requires a matrix inversion. Furthermore, in principle log detCij
is not constant and cannot be absorbed into the likelihood normalization, although in practice
we find that it does not vary significantly. The need to invert matrices slows down likelihood
computation only moderately: evaluating our Gaussian Process likelihood is a factor of two
slower than the quadratic likelihood.

For a Gaussian process with single-valued output, the covariance matrix would be diag-
onal and given by σ2(pi), the Gaussian process expected error at parameters pi. However, we
found a substantial correlation in the actual error between each k-bin. This can be understood
because, as detailed in section 2.3, our Gaussian process uses the same hyper-parameters to
estimate all scales in a single redshift bin. There are also substantial correlations between
different k-bins in the 1D Lyman-α flux power spectrum, because it probes non-linear scales.
In order to ensure that we do not bias the likelihood, we conservatively assume that all k-bins
at the same redshift are maximally correlated, minimizing the information content. However,
because each redshift bin has separate hyper-parameters, we approximate the correlations in
emulator error as zero if two data points are in different redshift bins. The covariance matrix
for the emulator is thus

Cij = σ(zi, pi)δzizj , (2.14)

where σ(zi, pi) is the error reported by the Gaussian process at the parameter vector pi at
redshift bin zi, and δzizj is unity if i and j are at the same redshift and zero otherwise.

As detailed in section 2.1, we generate an interpolated flux power spectrum P sim
F (ki, pk)

at values of kbox
i which are multiples of the simulation box (“Fourier” units). Thus, we rebin

the flux power spectrum so that it is evaluated at values of ki which are the same as those
in BOSS DR9. Since our simulation boxes are relatively small, the largest scales measured
by BOSS are on scales larger than the simulation box and are omitted from the likelihood.

As our simulations are not resolved, and to preserve the option of blinding any later
analysis with larger simulations, we do not use the actual BOSS flux power spectrum mea-
surement for P data(kj). Instead we have performed a series of 6 test simulations. The
parameters of these test simulations were generated at random using a Latin hypercube (as
in the main emulator, section 2.4.1) with slightly restricted cosmological parameter limits:
ns = 0.9−0.99 and AP = 1.4×10−9−2.6×10−9. This ensures that our tests cover our prior
volume but that some of our likelihood posteriors are separated from the emulator bounds.

3 Results

In this section we describe the performance of our emulator methods. In section 3.1 we
describe the ability of our Gaussian process emulator to accurately interpolate the flux power
spectrum. We compare to a quadratic polynomial emulator in section 3.2. Then in section 3.3
we show posterior probabilities generated from likelihood functions using both the Gaussian
process and quadratic emulators. We demonstrate that the true parameters lie within the
68% confidence intervals of the likelihood when using our Gaussian process, with smaller
parameter errors than the quadratic emulator. To aid the reader in visualising our results,
figure 3 shows the flux power spectra from our test simulations, whose parameters provide
the ground truth to which we compare our emulation and Markov Chain results.
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Figure 3. Flux power spectra extracted from two of our test simulations. Each line represents
a different redshift bin. The grey shaded region shows the scales measured by BOSS. (Left) Test
simulation parameters are τ0 = 0.9, dτ0 = 0, ns = 0.907, As = 1.7×10−9, HA = 0.933, HS = −0.633,
h = 0.742. (Right) Test simulation parameters are τ0 = 0.9, dτ0 = 0, ns = 0.982, As = 2.5 × 10−9,
HA = 0.667, HS = −0.1, h = 0.658.
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Figure 4. Accuracy of the Gaussian process emulator. We show the ratio between an emulated flux
power spectrum and the true flux power spectrum from a simulation with the same set of cosmological
parameters. Each line represents a different redshift bin. The grey band shows the expected error
from the emulator. For clarity we show the maximum region covered by the 1 − σ emulator error
prediction. This is larger than the true difference, both because it combines multiple redshift bins and
because the emulator slightly over-estimates the true error at these parameters. (Left) Test simulation
parameters are τ0 = 0.9, dτ0 = 0, ns = 0.907, As = 1.7× 10−9, HA = 0.933, HS = −0.633, h = 0.742.
(Right) Test simulation parameters are τ0 = 0.9, dτ0 = 0, ns = 0.982, As = 2.5× 10−9, HA = 0.667,
HS = −0.1, h = 0.658.

