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Abstract

This thesis studies partial identification in discrete outcome models and their

empirical applications. Chapter 1 investigates popular count data instrumental

variable (IV) models. Many methods in the literature ignore the discreteness of

count outcomes and thereby suffering from undesirable misspecification prob-

lems. To address this problem, a partially identifying count data IV model

is developed. The model requires neither strong separability of unobserved

heterogeneity nor a triangular system. Identified sets of structural features are

derived. The size of the identified set can be very small when the support of an

outcome is rich or instruments are strong. The proposed approach is applied

to study effects of supplemental insurance on healthcare utilisation.

In Chapter 2, partial identification in competing risks models for dis-

cretely measured or interval censored durations are studied. These models are

partially identifying because of 1) the unknown dependence structure between

latent durations, and 2) the discrete nature of the outcome. I develop a highly

tractable bounds approach for underlying distributions of latent durations by

exploiting the discreteness and I investigate identifying power of restrictions

on the dependence structure with no assumptions on covariate effects. Bounds

are obtained from a system of nonlinear conditional moment (in)equalities. I

devise a solution method that requires much less computational burden than

existing methods. Asymptotic properties of bound estimators and a simple

bootstrap procedure are provided.

Chapter 3 applies the proposed bounds approach in Chapter 2 to re-

evaluate trends in cancer mortality by extending the “war on cancer” data

studied in Honoré and Lleras-Muney (2006). I find substantial reduction in

cancer mortality. Estimated patterns differ from the original findings. In an-

other application, I investigate the effects of extended unemployment benefits

on unemployment spells using data from Farber et al. (2015). Bound estimates

support the original finding that extended benefits did not discourage active

job seekers during and after the Great Recession.



Impact Statement

This thesis considers empirically relevant partially identifying models. The

main feature of these models is that they require a weaker set of restrictions

than point identifying models. Therefore, they are more robust to possible

misspecification. Econometric analysis often relies on identifying restrictions

which are not based on economic theory. Partially identifying models allow

for applied researchers to relax such restrictions.

Count data and competing risks situations are widely studied in many ap-

plied fields. This thesis introduces easily implementable and computationally

attractive partial identification approaches to those problems. Theoretical in-

novations in this thesis ease potential misspecification problems in the existing

count data methods. When it comes to competing risks models, my new ap-

proach substantially mitigates computational difficulties from which existing

methods in the literature have suffered and thereby make the models widely

and easily applicable in applied studies with a valid inference procedure.

Outside academia, the proposed methods can be employed for programme

evaluation as count and competing risks data are very common in many fields.

Empirical applications in Chapter 1 and Chapter 3 illustrate the usefulness of

the proposed approaches. Especially, newly revealed patterns in cancer mortal-

ity trends in the United States and counterfactual analysis on effects of further

reductions in cancer and cardiovascular disease on overall life span provide use-

ful insights on health policy. Another application to effects of unemployment

insurance on unemployment spells supports the controversial argument that

unemployment benefits do not distort economic efficiency. Dissemination of

this research through journal publications is expected to boost the use of pro-

posed methods.
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Chapter 1

Partial Identification in

Nonseparable Count Data IV

Models

1.1 Introduction
This chapter introduces a new approach to count data instrumental variable

(IV) models where explanatory variables are potentially endogenous and un-

observed heterogeneity is nonseparable. The proposed approach is widely ap-

plicable in applied studies as many outcomes of interest are count-measured

(Cameron and Trivedi (2013), CT13 henceforth).1 Endogeneity is a common

concern in economics. For instance, in the context of doctor visits, some ob-

servable characteristics can be correlated with unobserved factors. Suppose

individuals self-reported their current health statuses. If they did not report

whether they had private health insurance, explanatory variables such as oc-

cupations would be endogenous since having private insurance is probably cor-

related with health status as well as occupation.2 If this is the case, the OLS

estimator fails to deliver correct information about causal effects of interest.

IV models are a usual ploy to cope with this problem.

I study identifying power of a single equation IV model for ordered out-

comes introduced by Chesher (2010) and Chesher and Smolinski (2012) in the

context of count data. Those two papers explore partial identification of the

1For instance, in health economics, the numbers of doctor visits and other types of
health care utilization, occupational injuries and illnesses are all count outcomes. Other
examples are widely found in labour and empirical IO, and even finance literature such as
absenteeism in the workplaces, recreational or shopping trips, entry and exits from industries,
mortgage prepayments and loan defaults, bank failures, patent registration in connection
with industrial R&D, and frequency of airline accidents.

2People with risky occupations may want to have private insurance. Some workplaces
for high skilled workers often provide private insurance to their employees.
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structural function and derive the sharp identified set when either the outcome

or the scalar endogenous explanatory variable is binary. In this chapter, the

sharp identified set of the structural function is defined using the generalized IV

model framework introduced in Chesher and Rosen (2017). The outcome and

endogenous variables can be both non-binary so that sharpness is guaranteed

regardless of supports of those variables.

Using this model for count outcomes is beneficial in the sense that widely

used count data IV methods in the literature suffer from undesirable limita-

tions as the discreteness of count data is ignored. I demonstrate that those

approaches may deliver misleading information about the causal effects of in-

terest. The proposed model explicitly accommodates the discreteness and

hence is more robust to misspecification. In simulation studies, it is shown

that identified sets delivered by the model always contain the true values of

structural features, meanwhile other alternatives are in general inconsistent.

In empirical studies using partially identifying models, obtaining “tight”

bounds is a primary concern. Therefore, it is important to learn what fea-

tures of the distribution of data could deliver tight bounds (see Ho and Rosen

(2015), Section 7.2 for detailed discussions). Count outcomes often have a

richer support than other ordered outcomes depending upon the duration in

which counts are aggregated. The richer support of the outcome in general

leads to tighter bounds. I show that identified sets of structural features can

be very small when the IV is strong or the support of the outcome is rich. A

simple algorithm is introduced to compute identified sets.

Recent developments in the partial identification literature provide

straightforward inference methods. Chernozhukov et al. (2013) develops a

novel inference method on identified sets characterized by intersection bounds.

Inference techniques on projections of high dimensional identified sets are

introduced by Kaido et al. (2017) and Bugni et al. (2017). I employ the

intersection bounds method to compute confidence regions for identified sets,

thereby documenting a unified framework from identification to inference. An

empirical application to effects of supplemental insurance on the number of

doctor visits shows the usefulness of the proposed approach.

Two branches of count data IV methods are commonly used. The first is

the control function approach.3 This approach is widely used in applied studies

but requires strong assumptions. Under some circumstances, the use of this

approach is not recommended. For instance, the triangular structure rules out

3Terza et al. (2008) implements it in the context of count data models viz. 2 stage
residual inclusion estimation (2SRI).
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full simultaneity. Moreover, endogenous variables are required to be continu-

ously distributed and so are the instruments unless the first stage regression is

linear. The other branch is moment based approaches suggested in Windmei-

jer and Santos Silva (1997) (WS1997 henceforth) and Mullahy (1997). These

approaches do not require a triangular system and parameters of interest are

point identified. However, they ignore the discreteness of count data and sep-

arable errors absorb the discreteness. Consequently, conditional supports of

separable errors depend on given values of explanatory variables. I show that

no relevant instrument satisfies the independence condition if endogenous vari-

ables are discrete. Furthermore, point identified parameters explain not much

about the DGP. Both approaches also restrict unobserved heterogeneity to be

scalar. I consider multi-dimensional unobserved heterogeneity in Appendix A.

Relaxation of strong separability in incomplete models gives rise to partial

identification. The importance of model specifications cannot be emphasized

enough in applied economic studies. Applied researchers often impose simpli-

fying assumptions which are not based on economic theories in order to make

identification and estimation more tractable. In many cases, they become the

primary source of misspecification. Partial identification approach tends to

impose a minimal set of restrictions to extract useful information from data

and hence it is less vulnerable to attacks on econometric assumptions. To

my best knowledge, there has been no paper exploring partial identification in

count data models.

The rest of this chapter is structured as follows. Section 2 shows poten-

tial problems of prevailing approaches in the literature. Section 3 introduces

incomplete count data IV models with the nonseparable error and the charac-

terization of identified sets. Section 4 demonstrates identified sets in numerical

examples. Section 5 shows estimation and inference results on an empirical ex-

ample. Section 6 concludes. All proofs are provided in Appendix A.

1.1.1 Notation

The notation in this chapter follows the convention in the literature. Upper and

lower case letters A and a denote a random vector and its particular realization

respectively. RA denotes the support of A; FA|B(·|b) denotes the conditional

distribution function of A given the realization of a random variable B; The

calligraphic font (A) is reserved for sets and the sans serif font (A) is reserved

for collections of sets. Y, X and Z denote a scalar count outcome, a vector of

explanatory variables, and a vector of instrumental variables respectively. U

denotes scalar unobserved heterogeneity.
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1.2 Prevailing count data approaches

1.2.1 Control function approach

Terza et al. (2008) introduces the control function approach in the context of

count data models. The model is specified as

Y ∼ Poisson[λ(X,U)], λ(X,U) = exp(X ′β + U) (1.1)

X = g(Z) + V (1.2)

U = αV + e (1.3)

where P [Y ≤ y;λ] = exp(−λ)
∑y

m=0
exp(λm)
m!

. Z is assumed to be independent

of (e, V ) and e and V are mutually independent. E[exp(e)] is normalised to 1.

Then

E[λ(X,U)|X,Z] = E[exp(e)|X, V ] exp(X ′β + αV ) = exp(X ′β + αV ). (1.4)

The last equality of (1.4) holds because e is independent of (Z, V ) and X. V

is identified by the second equation. The Poisson distribution for Y can be

replaced by any other parametric count distribution.

This method is very tractable and widely used to deal with endogeneity

but is somewhat restrictive in the sense that the recursive structure rules out

full simultaneity (Koenker (2005), Section 8.8.3).4 Moreover, the auxiliary

first stage can be an additional source of misspecification. If the true function

g is misspecified, then estimation results may be biased. Furthermore, X is

generally required to be continuously distributed. Otherwise, the error term in

the first stage is not separably identified.5 The instrument Z is also required

to be continuous unless the first stage is linear. Chesher (2005) shows set

identification is possible when X is discrete and the error term is nonseparable.

His method is not applicable if X is binary.

1.2.2 Moment based approaches

Moment based approaches are not reliant on the recursive structure. Sup-

pose unobserved heterogeneity U is additively separable. Then the model is

4In simultaneous equation models, endogenous variables might affect each other. There-
fore, the variation of Y can possibly induce the change of X. The recursive system rules out
this relationship as Y is restricted to have no effect on X.

5If X is an ordered choice, then standard parametric models do not provide a single
valued e given Z and X.
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specified as follows.

Y = exp(X ′β) + U, E[U |Z] = 0 (1.5)

WS1997 shows that β is point identified by the moment condition

E[Z(Y − exp(X ′β))] = 0. (1.6)

The generalized method of moments (GMM) estimator consistently estimates

β. However, Mullahy (1997) points out that this specification treats X and

U asymmetrically. Suppose now unobserved heterogeneity W is omitted char-

acteristics. U is a regression error such that E[U |X,W,Z] = 0. Then the

structural equation is written as

Y = exp(X ′β +W ′δ) + U = exp(X ′β)V + U, where V = exp(W ′δ). (1.7)

V is multiplicatively separable and X and V are treated symmetrically. Given

E[V |Z] = 1, the moment condition

E

[
Z

(
Y

exp(X ′β)
− 1

)]
= 0 (1.8)

point identifies β as shown in Mullahy (1997). Two specifications (1.5) and

(1.7) are observationally equivalent (see Wooldridge (1992)). These approaches

only respect non-negativity of count outcomes and therefore they can be em-

ployed to investigate other non-negative outcomes such as birth weight.

The moment based approaches involve a fundamental problem when un-

observed heterogeneity is interpreted as of economic interest. In econometric

models with endogeneity, unobserved heterogeneity generally has a clear eco-

nomic meaning. When it comes to returns to schooling, years of education

(X) is supposed to be correlated with unobservable ability (U) which affects

X as well as income (Y ) for an individual. Therefore, a valid instrument Z

is necessary to separately identify the causal effect of education on earnings

from that of unobserved ability. Persuasive explanation about the relationship

between Z and U should be presented as it is untestable.

Now suppose that a model specification per se restricts the distribution of

U with which endowing U with economic interpretation is hard. If one cannot

devise an economic example of such unobserved heterogeneity, then it would

be also impossible to argue that there exists some good instrument Z. In the

moment based models, the conditional support of U given X = x is discrete
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and varies with x and hence X and U cannot be independent by construction.

This arises due to the attempt to fit the discrete outcome by a continuous

function. U absorbs the discreteness of Y . However it is seldom justified to

impose such discreteness on U . Can unobserved heterogeneity, whose discrete

conditional support varies with X, be found in any economic example? How

can one endow it with an economic meaning? These questions are hard to

answer, even though these model specifications are very common in applied

studies.

The more fundamental problem is that there exists no instrument which

is independent of U but correlated with X if X is discrete and bounded.

Suppose the model is Y = exp(α+ βX) +U . The following proposition shows

that existence of a good instrument is not guaranteed under the model (1.5).

Proposition 1. Suppose that Y is a count outcome and X is a discrete and

finite scalar explanatory variable i.e. RX ≡ {x1, x2, · · · , xn}. Under the model

such that Y = exp(α + βX) + U , only a particular set of pairs (α, β), whose

Lebesgue measure is zero, allows for the instrument Z being independent of U ,

but correlated with X.

The true parameters are never known and the set of combinations of (α, β)

under which X and Z are correlated is a measure zero subset of the parameter

space. Therefore, the existence of a proper instrument is never assured. Even

if the true parameters indeed lie on the particular set in Proposition 1, limited

variation between certain values of X is allowed. The result in Proposition 1

is extended to the model (1.7). The additive error U is omitted here as it is

redundant.

Proposition 2. Suppose that Y is a count outcome and X is a discrete and

finite scalar explanatory variable. Under the model Y = exp(α + βX)V , only

a particular set of pairs (α, β), whose Lebesgue measure is zero, allows for the

instrument Z being independent of U , but correlated with X.

Remark 1. Conditional mean independence of U given Z is required to iden-

tify α and β. It is weaker than the strong independence condition in Proposi-

tion 1 and 2. However, in many applied studies, it is rarely justifiable to argue

that Z satisfies conditional mean independence but is not independent of U .

Most applied researchers argue that their instruments are completely inde-

pendent of unobserved heterogeneity. (For example, see Angrist and Krueger

(1991) and Angrist and Evans (1998).) However, this argument is impossible

in the context of moment based models.
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The moment based approaches ignore the discreteness of count outcomes.

Even though parameters in the models are point identified, those do not nec-

essarily tell about the underlying DGP. Needless to say, the moment based

approaches do not work when unobserved heterogeneity is nonseparable.

1.3 Models with nonseparable error
An incomplete count data IV model is built using a threshold crossing specifi-

cation introduced in Chesher and Smolinski (2012). Define RY as a subset of

all non-negative integers i.e. RY ≡ {0, 1, 2, · · · } and y ∈ RY . RY is possibly

unbounded. The model is

Y = h(X,U) = y if py(X) ≤ U < py+1(X) (1.9)

where p0(X) is normalized to 0. U is normalized to be uniformly distributed

on [0, 1]. The threshold functions {py(X)}∞y=1 are objects of identification.

Suppose X is independent of U . Then it is reasonable to define the

conditional distribution of Y given X as py+1(X) = FY |X(y|X). Since

U ∼ Unif(0, 1), the thresholds, {py(x)}∞y=1, are all point identified by the

conditional cdf of Y given X = x. Therefore, the full conditional distribu-

tion of Y given X is nonparametrically identified and it provides useful insight

about the causal relationship between X and Y .

If X and U are not independent, thresholds functions are not point iden-

tified since the conditional distribution of U given X is not uniform. Sup-

pose that X is binary i.e. RX ≡ {0, 1} and FU |X(·|X = 1) first order

stochastically dominates FU |X(·|X = 0). Then FY |X(y|X = 1) ≤ py+1(1)

and py+1(0) ≤ FY |X(y|X = 0). Therefore without additional information,

{py(0), py(1)}∞y=1 are not identified. What one can identify are lower bounds

for {py(1)}∞y=1 and upper bounds for {py(0)}∞y=1. Without the stochastic dom-

inance assumption, one may be able to identify no-assumption bounds as in

Manski and Pepper (2000).

The main question of this chapter is how to identify the threshold func-

tions under the existence of instruments Z. As Chesher (2010) shows, point

identification is generally not achievable in incomplete IV models for discrete

outcomes even with parametric restrictions. However, relevant instruments

can enable more informative bounds than no-assumption bounds.

1.3.1 Generalized Instrumental Variable Model

Identification analysis is provided under the generalized instrumental variable

(GIV) model restrictions in Chesher and Rosen (2017). Under restrictions 1-6
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in their paper, the identified set for the structural function h and a collection

of conditional distributions GU |Z ≡ {GU |Z(·|z) : z ∈ RZ} is characterized. The

following restrictions satisfy all the GIV model restrictions.

Assumption 1. Y and U are random scalars and X and Z are random vectors

defined on a probability space (Ω,L,P), endowed with the Borel sets on Ω.

Assumption 2. The support of Y is a subset of all non-negative inte-

gers RY ≡ {0, 1, 2, · · · } and the support of (X,Z) is a subset of a fi-

nite dimensional Euclidean space. A collection of conditional distributions

FY X|Z ≡ {FY X|Z(·|z) : z ∈ RZ} is identified by the sampling process where

FY X|Z(T |z) ≡ P[(Y,X) ∈ T |z] for all T ⊆ RY X .

Assumption 3. U is uniformly distributed on the unit interval [0, 1] and

GU |Z(·|z) = GU(·) for all z ∈ RZ where for all S ⊆ [0, 1], GU(S) ≡ P [U ∈ S].

Restriction 1 defines the probability space of random variables Y,X, U,

and Z. Restriction 2 restricts the support of observable variables and requires

identification of the join conditional distribution of Y and X given Z. Re-

striction 3 restricts the distribution of U and requires Z to be independent

of U. As GU |Z is singleton and known, the object of identification is only the

structural function h which is fully characterized by the threshold functions

{py(x)}y∈RY ,x∈RX .

