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INTRODUCTION

Hepatocellular carcinoma (HCC) is the second leading 
cause of cancer deaths worldwide (1). Hepatic resection 
is the preferred curative treatment option for early-stage 
HCCs in patients with good health and well-preserved 
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liver function (2, 3). However, despite recent advances in 
surgical techniques, the high incidence of recurrence (up 
to 80%) remains a difficult challenge in the management 
of these patients (4). Thus, even after curative resection of 
HCC, patients are recommended to enroll in a surveillance 
program for the early detection of recurrence. However, 
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because the risk of recurrence is not uniform across all 
patients with HCCs, attempts have been made to determine 
risk factors for recurrence that can help identify high-
risk patients. This high-risk group would undergo either 
intensive postoperative surveillance or radical treatment 
during the initial stages, potentially leading to improved 
outcomes. Therefore, identification of the risk factors for 
postoperative recurrence may be a crucial strategy for 
improving overall survival (OS) after surgical resection in 
patients with HCC.

For this purpose, various pathologic factors including 
tumor size; microscopic vascular invasion; satellite nodule; 
tumor, node, and metastasis stage; and histologic grade 
have been investigated and firmly established as risk 
factors of postoperative recurrence (5, 6). However, until 
now, no risk model capable of predicting HCC recurrence has 
been established, partly owing to the inability to obtain 
detailed, quantitative information of this heterogeneous 
tumor. Therefore, identification of more sophisticated 
and quantitative prognostic markers of HCC is clinically 
warranted. 

Recently, radiomics has become another critical emerging 
area in oncology in addition to genomics and proteomics (7). 
In particular, texture analysis, which is a technique that can 

quantify the spatial pattern of pixel intensities on cross-
sectional imaging, has been successfully applied to various 
types of cancers for the evaluation of tumor heterogeneity 
(8-14). Texture analysis has also been demonstrated to 
provide more information than visual inspection in an 
objective and quantitative manner regarding the biological 
aggressiveness of a tumor (13, 15). Furthermore, texture 
analysis in patients with malignant tumors has been 
demonstrated to provide information regarding not only 
tumor heterogeneity, but also histologic tumor grade, as 
well as predictive information regarding tumor recurrence 
or survival (16-21). However, until now, few studies have 
explored the value of computed tomography (CT) texture 
analysis (CTTA) in predicting disease-free survival (DFS) 
after surgical resection in patients with HCC (22). Therefore, 
the purpose of our study was to investigate the usefulness 
of CTTA in estimating the histologic tumor grade and in 
predicting DFS after surgical resection in patients with HCC.

MATERIALS AND METHODS

Patients 
The Institutional Review Board of our institute approved 

this retrospective study and waived the requirement for 

Fig. 1. Flowchart of inclusion and exclusion criteria. CT = computed tomography, HCC = hepatocellular carcinoma, PEIT = percutaneous 
ethanol injection therapy, RFA = radiofrequency ablation, TACE = trans-catheter arterial chemoembolization

705 patients with treatment-naïve single HCC

28 patients were excluded without R0 resection

677 HCC patients who underwent R0 resection

81 patients included for final analysis

1110 surgically confirmed HCC patients
from January 2009 to January 2015

405 patients were excluded
7 with history of other cancers
109 with multiple lesions
289 with history of previous treatment

(RFA, PEIT or TACE)

596 patients were excluded
83 ‌�without available preoperative quadriphasic liver CT 

images
498 underwent CT using other scanner
15 ‌�patients who follow up loss immediately after 