3.1 Gaussian process emulator accuracy

Figure 4 shows the accuracy of a Gaussian process emulator using the cosmological parame-
ters for two test simulations. The parameter file for the simulations used, as well as the flux
power spectra, are available from https://github.com/sbird/lya_emulator_training/.
We tested the accuracy of our Gaussian process emulator with six test simulations not in-
cluded in the emulator, as described in section 2.5. From these six we show in the left panel
one simulation where the accuracy of the emulator was typical, and in the right panel the
test simulation where the accuracy was poorest. We show the differences in each redshift bin
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Figure 5. Distribution of the errors of the Gaussian process for the same test simulations in figure 4.
We show a histogram of the actual difference in each k and z bin between the flux power spectrum
estimated from the emulator and the true flux power spectrum from a simulation, normalized by the
1 − σ error expected from the emulator. Shown for comparison is a unit Gaussian. Thus an ideal
error estimation would result in a match between the black line and the blue histogram. Each figure
shows a different simulation with 11 independent redshift bins and 31 correlated k-bins. For these two
simulations the Gaussian process is slightly over-estimating the true errors. In other test simulations
the Gaussian process expected error is more accurate. (Left) Test simulation parameters are τ0 = 0.9,
dτ0 = 0, ns = 0.907, As = 1.7× 10−9, HA = 0.933, HS = −0.633, h = 0.742. (Right) Test simulation
parameters are τ0 = 0.9, dτ0 = 0, ns = 0.982, As = 2.5× 10−9, HA = 0.667, HS = −0.1, h = 0.658.

between the flux power spectrum generated by the emulator and that from a test simulation.
The typical difference between the Gaussian process prediction and the simulated flux power
spectrum is of the order of 1%, with a worst-case performance of 2% (although the estimated
emulator error, shown by the grey band in figure 4, is larger). We further tested the Gaussian
process emulator using the input simulations, which were reproduced to machine precision,
and using the 21 simulations run for the quadratic emulator. The latter had similar perfor-
mance to the other 6 test simulations, and showed that the emulator is generally accurate
to ∼ 1%, with only 6/27 simulations showing > 2% inaccuracy. For comparison, the current
statistical error on the BOSS DR9 1D flux power spectrum is minimal at around ∼ 3% at
z = 2.4, rising to 6% at z = 3.6 and ∼ 10% at z ≥ 4. Figure 4 thus demonstrates that
our emulator is capable of achieving the percent-level accuracy required for both current and
next-generation Lyman-α surveys.

Notice that the residual errors are often correlated between neighbouring k-bins, but
that the largest and smallest scales are uncorrelated. Furthermore, there appears to be little
correlation between neighbouring redshift bins, justifying the assumptions of our likelihood
function. For this emulator, error is usually worst on small scales. This has a simple expla-
nation: small scales are more non-linear and thus inherently harder to model. Furthermore,
the IGM thermal history affects the shape of the flux power spectrum only on small scales.
Thus the emulator has to fit more complex variations over more parameters at these scales.
Recovery of the power spectrum appears to be worse at high redshift in the right-hand plot
of Figure 4, but this is a feature specific to this test case: there is no general trend of
interpolation error with redshift.

Figure 5 shows histograms of the actual errors normalized by the expected error from
the Gaussian process. Also shown is a unit Gaussian. If the emulator’s error estimation
was correct, the histograms should be close to the unit Gaussian. We can see that for these
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two examples the Gaussian process is moderately over-estimating the true error. This is
mostly due to a statistical fluctuation in these two test simulations.13 Other test simulations
showed an error distribution closer to the unit Gaussian, and a histogram combining errors
from all our test simulations was much closer. None of our test simulations showed the
emulator under-estimating the error, but 3/27 tests showed > 1− σ offset between the true
error distribution and the unit Gaussian, indicative of a biased estimate of the flux power
spectrum. Overall, we found that it was more difficult for the Gaussian process to accurately
estimate errors than to produce a good estimate of the flux power spectrum.