A key element of identification is the U -level set, U(Y,X;h) ≡ {u ∈ RU :

h(X, u) = Y }. Then under the model (1.9), this set is simply U(y, x;h) =

[py(x), py+1(x)]. Let S be a closed subset of [0, 1]. The containment functional

of U(Y,X;h) is denoted by

Ch(S|z) ≡ P[U(Y,X;h) ⊆ S|z]. (1.10)

Let H∗ denote the identified set of the structural function h and F(A) be the

collection of all closed subsets of a set A. Then Corollary 1 provides the sharp

characterization of the identified set.

Corollary 1. Under the model (1.9) and Restriction 1-3, the sharp identified

set of the structural function h is defined as

H∗ ≡ {h : ∀S ∈ F([0, 1]), Ch(S|z) ≤ GU(S), a.e z ∈ RZ}.
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1.3.2 Core determining test sets

The number of elements in F([0, 1]) is infinite and thus implementation of

the characterisation in Corollary 1 is infeasible. To find an implementable

characterization, a notion of core determining classes is employed as suggested

in Galichon and Henry (2011). Under the model restrictions, a collection of

core determining test sets (CDTS) is defined as follows.

Definition 1 (CDTS). A subcollection of F([0, 1]), Qh, is a collection of CDTS

if for almost every z ∈ RZ ,

Ch(S|z) ≤ GU(S), ∀S ∈ Qh (1.11)

and (1.11) implies the same inequality also holds for every S ∈ F([0, 1]).

Finding the smallest collection of CDTS is beneficial to reduce computa-

tional burden for identification ofH∗. Let Uh denote the support of U(Y,X;h).

Uh ≡ {[0, p1(x)], [p1(x), p2(x)], · · · , [py(x), py+1(x)], · · · : x ∈ RX}

Theorem 3 in Chesher and Rosen (2017) (TH3 henceforth) suggests a collection

of all connected unions of elements in Uh (except [0, 1]) as the collection of

CDTS. Let Q̃h be a collection of all connected unions of elements of Uh. Now

I focus on the cases where X is discrete.6 Then Q̃h consists of multiple sets of

intervals so that Q̃h = Uh ∪ Qh ∪Wh where

Qh ≡ {[0, py(x)], [py(x), 1] : y ∈ RY \{0}, x ∈ RX} (1.12)

Wh ≡ {[py(x), pk(x
′)] : y, k ∈ RY \{0}, py+1(x) ≤ pk(x

′), x, x′ ∈ RX}. (1.13)

Further refinement from Q̃h is achievable under a certain shape condition.

Condition 1. For all y ∈ RY ,

(a) Complete separation :

max{py(x1), py(x2), · · · , py(xK)} ≤ min{py+1(x1), py+1(x2), · · · , py+1(xK)}

(b) Monotonicity :

py(x1) ≤ py(x2) ≤ · · · ≤ py(xK) or py(xK) ≤ py(xK−1) ≤ · · · ≤ py(x1)

6For continuousX, the number of elements in Uh is already uncountably many. Therefore,
the number of CDTS is also uncountably many.
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By exploiting Condition 1, I propose a refinement of Q̃h in the following

theorem.

Theorem 1. Suppose that X is discrete. Under the model (1.9), Restriction

1-3 and Condition 1, Qh is a collection of core determining test sets.

This theorem is also applicable for bounded ordered outcomes. Identifi-

cation of the structural function is straightforward. By replacing F([0, 1]) in

Corollary 1 with Q̃h, the sharp identified set for h is characterized. Under

Condition 1, using Qh rather than Q̃h suffices to obtain the sharp identified

set.

Corollary 2. Given the joint distribution of (Y,X,Z), the identified set for

the structural function h is characterized as follows.

H∗ = {h : ∀S ∈ Q̃h, Ch(S|z) ≤ GU(S) a.e z ∈ RZ}.

If Condition 1 is satisfied,

H∗ = {h : ∀S ∈ Qh, Ch(S|z) ≤ GU(S) a.e z ∈ RZ}.

For computational feasibility, I only focus on a finite subset of RY . Since

py(x) converges to 1 as y → ∞, a large enough integer ȳ at which pȳ(x) for

all x are very close to 1 can be found. The values greater than ȳ are almost

never realized. These values are not of practical importance so negligible.

Given data, one can use the largest realization of Y for ȳ in practice. Now

R̄Y ≡ {0, 1, 2, · · · , ȳ} is of interest. Q̃h and Qh corresponding to R̄Y are

also redefined. Given K = |RX |, the numbers of elements of Qh and Q̃h are

2ȳK and 2ȳK + ȳ(ȳ−1)
2

K2 respectively. Each element of Q̃h and Qh provides

a conditional moment inequality. Let T̃ and T̄ denote the number of moment

inequalities from Q̃h and Qh respectively. The ratio of T̃ to T̄ is K(ȳ−1)
4

+ 1,

which explosively increases as K and ȳ grow. Therefore, the computational

gain achieved by using Qh becomes greater when K and ȳ are large.

Remark 2. Condition 1 is highly restrictive. It is only satisfied for a particular

set of structural functions. Nonetheless, the use of Qh could be still beneficial

without Condition 1 if it provides a good approximation of the sharp identified

set.

The use of Qh naturally leads to faster computation at the cost of identi-

fying power. Note that this cost is specific to a structural function h. Suppose



1.3. Models with nonseparable error 21

the threshold functions are generated from a parametric structure i.e.

py(x) = F (y, λ(x)), λ(x) = exp(α + βx) (1.14)

where F belongs to a known class of parametric cdfs. Then monotonicity

is satisfied and complete separation means β is very close to zero. α and β

are partially identified by conditional moment inequalities in Corollary 2 and

Qh is core determining for values of β close to 0. In applied studies using

partial identification, evaluating whether the identified set of β includes 0 is a

main concern. A conclusion about the impact of X on Y can be drawn if the

identified set contains only positive or negative values. Qh provides strongest

criterion to evaluate the values of β around 0. In other words, when the outer

region provided by Qh contains 0, the sharp identified set also includes 0.

For the values of β far from 0, Qh does not provide sharp identifying power.

However, in that case, Y exhibits more dispersion and hence the number of

moment inequalities relevant to identification of h is larger. As Y becomes

less discrete, the sharp identified set shrinks and so does the outer region.

Therefore, strong enough identifying power can be afforded by Qh in such a

case. The proximity of the outer region to the sharp identified set depends

on the underlying data generating process. In practice, my suggestion is to

use Qh first for identification and add more intervals from Q̃h if the size of the

outer region is too large.

Remark 3. If the outer region delivered by Qh is large, further identifying

power can be afforded by additional intervals such as [py(x), pk(x)] where y, k ∈
RY and y < k. These intervals provide additional identifying power for the

values of β far from 0. However, how much it would be refined is the question

left to empirical exercises.

The identification result here is fully nonparametric. The value of the

containment functional is determined by the ordering among threshold func-

tions. Therefore all possible orderings need to be considered for identification.

Given a particular set of threshold functions, its ordering gives upper and

lower bounds for each of its elements. If all elements indeed lie between their

bounds, the particular set is included in H∗. However, as the supports of Y

and X become richer, the number of admissible orderings increases explo-

sively.7 Therefore, appropriate shape restrictions or parametric restrictions

7The number of admissible orderings is (K(ȳ− 1))!/((ȳ− 1)!)K as shown in Chesher and
Smolinski (2012).
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might be imposed in practice so as to reduce the number of admissible order-

ings.8 Note that additional structural assumptions such as a triangular system

do not play a role to reduce the number of orderings but they may provide

additional identifying power for the structural function h.

1.4 Numerical illustration of identified sets

Geometry of identified sets is investigated using probability distributions of

(Y,X,Z) given data generating processes. To avoid dealing with the tremen-

dous number of possible orderings, parametric restrictions (Poisson and nega-

tive binomial) are imposed. The model is still partially identifying even with

parametric restrictions but identified sets on numerical examples tend to be

small. Parametric restrictions allow threshold functions to be generated by a

smaller number of structural parameters. Let H∗ denote the approximation

of the sharp identified set (I call H∗ the identified set henceforth, not nec-

essarily sharp) delivered by Qh. Suppose that J is the number of structural

parameters. Then the algorithm to compute the identified set is following. Let

LB(y, x, z; θ) and UB(y, x, z; θ) denote lower and upper bounds of py(x) given

z and the parameter vector θ.

• Define fine grid points on Rr. Let Θ denote the set of grid points. Then

Θ ≡ {θ1, θ2, · · · , θJ} where J is the number of grid points in Θ.

• Generate the thresholds {{py(x; θj)}ȳy=1}x∈RX using θj. Then the order-

ing lj among the thresholds is given.

• Compute LB(y, x, z; θj) and UB(y, x, z; θj) for all y, x, and z using the

given ordering lj and Corollary 2.

• Check whether all the following moment inequalities are satisfied. If so,

include θj in H∗. Otherwise, θj /∈ H∗.

∀x, y, z,
py(x; θj)− LB(y, x, z; θj) ≥ 0

UB(y, x, z; θj)− py(x; θj) ≥ 0
(1.15)

• Repeat the above steps for all j = 1, · · · , J .

8Nonparametric shape restrictions can also reduce the number of possible orderings be-
tween threshold functions. Chesher and Smolinski (2012) investigates implications of such
restrictions e.g. complete separation, monotonicity, single and twin peakedness.
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This algorithm delivers identified sets on a number of data generating

processes throughout this section. ȳ is defined as follows.

ȳ ≡ min{y : py(x) > 1− 10−5, x ∈ RX}

All the identified sets in this section are computed analytically using population

distributions of (Y,X,Z). I elucidate how to compute the identified set using

this algorithm in Appendix A.

1.4.1 Poisson restriction

I specify a data generating process (DGP) to explore the geometry of identified

sets.

Z∗ ∼ N(0, 1),

[
ε

V

]
∼ N

([
0

0

]
,

[
1 0.5

0.5 1

])
X∗ = δ1 + δ2Z + V

Z∗ is independent of ε and V. X and Z are generated by binary indicators

such that

Z = 1[Z∗ ≥ 0], X = 1[X∗ ≥ 0].

Unobserved heterogeneity ε is normalised to U ≡ Φ(ε) where Φ(·) is the stan-

dard normal cdf. To generate a count outcome, threshold functions are gener-

ated by the Poisson cdf.

py+1(X) = exp(− exp(α + βX))

y∑
m=0

exp(α + βX)m

m!
(1.16)

Then a function g(·|X) generates Y by taking U as an argument.

g(τ |X) ≡ inf{y : py+1(X) ≥ τ}, Y = g(U |X)

For identification of α and β, the Poisson restriction is imposed. The ATE of

X is defined as exp(α + β)− exp(α).

This DGP is convenient to understand ‘identification at infinity’. δ1 and δ2

control the prediction power of Z on X. The strength of instruments is pivotal

for the size of the identified set. If Z is a perfect predictor for X, the identified

set becomes a point as endogeneity of X disappears. I compute identified

sets using varying degrees of instrumental strength. Let J be a positive real

number. When δ1 = −J and δ2 = 2J , P[X = z|Z = z] → 1 as J → ∞. The

strong and super strong IVs have the values of J equal to 2 and 4 respectively.
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Figure 1.1: Point estimation and set identification results

(a) Point estimates
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(b) Identified sets
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The moderate IV has δ1 = 0 and δ2 = 1 so that it only has one directional

prediction power.

I first show that moment based models and the control function approach

do not provide correct information about the true parameters under this DGP.

The true values are used for the starting values of numerical optimization for

moment based estimation.9 Figure 1.1a shows the point estimates delivered by

those methods with the moderate IV on 1, 000 Monte Carlo (MC) samples of

length n = 100, 000. ‘gmm-add’, ‘gmm-mul’, and ‘con-fn’ denote the additive

and multiplicative moment based models, and the control function approach

with the moderate instrument. They are all substantially far away from the

true point. This is natural in the sense that those models are misspecified

under the current DGP so the pseudo true values of point estimates differ

from the true parameters in the DGP. The true parameters are only correctly

backed out when the instrument is very strong, meaning that endogeneity is

negligible. Furthermore, even with this large number of observations, those

point estimates widely vary across MC samples.

On the contrary, the identified set with the moderate IV contains the

true values and small enough to be informative. Figure 1.1b displays the

identified sets associated with various instruments. Those sets are computed

by exploiting the population distribution of observables. Considering the scale

of the figure, those sets are very small. For the moderate IV, α and β lie

9Estimation results are robust to the choice of starting values if they are not very far
from the true values.
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Figure 1.2: Set identification under small support

(a) Outer region delivered by Qh
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(b) Identified set with additional intervals
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on [0.497, 0.536] and [0.965, 1.003] respectively. All the structural features of

interest can be also computed from the identified set. The interval identified

ATE is [1.754, 1.860]. For strong and super strong IVs, the identified sets

are extremely small. The ATEs lie between [1.763, 1.766] and [1.7634, 1.7638]

respectively. As J → ∞, endogeneity in X disappears and the identified set

converges to the true point.

The identified sets are small even if the IV is very weak. The source of

strong identification power is the rich support of Y . Under the true parameter

values, Y takes values from 0 to 17. In the case where α = 0.1 and β = 0.1, the

mean of Y is small and so is the variance. Y only takes values up to 9. Figure

1.2a shows the set identification results. Those sets are in general large unless

instruments are very strong. However, even with Z having no correlation with

X, the sign of the ATE is correctly identified. When δ1 = δ2 = 0, the identified

sets for parameters and the ATE are

α ∈ [−0.25, 0.135], β ∈ [0.06, 0.59], ATE ∈ [0.071, 0.626]

where the true ATE is 0.116.

Further refinement of the identified set in Figure 1.2a is afforded by ad-

ditional intervals in Q̃h excluded from Qh. Reduction is mainly made on the

area in which β is far from zero as predicted. Figure 1.2b shows the reduction

when the instrument is moderate. These additional intervals are particularly

useful if the outer region delivered by Qh is large and connected and excludes
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Figure 1.3: Sources of identifying power

(a) Identifying power of subsets of Qh
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(b) Size variation of identified sets
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β = 0. One can expect a tighter set in such a case by exploiting more intervals

in Q̃h. If the set is already tight enough, additional intervals would provide

marginal identifying power. No evidence of size reduction is found when the

support of Y is rich.

The GIV framework employed here does not necessarily require the rank

condition if a model is partially identifying. Thus it is applicable in cases

where an instrument is independent of U but has no prediction power for X.

However, this identification power does not entirely come from this framework.

In the example, X is positively correlated with U . Therefore, the observable

joint distribution of Y , X and Z does not allow for negative values of β. If

X is negatively correlated with U , then the identification power disappears.

Let the correlation parameter γ be −0.5. Then the identified set contains

the negative values of β. Therefore, in such a case, the identified set is not

informative about the ATE.

One other interesting experiment is to evaluate identifying power of each

intervals in Qh. This experiment would answer the question : from which

intervals the identifying power primarily comes? Under the current triangular

system with α = 1, β = 0.5, ȳ is 17. For numerical identification, I use

Qh = {[0, py(x)], [py(x), 1] : 1 ≤ y ≤ 17, X ∈ {0, 1}}

which includes in total 68 intervals. Is it possible to deliver the same

approximation of the identified set by a smaller number of intervals in
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Qh? Some evidence is shown in Figure 1.3a. A collection of intervals

{[0, py(X)], [py(X), 1]}ty=1 is defined and the figure displays the outer regions

delivered by different values of t. As t increases, the outer region converges

to the identified set. Note that convergence is achieved at t = 9 given the

density of grid points. This means the identifying power primarily comes from

{[0, py(X)], [py(X), 1]}9
y=1 and additional information provided by the other

intervals is marginal.

Lastly, the richness of the support of Y is of great importance for the

identifying power of the model. As RY becomes richer, the discreteness of Y

decreases. Figure 1.3b shows the size variation of identified sets with respect

to the richness of RY when the IV is moderate. In each DGP, the value of

α varies. The larger α means the higher mean of Y. By equidispersion of the

Poisson distriubution, the variance of Y also goes up with its mean. Therefore,

the larger α is translated to the richer support of Y. The size of the identified

set shrinks as α goes up. When α = 2 (E[Y ] = 7.91), the identified set becomes

undistinguishable from a point. Therefore, the high dispersion in the count

outcome we have, the smaller identified set is delivered.

1.4.2 Negative binomial restriction

When the threshold functions are generated by the negative binomial (NB)

cdf, An additional shape parameter κ is involved. The identified set resides in

a 3-dimensional space.

py+1(X) =

(
κ−1

κ−1 + exp(α + βX)

)κ−1 y∑
m=0

Γ(κ−1 +m)

Γ(κ−1)Γ(m+ 1)

(
exp(α + βX)

exp(α + βX) + κ−1

)m
(1.17)

The conditional mean of Y given X is equal to that of the Poisson specification

but the conditional variance differs. If α and β are identical to those of the

Poisson distribution, the NB distribution converges to Poisson as κ goes to

zero.

The true parameter values are α = 1, β = 0.5 and κ = 1. Two instruments

are employed, strong instrument (J = 4) and moderate (δ1 = 0, δ2 = 1).

The 3-dimensional identified set with the moderate IV is computed and its

convex hull is shown in Figure 1.4. The intersection of red lines in the figure

indicates the true parameter values. The identified set is still small enough to

be informative. The identified interval for each parameter is as follows.

α ∈ [0.999, 1.001], β ∈ [0.498, 0.502], κ ∈ [0.999, 1.001]
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Figure 1.4: The identified set under the NB structure
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For the strong IV, the identified set is indistinguishable from a point

given the scale of the figure. The interval identified α, β and κ are

[0.99998, 1.00002], [0.49998, 0.50005] and [0.99997, 1.00003] respectively.

Remark 4. If the true DGP is the NB structure, the Poisson restriction may

deliver an empty set. That means there exists no parameter combination

which generates the observed data distribution under the Poisson restriction.

The Poisson restriction is misspecified in such a case. However, misspecified

restrictions do not always deliver an empty set.

1.5 Estimation and Inference in Empirical Ap-

plication
The proposed partial identification framework is easily implemented in a finite

sample. Naive sample analogue estimators for upper and lower bounds of

threshold functions are consistent. However, unlike the identification analysis,

the population distribution of observable variables is left unknown. The sample

analogue estimator is known to be biased in a finite sample as shown in Manski

and Pepper (2009) even in the case where the support of Z is finite. The lower

(upper) bounds tend to be upward (downward) biased and hence the bound

estimates may be substantially tighter than the true bounds. In general the

more points in RZ or the smaller sample size, the larger magnitude of the

finite bias. The finite sample bias results in serious problems. As shown in

numerical examples, bounds can be very tight in count data models. Therefore,
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the identification algorithm might deliver an empty set in a finite sample, even

though the true identified set is perhaps non-empty.