surgery
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informed consent. The study population consisted of 
patients diagnosed with HCC at a single center from January 
2009 to January 2015 (Fig. 1). The inclusion criteria were 
as follows: 1) Patients with treatment-naïve single HCC; 
2) patients who underwent R0 resection; 3) preoperative 
quadriphasic liver CT images (pre-contrast, arterial, portal-
venous, and delayed phase) obtained less than 6 weeks 
before surgery; 4) follow-up of at least 2 years with no 
recurrence. The exclusion criteria were as follows: 1) 
Multiple lesions; 2) previous treatment with radiofrequency 
ablation (RFA), percutaneous ethanol injection therapy 
(PEIT), or trans-catheter arterial chemoembolization (TACE); 
3) other accompanying cancers other than HCC; 4) CT using 
a protocol other than liver CT or a CT scanner other than 
a 64-detector row scanner (Brilliance 64, Philips Medical 
Systems, Cleveland, OH, USA); and 5) no available CT 
images reconstructed with filtered back projection. Finally, 
81 patients, each with a single HCC and who had undergone 
quadriphasic contrast-enhanced CT using the same CT 
scanner comprised the study group (male:female, 65:16; 
mean age, 57.5 ± 10.8 years; age range 27–79 years). 

CT Acquisition
In all study patients, CT examinations had been performed 

using a 64-detector row scanner (Brilliance 64) with the 
following scanning parameters: gantry rotation time of 0.5 
seconds, 0.625 mm x 64-detector array, pitch of 1.0–1.5, 
table speed of 46.9 mm/rotation, 150–200 mAs, 120 kVp, 
and a 512 x 512 matrix. The reconstruction parameters were 
a 3-mm slice thickness and a 2- or 3-mm reconstruction 
interval. Arterial, portal-venous, and delayed phase CT 
images were obtained after administration of 1.5 mL/kg of a 
nonionic contrast material for 30 seconds (iohexol, Bonorex 
350, Central Medical Service, Seoul, Korea; iobitridol, 
Xenetix 350, Guerbet, Aulnay-Sous-Bois, France) at a rate 
of 2.5–4.0 mL/s using a power injector. For arterial and 
portal-venous-phase scanning, 19- and 44-second delays 
were used after the maximal Hounsfield unit (HU) of the 
descending aorta reached 100 HU using bolus tracking. 
Delayed phase images were obtained 180 seconds after the 
start of contrast administration.

Imaging and Clinico-Pathologic Parameters
 Preoperative CT images were retrospectively reviewed 

by one observer (a second-year resident of the Department 
of Radiology) under the supervision of an experienced 
abdominal radiologist (with 27 years of experience) 

who were blinded to the clinico-pathologic information. 
Previously reported imaging features for the prediction 
of HCC recurrence, such as the presence of rim arterial 
enhancement, peritumoral parenchymal enhancement, and 
a non-smooth tumor margin, were evaluated for each HCC: 
1) Peripheral rim arterial enhancement was defined as the 
presence of irregular ring-like areas of enhancement with 
central hypovascular areas on arterial-phase images (23); 2) 
peritumoral parenchymal enhancement was defined as gross 
hyper-enhancement outside of the tumor border regardless 
of shape on arterial-phase images (24); 3) tumor margins 
were classified as either smooth or non-smooth, with 
smooth tumor margins defined as a smooth tumor-normal 

Table 1. Clinical Chracteristics of 81 Study Patients
Characteristics Value

Age (years)
Mean ± SD 57.5 ± 10.8

Sex, n (%)
Males 65 (80.25)
Females 16 (19.75)

Etiology of liver cirrhosis, n (%)
HBV-related 60 (74.07)
HCV-related 7 (8.64)
Alcoholic 3 (3.70)
Others 11 (13.58)

Child-Pugh score, n (%)
5 78 (96.30)
6 2 (2.47)
7 1 (1.23)

BCLC staging, n (%)
0 8 (9.88)
A 73 (90.12)

Size
Mean ± SD 5.24 ± 3.71

Microscopic vascular invasion, n (%)
Yes 29 (35.80)
No 52 (64.20)

Histologic grade, n (%)
1 3 (3.70)
2 49 (60.49)
3 27 (33.33)
4 2 (2.47)