3.1.1 Emulator accuracy

The overall accuracy of the emulator is controlled by the density of simulations. From the
radial basis function kernel, eq. 2.8, the emulator error scales like

E = E0
∆x√

2l
, (3.1)

where ∆x is the distance to the nearest simulation point, in units where all parameters are
mapped onto the unit cube. For our emulator the RBF length scale is l = 2.5− 3, depending
on the redshift. For evenly spaced simulations, the maximum distance from any point to the
nearest simulation is

∆x ∼
√

P

N2
sim

, (3.2)

where Nsim is the number of simulations and P is the number of parameters. For us Nsim = 21
and P = 7, so ∆x ≈ 0.13. We achieve an average error of 1.5%, so if l = 3, E0 ≈ 0.5. Inverting
Eq. 3.1 shows that the emulator error scales linearly with the number of simulations and that
a median error of ∼ 4% would require only 8 simulations. A median emulator error larger
than the statistical error in the data can present difficulties for parameter estimation, as
the covariance matrix becomes highly parameter dependent, in extreme cases leading to a
multi-modal likelihood.

This calculation, however, neglects an important source of uncertainty in the emulator;
the need to estimate the kernel hyper-parameters. For sparse data it becomes extremely
difficult to determine the optimal hyper-parameter and thus the emulator is inaccurate.
Worse, because the emulator error is itself a hyper-parameter this source of error is not
included in the emulator’s error estimate and thus the posterior confidence intervals become
biased. We have been unable to find firm guidance in the statistics literature as to what
simulation point density is necessary for a good hyper-parameter estimation. A reasonable
ansatz seems that the kernel length scale should be at least the average distance between
simulations: ∆x =

√
P/N = Kl. Note that l corresponds to a physical scale of variation in

the flux power spectrum and so the number of simulations needed will scale with the prior
parameter volume. The value of K is uncertain, and is likely to depend on the exact form of
the kernel. As the hyper-parameters of our Gaussian process emulator are well-determined,
we know that K . 20. An earlier iteration of our test emulator with a prior volume 5 times
larger did not have well-determined hyper-parameters, suggesting that for our kernel K & 5.
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Figure 6. Accuracy of the emulator using quadratic polynomial interpolation. We show the ratio
between an emulated flux power spectrum and the true flux power spectrum from a simulation with
the same set of cosmological parameters. Each line represents a different redshift bin. Test simulation
parameters are identical to those used in figure 4. (Left) Test simulation parameters are τ0 = 0.9,
dτ0 = 0, ns = 0.907, As = 1.7× 10−9, HA = 0.933, HS = −0.633, h = 0.742. (Right) Test simulation
parameters are τ0 = 0.9, dτ0 = 0, ns = 0.982, As = 2.5× 10−9, HA = 0.667, HS = −0.1, h = 0.658.

3.2 Comparison to a quadratic emulator

Figure 6 shows the accuracy of a quadratic polynomial emulator, using the same test simu-
lations, prior parameter ranges and number of simulations as the Gaussian process shown in
figure 4. A comparison between figures 4 and 6 thus shows directly the relative performance
of each emulator. We find that the overall accuracy of our quadratic emulator at these test
points is around 4%. Two of our six test simulations achieved 2% accuracy. This performance
is clearly worse than the Gaussian process emulator. Furthermore, figure 6 shows that the
error is highly correlated between redshift bins, which may present a difficulty for parameter
estimation. Note that we have generated test spectra at τ0 = 0.9, whereas the quadratic
emulator is centered on τ0 = 1. The value of τ0 at which the quadratic emulator is evaluated
strongly changes the overall accuracy. In fact, at τ0 = 1, the quadratic emulator performs
almost as well as the Gaussian process emulator. This is not surprising, as the mean flux,
τ0, is the single parameter which most affects the flux power spectrum. However, the accu-
racy of the quadratic emulator degrades quickly as the mean flux changes. As the quadratic
emulator only varies one parameter at a time, all simulations except the central one have
their flux power spectra generated at τ0 = 1, and any correlation between power spectrum
shape variation from the mean flux and from cosmology is not captured. This sensitivity to
the mean flux is not seen in the Gaussian process emulator, which generates a series of flux
power spectra with different mean fluxes for every simulation. Figure 8 shows that posterior
error on the mean flux is around ∆τ0 = 0.1 so the quadratic emulator is always inaccurate
in some part of the 68% confidence intervals.