To overcome this problem, a novel inference method introduced in Cher-

nozhukov et al. (2013) is employed. Given the parameter grid Θ, the null and

alternative hypotheses are

H0 : θj ∈ H∗ v.s H1 : θj /∈ H∗ (1.18)

for each grid point. Let L̂B(y, x, z; θj) and ÛB(y, x, z; θj) be sample analogue

estimators of the lower and upper bounds of py(x) given z respectively. Define

sample moment functions

ĝL(y, x, z; θj) ≡ py(x; θj)− L̂B(y, x, z; θj),

ĝU(y, x, z; θj) ≡ ÛB(y, x, z; θj)− py(x; θj).
(1.19)

Let

ĝ(θj) ≡ {ĝU(y, x, z; θj), ĝU(y, x, z; θj) : y ∈ RY , x ∈ RX , z ∈ RZ}. (1.20)

Let L denote the number of elements of ĝ(θj). Then all the moment inequalities

(1.15) are satisfied if and only if min ĝ(θj) ≥ 0. Let V̂ denote the sample

covariance matrix of the moment vector ĝ(θj). Let s =

√
diag(V̂ )/n be the

vector of standard errors of each sample moment.

For the critical value, draw a large number of a vector W from N(0, Σ̂)

where Σ̂ is the correlation matrix corresponding to V̂ . Then a two step pro-

cedure produces the critical value k1−α given the significance level α ≥ 1/2.

The first step is to select moment conditions close to 0. Let k̄ denote the

γn-quantile of simulation draws max(W ) where γn ≡ 1− 0.1/ log n. Then the

set of selected moments, L̂ is defined as follows.

L̂ ≡
{
l : gl(θj) ≤ min

i∈{1,··· ,L}

{
gi(θj) + k̄si

}
+ 2k̄sl

}
(1.21)

Select W̃ ≡ (Wl : l ∈ L̂). Then the critical value k1−a is the α-quantile of

max(W̃ ) over simulation draws. Reject the null hypothesis only if

min
l∈{1,··· ,L}

{gl(θj) + k1−αsl} ≤ 0. (1.22)
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1.5.1 Doctor visits and health insurance

CT13 demonstrates estimation and inference of count data IV models on cross-

sectional data from the U.S. Medical Expenditure Panel Survey for 2003. The

outcome is the annual number of doctor visits (DOCVIS) and the potentially

endogenous variables are binary indicators of having private health insurance

(PRIVATE). All the individuals in the sample are aged 65 or higher. The

feature of interest is the causal effect of having additional health insurance,

which supplements basic healthcare service through Medicare operated by the

U.S. federal government, on demands for healthcare utilization.10

The sample contains 3,629 individuals aged 65-90. The maximum and

sample mean of DOCVIS are 59 and 6.74 respectively. The sample variance

is 45.56 which indicates overdispersion. No zero inflation is implied in the

sense that only 10.9% of people in the sample never visited their doctors.

The distribution of DOCVIS has a long right tail. Only less than 1% of the

sample visited their doctors more than 40 times annually. 49.1% had private

insurance.

PRIVATE is potentially correlated with unobserved factors in the sense

that individuals with additional insurance chose to have it. They may have

some personal reasons for supplemental insurance. Without controlling for

endogeneity, regression analysis may suffer from selection bias. CT13 uses

various count data IV methods to cope with endogeneity, such as the control

function and moment-based approaches. They use income and the Social Se-

curity income share in total income (SSI) as instruments under the assumption

that doctor visits of the old are not directly affected by income and SSI.

Table 1.1: Instrumental strength of INCOME

P[PRIVATE | income] INCOME = 0 INCOME = 1
PRIVATE = 0 0.618 0.292
PRIVATE = 1 0.382 0.708

I employ the incomplete count data IV model (1.9) with parametric re-

strictions (Poisson and NB) and estimate the identified set for the coefficient

on PRIVATE. Confidence regions of those set estimates are produced at var-

ious confidence levels. These results are compared to point estimates. A new

variable INCOME is converted to a binary variable which takes value 1 if the

income level is greater than its mean. I only use INCOME as an instrument.

10Medicare serves health insurance for all Americans aged 65 and older.



1.5. Estimation and Inference in Empirical Application 31

Figure 1.5: Set estimates and its 90% confidence region, and point estimates.
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As shown in Table 1.1, income has substantial prediction power on the choice

of supplemental insurance.

The model with the Poisson restriction delivers an empty set and an empty

confidence region at any confidence level α ≥ 1/2. The empty set implies that

the Poisson restriction is misspecified. On the contrary, the NB restriction

provides with non-empty confidence regions for all α ≥ 1/2. I fix the shape

parameter κ at 0.8 which is obtained from various parametric models as it

is a nuisance parameter. Figure 1.5 displays set and point estimates of the

coefficients on PRIVATE and the constant term. The set estimate (red dots)

clearly differs from point estimates. The point estimates delivered by count IV

methods are very close to each other, whereas the estimate from the Poisson

regression with no control for endogeneity is much closer to the set estimate.

Table 1.2 shows the confidence interval of the coefficient on PRIVATE for

each estimate. The set estimate of the coefficient on PRIVATE is computed

at the significance level α = 1/2 to correct the finite sample bias.11 The

set estimate is very different from point estimates all of which are close to 0

11This is called a half-median-unbiased estimator in Chernozhukov et al. (2013). With no
correction, an empty set is delivered.
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Table 1.2: Estimates of the coefficient on PRIVATE

PRIVATE
Set estimate (NB) (0.140, 0.270)

[-0.420, 0.540]
Poisson 0.144

[0.089, 0.198]
Poisson - Control function 0.030

[-0.139, 0.200]
NB - Control function 0.033

[-0.135, 0.200]
GMM - additive 0.029

[-0.147, 0.205]
GMM - multiplicative 0.030

[-0.151, 0.211]

Note: The box brackets indicate 90% confidence intervals. The confidence interval for the
set estimate is the projection of the 90% joint confidence set.

except the Poisson model with no control for endogeneity. The treatment effect

of additional health insurance implied by the set estimate is 15-31% increase in

the number of doctor visits, meanwhile point estimates imply only 3% increase.

As shown in the simulations studies, misspecification of the control function

approach and moment based models cannot be ruled out.

As the sample size is not large enough, the size of confidence region at 90%

level is too large to be informative. It is well known that the projection of an

entire set estimate exhibits projection conservatism (see Kaido et al. (2017)).

Hence the interpretation of the confidence region should be done with caution

in the sense that individual parameters might have smaller confidence region.12

This empirical application is purely illustrative but it turns out to demon-

strate that the set estimation framework is useful to read information from

data. Set estimates and confidence regions can be reasonably tight to measure

the effects of interest. It also suggests that misspecification can be captured

by the framework. The empty set delivered by the Poisson restriction is a

good example. Even though the sample size is not large and the instrument is

not particularly strong in this application, implementation of the framework

is straightforward and the set estimate provides useful information about the

effect of private insurance on healthcare utilization.

12If a confidence interval is computed for each parameter, the confidence interval must be
weakly smaller than the projection of the entire set. The degree of conservatism increases
in line with the number of parameters in the model.
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1.6 Conclusion
This chapter documents a unified approach to partial identification, set esti-

mation and inference in incomplete count data IV models. The sharp char-

acterization of the identified set is provided. The threshold crossing model

specified here is flexible in the sense that it can nest most parametric count

data models. The set estimation results in the empirical example deliver useful

information about the effects of interest. It also implies misspecification of the

Poisson restriction, which is not easily detectable in point identifying models.

The example is done in an unfavourable setting in the sense that the sample

size is not large and the instruments are not strong. In other cases where

environments are more favourable, this approach is expected to deliver more

informative results.

The bound analysis here indicates that practitioners should be cautioned

when they use the commonly used count data methods under endogeneity.

Point estimates delivered by those methods may be far from the true values of

interest. A useful sensitivity analysis can be provided by the bound approach

even if one still wishes to use those point estimates as shown in the empirical

application of this chapter. Confidence regions of identified sets can be larger

than desired in some unfavourable circumstances. Further developments in

inference techniques such as Kaido et al. (2017) and Bugni et al. (2017) are

expected to provide more powerful tools to make inference in such cases.



Chapter 2

Partial Identification in

Competing Risks Models

2.1 Introduction

Applied researchers often observe durations terminated by one out of multiple

competing causes. This arises for example in analysis of mortality data and un-

employment durations. In the first type of data, each individual’s age at death

and the exact cause of death are reported. In the latter, an individual’s unem-

ployment spell is observed with a type of transition such as re-employment or

exit from the labour force. Identification of cause-specific mortality or policy

effects on unemployment durations until re-employment is not straightforward.

Suppose an individual died from a heart attack. The person might have died

from cancer or another disease if she did not have a heart attack but these

counter-factual outcomes are censored. Focusing only on individuals who died

from a heart attack without controlling for censoring in general delivers mis-

leading information as they are likely to be more susceptible to that disease

than the others.

Competing risks models (CRMs) are a useful tool to deal with this type

of data. In these models, there exist multiple latent durations associated with

causes but only the shortest duration is observed along with its cause. Objects

of identification are the joint and marginal distributions of latent durations

given covariates of interest. Marginal distributions are important for learning

about responses of each duration to variations in covariate values. The joint

distribution provides information about effects of changes in marginal distri-

butions on overall survival probability. It has been known that the underlying

distributions are unidentified without assuming a particular dependence struc-
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ture among latent durations (Cox (1962), Tsiatis (1975)).1 Peterson (1976)

derives bounds without invoking restrictions on the dependence structure but

these bounds tend to be too wide to be informative. The most common ap-

proach is to assume independence between durations but the assumption is

often violated in applied studies.

The path-breaking paper by Honoré and Lleras-Muney (2006) (HL hence-

forth) develops a bounds approach to CRMs for discrete durations. The ex-

plicit modelling of the discreteness becomes an additional source of partial

identification on top of the unknown dependence structure. One innovation

of their approach was to allow for arbitrary dependence between durations.

This approach places a strong parametric restriction under which covariate

effects are only multiplicative. Another branch in the literature initiated by

Zheng and Klein (1995) directly models the dependence structure between

durations via widely used copula families. The copula approach can nonpara-

metrically identify distributions of latent durations if the copula is known and

durations are continuously measured. This approach provides richer informa-

tion on covariate effects than parametric models. Identification of underlying

distributions relies on numerical algorithms to solve a system of simultane-

ous nonlinear differential equations, which is computationally burdensome to

solve. Moreover, asymptotic theory and inference methods do not exist except

for some special cases.

In this chapter, I propose partially identifying CRMs for discretely mea-

sured or interval censored durations. Duration data are commonly measured

on a discrete scale. For instance, unemployment spells are recorded in numbers

of weeks, months or years. I exploit the discrete nature to derive nonparamet-

ric bounds on underlying distributions. Instead of restricting covariate effects,

I model dependence directly using copula restrictions. Compared to the copula

approach for continuously measured durations, the bounds require very little

computational burden. Asymptotic properties of bound estimators can also be

derived. I propose a valid bootstrap procedure which performs well in finite

samples. The bounds approach is built upon copula restrictions which specify

dependence between durations. There are no econometric tools to learn about

true dependence. However, prior information on dependence can be obtained

from auxiliary data, related literature or economic theory. If no information is

available, the method provides useful sensitivity analysis for the varying degree

of dependence.

1For any dependent joint distributions of durations, there exists an observationally equiv-
alent joint distribution under which durations are mutually independent.
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The bounds on marginal distributions are derived by solving a system

of simultaneous nonlinear inequalities. In general, this type of system is ex-

tremely hard to solve and existence of solutions is not guaranteed. I show that,

by rewriting the system of inequalities as a sequential system of equations,

each bound is obtained as the unique solution of a simple nonlinear equation.

Closed form expressions for the bounds are available under an independence

assumption and otherwise any root finding algorithm can be employed to solve

the bounds. Existing methods in the literature tend to focus on bivariate risks

cases due to computational difficulties. The proposed approach in turn is not

only extremely easy to implement but also computationally very efficient even

for many hazards. In numerical examples, I demonstrate that this approach

can provide tight bounds.

2.1.1 Related literature

In standard CRMs, T ∗ ≡ (T ∗1 , T
∗
2 , · · · , T ∗J ) is a random vector of latent du-

rations associated with causes j ∈ J ≡ {1, 2, · · · , J}. T ∗ is assumed to be

continuously distributed. The outcome vector Y ∗ is observed where

Y ∗ ≡ (Y ∗1 , Y
∗

2 ) ≡ (min
j∈J

T ∗j , arg min
j∈J

T ∗j ).

In the labour market, Y ∗1 could be the spell of unemployment and Y ∗2 the cause

of leaving unemployment e.g. obtaining a job or exiting the labour force. In

studying mortality, Y ∗1 could be survival time and Y ∗2 the cause of death. Tsi-

atis (1975) showed that CRMs are not identified without further restrictions.

Since then numerous approaches have been devised to overcome this problem.

Point identification of underlying distributions is only achieved by invoking

strong structural restrictions which may sometimes be unjustifiable.

There is a large literature on identifiability of CRMs. Heckman and

Honoré (1989) introduce conditions under which aspects of underlying distri-

butions are identified within certain classes of models. This approach requires

at least one of the regressors to affect underlying latent times differently and

the regressors to have large supports. Abbring and Van den Berg (2003) show

the large support assumption in Heckman and Honoré (1989) can be weakened

in mixed proportional hazards CRMs. Lee (2006) identifies the joint survival

function under a linear transformation regression model.2 Lee and Lewbel

(2013) develop identification of nonparametric accelerated failure time models

with additive latent errors. Most papers in the literature assume latent times

2The joint distribution of latent failure times is not identified for all possible values of
(T ∗

1 , · · · , T ∗
J ) so the marginal distributions of Tj is also left unidentified.
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are continuously distributed. Han and Hausman (1990) model the discrete na-

ture of duration data by employing an ordered choice structure. They showed

that having more than two continuous covariates can identify the dependence

structure of latent times under parametric distributional restrictions. Sueyoshi

(1992) extends their results by accommodating time varying covariates. All

the point identification results require the covariates X to be continuously

distributed.

HL propose a model for discrete durations with restrictions on covariate

effects. Suppose that T ∗j is a function of a binary covariate X. HL restricts

the functional form such that

T ∗j (X) = βXj Hj, X ∈ {0, 1} (2.1)

where Hj are the baseline durations. In this case, X has a multiplicative

effect on each duration. This model falls into a class of accelerated failure

time models. The simple parametric restriction leads to set identification of βj

which captures the covariate effects on the j-th durations. They restrict the

conditional distributions F (t|X) and Fj(tj|X) such that

F (t|X = 1) = F (t1/β1, · · · , tJ/βJ | X = 0) , Fj(tj|X = 1) = Fj (tj/βj | X = 0) .

(2.2)

This means that the model only admits very specific forms of conditional

distribution functions. While HL do not restrict the copula structure, they

implicitly assume that the copula C is covariate-invariant such that C(·|X) =

C(·).

Another branch of the literature relies on the copula based approach to

modelling the dependence structure between underlying hazards. No restric-

tions on covariate effects are imposed in this approach. Zheng and Klein (1995)

were the first to apply this approach for bivariate CRMs and propose an esti-

mator for marginal survival functions under the assumption that the copula is

known. A closed form expression of this estimator is provided by Rivest and

Wells (2001) when the known copula is of the Archimedean family. Carrière

(1995) extends results of Zheng and Klein (1995) to cases with more than 2

risks. The marginal survival functions in such a case are identified by solving a

system of simultaneous nonlinear differential equations numerically. This type

of system is computationally hard to solve. Lo and Wilke (2010) suggest a

risk pooling method with an Archimedean copula to reduce the computational

burden.
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The known copula assumption is restrictive but nonetheless invoked in

many papers (see Chen (2010)). If the assumption is relaxed, some features

can be partially identified. Fan and Liu (2018) partially identify the parameters

of a linear quantile regression model under censoring by allowing the copula

to vary within a certain class. Lo and Wilke (2016) set identify the sign

of a covariate effect on marginal distributions. They make no parametric

assumptions about the copula but requires it to be independent of covariates.

Liu (2016) employs the Lévy copula to allow for time varying heterogeneity

and simultaneous failure in the class of proportional hazards models.

The framework in this chapter is particularly attractive compared to ex-

isting methods because it is easy to implement in standard statistical packages,

and computationally fast. A simple inference method is also available. Many

papers in the literature do not provide methods to conduct inference. The

trickiest feature of CRMs is that any assumptions on the dependence struc-

ture are untestable. Any identification results other than Peterson (1976)

are entirely driven by model assumptions imposed. The partial identification

approach is able to shed some light on understanding costs and benefits of

additional identifying assumptions.

This chapter is structured as follows. Section 2 describes the proposed

model. Identification results are also shown under parametric and nonpara-

metric specifications. Section 3 demonstrates the numerical illustrations. Sec-

tion 4 explains the estimation and inference procedures. Section 5 concludes.

All technical proofs of main results are in the Appendix.

2.1.2 Notation

The notation in this chapter follows the convention in the literature. Upper

and lower case letters A and a denote a random vector and its particular

realization respectively. RA denotes the support of A; F (a|b) denotes the joint

conditional distribution of A = a given B = b; Fj(aj|b) denotes the marginal

conditional distribution of Aj = aj given B = b where Aj is the j-th element

of A. The calligraphic font (A) is used for sets and the sans serif font (A) is

used for collections of sets.

2.2 Competing risks models

Durations are in general discretely measured or interval censored. There-

fore, the researcher cannot observe the exact timing of an event. Define

T ≡ {0, 1, · · · ,M} and J ≡ {1, · · · , J}. What can be observed is the mini-
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mum of discretized latent durations {Tj}j∈J such that

Tj = hd(T
∗
j ) = 0 if τ0 ≤ T ∗j < τ1

= 1 if τ1 ≤ T ∗j < τ2

= · · ·
= m if τm ≤ T ∗j < τm+1

= · · ·
= M if τM ≤ T ∗j .

(2.3)

If an event does not occur by τM , we cannot observe the failure. Thus the

outcome may be top-coded. If times are measured in a discrete unit e.g. a

week or a month, then τ0 = 0, τ1 = 1, · · · , and τM = M. The model can be

either complete or incomplete depending on assumptions about availability of

the exact cause. All the proofs of main results in this section are provided in

Appendix II.

2.2.1 Complete model

Suppose the exact cause is observed. Then the outcome vector Y is observed

by the researcher as follows.