Serum AFP level (ng/mL)
Mean ± SD 3324.30 ± 15000.84

Serum PIVKA-II level (ng/mL)
Mean ± SD 5615.10 ± 14798.72

Continuous data expressed as mean ± SD. AFP = alpha-fetoprotein, 
BCLC = Barcelona Clinic Liver Cancer staging, HBV = hepatitis B 
virus, HCV = hepatitis C virus, PIVKA-II = vitamin K absence or 
antagonist-II, SD = standard deviation 
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liver interface on all axial, coronal, and sagittal images, and 
all other cases were considered non-smooth tumor margins 
(e.g., focal bulging, lobulating, or multinodular types) (25). 
In addition, the average attenuation of tumors (HU) was 
measured on arterial and portal-venous-phase images.

Histologic data of HCCs including tumor size, 
microvascular invasion, satellite nodule, and histological 
grade were retrieved from the histologic reports. Low-
grade tumors corresponded to Edmondson grades I and 
II, and high-grade tumors corresponded to Edmondson 
grades III and IV (26). Other demographic and clinical 
data including age, sex, Child-Pugh score, Barcelona Clinic 
Liver Cancer stage, serum alpha-fetoprotein, and protein 
induced by Vitamin K absence or antagonist-II levels were 
also collected. The demographic, clinical, and pathological 
information are summarized in Table 1.

Texture Analysis
Arterial and portal-venous-phase liver CT images were 

assessed by two observers (second-year residents of the 
Department of Radiology), who were blinded to the clinico-
pathologic information, using commercially available 
TexRAD software (TexRAD Ltd, Cambridge, UK) with the 
filtration-histogram method (27). 

The technique comprised an initial filtration step in 
which a Laplacian of Gaussian spatial band-pass filter was 
used to selectively extract features of different sizes and 
intensity variations, followed by texture quantification (8, 
27). The resultant images displayed features at different 
spatial scales from fine to coarse textures within a region of 
interest (ROI) drawn around the tumor (Fig. 2A). The scale 
was selected by tuning the filter parameter, also known 
as the spatial scaling factor (SSF), between 2.0 and 6.0. 
Each SSF corresponded to the same number of millimeters 
of pixels in radius, ranging from fine (SSF 2.0), to medium 
(SSF 3.0–5.0), to coarse (SSF 6.0) texture maps (9, 28). 
The ROI was delineated around the tumor outline at the 
level of the single largest cross-sectional area and further 
refined by excluding areas of fat, air, dense calcification, or 
bone; hence, the results included only pixels between 0 and 
300 HU within the ROI (19). When the tumor margin was 
indistinct on arterial-phase images, the ROI was drawn after 
referencing the tumor margin on portal-venous or delayed 
phase images. Heterogeneity within this ROI was quantified 
with and without image filtration by calculating various 
texture parameters (mean, mean of positive pixels [MPP], 
entropy, kurtosis, skewness, and standard deviation [SD]) of 

the pixel distribution histogram (Fig. 2B). 

Follow-Up 
Patients were followed-up until death or until March 2017 

if they were still alive. Tumor recurrence was tracked at an 
outpatient clinic at least every 3–6 months using either 
tumor markers or imaging studies such as ultrasonography, 
CT, or magnetic resonance imaging. The onset of tumor 
recurrence was designated as the time at which a tumor was 
detected using one of these imaging techniques. DFS was 
defined as the time span from the date of surgery to the 
date of recurrence or the last clinical follow-up.

Statistical Analysis
All data were checked using the Shapiro-Wilk test for 

normality and the Levene test for equality of variance. 
The texture features of the largest cross-sectional area 
of the tumor were compared between groups of different 
histologic grades using Student’s t test and multiple linear 
regression analysis was performed to determine variables 
independently associated with histologic grades. For Kaplan-
Meier analysis, each parameter was dichotomized based on 
a cutpoint obtained using the minimum p value approach 
(29), and the two-fold cross validation approach was used 
to validate each cutpoint (30). Kaplan-Meier and Cox 
proportional hazards analyses were performed to determine 
the relationship between texture features on arterial/portal-
venous-phase images and DFS. Interobserver agreement was 
measured using intraclass correlation coefficients (ICCs) 
for a randomly selected third of the study patients (27 of 
81 patients). All statistical analyses were performed using 
commercially available software (MedCalc for Windows 17.6, 
MedCalc, Mariakerke, Belgium; SAS 9.4, SAS Institute Inc., 
Cary, NC, USA) with a p value of less than 0.05 considered 
to indicate a significant difference.