We also note that the overall accuracy of the quadratic emulator is sensitive to the prior
parameter range. Although the quadratic emulator shown here has an accuracy of only 4%,
quadratic emulators used in prior work [e.g 7, 14, 26] have achieved better performance by
using a restricted prior parameter range, or by carefully choosing the simulated parameters
to lie close to the best fit value of the model. However, this is not always possible, as the

13Note that the correlation between neighbouring k-bins means that there are far fewer independent samples
than bins.
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Parameter Gaussian process Quadratic Quad/GP (%)

dτ0 −0.014 - 0.092 −0.046 - 0.086 25
τ0 0.866 - 0.947 0.864 - 0.967 26
ns 0.87 - 0.92 0.88 - 0.97 −3

AP × 109 1.484 - 2.094 1.464 - 2.140 11
HS −0.54 - −0.20 −0.61 - −0.15 34
HA 0.65 - 1.18 0.58 - 1.19 16
h 0.71 - 0.74 0.71 - 0.74 4

Table 2. Table of 68% posterior parameter confidence intervals from the Gaussian process and
quadratic emulators. The final column shows the percentage change in the confidence interval widths.
Positive numbers indicate wider intervals in the quadratic emulator. The true parameter values of
the input simulation are τ0 = 0.9, dτ0 = 0, ns = 0.907, As = 1.7× 10−9, HA = 0.933, HS = −0.633,
h = 0.742

emulator must encompass the full data posterior, and the best fit of the model may not be
known in advance.

We also tested running a Gaussian process emulator using as input the single-parameter
grid of simulations performed for the quadratic emulator. This reveals whether the improve-
ment of the Gaussian process over the quadratic emulator was due to the sampling strategy
or the more flexible interpolation algorithm. Since the kernel chosen for the Gaussian process
includes a dot kernel, which is equivalent to linear interpolation, we expect the Gaussian pro-
cess to do at least as well as quadratic emulation. Of our 6 test simulations, 4 test simulations
achieved ∼ 1% accuracy, similar to the full Gaussian process emulator. However, the other
2 test simulations showed ∼ 4% accuracy, similar to the quadratic emulator, although the
simulations with the poorest estimation were not the same.

With a single parameter grid the Gaussian process over-estimated the emulator error by
a factor of 4− 10. This has a simple explanation. The quadratic emulator relies on varying
each parameter in the emulator separately and combining them, which is reasonably accurate
in practice. However, without simulations which vary multiple parameters at once the Gaus-
sian process does not know this and is thus unable to properly constrain the emulator error.
It thus seems that the majority of the improved emulator performance with our Gaussian
process comes from the improved sampling strategy. We infer that the chief limitation of
the quadratic polynomial interpolation is that it forces a sampling strategy with a relatively
limited coverage of parameter space, especially away from the central mean flux value.