Y = (Y1, Y2) = (min
j∈J

Tj, arg min
j∈J

T ∗j ).

Since T ∗ is continuous, it is natural to assume Y2 is a singleton so that no tie is

allowed. This model is complete in the sense that Y is pinned down given the

values of latent durations T ∗. The complete model setting is most widely used

in the literature and is sensible in many cases. For instance, each unemployed

individual can be only re-employed on either a full-time or part-time basis, but

not both.

There may be a vector of covariates, X, that affect the distributions of T ∗.

Let Fj(·|X) denote the conditional marginal distributions of T ∗j and F (·|X)

denote the conditional joint distribution of T ∗ given X. The object of identi-

fication is the set of conditional joint distributions

F ≡ {F (·|x) : x ∈ RX}.

Marginal distributions are identified by projections of F . A set of mild as-

sumptions are made.

Assumption 4. Let δmj(x) denote P [Y1 = m,Y2 = j|X = x]. A set of condi-
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tional probabilities

L ≡ {δmj(x) : m ∈ T , j ∈ J , x ∈ RX}

is identified by the sampling process.

Assumption 5. The conditional joint distribution of (T ∗1 , · · · , T ∗J ) given x ∈
RX is such that the set {j : j = arg minj∈J T

∗
j } is a singleton with probability

1.

Assumption 4 assures identification of conditional distributions of the out-

come. Assumption 5 guarantees the uniqueness of Y2. The conditional joint

and marginal distribution functions are left unrestricted. They can be any

proper distribution functions. No restrictions on RX are imposed so that X

can be either continuous or discrete. Point identification is not guaranteed

under these assumptions. I use the identification results in Chesher and Rosen

(2017) (CR17 henceforth) to derive the sharp bounds for underlying distribu-

tions. To utilise the framework in CR17, I define a structural function h as

follows.

h(Y, T ∗;hd) = |Y1 − hd(T ∗Y2)|+ |Y2 − arg min
j∈J

T ∗j |

Given the value of the outcome Y = (m, j), a set of values of T ∗ which can

generate the outcome is identified. The observed probability mass δmj(x) is

equivalent to the likelihood attached to the set of values of T ∗. Therefore, the

following equality is satisfied.

δmj(x) = P [τm ≤ T ∗j < τm+1 ∧ T ∗j < T ∗i , ∀i 6= j |X = x] for all m ∈ T , j ∈ J .
(2.4)

The sharp identified set3 of distributions F is characterised by a system of

moment equalities.

Proposition 3. Let F∗ denote the sharp identified set of distributions F .
Under Assumption 4-5, F∗ includes F (x) for all x ∈ RX such that (2.4) is

satisfied for all m ∈ T , j ∈ J given F (x).

In the absence of further assumptions, F is partially identified. However,

computation of the identified set F∗ using the characterisation is infeasible

in the sense that one needs to search the whole distribution space to verify

3The sharp identified set consists of all conditional joint distributions of T ∗ which are able
to produce the observational distribution L under the model assumptions. All distributions
in F are observationally equivalent.



2.2. Competing risks models 41

the conditional moment equalities. Instead, I first focus on identification of

marginal distributions at the threshold values {τm}Mm=0. Define

pm,j(x) ≡ Fj(τm|x), P(x) ≡ {pm,j(x)}m∈T ,j∈J .

It is convenient to use the concept of the copula in order to describe identifi-

cation of marginal distributions.

Definition 2. (copula) Let U denote (U1, · · · , UJ) where Uj is uniformly dis-

tributed on the unit interval for all j ∈ J . The joint distribution function of

U is a copula C(·) such that

C(u) ≡ P[U1 < u1, · · · , UJ < uJ ].

By Sklar’s Theorem,

F (T ∗1 , · · · , T ∗J ) = C(F1(T ∗1 ), · · · , FJ(T ∗J ))⇔ C(u) = F (F−1
1 (u1), · · · , F−1

J (uJ))

and C is unique. P(x) is the set of values of margins given x at thresholds

so is compatible with the definition of the copula. The joint distribution F is

therefore decomposed into two components, the copula C and margins. Then

by fixing C, bounds for marginal distributions can be derived. Now the ob-

ject of identification is the set P(x) for all x. Further information on the

marginal distribution functions at off-threshold values is not available. The

joint distribution can be backed out given the copula and margins.

Bounds for P(x) are obtained via the following system of moment equali-

ties and inequalities given restrictions on C. The following moment inequalities

can be derived from (2.4).

δmj(x) ≤ P [τm ≤ T ∗j < τm+1 ∧ τm+1 ≤ T ∗i , ∀i 6= j |X = x] for all m ∈ T , j ∈ J
(2.5)

The right hand side (RHS) of (2.5) is the upper bound of the RHS of (2.4).

Define

γm(x) ≡ P [Y1 ≤ m|x] =
J∑
j=1

m∑
k=0

δkj(x). (2.6)

Then it is apparent that

1− γm(x) = P [Y1 > m|x] = P [τm+1 ≤ T ∗j , ∀j ∈ J | X = x] for all m ∈ T .
(2.7)

The RHSs of (2.5) and (2.7) can be written as functions of elements of P(x)
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given restrictions on the dependence structure between durations. Therefore,

by solving the system of inequalities (2.5) and equalities (2.7), bounds for P(x)

are derived.

2.2.1.1 Identification of marginal distributions given copula

I first illustrate a solution method for the system of nonlinear simultaneous

equalities and inequalities. The following definitions are also useful to describe

the solution method. (See Nelsen (2007) for further details of copula theory)

Definition 3. (d-box) A d-box [a, b] is the Cartesian product of d closed in-

tervals such that

[a, b] ≡ [a1, b1]× [a2, b2]× · · · × [ad, bd]

where a = (a1, · · · , ad), b = (b1, · · · , bd) and ak ≤ bk for all k ∈ {1, · · · , d}.

Definition 4. (C-volume) For a given copula C(·), the C-volume VC of a d-box

is defined by

VC([a,b]) ≡
∑
v∈V

sign(v)C(v)

where V is a set of all vertices of the d-box [a, b] and

sign(v) = 1 if
d∑

k=1

1[vk = ak] is an even number

= −1 if
d∑

k=1

1[vk = ak] is an odd number.

A d-box is a d-dimensional unit hypercube and a C-volume is the proba-

bility mass assigned to the d-box by the copula C. Figure 2.1 illustrates how to

compute the C-volume in the 2-dimensional unit space given the independent

copula. Let a and b be (0.4, 0.3) and (0.8, 0.7). Then the 4 vertices of the

2-box given a and b are

v1 = (0.4, 0.3), v2 = (0.4, 0.7), v3 = (0.8, 0.3), v4 = (0.8, 0.7)

v1 has two elements of a, v2 and v3 have one and v4 has none. Thus the

C-volume is

VC([a, b]) = C(v4)− C(v2)− C(v3) + C(v1).

as illustrated in Figure 2.1.
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Figure 2.1: C-volume under the independent copula
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Note: The C-volume A is computed by subtracting B(= C(v2)) and C(= C(v3)) from the
total area of the outer rectangle (= C(v4)) and adding D(= C(v1)).

Let pUm,j(x) and pLm,j(x) denote upper and lower bounds of pm,j(x). Define

the following vectors.

am(x) ≡ (pm,1(x), · · · , pm,J(x)), 1m,j(x) ≡ (1, 1, · · · , pm,j(x), · · · , 1, 1)

1m,j(x) is a vector of length J in which the j-th element is pm,j(x) and 1

everywhere else. 1 is a one vector of length J . Now (2.5) and (2.7) can be

rewritten as

δmj(x) ≤ VC([am(x),1m+1,j(x)]), 1−γm(x) = VC([am+1,j(x),1]), ∀m ∈ T ,∀j ∈ J
(2.8)

which define the bounds for P(x). It is apparent that p0,j(x) = 0 for all j by

construction. To fix ideas and for simpler exposition, I consider CRMs with

only two hazards. Given the copula C, the following theorem provides the

bounds.

Theorem 2. Let Assumption 4-5 hold. For all j ∈ {1, 2}, pL1,j(x) = δ0j(x).

Given the lower bounds, unique values of pUm+1,1(x) and pUm+1,2(x) are obtained

by solving

γm(x)− pLm+1,2(x) = pm+1,1(x)− C(pm+1,1(x), pLm+1,2(x))
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γm(x)− pLm+1,1(x) = pm+1,2(x)− C(pLm+1,1(x), pm+1,2(x))

for pm+1,1(x) and pm+1,2(x) respectively for all m ≥ 0. Given pUm,1(x) and

pUm,2(x), unique values of pLm+1,1(x) and pLm+1,2(x) are obtained by solving

γm−1(x) + δm1(x)− pUm,2(x) = pm+1,1(x)− C(pm+1,1(x), pUm,2(x))

γm−1(x) + δm2(x)− pUm,1(x) = pm+1,2(x)− C(pUm,1(x), pm+1,2(x))

for pm+1,1(x) and pm+1,2(x) respectively for m ≥ 1.

Note that the upper and lower bounds of pm+1,j(x) are computed given the

bounds of pm,j(x) for m ≥ 1. Therefore, the bounds are sequentially derived

from the smallest m to the largest. Given any copula C, the above theorem

provides upper and lower bounds of the distribution functions at the threshold

values. Each bound is derived from a single equation with one unknown. Thus

computation is extremely simple. The RHSs of the equations are monotone in

pm+1,1(x) or pm+1,2(x) so the solution is unique. Generalization of Theorem 2

to an arbitrary number of risks is provided in Appendix I.

Now consider the independence assumption.

Assumption 6. (Independent copula) The joint distribution function of U is

C(u) =
J∏
j=1

uj.

This assumption implies that latent durations are independent of each

other. Under the assumption, for any number of risks, closed form solutions

can be found as shown in Lemma 1.

Lemma 1. (Bounds under independence) Under Assumptions 4-6, the lower

bounds are derived as follow. For all j ∈ J ,

pL1,j(x) = δ0j(x), pLm+1,j(x) = pLm,j(x) +
δmj(x)

1− γm−1(x)
(1− pLm,j(x)) for m ≥ 1.

Given the lower bounds, the upper bounds are derived as follow.

pUm,j(x) = 1− 1− γm−1(x)∏J
i 6=j(1− pLm,i(x))

, ∀ m ≥ 1, j ∈ J , x ∈ RX .

Now suppose no restrictions are imposed on the copula C so that any

proper copulas are admitted. In such a case one can still derive bounds for
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Figure 2.2: Illustration of moment inequalities
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the margins, although they may not be very informative. Lemma 2 shows

the worst case bounds when the researcher is not sure about the dependence

structure among latent times.

Lemma 2. (Worst case bounds) Under Assumption 4 and no other restriction

on the copula C,

pLm+1,j(x) = δmj(x) + pLm,j(x) and pUm+1,j(x) =
J∑
j=1

m∑
t=0

δtj(x) for m ≥ 0.

These bounds are sharp.

Illustration of identification : Suppose that J = 2, M = 5 and τ0 =

0, τ1 = 1, · · · , τ5 = 5. Assume that T ∗1 and T ∗2 are smaller than 5 so that no top

coding arises. Then, a set of pairs of (T ∗1 , T
∗
2 ) given the outcome y = (m, j)

is visualized in Figure 2.2 (a). The pink, blue, and light blue areas are linked

to outcomes (1, 1), (1, 2) and (0, 2) respectively. For the outcome Y = (m, 1),

(2.4) becomes

δm1 = P [τm ≤ T ∗1 < T ∗2 < τm+1|x] + P [τm ≤ T ∗1 < τm+1 ∧ τm+1 ≤ T ∗2 |x].

(2.9)

If T ∗1 and T ∗2 are independent, (2.9) is simplified further.

δm1 =

∫ τm+1

τm

f1(t|x)[pm+1,2(x)−F2(t|x)]dt+[pm+1,1(x)−pm,1(x)][1−pm+1,2(x)]

(2.10)
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Figure 2.3: Illustration of moment equalities
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Without further restrictions, for t ∈ [τm, τm+1] and m ∈ T ,

pm,2(x) ≤ F2(t|x) ≤ pm+1,2(x), ∀x ∈ RX . (2.11)

This implies that (2.10) can be rewritten as

[pm+1,1(x)−pm,1(x)][1−pm+1,2(x)] ≤ δm1(x) ≤ [pm+1,1(x)−pm,1(x)][1−pm,2(x)].

(2.12)

Figure 2.2 (b) illustrates the RHS inequality for Y = (1, 1) in the sense that

the probability δ11(x) is naturally smaller than the area in the blue rectangle

which is equal to [pm+1,1(x) − pm,1(x)][1 − pm,2(x)] under independence. The

same logic applies to the outcome Y = (m, 2) and thus bounds for P(x) are

characterized by solving the system of the 4M number of quadratic polynomial

inequalities. In general, these types of systems are hard to solve and sometimes

bounds contain all values between 0 and 1. Therefore, I incorporate a set of

equalities to make the system more tractable.

From (2.9), the m number of equalities are obtained by summing up

δm1(x) + δm2(x) as shown in Figure 2.3 (a). For all m ∈ T ,

δm1(x) + δm2(x) = P [τm ≤ T ∗1 < τm+1 ∧ τm+1 ≤ T ∗2 | x]

+ P [τm ≤ T ∗2 < τm+1 ∧ τm+1 ≤ T ∗1 | x] + P [τm ≤ T ∗1 , T
∗
2 < τm+1 | x].

(2.13)

The RHS of the equality is the probability mass assigned to each L-shape area
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given the joint distribution. The set of equations (2.13) can be translated into

1− γm(x) = P [τm+1 ≤ T ∗j , ∀j ∈ J | x], ∀m ∈ T (2.14)

by summing up equalities (2.13). As shown in Figure 2.3, 1 − γ1(x) equals∑2
j=1

∑4
m=2 δmj(x). It is easy to show that (2.14) implies (2.13). Using (2.14)

enables easy derivation of the nonparametric bounds. In the current example,

(2.14) becomes

1− γm(x) = (1− pm+1,1(x))(1− pm+1,2(x)), (2.15)

which only has 2 unknowns.

Given p0,j(x) = 0 for all x and j, it is straightforward that δ0j(x) ≤
p1,j(x) from (2.12) and hence the lower bound of p1,j(x) is δ0j(x). From (2.15),

pm+1,j(x) has the largest possible value when pm+1,i(x) is at its lower bound

so that the upper bound of p1,1(x) is 1 − 1−γ0(x)
1−δ02(x)

. Now by substituting (2.15)

into the RHS inequalities of (2.12),

pm,1(x) +
δm1(x)

1− γm−1(x)
[1− pm,1(x)] ≤ pm+1,1(x). (2.16)

Noticing that δm1(x)
1−γm−1(x)

< 1, pm+1,1(x) has the lowest possible value at the

lower bound of pm,1(x). Therefore, the bounds are sequentially derived using

(2.15) and (2.16) from the smallest m to the largest. The LHS inequalities

of (2.12) do not provide any additional information. Closed form expressions

for those bounds turn out to be available under the independence assump-

tion. Otherwise, given restrictions on the dependence structure, bounds can

be derived by solving a system of equalities numerically.

2.2.2 Incomplete model

So far I have considered the cases in which the model is complete. The

crucial assumption for completeness is Assumption 5. Define M ≡ {j :

arg minj∈J Tj}. Tj are discretized durations so the probability that M is sin-

gleton is non-zero. Now suppose that the researcher can only observe one

cause among j ∈ M. This could be the case when the death certificate of

an individual is issued by a doctor. If multiple diseases are present when an

individual dies, the doctor may choose any of them as a cause of the death

using her subjective judgement.

Assumption 7. Y2 is a singleton such that Y2 ∈ M. If M is non-singleton,
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Y2 is randomly determined by some unknown rule.

Given this assumption, the model becomes incomplete in the sense that

knowing the values of T ∗ does not pin down the value of the outcome. For

instance, in the two risks example, suppose T ∗1 , T
∗
2 ∈ [τm, τm+1) so that T1 =

T2 = m. Then M = {1, 2} and hence the outcome Y can be either (m, 1) or

(m, 2).

Under this incomplete model, the sharp identified set of the distribution

functions is characterized by a set of moment inequalities and a set of moment

equalities as shown in CR17. The structural function h is now

h(Y, T ∗;hd) = |Y1 − hd(T ∗Y2)|+ I[Y2 /∈M].

Define the U-level set

U(m, j;h) ≡
{
T ∗ : T ∗j ∈ [τm, τm+1] ∧ τm ≤ T ∗i for all i 6= j

}
. (2.17)

This is the set of all values of T ∗ that can produce the outcome y = (m, j).

Theorem 3. Let F∗ denote the sharp identified set of F . Let N be a proper

subset of J . Under Assumption 4 and 7, F∗ includes F (x) for all x ∈ RX

such that a set of moment inequalities∑
j∈N

δmj(x) ≤ P [T ∗ ∈
⋃
j∈N

U(m, j;h)| X = x]

are satisfied for all m ∈ T , N ⊂ J and a set of moment equalities

P [Y1 > m|x] = P [τm+1 ≤ T ∗j for all j ∈ J | X = x]

are satisfied for all m ∈ T given F (x).

This theorem implies that the bounds derived in Theorem 2 are identical

to the sharp bounds of P(x) under the incomplete model. For more than

two hazards, the generalized version of Theorem 2 (Theorem 5 in Appendix I)

provides the outer region in which the sharp identified set is nested.

2.2.3 Additional identifying assumptions

2.2.3.1 Parametric assumptions

Under parametric specifications of marginal distributions, the sharp character-

ization in Proposition 3 directly delivers the set of parameter values which are
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able to generate the outcome distribution. The following assumption allows a

finite number of parameters to characterize the distributions of latent failure

times.

Assumption 8. The joint conditional distribution of T ∗ and the marginal

distributions of T ∗j for all j ∈ J given x ∈ RX belong to a known class of

parametric distributions.

Let F (·|x; θ) and f(T1, · · · , TJ |x; θ) denote the distribution and density

functions respectively where θ is a finite vector of parameters. Define the

following function.

gj(t
∗
j |x; θ) ≡

∫ ∞
t∗j

f(t, · · · , t, t∗j , t, · · · , t|x; θ) dt

Let Θ∗ be the identified set of values of θ. Under the complete model (As-

sumptions 4-5, and 8), Θ∗ is delivered by conditional moment equalities in

Proposition 3 as follows.