RESULTS

Patients 
The mean follow-up period ± SD was 35.95 ± 26.14 

months and the median follow-up was 32.6 months. Among 
the 81 study patients, 48 (59.3%) patients had recurrence 
and 33 (40.7%) patients had no recurrence during the 
follow-up period. Extrahepatic metastases developed in 5 of 
the 81 patients (6.2%), 11–50 months after HCC resection 
(median, 26.0 months). The locations of the initial 
extrahepatic metastases were the lung (n = 3), bone (n = 1), 
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Fig. 2. Contrast-enhanced CT image of HCC in 64-year-old man with texture features.
A. CT image showing region of interest drawn around tumor (blue line) and corresponding images of fine, medium, and coarse textures obtained 
using filter values of 2, 4, and 6, respectively. B. Histogram derived from image showing pixel distribution at filter value of 2.0. SSF = spatial 
scaling factor
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and adrenal gland (n = 1). Among these patients, four were 
treated with systemic chemotherapy, and the other with 
radiation therapy. Intrahepatic local recurrence developed 
in 4 of the 81 patients (4.9%), 24–46 months after HCC 
resection (median, 28.7 months) and intrahepatic distant 
recurrence developed in 39 of the 81 patients (48.2%), 2–66 
months after HCC resection (median, 13.3 months). Among 
these patients, 31 were initially treated with TACE, 8 with 
RFA, 2 with PEIT, one with liver transplantation, and one 
with surgical resection to control the recurrent tumor. The 
median DFS time of the patients was 34.87 months (95% 
confidence interval, 24.80–66.47). The estimated 1-, 3-, 
and 5-year DFS rates after surgery were 72.5%, 48.7%, and 

41.1%, respectively.
During the follow-up period, 16 of the 81 patients (19.7%) 

died. The estimated 1-, 3-, and 5-year OS rates after surgery 
were 72.5%, 48.7%, and 41.1%, respectively.

Texture Analysis

Correlation with the Histologic Grade of HCC
The texture parameters of the pixel distribution histogram 

on arterial and portal-venous-phase images are summarized 
in Tables 2 and 3. SD and MPP quantified from fine to 
coarse texture scales on arterial-phase CT images showed 
significant positive associations with the histologic grade of 

Table 2. Texture Parameters of Pixel Distribution Histogram without Filtration and with Filtration on Arterial-Phase
Filter Scale Values Mean SD Entropy MPP Skewness Kurtosis

No filtration 81.79 ± 20.04 21.65 ± 4.88 4.40 ± 0.23 81.79 ± 20.04 0.29 ± 0.53 0.69 ± 2.21
2.0 (fine) 6.32 ± 9.55 49.17 ± 12.36 5.56 ± 4.52 41.17 ± 10.65 0.26 ± 0.58 1.69 ± 6.09
3.0 (medium) 7.22 ± 12.36 43.88 ± 14.49 4.79 ± 0.86 38.02 ± 13.48 0.80 ± 5.47 1.11 ± 3.48
4.0 (medium) 8.78 ± 18.71 39.51 ± 17.74 4.66 ± 0.89 36.80 ± 15.49 0.20 ± 0.87 1.21 ± 5.75
5.0 (medium) 8.32 ± 20.45 36.43 ± 19.61 4.90 ± 4.31 34.88 ± 17.81 0.55 ± 3.92 0.41 ± 3.45
6.0 (coarse) 9.41 ± 17.51 33.87 ± 20.51 4.16 ± 1.56 33.19 ± 18.14 0.11 ± 0.56 0.10 ± 2.69