3.3 Posterior parameter constraints

Figure 7 shows the 1D and 2D posterior parameter constraints from the Gaussian process
emulator on a test simulation. The emulator error at the true data points of the simulation is
shown in figure 4, and is typical for test simulations using this emulator. With emulator errors
at this level (1− 2% of the flux power spectrum), the posterior confidence intervals provide
an unbiased measurement of the true parameter values. Some of the thermal parameters
are poorly constrained by the BOSS data. In particular the 95% marginalized confidence
intervals on HA and HS overlap with the emulator prior volume. Ref. [15] find ∆γ = 0.2
and ∆T0 = 3500 K at 68% confidence. When translated into constraints on γ and T0,
our prior volume has ∆γ = 0.4 and ∆T0 = 9000 K (see section 2.2), so our results are
consistent. These relatively poor constraints are expected with the BOSS DR9 covariance,
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Figure 7. Marginalized likelihood posteriors in 1D and 2D for the parameters of our test simulation
with τ0 = 0.9, dτ0 = 0, ns = 0.907, As = 1.7 × 10−9, HA = 0.933, HS = −0.633, h = 0.742 using a
21 sample Gaussian process emulator. Contours show 68% and 95% confidence intervals. The true
parameter values are shown by dashed lines.

which does not measure the small scales that are most sensitive to the thermal history. We
considered enlarging our prior volume, but there are strong physical reasons to expect γ
and T0 to be within this range. Alternatively, we considered placing a prior on T0 from
high resolution flux power spectrum measurements, but again decided against it because we
wished to demonstrate that our emulator produces unbiased results throughout the prior
volume. Our constraints on τ0 are much tighter than our prior volume.

The Gaussian process emulator shows parameter degeneracies between AP, ns and τ0,
including a curved degeneracy between AP and τ0. This is to be expected, since AP and
τ0 both set the overall amplitude of the flux power spectrum. The degeneracy between ns
and AP suggests that, once the thermal parameters are marginalized out, the scale at which
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Figure 8. Marginalized likelihood posteriors in 1D and 2D for the parameters of our test simulation
with τ0 = 0.9, dτ0 = 0, ns = 0.907, As = 1.7× 10−9, HA = 0.933, HS = −0.633, h = 0.742 using a 21
sample quadratic polynomial emulator. Contours show 68% and 95% confidence intervals. The true
parameter values are shown by dashed lines.

the Lyman-α forest is most sensitive to cosmology is larger than the pivot scale we chose,
kP = 0.78 Mpc−1. This motivates a smaller kP in future work.

Our constraints on h appear unusually tight: ∆h = 0.04 at 68% confidence ignoring
prior volume effects. They also exhibit unusual non-smooth features in the likelihood. Recall
from section 2.2 that we hold ΩMh

2 constant and so a variation in h is also a variation in
ΩM . Most of the constraining power is thus coming from the effect of ΩM on the growth
rate of the cosmological perturbations at this redshift. The non-smooth likelihood features
arise from our choice to ignore data on scales larger than our simulation box size. Since the
mapping between the size of the simulation box (in comoving Mpc/h) to the measured bins
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Figure 9. Marginalised likelihood posteriors in 1D and 2D for the parameters of our test simulation
with τ0 = 0.9, dτ0 = 0, ns = 0.982, As = 2.5 × 10−9, HA = 0.667, HS = −0.1, h = 0.658 using a
21 sample Gaussian process emulator. Contours show 68% and 95% confidence intervals. The true
parameter values are shown by dashed lines.

of the flux power spectrum (in physical km/s) depends on ΩM (eq. 2.1), decreasing h causes
an extra flux power spectrum bin to be included in the likelihood, suddenly reducing the
error bars. This feature would not occur in an emulator with a larger box.

Figure 8 shows the posterior parameter constraints using the quadratic emulator. The
true parameter values again all lie within the 68% confidence intervals, but the constraints
on key cosmological parameters are substantially weaker. The 68% marginalized confidence
intervals are given in Table 2. Increases in the confidence interval widths are largest in the
thermal parameters, HS and HA, which have the most non-linear effect on the flux power
spectrum (see Appendix A). Constraints on the primordial power spectrum amplitude, AP

are also weaker, due to the degeneracy between AP and τ0.
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The quadratic polynomial emulator has larger emulator error, but our likelihood func-
tion does not include it in the covariance matrix. We might thus naively expect a biased
parameter value rather than larger uncertainty. However, the true change in the flux power
spectrum at parameter values away from the central “best-fit” simulation for several parame-
ters, in particular τ0, is larger than estimated by the quadratic polynomial. This leads to the
emulator under-estimating the constraining power of the data, leading to larger uncertain-
ties, and these larger uncertainties are sufficient to dominate over biased parameters from an
inaccurate likelihood. Note that the magnitude of the difference in posterior errors depends
on the specific prior volume and dataset used.