Θ∗ ≡
{
θ : δmj(x) =

∫ τm+1

τm

gj(t
∗
j |x; θ)dt∗j , ∀m ∈ T ,∀j ∈ J ,∀x ∈ RX

}
(2.18)

Under the incomplete model assumptions, the identified set Θ∗ is characterized

in a similar fashion but with the set of moment inequalities and equalities in

Theorem 3.

Suppose θ∗ is the true value that generates the data. There may be

multiple values of θ that are observationally equivalent to θ∗. θ is set identified

in such a case. If Θ∗ is a singleton, the model is point identifying. It is

also possible that Θ∗ is empty. This indicates the parametric restriction is

misspecified so there exists no admissible structure generating the outcome

distribution.

2.2.3.2 Exclusion restriction

There might exist a covariate Z which only affects one particular latent dura-

tion. In such a case, the variation in Z provides further identifying power for

the other durations unaffected by Z. Suppose there are only two risks (J = 2)

and a binary covariate Z affects only the first risk. The outcome distribution

varies with Z but the marginal distribution of the second risk is unaffected

by Z. The intersection of the two different bounds for the second risk given

Z = 0 and Z = 1 provides tighter bounds. The exclusion restriction can be

justified in many cases. For instance, if a new effective treatment for certain
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types of diseases is approved, then it is likely to lead to lower mortality risks

from those diseases without affecting the others.

I abstract from additional covariates and focus on the two risks case for

notational simplicity but generalization is straightforward. The formal as-

sumption is as follows.

Assumption 9. There exists a covariate Z such that for all z ∈ RZ , F1(·|Z =

z) = F1(·).

This assumption means that the covariate Z only affects the distribution of

T ∗2 , not T ∗1 . Now given the value of z ∈ RZ , the set of conditional probabilities

L(z) = {δmj(z) : m ∈ T , j ∈ J } is identified. The following theorem maps this

set to the bounds on pm+1,1 ≡ F1(τm) and the bounds on pm+1,2(z) ≡ F2(τm|z)

for all m.

Theorem 4. Let Assumption 4-5 and 9 hold. Given L(z) for all z ∈ RZ ,

pL1,1 = sup
z∈RZ

δ01(z), pL1,2(z) = δ02(z).

Given the lower bounds, pUm+1,1(z) and pUm+1,2(z) are the unique roots of

γm(x)− pLm+1,2(z) = pm+1,1(z)− C(pm+1,1(z), pLm+1,2(z))

γm(x)− pLm+1,1 = pm+1,2(z)− C(pLm+1,1, pm+1,2(z))

and pUm+1,1 = infz∈RZ p
U
m+1,1(z) for all m ≥ 0. Given the upper bounds,

pLm+1,1(z) and pLm+1,2(z) are the unique roots of

γm−1(z) + δm1(z)− pUm,2(z) = pm+1,1(z)− C(pm+1,1(z), pUm,2(z))

γm−1(z) + δm2(z)− pUm,1 = pm+1,2(z)− C(pUm,1, pm+1,2(z))

and pLm+1,1 = supz∈RZ p
L
m+1,1(z) for m ≥ 1 respectively.

2.3 Numerical examples
This section illustrates identification results in numerical examples. I spec-

ify a data generating process (DGP) from which the bounds are computed.

Consider a case in which there are two competing hazards which induce two

latent durations. Durations T ∗1 and T ∗2 are generated from the joint log-normal

distribution and are positively associated.

T ∗1 = exp(U∗1 ), T ∗2 = exp(U∗2 )
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where [
U∗1
U∗2

]
∼ N

([
µ1 + β1X

µ2 + β2X

]
,

[
σ11 σ12

σ12 σ22

])
Values of structural parameters are set to

µ1 = 0.125, µ2 = 0, β1 = 0.25, β2 = 0.125

σ11 = 0.252, σ12 =
0.252

2
, σ22 = 1.25× 0.252.

T1 and T2 are discretized durations such that

Tj = m, if τm ≤ T ∗j < τm+1, m ∈ {0, · · · , 20} ≡ T , (2.19)

where the threshold values are defined by 20 equally spaced grid points between

0.5 and 1.7. Durations are top-coded at 20. The observable outcome consists

of the minimum of two discretized durations and its exact cause.

Y = (min{T1, T2}, arg min
1,2
{T ∗1 , T ∗2 }) (2.20)

X shifts both margins downwards.

Given parameter values in the DGP, population probability masses δmj(x)

can be computed for all m, j and x. I first compute worst case bounds using

Lemma 2. Under no restriction on the relationship between latent durations,

wide bounds are delivered as shown in Figure 2.4. These bounds are unfortu-

nately not informative because no conclusion can be made except the down-

ward shift of T2 for short durations. These bounds are what we can learn from

data if no further credible restrictions are available. Any particular restriction

on the copula delivers a subset of the worst case bounds. Note that the worst

case bounds do not restrict the copula to be invariant to covariates. There-

fore, the worst case bounds contain the cases that the copula changes from

one extreme to another e.g. perfect positive association to perfect negative

association.

There might be some cases in which the researcher has prior information

about the dependence structure. For instance, in medical studies, evidence can

be found that certain diseases are driven by common factors such as genetic

factors, smoking, drinking and obesity. It is well known that smoking causes

not only lung cancer but also cardiovascular disease. In such a case, latent

durations associated with those two hazards are likely positively correlated.

The independent copula neither captures correct distribution functions nor
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Figure 2.4: Worst case bounds for the marginal distributions of T1 and T2
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Note: Black and red solid lines are true marginal distribution functions conditional on
X = 0 and X = 1 repectively. Dashed lines are upper and lower bounds for marginal
distributions.

reasonably approximates them unless the correlation between the two is very

weak.

Theorem 2 provides bounds given any copula. One can restrict the

class of copulas to allow for dependence between durations. Gaussian and

Archimedean copulas are good examples. Clayton, Frank and Gumbel copulas

are the most widely used in the literature. They are Archimedean and are

easy to deal with computationally since they only have one parameter which

governs dependence between durations. The shape parameter θ is directly

one-to-one related to commonly used dependence measures such as Kendall’s

τ and Spearman’s ρ. Therefore, it is easy to compare the results from different

families of copulas given the same dependence measure. Table 2.1 provides

formulas and characteristics of those copula families for bivariate risks. Those

three copulas have very different tail dependence.4 The Frank copula exhibits

no tail dependence. The Clayton and Gumbel copulas have opposite tail be-

haviours. The former has the lower tail dependence and the latter shows upper

tail dependence.

4Tail dependence is the amount of dependence at the upper-right or lower-left tail of a
multivariate distribution. One of many formal definitions of tail dependence can be found
in Joe (1997).
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Table 2.1: Archimedean copula families for bivariate risks models

Copula C(u1, u2) tail dependence

Clayton [u−θ1 + u−θ2 − 1]−1/θ lower tail

Frank −1
θ

log
[
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

]
no dependence

Gumbel exp
{
−
[
(− lnu1)θ + (− lnu2)θ

]1/θ}
upper tail

There is no way to learn about the true copula from data so it needs to

be chosen by the researcher. Many papers using the copula based approach

(Zheng and Klein (1995), Huang and Zhang (2008), Chen (2010) and Lo and

Wilke (2010)) found that the choice of the copula family is much less important

than the choice of the level of dependence (θ). They found that misspecified

copula families result in slightly biased bounds when the degree of dependence

is chosen correctly. It is also shown that a misspecified degree of dependence

leads to severe bias in bounds. In the current example, restricting the copula

to be of the Frank family brings very little identification power. The bounds

in Figure 2.5 are computed by restricting the copula to be of the Frank family.

The degree of dependence (measured in Kendall’s τ) is only mildly restricted so

that τ lies between −0.85 and 0.85. The bounds now capture the distributional

shift of T1 for very short durations.

Now suppose that auxiliary information suggests that two durations are

moderately positively dependent. Then one can restrict the value of τ to lie in

a certain range. By permitting τ ∈ [0, 0.5], much tighter bounds are calculated

as shown in Figure 2.6. This exercise implies that strong identification power

comes from restrictions on the degree of dependence.

If the copula is restricted to be of a certain family with a fixed parameter

value, the marginal distributions are partially identified only due to the dis-

creteness of the outcome. In the current example, the discreteness is not very

severe in the sense that durations take values from 0 to 20. By fixing τ at the

true level (0.295), very narrow bounds are obtained. Figure 2.7 shows bounds

derived from three different copulas.

Considering that the true joint distribution is log-normal, those copulas

perform well. The bounds from all copulas capture the true distribution for

T ∗2 almost perfectly. The fit for T ∗1 is also fairly good. The Frank copula

gives the best fit especially at the right tail. This results are reasonable in

the sense that the log-normal distribution and the Frank copula have no tail

dependence. Nonetheless, the results are not highly sensitive to the choice of
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Figure 2.5: Bounds for the marginal distributions of T1 and T2 under Frank copula
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Note: Black and red solid lines are true marginal distribution functions conditional on
X = 0 and X = 1 repectively. Dashed lines are upper and lower bounds for marginal
distributions.

the copula family. If the association among risks is correctly specified, the

marginal distributions are in general well approximated regardless of the form

of copulas.

Given the marginal distributions, one can compute the mean of each la-

tent duration. Comparing those means given also provides useful insights

about improvements in each latent duration induced by changes in X. These

average durations are understood as “expected cause-specific duration” which

are counterfactual in the sense that they are computed as if there are no other

risks. Given the fact that the survival function of T ∗j is Sj(t|X) ≡ 1−Fj(t|X),

the mean of T ∗j is computed by integrating the survival function Sj(t|X). Note

that the full distribution functions are not always identified. The margins are

identified up to T = 20 so they are truncated distributions. Therefore, I

integrate the survival functions up to the truncation point.

Let E denote the expected value of a random variable from a truncated

distribution such that

E[T ∗j |X = x] ≡
∫ τM

τ0

Sj(t|X = x)dt. (2.21)
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Figure 2.6: Bounds under Frank copula and τ ∈ [0, 0.5]
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In the current example with the binary covariate X, growth in the mean is

measured by the following ratio.

ηj =
E[T ∗j |X = 1]

E[T ∗j |X = 0]
, j ∈ {1, 2}. (2.22)

I define the ratio ηj as the “progress ratio” because it measures overall progress

in each latent duration given the switch of X from 0 to 1. Given the bounds

for the distribution functions, one can place bounds for ηj. For simplicity, I use

the average of upper and lower bounds to compute the denominator of (2.22).

Let pAm,j(x) denote the mean of upper and lower bounds of pm,j(x). Then I

compute the upper and lower bounds of ηj as follow.

ηj ∈

[∑M−1
m=0 (τm+1 − τm)pLm+1,j(1)∑M−1
m=0 (τm+1 − τm)pAm+1,j(0)

,

∑M−1
m=0 (τm+1 − τm)pUm+1,j(1)∑M−1
m=0 (τm+1 − τm)pAm+1,j(0)

]
(2.23)

Figure 2.8 shows bounds for η1 and η2 given Clayton, Frank and Gumbel

copulas with Kendall’s τ ∈ [0.10, 0.80]. The true values are contained within

the bounds or very close to the boundary. Given the correct τ, all the copulas

provide a very precise approximation of the overall progress ratios.
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Figure 2.7: Bounds for distributions of T1 and T2 with Clayton, Frank and Gumbel
copulas
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Due to the nature of CRMs, there are no tools to understand the depen-

dence structure. If the copula varies with covariates, the worst-case bounds are

all one can learn from the data. Therefore, additional restrictions have to be

made to derive conclusive results if the worst case bounds are uninformative.

The parametric copula families used in this section are convenient to allow for

dependence between durations. These copulas provide useful insights on the
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Figure 2.8: Bounds on progress in expected survival times
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Note: Black and red solid lines are bounds on progress ratios for T1 and T2 respectively.
Black and red dots are the true values of the progress in T1 and T2 given the DGP. The
y-axis is the progress ratio and the x-axis is Kendall’ τ from which the progress ratio is
computed.

covariate effects given the plausible range of dependence. With no credible in-

formation on dependence, one can conduct sensitivity analysis and learn about

the relationship between assumed dependence and covariate effects.

2.4 Estimation and Inference

The estimation and inference problem in nonparametric or semiparametric

CRMs has not been widely studied. Zheng and Klein (1995) suggest the use of

the jackknife variance estimator for their estimator. Asymptotic properties of

their estimator are provided by Rivest and Wells (2001) only for bivariate risks

with Archimedean copulas. Lo and Wilke (2010) provide bootstrap confidence

bands without asymptotic theory for their estimator. Most other papers in

the literature do not give results on inference.

There is a vast literature on confidence sets for partially identified parame-

ters by moment inequalities. Horowitz and Manski (2000) propose a confidence

interval that covers the entire identified set asymptotically with a prespecified

probability in the context of missing data. Imbens and Manski (2004) develop

a confidence interval for the parameter of interest, which is further extended
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without superefficiency by Stoye (2009).5 Chernozhukov et al. (2007), Andrews

and Guggenberger (2009), and Romano and Shaikh (2010) derive confidence

sets for identified sets using subsampling methods. Andrews and Han (2009)

point out that the standard bootstrap fails to deliver valid inference in some

particular cases and Bugni (2010) suggests a valid bootstrap procedure. An-

drews and Guggenberger (2009) and Rosen (2008) consider “plug-in asymp-

totic” inference for elements of identified sets. Andrews and Soares (2010) and

Andrews and Barwick (2012) propose moment selection methods to conduct

asymptotically non-conservative inference. Kline and Tamer (2016) develop a

Bayesian approach.

As Kline and Tamer (2016) point out, existing inference methods in the

literature rely on “exhaustive search” over a parameter space using grid search

to evaluate whether each grid point belongs to the confidence set. This natu-

rally leads to a huge computational burden which explosively increases as the

dimension of the parameter space grows and is therefore difficult to implement.

The bound approach in this chapter is not reliant on grid search and hence a

computationally tractable inference method can be drawn without exhaustive

grid search.

In this section, I explain how to estimate the bounds using an i.i.d. sam-

ple (Yi, Xi)
n
i=1 where Yi = (Y1i, Y2i) and I introduce a simple bootstrap based

inference method. The asymptotic properties of lower and upper bound es-

timators are provided. The bounds depend on sums of observed conditional

probability masses δmj(x). One can find a consistent estimator of δmj(x) given

data. For instance, if X has finite support, the consistent estimator of δmj(x)

is simply

δ̂mj(x) ≡ 1

nx

n∑
i=1

I[Yi = (m, j) ∧ Xi = x]

where I[·] is an indicator function and nx ≡
∑n

i=1 I[Xi = x]. This probability

mass estimator converges to δmj(x) at the
√
nx rate. By the central limit

theorem, under regularity conditions,

√
nx(δ̂mj(x)− δmj(x))→ N(0, Vmj(x)) where Vmj(x) = δmj(x)(1− δmj(x)).

In the two hazards case (J = 2), for all j ∈ {1, 2}, it has been shown that

pL1,j(x) = δ0j(x). Therefore, its asymptotic distribution is trivial. The upper

bound pU1,j(x) is a function of δ0j(x) and pL1,i(x). Given that pL1,i(x) = δ0i(x),

5Imbens and Manski (2004) implicitly assumes local superefficiency of estimation of a
nuisance parameter which is the width of an identified set (interval).



2.4. Estimation and Inference 59

define

pU1,j(x) = gU1,j(δ0j(x), δ0i(x)).

Given the differentiability of gU1,j, the asymptotic distribution of pU1,j(x) is pro-

vided by the delta method. Likewise, define functions gLm,j : [0, 1] × [0, 1] →
[0, 1] and gUm,j : [0, 1]× [0, 1]→ [0, 1] for all m and j such that

pUm+1,j(x) = gUm+1,j(γm(x), pLm+1,i(x)), pLm+1,j(x) = gLm+1,j(γm−1(x)+δmj(x), pUm,i(x)).

Then asymptotic distributions of all bounds are sequentially derived by the

delta method. Therefore, it is allowed to make pointwise inference on each

bound.

However, implementation of these asymptotic distributions is practically

impossible as the functions gLm,j and gUm,j in general do not have closed form

expressions. Instead, confidence sets can be easily obtained by a bootstrap

procedure. The standard bootstrap procedure yields asymptotically valid con-

fidence sets. The bootstrap procedure to determine the 1−α confidence set is

as follows.

• Step 1 : Draw a bootstrap sample (Y b
i , X

b
i ) from the original data with

replacement where b = 1, · · · , B. Compute the bootstrap probabilities

{δ̂bmj(x)}m∈T ,j∈J ,x∈RX .

• Step 2 : Compute the bounds using Theorem 2 for each bootstrap sample.

• Step 3 : Take the (1−α)/2 quantile of bootstrap upper bounds and the

α/2 quantile of bootstrap lower bounds.

Note that this inference procedure provides valid pointwise confidence bounds

for each pm,j(x), not in a uniform sense. Uniform inference can be made using

existing methods in the literature via grid search. This pointwise bootstrap

inference does not rely on grid search so that the user can benefit from its

computational efficiency. It requires little computational burden.

Monte Carlo simulations show that the proposed inference method works

very well. I generate 2000 Monte Carlo samples to evaluate the finite sample

performance of the bootstrap procedure. The sample size varies from 1000 to

10000. Two latent durations T ∗1 and T ∗2 are generated from the independent

bivariate exponential distribution where the rate parameters are λ1 = 0.08

and λ2 = 0.05. The discretization process and the outcome Y are defined by

(2.19) and (2.20). A coverage probability indicates the empirical probability
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Table 2.2: Coverage probabilities of 95% bootstrap confidence bounds

Coverage prob. n = 1000 n = 2000 n = 5000 n = 10000
Overall 0.7615 0.8285 0.9290 0.9545
LB1 0.9295 0.9490 0.9825 0.9885
UB1 0.9255 0.9505 0.9755 0.9810
LB1 0.9550 0.9660 0.9905 0.9955
UB2 0.9310 0.9550 0.9780 0.9890

Note: Overall gives the probability that all upper and lower confidence bounds contain the
true true distribution functions. LBj denotes the probability that the lower bound for Tj
is above the true distribution function. UBj denotes the probability that the upper bound
for Tj is below the true distribution function.

that confidence bounds computed from a Monte Carlo sample of size n con-

tain the true distribution functions of T1 and T2. Table 2.2 displays coverage

probabilities for sample size n = 1000, 2000, 5000, and 10000.

The coverage probability of each bound is about the nominal level or

higher. The overall coverage probability is below the nominal level when sam-

ple size is 1000 but it goes up as sample size grows. It achieves satisfactory

coverage when sample size is 5000. Note that those confidence bounds provide

asymptotically correct coverage for the true upper and lower bounds of the

distributions of latent durations. As the true bounds contain the true distri-

bution functions, the confidence bounds deliver conservative coverage for the

true distribution functions.