Continuous data expressed as mean ± SD. MPP = mean of positive pixels

Table 3. Texture Parameters of Pixel Distribution Histogram without Filtration and with Filtration on Portal-venous-Phase
Filter Scale Values Mean SD Entropy MPP Skewness Kurtosis

No filtration 94.67 ± 18.41 20.30 ± 5.18 4.33 ± 0.26 94.67 ± 18.41 -0.08 ± 0.35 0.44 ± 0.76
2.0 (fine) -1.38 ± 4.67 44.83 ± 10.48 4.99 ± 0.38 35.06 ± 8.65 0.00 ± 0.29 0.28 ± 0.66
3.0 (medium) -1.74 ± 8.47 37.99 ± 13.47 4.76 ± 0.53 29.23 ± 11.57 -0.12 ± 0.45 0.40 ± 0.94
4.0 (medium) -2.60 ± 11.65 34.26 ± 15.39 4.54 ± 0.78 26.39 ± 12.75 -0.13 ± 0.61 0.16 ± 1.37
5.0 (medium) -3.68 ± 13.77 30.91 ± 17.04 4.28 ± 1.17 23.61 ± 13.68 -0.13 ± 0.60 0.38 ± 1.55
6.0 (coarse) -4.64 ± 14.94 28.09 ± 18.26 4.00 ± 1.53 21.05 ± 14.70 -0.16 ± 0.58 0.25 ± 1.34

Continuous data expressed as mean ± SD.

Table 4. Comparison of Texture Parameters between High-Grade and Low-Grade HCCs on Arterial-Phase
Filter Scale Values Mean SD Entropy

No filtration 0.62 (-8.68–9.92, 0.895) 1.86 (-0.37–4.09, 0.100) 0.08 (-0.03–0.19, 0.147)
2.0 (fine) -0.70 (-5.13–3.73, 0.754) 6.69 (1.15–12.23, 0.019) -0.68 (-2.77–1.41, 0.519)
3.0 (medium) 0.79 (-4.99–6.57, 0.786) 8.27 (2.17–14.38, 0.009) 0.20 (-0.11–0.52, 0.196)
4.0 (medium) 1.15 (-7.61–9.91, 0.795) 11.10 (3.45–18.76, 0.005) 0.19 (-0.14–0.53, 0.257)
5.0 (medium) 2.10 (-7.72–11.91, 0.672) 12.83 (4.53–21.13, 0.003) -0.44 (-2.46–1.59, 0.669)
6.0 (coarse) -0.35 (-8.97–8.27, 0.936) 10.70 (2.04–19.36, 0.016) 0.10 (-0.41–0.60, 0.707)

Filter Scale Values MPP Skewness Kurtosis
No filtration 0.62 (-8.68–9.92, 0.895) 0.15 (-0.09–0.39, 0.225) -0.08 (-1.11–0.94, 0.872)
2.0 (fine) 4.72 (-0.11–9.55, 0.045) 0.07 (-0.20–0.34, 0.611) -0.36 (-3.19–2.46, 0.798)
3.0 (medium) 6.58 (0.77–12.39, 0.027) -0.79 (-3.35–1.77, 0.541) 0.07 (-1.57–1.70, 0.936)
4.0 (medium) 8.88 (2.17–15.58, 0.010) -0.02 (-0.43–0.39, 0.930) -0.88 (-3.57–1.81, 0.515)
5.0 (medium) 11.44 (3.96–18.92, 0.003) -0.70 (-2.58–1.18, 0.463) -0.26 (-1.92–1.40, 0.755)
6.0 (coarse) 9.94 (2.58–17.29, 0.009) -0.02 (-0.30–0.26, 0.906) -0.23 (-1.57–1.11, 0.731)

Mean difference (95% CI, p value). CI = confidence interval, HCC = hepatocellular carcinoma 
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the tumors (p < 0.05); high-grade HCCs showed significantly 
higher MPP and SD than low-grade HCCs at all texture scales 
on CTTA of arterial-phase CT images (Table 4). However, no 
significant differences in texture parameters were observed 
(p > 0.05) between low-grade and high-grade tumors at all 
filter levels on portal-venous-phase CT images (Table 5). 
Multiple linear regression analysis revealed that SD and MPP 
of medium texture scales on arterial-phase images showed 
an independently significant correlation with the histologic 
grade of HCC (SD at SSF 4.0, B = 0.009, p = 0.005; MPP at 
SSF 4.0, B = 0.012, p = 0.013).

