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Abstract

To protect against the harmful consequences of viral infections,
organisms are equipped with sophisticated antiviral mechanisms,
including cell-intrinsic means to restrict viral replication and prop-
agation. Plant and invertebrate cells utilise mostly RNA interfer-
ence (RNAi), an RNA-based mechanism, for cell-intrinsic immunity
to viruses while vertebrates rely on the protein-based interferon
(IFN)-driven innate immune system for the same purpose. The
RNAi machinery is conserved in vertebrate cells, yet whether
antiviral RNAi is still active in mammals and functionally relevant
to mammalian antiviral defence is intensely debated. Here, we
discuss cellular and viral factors that impact on antiviral RNAi and
the contexts in which this system might be at play in mammalian
resistance to viral infection.
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Introduction

Metazoan organisms are constantly exposed to viruses and have

evolved diverse mechanisms to combat the invaders. One group of

mechanisms operates in a cell-intrinsic fashion, targeting viral

nucleic acids and viral proteins for destruction and/or causing the

premature shutdown or demise of infected cells to prevent them

from serving as virus producers. Cell-intrinsic antiviral mechanisms

are part of the innate immune system and include RNA interference

(RNAi) and the interferon (IFN) system. The two systems operate

very differently even though they can both be triggered by virally

derived long double-stranded RNA (dsRNA) or highly base-paired

single-stranded RNA (ssRNA). DsRNA can derive from the viral

genome (in the case of a dsRNA virus) or from annealing of two

strands of complementary RNAs, which are generated as RNA virus

replication intermediates or DNA virus convergent transcripts.

Highly based-paired ssRNAs are found in hairpins within viral

genomes or viral transcripts and are generically referred to as

dsRNA, a nomenclature that we retain here even if technically incor-

rect. Both types of dsRNA are largely absent from uninfected cells

and act as hallmarks of viral infection to trigger innate antiviral

immune responses.

In RNAi, long dsRNA is cleaved by the type III endoribonuclease

Dicer into small interfering RNA (siRNAs) (Bernstein et al, 2001),

RNA duplexes of 21–24 nucleotides (nts) in length, with 30 2-nt

overhangs and a 50 mono-phosphate and a 30 hydroxyl group on

both strands (Fig 1) (Hamilton & Baulcombe, 1999; Zamore et al,

2000; Elbashir et al, 2001b,a). One strand of each siRNA duplex is

bound by an Argonaute (Ago) protein, which, together with acces-

sory proteins, forms the RNA-induced silencing complex (RISC) and

mediates the endonucleolytic cleavage (“slicing”) of complementary

target RNAs (Hammond et al, 2000; MacRae et al, 2008). Of the four

Ago proteins encoded by the mammalian genome, only Ago2

has catalytic activity and is essential for target slicing and RNAi

(Liu et al, 2004; Meister et al, 2004; Swarts et al, 2014; Sheu-

Gruttadauria & MacRae, 2017). However, all four Ago proteins are

involved in an RNAi-related process, the microRNA (miRNA)-

mediated gene silencing pathway, which does not involve slicing

but translation inhibition and/or mRNA degradation (Bartel, 2009;

Jonas & Izaurralde, 2015). Notably, Dicer is also involved in miRNA

biogenesis. Vertebrates and nematodes possess a single Dicer that

generates both siRNA and miRNAs while most invertebrates express

two Dicer proteins. For example, in Drosophila melanogaster,

dmDcr-1 is dedicated to the miRNA pathway while dmDcr-2

performs antiviral RNAi (Lee et al, 2004).

Three observations indicate that RNAi acts as the major antiviral

mechanism of plants and invertebrates (Ding & Voinnet, 2007;

Kemp & Imler, 2009; Ding, 2010; Sarkies & Miska, 2013; tenOever,

2016). First, viral infections in these organisms lead to the accumu-

lation of Dicer-dependent virus-derived siRNAs (viRNAs) that origi-

nate from dsRNA viral replication intermediates and/or RNA

hairpins and are homologous to viral RNA sequences (Yoo et al,

2004; Molnar et al, 2005; Galiana-Arnoux et al, 2006; Ho et al,

2006; van Rij et al, 2006; Wang et al, 2006a; Aliyari et al, 2008;

Félix et al, 2011). Second, inactivation of key components of the

RNAi pathway results in an increase in viral load in infected cells

(Mourrain et al, 2000; Dalmay et al, 2001; Li et al, 2002; Lu et al,

2005; Schott et al, 2005; Wilkins et al, 2005; Deleris et al, 2006;

Galiana-Arnoux et al, 2006; Wang et al, 2006a; Félix et al, 2011).
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Third, many plant and insect viruses encode viral suppressors of

RNAi (VSRs) that interfere with distinct steps of the RNAi pathway,

demonstrating the selection pressure imposed by this antiviral

system (Pumplin & Voinnet, 2013; Bronkhorst & van Rij, 2014;

Csorba et al, 2015).