Figure 9 shows the posterior likelihood constraints for the second test simulation shown
in figure 4, for a Gaussian process emulator. This simulation serves as a useful worst-case
scenario for our Gaussian process emulator as this test simulation had the largest error
between the emulated and true flux power spectra. In this case the emulator error is 3− 4%,
comparable to the diagonal elements of the BOSS covariance matrix at low redshift. However,
with the exception of HS , the true parameter values are within the 68% confidence intervals,
demonstrating that the emulator produces unbiased parameters. We examined the posterior
contours for the other 4 test simulations and in all other cases the true parameter values
lay within the 68% confidence intervals. Furthermore, in all cases the quadratic polynomial
emulator produced weaker constraints than the Gaussian process emulator, with the increase
in the size of the contour widths similar to those already discussed.

We checked the effect of artificially setting emulator error to zero in the likelihood func-
tion using our test simulations. For the worst-case test simulation shown in figure 9 posterior
confidence interval widths shifted by ∼ 10%, with the constraints on ns tightening and those
on HS weakening. The posterior contours continued to enclose the true parameter values
within the 68% confidence intervals. We caution that this continued unbiased estimation of
the posterior may simply be because the emulator is moderately over-estimating the true
error for this test point (see figure 5). For our other test simulations there was minimal effect
on the posterior confidence intervals, probably because the emulator error in these cases was
< 50% of the statistical error from BOSS DR9.

4 Conclusions

We have constructed and validated techniques for emulation of the Lyman-α forest 1D flux
power spectrum. We have not yet performed simulations of sufficient size to produce a
resolved flux power spectrum, instead using this paper to validate our emulator building
routines14 with a series of small, 40 Mpc/h, simulations with 2× 2563 particles. We sample
5 parameters with 21 simulations in a Latin hypercube scheme. There are 2 parameters
describing the thermal history of the IGM and 3 describing cosmology. We add a further 2
parameters for the mean flux in post-processing. Our emulator allows the generation of 1D
Lyman-α forest flux power spectra at arbitrary parameter values within the emulator volume,
unlike existing interpolation methods which only perform well near a fiducial simulation. A
Gaussian process is used for interpolation, with a kernel including both linear and radial
basis function terms.

We tested our emulator with a series of 6 simulations spread throughout parameter
space. The typical interpolation error was 1%, with a worst-case performance of 4%, compa-
rable to the BOSS DR9 1D Lyman-α forest flux power spectrum statistical error of 3− 10%

14Publicly available at https://github.com/sbird/lya_emulator/

– 21 –

https://github.com/sbird/lya_emulator/


[14]. The Gaussian process estimates the interpolation error as well as the function value at
the interpolation point. We demonstrated that in our test simulations the estimate of this
error is reasonably reliable. It was accurate in 4 of our 6 tests and moderately larger than
the true emulator error in the other 2.

We constructed a likelihood function for our emulator using our test simulations and
the BOSS DR9 data covariance matrix as mock data. The likelihood function propagated
the estimated emulator error from the Gaussian process, and thus accounted for residual
interpolation error. We showed that MCMC chains run using our likelihood function were
able to recover the true parameters of the test simulation, within 68% confidence intervals.
Interestingly, an earlier test emulator with a prior volume five times larger did not produce
unbiased posterior results, and showed distinctly non-Gaussian error residuals. This suggests
that for the Gaussian process to produce an unbiased posterior estimate requires a critical
density of simulation points. We suggest that the this density must be sufficient for accurate
optimization of kernel hyper-parameters. We considered the effect of artificially setting the
expected emulator error to zero in our likelihood, and discovered that it was small in most
cases, as for our emulator the estimated error is much smaller than the data covariance.