Relationship between CTTA and DFS
Univariate analysis identified most CT texture parameters 

across the different filters of fine, medium, and coarse 
texture scales as significant univariate markers of DFS 
(Supplementary Tables 1, 2 in the online-only Data 

Supplement) (Fig. 3). In addition, numerous previously 
reported imaging and clinico-pathologic features were 
demonstrated to be significant univariate markers of 
DFS (Supplementary Table 3 in the online-only Data 
Supplement). The multivariate analysis, which included all 
significant univariate markers among the arterial-phase 
texture parameters and other imaging/clinico-pathological 
features, identified skewness on arterial-phase images (fine 
texture scale, SSF 2.0, p < 0.001; medium texture scale, 
SSF 3.0, p < 0.001), tumor size (p = 0.001), microscopic 
vascular invasion (p = 0.034), rim arterial enhancement 
(p = 0.024), and peritumoral parenchymal enhancement 
(p = 0.010) as independent predictors of DFS (Table 6). 
Furthermore, the multivariate analysis, which included all 
significant univariate markers among the portal-venous-
phase texture parameters and other imaging/clinico-
pathological features, identified that tumor size (p < 0.001), 

Table 5. Comparison of Texture Parameters between High-Grade and Low-Grade HCCs on Portal-venous-Phase
Filter Scale Values Mean SD Entropy

No filtration -4.26 (-12.75–4.23, 0.321) 0.98 (-1.41–3.38, 0.415) 0.05 (-0.07–0.17, 0.403)
2.0 (fine) 0.32 (-1.85–2.48, 0.773) 0.62 (-4.24–5.49, 0.799) 0.01 (-0.16–0.19, 0.888)
3.0 (medium) 0.11 (-3.83–4.04, 0.956) 0.53 (-5.73–6.78, 0.867) 0.04 (-0.21–0.29, 0.741)
4.0 (medium) -0.09 (-5.50–5.32, 0.974) 1.39 (-5.75–8.53, 0.699) 0.04 (-0.33–0.40, 0.840)
5.0 (medium) -0.20 (-6.65–6.26, 0.951) 2.59 (-5.21–10.39, 0.510) -0.07 (-0.57–0.43, 0.779)
6.0 (coarse) -2.46 (-10.08–5.16, 0.522) 5.88 (-2.24–14.00, 0.153) 0.11 (-0.35–0.56, 0.632)

Filter Scale Values MPP Skewness Kurtosis
No filtration -4.26 (-12.75–4.23, 0.321) 0.09 (-0.07–0.25, 0.272) -0.37 (-0.71–-0.03, 0.033)
2.0 (fine) 1.25 (-2.75–5.26, 0.535) 0.13 (0.00–0.26, 0.057) 0.03 (-0.28–0.34, 0.839)
3.0 (medium) 0.65 (-4.72–6.01, 0.812) 0.07 (-0.13–0.28, 0.479) -0.20 (-0.63–0.24, 0.371)
4.0 (medium) 1.47 (-4.45–7.38, 0.623) 0.06 (-0.23–0.34, 0.690) -0.31 (-0.94–0.33, 0.339)
5.0 (medium) 3.17 (-3.08–9.43, 0.315) 0.13 (-0.15–0.41, 0.368) -0.15 (-0.88–0.57, 0.672)
6.0 (coarse) 4.15 (-2.54–10.84, 0.220) 0.18 (-0.11–0.47, 0.220) -0.35 (-1.03–0.34, 0.315)

Mean difference (95% CI, p value).