In contrast, in chordate cells, including mouse and human cells,

dsRNA and other nucleic acids associated with viral infection trigger

cytosolic innate immune pathways that induce the production of

type I IFNs (mainly IFNa and IFNb) and type III IFNs (IFNk)
(Goubau et al, 2013; Schneider et al, 2014; Wu & Chen, 2014;

Schlee & Hartmann, 2016) (Fig 1). These key antiviral cytokines are

then secreted and act in an autocrine and paracrine manner by

binding to their cognate receptors, i.e. the ubiquitously expressed

IFNa/b receptor (IFNAR) and the epithelial cell type-restricted type

III IFN receptor (IL-28R), which signal to induce hundreds of inter-

feron-stimulated genes (ISGs) (Schneider et al, 2014). The proteins

encoded by these ISGs limit viral replication directly (Schoggins

et al, 2011) and serve to enhance adaptive immune responses to the

virus (de Veer et al, 2001; Iwasaki & Medzhitov, 2010). For exam-

ple, the dsRNA-dependent protein kinase R (PKR) is activated by

cytosolic dsRNA and phosphorylates and inactivates the eukaryotic

translation initiation factor 2 a (eIF2a), resulting in translational

arrest and thwarting the production of both viral and host cell

proteins (Pindel & Sadler, 2011). This can ultimately lead to the

Viral dsRNA

Virus

Interferon response Antiviral RNA interference

22 nt viRNAs

Restriction of
viral infection

ISGs

Dicer

Hel1 Hel2i Hel2 CTDCCTD

R
LR

s

LGP2

RIG-I

MDA5

Hel1 Hel2i Hel2 CTDCCTDCARDsCCARDs

Hel1 Hel2i Hel2 CTDCCTDCARDsCCARDs

P5’

3’OH
OH

P

OH

P

Type I/III
interferons

IFNααNFI

IFNββNFI
IFNλλNFI

DUFUFD PAZZPAPA RNase IIIesa IIINRNas dsRBDsd DBsRHel1 Hel2i Hel2 RNase IIIesa IIINRNas

Viral dsRNA

Virus

Restriction of
viral infection

RISC cleaves 
target viral RNA Ago2

m7G (A)n

Figure 1. IFN response and antiviral RNAi triggered by viral dsRNA.
In the cytoplasm of mammalian cells, the RIG-I-like receptors (RLRs) RIG-I and MDA5 detect viral dsRNA and trigger the production of type I interferons, which results in the
induction of interferon-stimulated genes (ISGs) that encode proteins capable of inhibiting viral replication and virus spread. In antiviral RNAi, Dicer cleaves viral dsRNA into
viRNAs that are loaded into a RISC complex. As a protein component of this complex, Ago2 degrades viral RNAs with homology to the viRNAs, thereby inhibiting viral
replication. RLRs and Dicer share a common DExD/H domain, composed of three helicases (Hel1, Hel2i and Hel2). RIG-I and MDA5 additionally carry two CARD domains
responsible for downstream signalling to MAVS. Dicer possesses two RNase III domains involved in dsRNA dicing.
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demise of the infected cell, further undermining the ability of the

virus to propagate.

Virally derived long dsRNA or highly based-paired RNA is

detected in the cytosol of mammalian cells by RIG-I like receptors

(RLRs), which include RIG-I (retinoic acid-inducible gene I), MDA5

(melanoma differentiation factor 5) and LGP2 (laboratory of genet-

ics and physiology 2) (Fig 1). RIG-I recognises based-paired ds or

ssRNA with a di- or triphosphate (50PP/50PPP) at its 50 extremity

(Hornung et al, 2006; Pichlmair et al, 2006; Schlee et al, 2009;

Schmidt et al, 2009; Goubau et al, 2014), such as found in the

genomes of influenza virus, Sendai virus and reovirus (Baum et al,

2010; Rehwinkel et al, 2010; Weber et al, 2013; Goubau et al,

2014). MDA5 triggers comprise long dsRNAs that accumulate

during infection with certain viruses such as picornaviruses and

reovirus (Gitlin et al, 2006; Kato et al, 2006; Weber et al, 2006;

Pichlmair et al, 2009; Feng et al, 2012). RIG-I and MDA5 contain

two tandem N-terminal CARDs (caspase activation and recruitment

domains) that mediate downstream signalling via the adaptor

protein MAVS (mitochondrial antiviral signalling protein), leading

to activation of the transcription factors IRF3, IRF7 (interferon

regulatory factors 3 and 7) and NFj-B (nuclear factor kappa-light-

chain enhancer of activated B cells). These transcription factors

drive the expression of type I and type III IFNs and can directly

induce some ISGs. LGP2 lacks CARDs and is unable to induce

signalling via MAVS. It is thought to act by modulating responses

by the other RLRs (Bruns & Horvath, 2014; Bruns et al, 2014;

Parisien et al, 2018).