2.5 Conclusion
This chapter derives bounds on distribution functions of latent durations in

competing risks models. The bounds approach is easy to implement and com-

putationally more attractive than existing methods. Numerical examples show

that those bounds can be narrow enough to be informative under appropriate

assumptions. Simple estimation and inference methods are also introduced.

As competing risks models are fundamentally unidentified, the proposed

method does not provide empirical tools to evaluate which restriction is more

plausible. Therefore, care should be taken when one interprets results drawn

from those restrictions. If risks are likely to be independent or there exist

enough covariates so that risks are independent conditional on them, the closed

form solutions under independence provides tight bounds. They can be also

good approximations of true distribution functions if dependence between haz-

ards is weak.
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If one suspects that risks are likely dependent, the dependence structure

can be modelled using some copula families. Prior information on dependence

can be obtained from auxiliary data, related literature or economic theory. If

no information is available, the method provides useful sensitivity analysis for

effects of the varying degree of dependence on covariate effects.



Chapter 3

Applications of Partially

Identifying Competing Risks

Models

3.1 Introduction

CRMs are applied widely in a large number of fields including economics,

biology, and medical science. Flinn and Heckman (1982), Katz and Meyer

(1990), McCall (1996), Fallick and Ryu (2007), Farber and Valletta (2015) and

Farber et al. (2015) study unemployment durations terminated by a number

of transitions such as a transition to a full-time job or a part-time job, and

exit from the labour force. Honoré and Lleras-Muney (2006) (HL) explores

trends in mortality rates from cancer and CVD. Other interesting applications

study PhD completion (Booth and Satchell (1995)), mortgage termination

(Deng et al. (2000)), age at marriage or cohabitation (Berrington and Diamond

(2000)), CEO exits (Gregory-Smith et al. (2009)), and bank failures (Wheelock

and Wilson (2000)).

I conduct two empirical applications with the proposed bounds approach

in Chapter 2. First, I revisit the mortality data studied in HL and evaluate

trends in cancer mortality until 2010 by extending the original data set. Since

President Nixon declared the “War on Cancer” in 1971, little reduction in can-

cer mortality has been found while cardiovascular disease (CVD) mortality has

hugely declined. Little reduction in cancer mortality may be due to the huge

fall in CVD in the sense that more people who might have died from CVD are

exposed to risk of cancer. Empirical assessments that found little reduction in

cancer mortality tend to assume independence between two diseases. However,

cancer and CVD are likely to be dependent because common underlying fac-
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tors drive both diseases.1 Allowing for dependence between competing hazards

may lead to entirely different conclusions.

The proposed bounds approach is closely related to HL and the copula

based approach. HL’s restriction implies that improvements in both types of

mortality are homogeneous for all ages and that responses of marginal dis-

tributions to covariates are stochastically monotone. These implications are

shown to be not compatible with patterns in mortality data which suggest the

young (under age 65) and males have benefited more from reduction in cancer

mortality. HL also only focuses on the bivariate hazards case, even though

they have 4 different risk categories available in data. The reason is that their

method is computationally very burdensome.2

The bounds approach shows heterogeneous improvements in cancer mor-

tality across different ages, which cannot be captured under the parametric

restriction used in HL. There has been greater reduction in mortality for the

young. In addition, males, both white and black, experienced larger reduction

in mortality than their female counterparts. Significant reduction in mortal-

ity is seen between 2000 and 2010. Allowing for dependence leads to larger

estimates of the reduction in cancer mortality. The stronger the dependence

assumed, the larger the magnitude found. These results imply the previous

declaration that the war on cancer had failed may be false. Finally, subdivid-

ing cancers into two categories reveals different trends in mortality rates from

lung cancer and all the other cancers.

In another empirical application, I estimate the effects of extended unem-

ployment insurance (UI) benefits on unemployment spells during and after the

great recession in the US using the data set from Farber and Valletta (2015).

Farber et al. (2015) and Farber and Valletta (2015) assume that counter-factual

durations until re-employment and exit from the labour force are independent

but this assumption is likely to be violated as factors such as job search in-

tensity and unobserved ability can drive both durations. It is more likely that

they are negatively associated. If an individual has strong motivation for re-

employment, she is more likely to have a short duration before re-employment

but a long duration before exit from the labour force. I allow for negative de-

pendence between the two and test the sensitivity of the results. The bounds

1Koene et al. (2016) lists many possible shared risk factors in cancer and CVD such as
obesity, diabetes, tobacco smoking, diet and physical activities.

2Their method relies on a linear programming problem given a particular parameter value
to check whether there exists a joint distribution of baseline hazards satisfying the model
assumptions. It naturally involves grid search and therefore the computational burden
explosively increases in line with the number of hazards and the support of covariates.
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approach supports the original finding that extended UI benefits affected time

to exit from the labour force but not time to re-employment during and after

the Great Recession.

3.2 The war on cancer revisited

I revisit the mortality data studied by Honoré and Lleras-Muney (2006) (HL)

and re-evaluate trends in cancer mortality. There had been no evidence of re-

duction in cancer mortality between 1970 and 2000 before HL found substan-

tial reduction by allowing for dependence between cancer and cardiovascular

disease (CVD). I calculate bounds on distributions of latent durations associ-

ated with CVD and cancer. The worst-case bounds are uninformative about

trends in cancer mortality. The researcher has to place some restrictions on

the dependence structure to derive conclusive results. Any restrictions on the

dependence structure are untestable. However, the medical literature on the

relationship between cancer and CVD provides guidance on which restrictions

are plausible.

HL’s approach has some limitations. Their restriction implies that reduc-

tion in mortality rates are homogeneous across ages. Cancer statistics suggest

that cancer mortality has been reduced for young people but not for the old.3

(SEER (2017)) Figure 3.1 shows age-adjusted mortality rates from CVD and

cancer for under and over age 65. The mortality rate from CVD has signif-

icantly improved for both groups but cancer mortality has only declined for

people aged under 65.

HL estimated largest reductions in cancer mortality for females than for

males. However, both white and black males have experienced larger reduc-

tions than their female counterparts as shown in Figure 3.1. Furthermore, the

gaps between estimated improvements under independence and dependence

for females are much larger than for males as shown in Table 3.1. For white fe-

males, improvements in both mortality become comparable under dependence.

The bounds approach proposed in Chapter 2 can shed light on whether HL’s

results are driven by their parametric restriction.

3It is natural that the younger generation has benefited more from cancer research and
behavioural changes over time. As Cutler (2008) pointed out, progress in detection tech-
nologies had a substantial impact on survival from cancer. Cancer research also discovered
various causes of cancer and people have modified their behaviour accordingly. Reduction
in smoking is a good example.
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Figure 3.1: U.S. Age adjusted mortality rates per 100, 000. See SEER (2017) for
the details.
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Table 3.1: Bounds for improvements in CVD and cancer mortality in HL

CVD cancer
indep. dep. indep. dep.

White males (1.392, 1.400) (1.389, 1.391) (1.059, 1.060) (1.134, 1.153)
White females (1.286, 1.291) (1.236, 1.238) (1.087, 1.093) (1.201, 1.206)
Black males (1.316, 1.320) (1.334, 1.346) (1.001, 1.029) (1.072, 1.074)
Black females (1.334, 1.346) (1.334, 1.346) (1.001, 1.029) (1.160, 1.160)

Note: indep. and dep. mean under independence and dependence respectively. The num-
bers in parentheses are lower and upper bounds of the parameter βj in (2.2), which measures
improvements in mortality rates between 1970 and 2000.

3.2.1 Data

I use population data from the U.S. Census and Multiple Cause of Death

data between 1980 and 2010 from which population probabilities of ages at

death and causes of death are calculated. As the Census has been conducted

decennially, I only use the mortality data from 1980, 1990, 2000 and 2010.

I divide the causes into three categories: CVD, cancer and all other causes.

The age-specific death counts induced by those causes are reported for four

race-gender groups (black/white, male/female). Ages in the data are grouped

from 0 to 100 so that the outcome variable naturally follows the discretization

process (2.3). Details on the data sources are in HL.
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Table 3.2: Fraction of deaths from each cause

cause 1980 1990 2000 2010 1980 1990 2000 2010
White Male White Female

CVD 0.54 0.46 0.41 0.33 0.57 0.49 0.43 0.33
Cancer 0.23 0.27 0.27 0.27 0.22 0.24 0.23 0.23
(lung) 0.08 0.09 0.09 0.08 0.03 0.05 0.06 0.06

Black Male Black Female
CVD 0.47 0.42 0.39 0.35 0.55 0.49 0.44 0.36

Cancer 0.25 0.29 0.28 0.27 0.21 0.23 0.23 0.24
(lung) 0.08 0.10 0.09 0.08 0.03 0.04 0.05 0.05

I do not censor the data at age 80. HL censored their data at age 80

because yearly mortality rates are only available up to age 80 for 1970. As

a result, they focus on individuals aged between only 45 and 80 to compare

mortality rates over time since 1970. However, for the later periods, yearly

mortality rates are available up to age 100. For individuals aged between 80

and 100, trends in mortality are likely different from the people in HL’s data.

Therefore, I use all available mortality rates up to age 100 to capture rich

information on mortality trends. This means that I only estimate mortality

trends since 1980.4 I restrict the sample to adults aged over 45. For people

aged below 45, cancer and CVD occurrences are very rare. All results are

conditional on survival to age 45.

Trends in fractions of deaths from CVD and cancer are quite opposite as

shown in Table 3.2. For white males, the fraction of deaths from CVD kept

decreasing from 54% in 1980 to 33% in 2010. However, the fraction of cancer

jumped up from 23% to 27% over the same period. The similar pattern is

found for other demographic groups. The overall fraction of CVD declined

by 13-24% for all groups. The fraction of lung cancer is stable for males but

increased over time for females. This shows a relatively large fall in CVD

mortality, although it remains the largest mortality risk for all demographic

groups.

In the following subsections, I estimate the bounds for the distribution

functions of CVD and cancer with and without independence. I focus on two

hazards (CVD and cancer) and extend the model for more hazards. Regard-

4This does not lose much information. HL and references therein found that cancer
mortality was very stable between 1970 and 1980. Furthermore, Increasingly many people
live over age 80 so it is important to take them into account. The life expectancy for
Americans is 80 (CIA (2018)) which places the US 43rd in the world.
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less of the number of hazards, theoretical results in Chapter 2 are applicable

and computational costs remain low. Bounds tend to become slightly wider

when the number of hazards increases but they still remain narrow in this

application. I do not conduct inference in this application as I use population

data. Given the number of observations, bound estimates are very precisely

obtained.

3.2.2 Bounds under independence

I derive bounds for each race-gender group from 1980 to 2010. The distribu-

tional shifts captured by those bounds are understood as trends in mortality

rates from CVD and cancer. These shifts cannot be interpreted as the effects

of investments into cancer research. Many other factors such as environmental

changes, changes in lifestyle may also lead to reduction in cancer mortality.

Therefore, it is not feasible to separate pure effects of cancer research from

other effects. What I estimate here is understood as overall improvements

against CVD and cancer over time.

Figure 3.2-3.3 shows the bounds for each demographic group from 1980

to 2010. The mortality rate from CVD is constantly reduced over time for

all groups. On the other hand, cancer mortality shows no reduction until

2000. It deteriorated for people over age 80. For males, small reduction is

found between 1980-2000 for ages under 80. The blue solid lines deviate from

the black solid lines but they converge to the black lines around age 85 for

white men and around age 80 for black men. Significant reduction is shown

between 2000 and 2010 for all ages. Both black and white women experienced

disimprovements until 2000. Very small reduction is found between 2000-2010

for females. These findings are consistent with the patterns in Figure 3.1.

The results under independence show that trends in cancer mortality are

heterogeneous across age groups. The overall improvements in mortality rates

can be expressed as the “progress ratio” defined by (2.22). Table 3.3 displays

the ratios of the counter-factual expected survival times in 1990-2010 to those

in 1980. Those ratios provide insights on the overall mortality improvements

since 1980. The mortality rates from CVD were improved by over 20% for

men and by over 15% for women. Improvements in cancer mortality between

1980 and 2010 are around 3% and 5% for white and black men respectively.

Women experienced less than 1% of improvements during the same period.

3.2.3 Bounds under dependence

It is reasonable to suspect that the independence assumption does not hold

as cancer and CVD share common risk factors. In the medical literature,
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Figure 3.2: Bounds on distribution functions of CVD
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Koene et al. (2016), Blaes et al. (2017), Duarte et al. (2017) and references

therein investigate common factors and possible association between cancer

and CVD. Those studies suggest that genetic and behavioural factors such as

smoking, drinking, diet, obesity, diabetes, and sitting times increase the risks

of both diseases. Two risks are positively associated in the sense that they

respond to shared factors in the same direction but with different magnitudes

and patterns. For instant, long term exposure to air pollution increases the

incidence of both diseases. CVD mortality responds to the level of exposure

nonlinearly, whereas lung cancer mortality responds linearly (see Pope III et al.
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Figure 3.3: Bounds on distribution functions of Cancer
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(2011)).5 Much larger health effects are found for cancer than CVD. These

results indicate that the two diseases are positively associated but the degree

of association might not be strong.

Co-occurrence of those two diseases is not uncommon. Duarte et al. (2017)

estimates that 20-30% of cancer patients also have a comorbid CVD. There is

also evidence that cancer diagnosis (Fang et al. (2012)) and cancer therapies

(Moslehi (2016)) increase the CVD risk. Regarding tail dependence, Driver

5CVD mortality sharply increases at the lower level of exposure but the slope becomes
flatter as the level of exposure goes up. On the contrary, lung cancer mortality steeply and
steadily increases over all levels of exposure.
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Table 3.3: Bounds on the “progress ratio” under independence

group 1980-90 1980-2000 1980-2010
CVD

White Male (1.085, 1.089) (1.142, 1.147) (1.233, 1.237)
White Female (1.057, 1.059) (1.087, 1.089) (1.155, 1.157)

Black Male (1.056, 1.063) (1.110, 1.116) (1.217, 1.223)
Black Female (1.052, 1.054) (1.082, 1.085) (1.174, 1.176)

Cancer
White Male (0.988, 0.998) (1.001, 1.009) (1.030, 1.036)

White Female (0.990, 0.994) (0.988, 0.993) (1.005, 1.008)
Black Male (0.961, 0.971) (0.991, 1.000) (1.047, 1.053)

Black Female (0.982, 0.987) (0.985, 0.989) (1.005, 1.008)

et al. (2008) shows CVD and cancer mortality exhibit very different behaviour

at advanced ages (over 80). This means that the Gumbel copula is less suitable

for this application as it exhibits upper tail dependence.

I find different patterns of trends in mortality rates by allowing for positive

association. To implement positive dependence between CVD and cancer, I

use the Frank and Clayton copulas. Bounds are calculated with many different

values of Kendall’s τ ∈ {0.01, 0.70}. Bounds for CVD are insensitive to the

choice of the copula family as well as the degree of dependence so are omitted.

On the contrary, bounds for cancer mortality are highly sensitive to the choice

of the degree of dependence. This is due to the amount of dependent censoring.

CVD is a more frequent hazard so it less suffers from censoring bias. Cancer

is more frequently censored so that the bounds for cancer are more sensitive

to the assumptions on dependence. Both bounds are not very sensitive to the

choice of the copula family. The two different families of copulas provide very

similar bounds given the same τ .

In general, larger reduction in cancer mortality is estimated under posi-

tive association than under independence. I first document bounds for cancer

mortality in Figure 3.4 using the Frank copula with τ = 0.5. For τ between 0

and 0.5, bounds look like in-between Figures 3.3 and 3.4. The mortality trends

between 1980 and 2000 still exhibit heterogeneity across age groups and the

younger have benefited more. Significant improvements are found in 2010 even

at the right tail.

The progress ratios are displayed in Table 3.4. For men, these ratios

are more than double the ratios under independence. The ratios for both

white and black women are now around 5% which are much larger compared
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Figure 3.4: Bounds on cancer mortality under Frank copula (τ = 0.5)
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to below 1% under independence. Improvements in cancer mortality reach

around a half of progress in CVD mortality. These results differ from HL’s

results. They estimated larger improvements for white and black females than

their male counterparts. They also found white females have experienced the

largest improvements. Bounds under both independence and dependence here

show larger reduction for males than for females and so are more consistent

with patterns in cancer statistics. The gender gaps shrink if dependence is

allowed.

As mentioned, it is impossible to learn about τ from data. Given all
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Table 3.4: Bounds on the “progress ratio” under Frank copula (τ = 0.5)

group 1980-90 1980-2000 1980-2010
CVD

White Male (1.076, 1.083) (1.135, 1.142) (1.228, 1.236)
White Female (1.051, 1.055) (1.080, 1.084) (1.151, 1.155)

Black Male (1.044, 1.054) (1.105, 1.115) (1.222, 1.231)
Black Female (1.045, 1.050) (1.077, 1.082) (1.172, 1.177)

Cancer
White Male (1.014, 1.030) (1.045, 1.060) (1.100, 1.112)

White Female (1.003, 1.016) (1.010, 1.022) (1.047, 1.056)
Black Male (0.980, 0.996) (1.026, 1.041) (1.112, 1.124)

Black Female (0.993, 1.005) (1.004, 1.016) (1.053, 1.062)

the results from different values of τ , the researcher must rely on a prior

belief about the dependence. In this application, estimated improvements

in cancer mortality are smallest under the independence assumption. Any

degree of positive association delivers larger improvements. From the medical

evidence, it is clear that those two hazards are positively associated. Therefore,

estimated improvements under independence can be understood as the lower

bound of improvements in cancer mortality. Likewise it is less likely that

two risks are strongly correlated because both diseases respond to shared risk

factors in different magnitudes and patterns. Hence the results in Table 3.4

can be regarded as the upper bound.

In Figure 3.5, I demonstrate that the progress ratios of cancer mortality for

white men and women are quite monotone in τ. This is also the case for black

men and women. The progress ratio for white males doubles the ratio relative

to independence when τ is around 0.3. Near perfect association is required to

attain HL’s results for white females under dependence. However, there is no

evidence that the dependence between two hazards are very different between

males and females. The mortality rate from CVD is very flat across all values

of τ so that the estimated progress in CVD mortality is robust to the copula

choice.