Fig. 3. Kaplan-Meier curves on arterial-phase CT images showing significant difference in disease-free survival for (A) skewness 
at spatial scaling factors of 2.0 and (B) 3.0 with p values of < 0.001 and < 0.001, respectively.
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satellite nodule (p = 0.009), and rim arterial enhancement 
(p = 0.014) were separately independent predictors of DFS 
(Table 7).

Interobserver Agreement
Most CT texture features across the different filters of 

fine, medium, and coarse texture scales showed good to 
excellent interobserver agreement based on the ICCs of the 
readers (Supplementary Tables 4, 5 in the online-only Data 
Supplement) (31).

DISCUSSION

Our study demonstrated that SD and MPP quantified 
from fine to coarse texture scales on arterial-phase CT 
images showed significant associations with the histologic 
grade of HCCs after surgical resection. In addition, 
multivariate analysis identified skewness on arterial-phase 
CT images (fine and medium texture scales), tumor size, 
microscopic vascular invasion, rim arterial enhancement, 
and peritumoral parenchymal enhancement as independent 
predictors of DFS. Therefore, considering that CTTA is only 
an additional post-processing tool that analyzes existing CT 
images without additional radiation exposure to the patient, 
CTTA features may be used as imaging-based predictive 
markers of DFS that can reflect the heterogeneity of HCC, 
which is a well-known feature of malignancy (32). Previous 
studies have already demonstrated that CTTA parameters 

may be used as significant predictive markers of survival in 
other malignant tumors such as non-small cell lung cancer, 
esophageal cancer, colorectal cancer, renal cell carcinoma, 
and glioma (12, 15-17, 33) and our study results are in 
close agreement with the results of these studies. 

In our study, high-grade HCCs showed significantly higher 
SD and MPP on CTTA of arterial-phase CT images than low-
grade HCCs at all texture scales. In CTTA, MPP values only 
account for pixels greater than 0 and SD values increase 
with dark or bright objects highlighted by the filter. 
Therefore, the positive association between the histologic 
grade of HCCs and MPP/SD reflects the predominance of 
bright areas on arterial-phase images of tumors with high 
angiogenesis (27). According to a previous study, when the 
texture is coarse, heterogeneity is ascribed predominantly 
to the heterogeneity of the tumor vascular supply, whereas 
when the texture is fine, texture features also reflect the 
distribution of the contrast agent between intra- and 
extravascular extracellular spaces, which may be related to 
altered permeability (20). Thus, CTTA parameters at various 
settings may reflect the heterogeneity of tumor vascularity 
as well as higher permeability. During hepatocarcinogenesis, 
the normal portal vein and hepatic artery apparently 
decrease and abnormal intratumoral arterioles develop 
because of tumor angiogenesis (34). These changes in 
the blood supply of HCCs create the different patterns 
of enhancement in the two phases of dynamic contrast-
enhanced CT (35-38), which can affect the image texture 
on contrast-enhanced CT, and CTTA may be able to represent 
these vascular changes. 

We also found that skewness on arterial-phase CT images 
was an independent predictor of DFS in patients with HCC. 
More specifically, multivariate analysis identified that 
skewness greater than 0.3 at SSF 2.0 and skewness greater 
than 0.15 at SSF 3.0 was associated with poorer DFS. 
Increased skewness may reflect the average brightness of 
highlighted objects (blood vessels) (27). Therefore, our results 
suggest that HCCs with high angiogenesis and variation 
in vascular permeability may have worse DFS (20). Several 
studies have demonstrated that in patients with malignant 
tumors, CTTA could provide predictive information regarding 
tumor progression or survival. In a study that assessed 57 
patients with colorectal cancer, fine texture features of CTTA 
within the whole tumor were demonstrated to be associated 
with a poorer 5-year OS rate (20). In addition, other studies 
focusing on hepatic texture in patients with colorectal cancer 
have demonstrated that higher heterogeneity of coarse 