We compared our Gaussian process emulator to a quadratic polynomial emulator resem-
bling those used by earlier Lyman-α forest analyses, showing that it produced substantially
smaller emulator error (by a factor of 2) with the same number of simulations and prior
volume. To evaluate the impact on posterior parameter constraints, we ran MCMC chains
using our quadratic emulator and showed that posterior confidence intervals using a typical
test simulation were on average 16% wider. We (reassuringly) showed that the quadratic
emulator did not produce biased parameter constraints. The emulator error for quadratic
interpolation was around 4%, which suggests that although it is sufficient for data with sta-
tistical uncertainties of ∼ 10% such as in ref. [59], it will be inadequate for future datasets
with smaller statistical error. The techniques and code we present in this work will thus be
essential for making best use of future Lyman-α forest surveys.

Similar emulators would also be useful for Lyman-α forest datasets derived from high
resolution spectra. These datasets probe smaller scales, up to k = 0.2 s/km [11] and are
generally more sensitive to the details of reionization and the thermal history of the IGM.
The simulations presented here are not of sufficient resolution to probe these scales with
fidelity, so we have not attempted to build an emulator for them here. However, it should be
possible to build a similar emulator to ours for these scales using higher resolution simulations
and a model for reionization.

Although our focus in this paper has been the Lyman-α forest, the techniques of cosmo-
logical emulation are generally applicable to any problem which requires expensive forward
simulation, in particular those sensitive to non-linear gravitational evolution. Such problems
include galaxy clustering, weak lensing, 21cm and the halo mass function, most of which
have had emulators constructed for them. The most generally applicable points in this paper
are our use of a flexible Latin hypercube design which maximizes the coverage of simulation
points, our understanding of the importance of good hyper-parameter estimation and that
this can be improved using multi-output Gaussian processes.

In a companion paper, ref. [39], we show how the Lyman-α emulator can be improved
by Bayesian emulator optimization, which iteratively adds points to the simulation sample
set, and produces further improvements in the width of posterior confidence intervals. In
these two papers we have demonstrated that the techniques presented here are capable of
achieving the percent-level accuracy necessary for an optimal analysis of future Lyman-
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α forest surveys, such as DESI. In future work we will apply our techniques to building a full
cosmological emulator for the Lyman-α forest. We will also incorporate more sophisticated
models of hydrogen and helium reionization, which will allow us to improve the fidelity of
our modelling as well as the interpolation error.
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A Single-parameter variations

Figure 10 shows the effect on the 1D flux power spectrum of changing a single parameter in
our emulator, using the simulations from the quadratic polynomial emulator. While this has
been discussed in the literature before [e.g. ref 6], we have interpolated a non-standard set of
parameters, and so in the interests of clarity we show how our new parameters affect the flux
power spectrum. We show the effect at z = 2.2 and z = 4.2 to demonstrate that the change in
each parameter with redshift is relatively small. The redshift-dependent conversion between
km/s and comoving Mpc/h is visible as specific features, including the box size, move with
redshift. The degeneracy between τ0 and AP is also visible, although this would be partially
broken by the largest scale bin if our box size was increased. We have rescaled each spectrum
to have the same mean flux. Increasing the IGM temperature using HA increases the flux
power spectrum only on the relatively large scales shown (and only because we must match
the mean flux). On smaller scales it erases power, as expected.
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Figure 10. The effects of changing each emulator parameter on the 1D flux power spectrum. Shown
is the ratio between the flux power spectrum at each parameter value used for the quadratic emulator
to the “best-fit” simulation at τ0 = 1, dτ0 = 0, ns = 0.8975, AP = 1.9× 10−9, HS = −0.3, HA = 0.9,
h = 0.7. The parameters are: (top-left) the mean flux τ0, (top-right) the spectral index ns, (middle-
left) the primordial power spectrum amplitude AP, (middle-right) the heat slope HS , which controls
the temperature-density relation parameter γ, (bottom-left) the heat amplitude HA, which controls
the temperature at mean density T0 and (bottom-right) the hubble parameter, h, which is inversely
proportional to the matter density ΩM in our scheme. We show the minimum and maximum redshifts
in the emulator: z = 2.2 (dashed) and z = 4.2 (solid).
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