Remark 5. Differences between HL’s results and mine are from methodologies,

not from data. I try same exercises with the sample used by HL and main

differences still preserve.
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Figure 3.5: Bounds on progress in expected survival times for white men and
women

0.0 0.2 0.4 0.6 0.8

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

White males

tau

im
pr

ov
em

en
t r

at
io

CVD   
Cancer     

0.0 0.2 0.4 0.6 0.8
1.

00
1.

05
1.

10
1.

15
1.

20
1.

25

White females

tau

im
pr

ov
em

en
t r

at
io

CVD   
Cancer     

3.2.4 Counter-factual analysis

The bounds can be used to conduct counter-factual experiments. One im-

portant question is how reductions in cancer and CVD mortality contribute

to improvements in the overall survival probability. This can be computed

by fixing one of marginal distributions at the 1980 level and the other at the

2010 level. If one looks at the case where no reduction in cancer mortality has

been achieved, using bounds in 1980 for cancer and bounds in 2010 for CVD

provides the counter-factual survival probabilities given the copula. Then by

comparing these probabilities to actual survival probabilities, the impact of

reduction in CVD mortality on overall survival is understood.

Another interesting question is how much improvements in overall mortal-

ity would be achieved by further reduction in cancer or CVD mortality. Sup-

pose the costs for marginal improvements in cancer and CVD mortality are the

same. If a 20% reduction in cancer mortality leads to larger overall improve-

ments than the same reduction in CVD mortality, we should invest more into

cancer than CVD at the margin. Therefore, useful policy implications can be

drawn from counter-factual experiments. Understanding overall survival rates

is also important to operate pension schemes and national healthcare services.

I conduct counter-factual analysis with using the independent, Frank cop-

ulas. The latter copula is designed to have τ = 0.5 so that it exhibit strong
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Table 3.5: Counter-factual probability of surviving past 80 for the white

White Male White Female
Actual prob. 0.404-0.647 0.614-0.757
(1980-2010)

Independence copula
No CVD reduction [0.430, 0.434] [0.620, 0.622]
No Cancer reduction [0.602, 0.608] [0.747, 0.750]
Further CVD reduction [0.756, 0.758] [0.833, 0.834]
Further Cancer reduction [0.760, 0.762] [0.844, 0.845]

Frank copula : τ = 0.5
No CVD reduction [0.433, 0.441] [0.626, 0.631]
No Cancer reduction [0.542, 0.559] [0.723, 0.732]
Further CVD reduction [0.726, 0.732] [0.818, 0.822]
Further Cancer reduction [0.725, 0.732] [0.824, 0.828]

Table 3.6: Counter-factual probability of surviving past 80 for the black

Black Male Black Female
Actual prob. 0.325-0.529 0.500-0.677
(1980-2010)

Independence copula
No CVD reduction [0.356, 0.362] [0.506, 0.509]
No Cancer reduction [0.475, 0.483] [0.665, 0.669]
Further CVD reduction [0.669, 0.673] [0.788, 0.789]
Further Cancer reduction [0.648, 0.651] [0.762, 0.764]

Frank copula : τ = 0.5
No CVD reduction [0.355, 0.363] [0.514, 0.519]
No Cancer reduction [0.437, 0.452] [0.631, 0.642]
Further CVD reduction [0.625, 0.634] [0.764, 0.770]
Further Cancer reduction [0.605, 0.613] [0.737, 0.742]

positive association. Other copula families provide similar results given the

same value of τ. I compute bounds on the counter-factual probabilities of sur-

viving past 80 for each race-gender group. The results are shown in Table 3.5

for the white and Table 3.6 for the black. The top row displays the actual

survival probability up to age 80 in 1980 and 2010. For each copula, the first

and second rows report the counter-factual probabilities of survival until age

80 in the absence of reductions in CVD and cancer mortality since 1980 re-
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spectively. The last two rows report the effects of 20% further reductions in

CVD and cancer mortality from the 2010 level.

The overall survival probability until age 80 is improved mainly due to

reduction in CVD mortality. Improvements in cancer mortality contributed

little but its contribution increases when a strong positive relationship is as-

sumed. In the last two rows, survival probabilities vary with the copula choice.

Regardless of the choice, however, further reduction in CVD mortality leads

to higher overall survival probabilities for black people. For white people, the

benefits from improvements in both risks are almost identical.

3.2.5 Bounds for more than two hazards

So far I only use two hazards and but in the data four causes of death are

available, CVD, lung cancer, the other cancers and all other causes. HL focused

on only two hazards because including more risks is computationally very

costly in their framework. But they pointed out that including more risks

would be more desirable. Especially dividing cancer into its different types is

important in the sense that lung cancer is the most common type of cancer

and is mainly driven by smoking. Trends in lung cancer mortality are likely

to exhibit different patterns from the other cancers. The proposed bounds in

Chapter 2 are easy to compute even for a large number of risks.

I use three risks in the data, CVD, lung cancer, and the other cancers.

Figure 3.6 shows the bounds for white males and females. Independence be-

tween durations is assumed. Bounds for CVD are identical to those of the

bivariate risks model so are omitted. Bounds for the other cancers are very

narrow but bounds for lung cancer become wider past age 90 since lung can-

cer is the smallest risk. White males experience reductions in both types of

cancers. For white females, reduction in the other cancers is comparable to

that of white males. On the contrary, lung cancer mortality deteriorated over

time and stayed at the worst level until 2010. Similar patterns are observed

for black men and women. The progress ratios in Table 3.7 show the same

patterns. Around 2-3% improvements in the other cancers are quite similar

across all demographic groups. White and black women experience increases

in lung cancer mortality. For both white and black men, reductions in cancer

mortality do not differ between two types of cancer. These results are sensi-

ble considering that female smoking peaked in 1970s, whereas male smoking

peaked around 10 years earlier (Lomborg (2003)).

Allowing for dependence among risks amplifies progress in cancer mortal-

ity and the gender gap. Table 3.8 shows the progress ratios computed from the
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Figure 3.6: Bounds on distribution functions for white men and women
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Frank copula with τ = 0.5. For both white and black men, progress ratios for

all the other cancer are around 10% but females only have less than two third

of it. Progress ratios in lung cancer mortality also go up. Bounds are quite

wide but it is clear that improvements in lung cancer mortality for females

are very small even when quite strong association between risks is assumed.

These results partly explain why females experience much less progress in over-

all cancer mortality in the two risks case. A large fraction of the gender gap

in cancer mortality is due to the gap in lung cancer mortality.
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Table 3.7: Bounds on the “progress ratio” under the independent copula

group 1980-90 1980-2000 1980-2010
All other cancers

White Male (0.992, 1.003) (0.997, 1.007) (1.016, 1.023)
White Female (1.000, 1.005) (1.004, 1.008) (1.019, 1.022)

Black Male (0.970, 0.982) (0.987, 0.998) (1.028, 1.035)
Black Female (0.991, 0.996) (0.997, 1.002) (1.017, 1.020)

Lung cancer
White Male (0.988, 1.001) (0.998, 1.010) (1.014, 1.023)

White Female (0.986, 0.992) (0.981, 0.986) (0.984, 0.988)
Black Male (0.974, 0.990) (0.991, 1.005) (1.017, 1.026)

Black Female (0.987, 0.992) (0.983, 0.988) (0.986, 0.989)

Table 3.8: Bounds on the “progress ratio” under Frank copula (τ = 0.5)

group 1980-90 1980-2000 1980-2010
All other cancers

White Male (1.015, 1.033) (1.043, 1.059) (1.094, 1.108)
White Female (1.010, 1.022) (1.020, 1.031) (1.057, 1.067)

Black Male (0.983, 1.002) (1.024, 1.041) (1.103, 1.117)
Black Female (0.999, 1.010) (1.012, 1.023) (1.061, 1.071)

Lung cancer
White Male (0.993, 1.038) (1.022, 1.066) (1.073, 1.111)

White Female (0.976, 1.020) (0.975, 1.012) (1.003, 1.031)
Black Male (0.962, 1.011) (0.999, 1.044) (1.073, 1.111)

Black Female (0.967, 1.013) (0.968, 1.008) (1.002, 1.030)

3.3 Unemployment spells
There is some agreement that higher unemployment benefits lead to longer

unemployment spells (see Card et al. (2015)), and estimating the magnitudes

of the responses is of concern to policy-makers. In this application, I focus

on the exercises in Farber et al. (2015) (FRV henceforth) who study effects

of extended unemployment insurance (UI) benefits on unemployment spells

during the Great Recession and its aftermath in the US. They also estimate

the impact of extended UI benefits on probabilities of re-employment and exit

from the labour force. The main result of their paper is that extension of UI

benefits did not affect exit through re-employment, whereas it discouraged exit

from the labour force.

This exercise provides important policy implications. A long unemploy-

ment duration itself has negative effects on an unemployed person’s chance of
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job finding via multiple channels as shown in Kroft et al. (2013) and references

therein. Therefore, if extended UI benefits indeed prolonged unemployment

spells of active job seekers by deter their motivations, this policy would cause

adverse effects on efficiency of an economy. On the other hand, if it only at-

tracted unemployed people who were more likely to exit from the labour force,

extended benefits would not bring inefficiency.

Farber et al. (2015) and FRV only focus on exit rates from unemployment

using binary choice (logit) models. They do not investigate the effects of

extended benefits on unemployment durations. Furthermore, they treat the

other type of exit as independent censoring when they use binary response

models for each type of exit from unemployment. However, durations up to

re-employment and exit from the labour force may be dependent. Suppose an

unemployed individual is highly motivated to find a job. Her job search effort

is likely intense and her unemployment spell up to re-employment is likely

short. On the other hand, her counter-factual duration up to exit from the

labour force would be long. For an individual with no strong motivation, it

would be the other way round. The independence assumption may not deliver

a correct answer in such a sense.

I investigate effects of extended UI benefits on distributions of unemployed

spells up to two types of exits using data from FRV. Sensitivity analysis on

the independence assumption is conducted by allowing for negative dependence

between two durations. The data is a sample of 56,491 unemployment spells

from Current Population Survey (CPS) for 2008-2014. All individuals in the

sample were aged 18-69 and were potentially eligible for UI benefits. The data

do not include information about actual receipt of UI benefits. Therefore,

I maintain the same assumptions in FRV that every unemployed person in

the sample is eligible for benefits and receives UI benefits from the date of

displacement to the maximum duration.

Most states in the US extended UI benefits up to 99 weeks from the

usual duration (26 weeks) between 2008-2010. These extended durations were

tapered from the first quarter of 2012 so that no state provided UI benefits

beyond the usual duration in 2014. To investigate effects of extended benefits, I

divide the sample into two periods, 2008-2011 (phase-in) and 2012-2014 (phase-

out). Those periods reflect expansion and contraction of the benefit duration

as well as increases and decreases of labour market slackness. Therefore, the

distributions of unemployment durations in two periods reflect the benefit

durations and the labour market conditions. However, economic theories and

empirical evidence in the literature suggest that extended UI benefits have
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negative effects on the job finding rate and the probability of exit from the

labour force. More favourable labour market conditions bolster the job finding

rate but deter an unemployed person from exiting the labour force. These

presumptions can be used to derive insights on separate effects of labour market

slack and UI benefits on both durations.

Figure 3.7: Empirical distribution of unemployment durations
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The empirical distribution of unemployment durations in each period

shows that unemployed individuals exit from unemployment more quickly in

the phase-out period. Figure 3.7 displays the empirical distributions for col-

lege graduates (including postgraduates) and non-college graduates. The two

groups exhibit somewhat different patterns. The distribution of college grad-

uates does not vary between periods much. Only the long term unemployed

(2 years or longer) were more likely to exit in the phase-out period. On the

contrary, non-college graduates were more likely to leave unemployment in

the phase-out period with a significant margin and this margin constantly in-

creases as the unemployment duration becomes longer. Workers with higher

education levels tend to face a lower unemployment rate and shorter unem-

ployment spells as empirically shown in Nickell (1979). The same pattern is

observed in the recent work (see Kroft et al. (2016)).

The separate effects of UI benefits on exit from the labour force and re-

employment are of interest. I use independent and Frank copulas with negative

values of τ to derive bounds on the distributions of latent spells. Gender is also
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Figure 3.8: Bounds on distributions for males in phase-in and phase-out periods
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considered as a covariate. Allowing for negative dependence between durations

does not alter the bounds much. Bounds are slightly downward shifted when

negative dependence is allowed. All the following bounds are computed from

the Frank copula with τ = −0.5. Those bounds are shown to be very tight.

Figure 3.8 shows the bounds for male college graduates and non-college

graduates in the two periods. College graduates’ distribution of the duration

up to re-employment is unchanged over the two periods but the distribution of

duration until exit from the labour force was downward shifted in the phase-out

period except for the long-term unemployed. Male non-college graduates ex-

hibit different patterns. Their distributions of durations up to re-employment

and exit from the labour force were upward shifted. Given the more favourable

labour market situation in the phase-out period, the effects of extended bene-

fits were marginal on durations up to re-employment for both college graduates

and non-college graduates. For exit from the labour force, the negative effects

of tapering of extended benefits dominated the positive effects of better labour

market conditions for non-college graduates and vice versa for college gradu-

ates.

For females, the patterns are more obvious as displayed in Figure 3.9.

Durations up to re-employment were affected very little, whereas the distribu-

tions of duration until exit from the labour force were all upward shifted with

significant margins which grow as the unemployment duration becomes longer.
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Figure 3.9: Bounds on distributions for females in phase-in and phase-out periods
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These results show that the negative effects of roll back of extended benefits

were significantly large so that the effects of tighter labour market conditions

were dominated for unemployed females. The different patterns between men

and women may reflect the gender difference in the job industry distributions.

Women were more concentrated in the service sector but men were much more

dispersed over many sectors.

The bootstrap inference method is employed to test whether the estimated

patterns are statistically significant. Confidence bands for bound estimates are

displayed in Figure 3.10-3.13. At 95% confidence level, the pattern that non-

college graduates with long (≥ 2 years) unemployment durations were more

likely to exit from the labour force in the phase-out period is significant for

both men and women. This pattern remains significant at the same confidence

level when educational level is uncontrolled.

These exercises show that UI benefits affected the duration until exit from

the labour force but not the duration up to re-employment. Negative effects

of UI benefits were larger for non-college graduates and females. Whether

the extended UI benefits discourage active job seekers has been a long lasting

question. The main results here support the original findings in FRV that UI

benefits did not play a pivotal role to fuel moral hazard of the unemployed

people. The extension of benefits suppressed exit from the labour force during

the phase-in period but it did not distort the efficiency of the US economy as
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Figure 3.10: 95% confidence bands on distributions for male college graduates in
phase-in and phase-out periods
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Figure 3.11: 95% confidence bands on distributions for male non-college graduates
in phase-in and phase-out periods
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it did not deter active job seekers from finding a job.

3.4 Conclusion

I employ the bounds approach in empirical applications to the war on cancer

and to unemployment spells. These applications illustrate the usefulness of

the proposed approach. It is easy to implement and is widely applicable in

many applications in economics and other applied studies. As the approach
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Figure 3.12: 95% confidence bands on distributions for female college graduates
in phase-in and phase-out periods
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Figure 3.13: 95% confidence bands on distributions for female non-college gradu-
ates in phase-in and phase-out periods
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is computationally very attractive, a bootstrap inference procedure provides

confidence bands for bounds on distribution functions without requiring much

computational burden.

I re-evaluate trends in CVD and cancer mortality. By allowing for de-

pendence between the two risks, I find that reductions in cancer mortality are

larger than previously shown. Estimated patterns differ from the findings in

Honoré and Lleras-Muney (2006). The model is also extended to include more
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than 2 hazards. Dividing cancers into subcategories reveals discover different

trends in mortality rates from lung cancer and the other cancers. In another

application, I study the effects of extended UI benefits on the distributions of

unemployment durations. The estimated bounds support the original findings

in Farber et al. (2015) that extended UI benefits did not distort efficiency of

the US economy much.

The application to cancer mortality offers interesting extensions for fu-

ture research. One important extension would be to analyse the relationship

between mortality trends and regional characteristics such as wealth, income

and other demographic factors. The US Census and Multiple Cause of Death

data provide state/county level population information and death counts. By

conducting the mortality analysis at a county/state level using the bounds

approach, interesting empirical findings can be revealed.



Appendix A

Supplemental materials for

Chapter 1

Elucidation of computational details

Under parametric restrictions, the algorithm introduced in Section 1.4 provides

the identified set. Computational details of the identified set are provided in

this section. Given a parameter grid θj, the threshold functions py(x) for all

x and y are generated. Therefore, the ordering between threshold values are

θj specific. Given the thresholds, define that for all y ∈ RY \{0} and for all

x, x′ ∈ RX ,

φ1(y, x′, x) ≡ max{m : pm(x′) ≤ py(x)}, φ2(y, x′, x) ≡ min{m : py(x) ≤ pm(x′)}.

Since U ∼ Unif(0, 1), for any interval S, GU(S) is equal to the length of

S. This means that GU([0, py(x)]) = py(x) and GU([py(x), 1]) = 1−py(x). The

containment functional given the interval [0, py(x)] is

Ch([0, py(x)]|z) = P [U(Y,X;h) ⊆ [0, py(x)] | z]. (A.1)

When X = x, intervals [0, p1(x)], · · · , [py−1(x), py(x)] are contained in

[0, py(x)]. ForX = x′ where x′ 6= x, intervals [0, p1(x′)], · · · , [pφ1(y,x′,x)−1(x), pφ1(y,x′,x)(x)]

are contained in [0, py(x)]. Therefore, noticing that φ1(y, x′, x) = y, the con-

tainment functional is

Ch([0, py(x)]|z) =
∑
x′∈RX

P [Y ≤ φ1(y, x′, x)− 1 ∧ X = x′ | z]. (A.2)

By similar logic, noticing that φ2(y, x, x) = y, the containment functional given
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[py(x), 1] is

Ch([py(x), 1]|z) =
∑
x′∈RX

P [Y ≥ φ2(y, x′, x) ∧ X = x′ | z]. (A.3)

Now by the inequality (1.11), the upper and lower bounds in Step 4 of

the algorithm are respectively,

LB(y, x, z) ≡
∑
x′∈RX

P [Y ≤ φ1(y, x′, x)− 1 ∧ X = x′ | z] ≤ py(x) (A.4)

UB(y, x, z) ≡
∑
x′∈RX

P [Y ≤ φ2(y, x′, x)− 1 ∧ X = x′ | z] ≥ py(x) (A.5)

and these inequalities hold for all values of z ∈ RZ .