Table 6. Multivariate Analysis of Texture Parameters on Arterial-
Phase and Other Imaging/Clinico-Pathological Features for DFS

Characteristic Hazard Ratio 95% CI P
Skewness (SSF 2.0) 10.96 3.21–37.46 < 0.001
Skewness (SSF 3.0) 1.90 1.35–2.67 < 0.001
Size 1.30 1.12–1.51 0.001
Microscopic vascular  
  invasion

2.12 1.06–4.25 0.034

Rim arterial enhancement 3.35 1.17–9.56 0.024
Peritumoral parenchymal  
  enhancement

3.18 1.32–7.64 0.010

DFS = disease-free survival, SSF = spatial scaling factor

Table 7. Multivariate Analysis of Texture Parameters on Portal-
venous-Phase and Other Imaging/Clinico-Pathological Features 
for DFS

Characteristic Hazard Ratio 95% CI P

Size 1.22 1.14–1.31 < 0.001
Satellite nodule 5.70 1.54–21.12 0.009
Rim arterial enhancement 3.33 1.27–8.69 0.014
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liver texture may be related to the presence of occult 
malignancies and a poorer prognosis (9, 19). Therefore, 
our study results suggest that CTTA may provide a useful 
adjunct to known clinico-pathologic markers, improving the 
stratification of HCC patients for risk of recurrence, thereby 
allowing more appropriate modification of surveillance 
strategies for specific subgroups with a high risk of 
recurrence.

Notably, our study differed from previously published 
studies in several aspects. First, we used contrast-enhanced 
CT images for CTTA rather than unenhanced CT images. 
Previous studies have shown significant differences in 
texture features between unenhanced and contrast-
enhanced CT images (39). However, we surmised that the 
pathological changes of HCC could be more clearly depicted 
on contrast-enhanced CT rather than unenhanced CT 
images. Second, we included both arterial-phase and portal-
venous-phase images for CTTA, whereas most previous 
studies have used only portal-venous-phase images. As 
mentioned, considering that HCCs have different patterns 
of enhancement in the two phases of dynamic contrast-
enhanced liver CT, CTTA of both arterial-phase and portal-
venous-phase images may be more appropriate than CTTA of 
portal-venous-phase images alone. 

Nevertheless, this study had several limitations. First, 
the retrospective study design may have created the 
potential for bias. Previous studies have indicated that the 
reproducibility and variability of texture analysis is affected 
by CT vendors, acquisition parameters including acquisition 
time, and reconstruction methods. Therefore, we included 
81 patients who underwent contrast-enhanced CT using 
the same quadriphasic protocol performed with the same 
CT scanner. This may have led to a slightly more limited 
sample size, and even when using the same quadriphasic 
protocol, the timing of image acquisition can vary slightly 
from image to image, thus affecting texture analysis results. 
Therefore, additional studies with a larger number of cases 
and image processing techniques such as normalization are 
warranted to apply the study results to other CT vendors. 
Second, texture analysis in our study was performed in a 
limited tumor area rather than the whole tumor. However, 
several previous studies using texture analysis of only the 
largest cross-sectional area were still able to demonstrate 
its promise as a predictive biomarker (16-18). Nonetheless, 
additional studies using whole tumor analysis for HCCs 
are warranted based on a previous investigation that 
demonstrated that the separation of the Kaplan-Meier curve 

for 5-year OS with whole tumor analysis was superior to 
that with single-slice analysis (40). 

In conclusion, CTTA was demonstrated to provide texture 
features significantly correlated with higher tumor grade 
as well as predictive markers of DFS in patients with HCC in 
addition to other valuable imaging and clinico-pathologic 
parameters. If additional studies including whole tumor 
analysis can validate our results, CTTA has the potential 
to become a highly useful quantitative biomarker in the 
management of patients with HCC.
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The online-only Data Supplement is available with this 
article at https://doi.org/10.3348/kjr.2018.0501.
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