Additional heterogeneity

Unobserved heterogeneity U is so far assumed to be a random scalar. Sup-

pose some elements of X are unobserved. Those elements are relevant in the

structural function of Y but omitted. This may happen in practice so it needs

to be accommodated in the model (1.9). Let U be a vector and suppose that

U is two dimensional unobserved heterogeneity such that U := (U1, U2) where

U1 ∼ Unif(0, 1) and U2 is continuously distributed with its density function

fU2(·). Then the model (1.9) is modified as follows.

Y = h(X,U) = 0 if p0(X,U2) ≤ U1 ≤ p1(X,U2)

= 1 if p1(X,U2) < U1 ≤ p2(X,U2)

= · · ·
= y if py(X,U2) < U1 ≤ py+1(X,U2)

= · · ·

(A.6)

where p0(X,U2) is normalized to 0. If U2 is observable, then the set of threshold

functions {py+1(x, u2)}y∈RY , u2∈RU2
, x∈RX is the object of identification.

Suppose X ⊥⊥ U and U1 ⊥⊥ U2. Without observing U2, there is no hope

of identifying py+1(x, u2). The threshold functions are naturally specified by

py+1(x, u2) = P[Y ≤ y|X = x, U2 = u2].



87

This probability cannot be identified but the average threshold functions

py+1(x) ≡
∫
Ru2

py+1(x, u2)fU2(u2)du2

are point identified by observing P[Y ≤ y|X = x].

In the case where X is not independent of U , py+1(x) is not point identified

because now

P[Y ≤ y|X = x] =

∫
Ru2

py+1(x, u2)fU2|X(u2|x)du2.

It can be partially identified under the existence of an instrument Z which

satisfies Z ⊥⊥ U.

Given the values of Y and X, the level set U(y, x;h) is derived on RU ≡
[0, 1]×Ru2 such that

U(y, x;h) = {([py(x, u2), py+1(x, u2)], u2) : u2 ∈ Ru2}.

Let Uh(x) denote the conditional support of the U -level set given X = x. Then

the unconditional support of the U -level set is Uh ≡ {Uh(x) : x ∈ RX}. Let

Q̃h be the collection of all the connected unions of elements of Uh. Then Q̃h is

the collection of CDTS.

Corollary 3. Suppose Z ⊥⊥ U. Given the joint distribution of (Y,X,Z) and

the model (A.6), the identified set for the structural function h is characterized

as follows.

H∗ = {h : ∀S ∈ Q̃h, Ch(S|z) ≤ GU(S) a.e z ∈ RZ}.

Assume that U1 ⊥⊥ U2. GU(S) can be computed given S. For example,

suppose S = {([py(x, u2), py+1(x, u2)], u2) : u2 ∈ Ru2}. Then

GU(S) =

∫
RU2

[py+1(x, u2)− py(x, u2)]fU2(u2)du2.

Likewise, the containment functional is

Ch(S|z) = P [U ∈ S|z].



88

Therefore, Corollary 3 implies

P [U ∈ S|z] ≤ py+1(x)− py(x).

Repeating this procedure for all elements in Q̃h yields bounds for the average

threshold functions.

Proofs of main results

All the corollaries are direct applications of the results in the paper so the

proofs are omitted.

Proof of Proposition 1. Suppose that RX = {0, 1, 2, · · · , K} without loss of

generality. If there exist x, x′ ∈ RX and y, y′ ∈ RY such that y−exp(α+βx) =

y′−exp(α+βx′) = ū, then fU(ū) = P[Y = y∩X = x|Z]+P[Y = y′∩X = x′|Z]

and the probability distribution of X can vary with Z. Suppose that x > x′

and define h = y − y′ then α = ln h
exp(βx)−exp(βx′)

. Given x, x′, h and β, the

value of α satisfying the above equation is found unless the signs of h and

exp(βx)−exp(βx′) are different. Therefore, a set of pairs (α, β) given (h, x, x′)

is found, which is a curve on R2. As X and Y are discrete, the number of curves

is countably infinitely many as so are the number of possible combinations of

(h, x, x′). Q.E.D.

Proof of Proposition 2. Suppose that RX = {0, 1, 2, · · · , K}. If there exist

x, x′ ∈ RX and y, y′ ∈ RY such that y/ exp(α + βx) = y′/ exp(α + βx′) = ū,

then fU(ū) = P[Y = y ∩X = x|Z] +P[Y = y′ ∩X = x′|Z] and the probability

distribution of X can vary with Z. Define h = y
y′

where y′ 6= 0, then

h =
exp(α + βx)

exp(α + βx′)
= exp(β(x− x′)) =⇒ β =

log h

x− x′
(A.1)

Given x, x′ and h, a unique value of β satisfies the above equation. Therefore,

a set of pairs (α, β) satisfying (A.1) is a horizontal line on R2. As X and Y

are discrete, the number of curves is countably infinitely many as so are the

number of possible combinations of (h, x, x′) Q.E.D.

Proof of Theorem 1. Define that for all y ∈ RY \{0} and for all x, x′ ∈ RX ,

ρxy(z) ≡ P[X = x ∩ Y = y | z].
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φ1(y, x′, x) and φ2(y, x′, x) are defined in Appendix I. Since U ∼ Unif(0, 1),

GU([0, py(x)]) = py(x), GU([py(x), 1]) = 1− py(x).

The containment functionals given the intervals are

Ch([0, py(x)]|z) =
∑
x′∈RX

φ1(y,x′,x)−1∑
m=0

ρx′m(z) (A.2)

Ch([py(x), 1]|z) =
∑
x′∈RX

∞∑
m=φ2(y,x′,x)

ρx′m(z) (A.3)

Given the inequality (1.11), the upper and lower bounds of py(x) given z are

found. Then by the intersection of these bounds across z,

sup
z∈RZ

Ch([0, py(x)]|z) ≤ py(x) ≤ inf
z∈RZ
{1− Ch([py(x), 1]|z)}. (A.4)

Qh is core determining if no additional interval in Q̃h makes the above

bounds tighter. By any additional interval [py(x), pk(x
′)] where py+1(x) ≤

pk(x
′) for y, k ∈ RY \{0} and x, x′ ∈ RX , the lower bound of pk(x

′)− py(x) is

delivered as follows.

sup
z∈RZ

 ∑
x′′∈RX

φ1(k,x′′,x′)−1∑
m=φ2(y,x′′,x)

ρx′′m(z)

 =

sup
z∈RZ

 ∑
x′′∈RX

φ1(k,x′′,x′)−1∑
m=0

ρx′′m(z)−
∑
x′′ 6=x

φ2(y,x′′,x)−1∑
m=0

ρx′′m(z)

 (A.5)

Under Condition 1, for all i = {1, 2, · · · , K} and y, [py(xi), py+1(xi)] contains

{py(xj) : i < j, j ∈ {1, · · · , K}} and {py+1(xj) : i > j, j ∈ {1, · · · , K}}.
For all intervals [py(x), py+1(x)] ∈ Uh, there exists s ∈ RY such that ps(x

′) ∈
[py(x), py+1(x)] for all x′ and φ1(k, x′′, x′) ≥ φ2(y, x′′, x) is guaranteed for all

x′′. Therefore, the equality in (A.5) holds.

From the inequalities attained by Qh, the lower bound of pk(x
′) − py(x)

is also constructed. By subtracting the upper bound of py(x) from the lower

bound of pk(x
′), the lower bound of pk(x

′)− py(x) is

sup
z∈RZ

 ∑
x′′∈RX

φ1(k,x′′,x′)−1∑
m=0

ρx′′m(z)

− inf
z∈RZ

∑
x′′ 6=x

φ2(y,x′′,x)−1∑
m=0

ρx′′m(z)


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This bound is weakly tighter than (A.5) and thus it is redundant to check

[py(x), pk(x
′)] ∈ Q̃h/Qh. Therefore, Qh is core determining. Q.E.D.



Appendix B

Supplemental materials for

Chapter 2

Bounds for many hazards
Let pUm,j(x) and pLm,j(x) denote upper and lower bounds of pm,j(x).Given that C

is continuous and increasing in its arguments, the volume function VC([a,1])

is strictly monotone in the j-th element of a. Therefore, one can define the

inverse of VC for aj. Suppose that VC([a,1]) = c for some constant c ∈ [0, 1].

Then there exists a function V −1
Cj : [0, 1]J → [0, 1] such that

V −1
Cj (a−j, c) = aj where a−j = (a1, · · · , aj−1, aj+1, · · · , aJ).

Define

aLm,j(x) ≡ (pLm,1(x), · · · , pm,j(x), · · · , pLm,J(x)),

am,−j(x) ≡ (pm,1(x), · · · , pm,j−1(x), pm,j+1(x), · · · , pm,J(x)).

aLm,j(x) has lower bounds everywhere except its j-th element. am,−j(x) is a

subvector of am(x) which omits pm,j(x).

Theorem 5. Let Assumption 4-5 hold. For all j ∈ J , δ0j(x) = pL1,j(x). Given

the lower bounds, pUm+1,j(x) is the unique root of

1− γm(x) = VC([aLm+1,j(x),1])

for all m ≥ 0 and j ∈ J . For m ≥ 1 and all j ∈ J , given the bounds for

pm,j(x), the lower bounds pLm+1,j(x) are derived from the following constrained

minimization problem.

pLm+1,j(x) = min
am,−j(x)

V −1
Cj (am,−j(x), 1− γm−1(x)− δmj(x))
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s.t. VC([am(x),1]) = 1− γm−1(x) and pm,j(x) ∈ [pLm,j(x), pUm,j(x)], ∀j ∈ J .

Proof of Theorem 5. The lower bounds for p1,j(x) are trivial. They are directly

obtained from the inequalities of (2.8) given that p0,j(x) = 0 for all j and x.

The equalities of (2.8),

1− γm(x) = VC([am+1(x),1]),

must hold for all j and m ≥ 0. For the upper bounds, notice that the volume

function VC is decreasing in every element of am+1(x). Given the lower bounds

of {pLm+1,j(x)}j∈J , the largest possible value of pm+1,j(x) is obtained from the

equality when pm+1,i(x) = pLm+1,i(x) for all i 6= j. The solution is unique as the

volume function is monotone in each argument of am+1(x).

To show the results for the lower bounds, the equalities of (2.8) can be

rewritten as

1−γm−1(x) = VC([am(x),1m+1,j(x)])+VC([(pm,1(x), · · · , pm+1,j(x), · · · , pm,J(x)),1])

Substituting the above equalities into the inequalities of (2.8) yields

VC([(pm,1(x), · · · , pm+1,j(x), · · · , pm,J(x)),1]) ≤ 1− γm−1(x)− δmj(x). (A.1)

Given any am,−j(x), the lowest value of pm+1,j(x) is obtained when the equality

of (A.1) holds. Let Pm+1,j(x) denote the set of values of pm+1,j(x) satisfying

(A.1) with equality given all possible am,−j(x) under constraints such that

1 − γm−1(x) = VC([am(x),1]) and pm,j(x) ∈ [pLm,j(x), pUm,j(x)] for all j ∈ J .

Then pLm+1,j(x) is the minimum of Pm+1,j(x). As the lowest possible value

of pm+1,j(x) given am,−j(x) is given by the inverse function V −1
Cj (am,−j(x), 1−

γm−1(x) − δmj(x)), pLm+1,j(x) is also obtained by minimising V −1
Cj given the

constraints. Q.E.D.

Solutions for the lower bounds of pm+1,j(x) involve constrained minimiza-

tion. However, in practice, those are easily approximated by fixing am,−j(x)

at the lower bounds of its all elements except one (any i-th element) which

is fixed at its upper bound. For example, suppose J = 3. The approximated

lower bound of pm+1,1(x) is given by

V −1
C1 (am,−1(x), 1− γm−1(x)− δmj(x))

subject to am,−1(x) = (pLm,2(x), pUm,3(x)) or am,−1(x) = (pUm,2(x), pLm,3(x)). This

is because all am,−1(x) satisfying the constraints produces numerically very



93

similar results.

Suppose the copula C is of an Archimedean family so that C(u) =

φ−1(
∑J

j=1 φ(uj)) where φ(·) is the generator function which is continuous,

strictly decreasing, and convex. Noticing that the object of minimization comes

from the inequalities (A.1), the LHS can approximated by the first order Taylor

series expansion of VC([am(x),1]) subject to VC([am,j(x),1]) = 1− rm−1(x).

VC([(pm,1(x), · · · , pm+1,j(x), · · · , pm,J(x)),1]) ≈
1− γm−1(x) + (pm+1,j(x)− pm,j(x))V j

C([am,j(x),1])

where V j
C is the partial derivative of VC w.r.t. the j-th argument. V j

C is

negative and only depends on pm,j(x) given the constraint. As V j
C has the

minimum at pm,j(x) = pLm,j(x), the lowest value of pm+1,j(x) derived from the

approximation is

pLm+1,j(x) ≈ pLm,j(x)− δmj(x)

V j
C([am,j(x),1])

s.t. pm,j(x) = pLm,j(x)

which is the same over all am,j(x) as far as the constraints are satisfied.

Proofs of main results

Proof of Proposition 3. The U-level set U(y;h) is a subset of the unit hyper-

cube such that given y = (m, j),

U(y;h) ≡
{
T ∗ : T ∗j ∈ [τm, τm+1] ∧ T ∗j < T ∗i for all i 6= j

}
.

Let Uh denote the support of U(y;h) and Qh be the collection of all connected

unions of elements of Uh. Define the subcollection USh of Uh as USh ≡ {U ∈
Uh : U ⊆ S}. Then for all S ∈ Qh\Uh, ∪A∈UShA = S and any element of Uh has

measure zero intersection with other elements of Uh. Therefore, by Theorem

3 of CR17, Uh is the collection of core determining test sets. Then a set of

equalities (2.4) derived for all possible outcome y = (m, j) wherem ∈ T , j ∈ J
characterises the sharp identified set of F by Corollary 2 of CR17. Q.E.D.

Proof of Theorem 2. The proof of Theorem 5 applies. The equations for upper

bounds are derived from the equalities of (2.8). By expanding the volume

function,

1− γm(x) = 1− pm+1,1(x)− pm+1,2(x) + C(pm+1,1(x), pm+1,2(x)).
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and rearranging this equation yields

γm(x)− pm+1,j(x) = pm+1,i(x)− C(pm+1,1(x), pm+1,2(x)).

Therefore, the largest value of pm+1,i is obtained at the lower bound of

pm+1,j(x).

Likewise, the inequalities of (2.8) become (A.1). By expanding the volume

function,

γm−1(x) + δm1(x)− pm,2(x) ≤ pm+1,1(x)− C(pm+1,1(x), pm,2),

γm−1(x) + δm2(x)− pm,1(x) ≤ pm+1,2(x)− C(pm,1(x), pm+1,2),

and pm+1,i(x) has the lowest value when the equality holds given pm,j(x). Let

the equalities hold. Then pm+1,i(x) has the lowest value when pm,i(x) = pUm,i(x)

since the partial derivatives of C w.r.t. its arguments are positive and smaller

than 1. Q.E.D.

Proof of Lemma 1. The upper bounds are derived by the direct application of

Theorem 5. From the equalities of (2.8) and Assumption 6,

∏
i 6=j

[1− pm,i(x)] =
1− γm−1(x)

1− pm,j(x)
, ∀j ∈ J

By substitutiong the above equation into the inequalities of (2.8),

δmj(x) ≤ 1− γm−1(x)

1− pm,j(x)
(pm+1,j(x)− pm,j(x)).

Then rearranging the above inequalities yields

pm,j(x) +
δmj(x)

1− γm−1(x)
(1− pm,j(x)) ≤ pm+1,j(x),

and the RHS has the lowest value when pm,j(x) = pLm,j(x) since
δmj(x)

1−γm−1(x)
< 1.

Q.E.D.

Proof of Lemma 2. In the first inequality of (2.8), the full expansion of RHS

yields

VC([aLm(x),bm+1,j(x)]) ≤ pm+1(x)− pm(x)

and therefore,

δmj(x) + pm(x) ≤ pm+1(x).
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The above inequality needs to be satisfied for any possible values of pm(x).

Thus, the lower bound is derived at the lowest possible value of pm(x).

For the upper bound, the expansion the LHS of the second equality of

(2.8) followed by the Fréchet-Hoeffding bounds inequality yields the desired

result.

pm+1,j(x) ≤
J∑
j=1

m∑
t=0

δtj(x).

These bounds are identical to those in Peterson (1976) which are sharp.

Q.E.D.

Proof of Theorem 3. Given the definition of the U -level set U(m, j;h), let Uh

denote the support of U(m, j;h) and Qh be the collection of all connected

unions of elements of Uh. Now suppose that the collection of core determining

test sets, Q̃h, is

Q̃h ≡ {
⋃
j∈N

U(m, j;h) : m ∈ T ,N ⊆ J}.

Then Q̃h includes all possible unions the support of the U -level set given m ∈
T . For any m 6= m′ where m,m ∈ T and any N ,N ′ ⊆ J , the intersection⋃

j∈N

U(m, j;h) ∩
⋃
j∈N ′
U(m′, j;h)

has zero probability measure.

Suppose S is a connected union of S1 ≡
⋃
j∈N U(m, j;h) and S2 ≡⋃

j∈N ′ U(m′, j;h) where m and m′ are consecutive integers. Then it is not

core determining by Theorem 3 of CR17 because S1 and S2 has measure zero

intersection. Any other connected unions S̃ ≡ S ∪
⋃
j∈N ′′ U(m′′, j;h) is not

core determining by the same logic. In this way, all the unions in Qh/Q̃h are

shown to be not core determining.

For the unions
⋃
j∈J U(m, j;h), either U(y;h) ⊆

⋃
j∈J U(y;h) or U(y;h) ⊆

cl(
⋃
j∈J U(y;h))c is satisfied for all possible outcomes y = (m, j). Therefore,

these sets produce moment equalities by Corollary 2 of CR17. Q.E.D.

Proof of Theorem 4. By Assumption 9, pL1,1 = supz∈RZ p
L
1,1(z) where pL1,1(z) =

δ01(z) and pL1,2(z) = pL1,2(z). Given the lower bounds of pm,1 and pm,2(z), the

upper bounds of p1,1(z) and p1,2(z) are given by Theorem 2. Then, pUm+1,1 =

infz∈RZ p
U
m+1,1(z). Given the upper and lower bounds of pm,1 and pm,2(z), the

lower bounds of pm,1(z) and pm,2(z) are given by Theorem 2. Then, pUm+1,1 =
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infz∈RZ p
U
m+1,1(z). Q.E.D.
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