Thus, plants and invertebrates lack an IFN system and rely on

antiviral RNAi to defend against viruses. In contrast, vertebrates

have adopted the IFN system for cell-intrinsic antiviral defence and

are thought to have abandoned antiviral RNAi even though they

have retained the RNAi machinery and utilise it for miRNA genera-

tion and function. Recently, a number of studies have started to

question whether the primordial antiviral function of RNAi has truly

been abandoned by mammalian cells or whether it can constitute a

physiologically relevant antiviral system that complements the IFN

pathway. This has become an area of controversy, with some inves-

tigators suggesting that RNAi can be a relevant means of cell-

intrinsic restriction to virus infection in mammals while others

argue that it is an epiphenomenon with no role in antiviral resis-

tance (Cullen et al, 2013; Cullen, 2014; Ding & Voinnet, 2014;

tenOever, 2014, 2017; Jeffrey et al, 2017). In this review, we address

this controversy and summarise current understanding of antiviral

RNAi pathways in mammals and reflect on the possible contexts in

which it might play a role.

Cellular determinants of antiviral RNAi

Detection of dsRNAi in mammalian cells with attenuated IFN responses

To evaluate the possible existence of antiviral RNAi in mammals, it

is useful to consider studies that are exempt from virus-dependent

variables such as expression of VSRs. Therefore, we first discuss

studies that use synthetic long dsRNA, composed of two perfectly

complementary strands, to trigger RNAi, termed here long dsRNA-

mediated RNAi (dsRNAi). This process depends on the successive

processing of long dsRNA into a pool of siRNAs and is distinct from

RNAi induced experimentally by the introduction of siRNAs (which

bypasses the Dicer machinery) (Caplen et al, 2001; Elbashir et al,

2001a) or of short hairpin RNAs (shRNAs, which resemble the struc-

ture of pre-miRNAs) (Brummelkamp et al, 2002; Paddison et al,

2002b; Bartel, 2004).

Long dsRNA-mediated RNAi was first described in C. elegans

(Fire et al, 1998) followed by Drosophila, Trypanosoma brucei,

planarians and plants (Kennerdell & Carthew, 1998; Ngô et al,

1998; Waterhouse et al, 1998; Sánchez Alvarado & Newmark,

1999). In mammalian cell lines, long dsRNA had either no effect or

displayed a non-sequence-specific effect, consistent with activation

of the IFN system (Caplen et al, 2000; Elbashir et al, 2001a). Yet, in

preimplantation embryos, as well as in oocytes, embryonic stem

cells (ESCs) and embryonal carcinoma (EC) cell lines, the introduc-

tion of long dsRNA targeting endogenous genes caused a specific

reduction in gene expression and induction of phenotypes compara-

ble to those of null mutants, without causing cell death or transla-

tional arrest (Svoboda et al, 2000; Wianny & Zernicka-Goetz, 2000;

Billy et al, 2001; Yang et al, 2001; Paddison et al, 2002a). The

sequence-specific silencing induced by long dsRNA in oocytes and

ESCs/ECs correlated with a relative inability of these cells to

produce and/or respond to IFN (Burke et al, 1978; Francis &

Lehman, 1989; Stein et al, 2005; D’Angelo et al, 2016; Wu et al,

2018), which suggested that dsRNAi might be active in mammalian

undifferentiated cells but masked or inhibited by the IFN system in

differentiated cells.

Antagonism between the IFN response and dsRNAi

Antagonism between the IFN system and dsRNAi was formally

tested in somatic cells genetically deficient in MAVS or IFNAR

(Maillard et al, 2016). In such cells, introduction of dsRNA resulted

in Dicer-dependent accumulation of siRNAs and Ago2-dependent

sequence-specific gene silencing (Maillard et al, 2016). A subse-

quent study showed that the IFN system actively inhibits dsRNAi at

least in part through induction of LGP2, which binds Dicer and inhi-

bits processing of long dsRNA into siRNAs (Van der Veen et al,

2018) (Fig 2). In that study (Van der Veen et al, 2018), LGP binding

to Dicer did not impact the biogenesis of two household miRNAs

although LGP2 has also been reported to interact with the Dicer co-

factor TRBP (HIV TAR RNA-binding protein) and inhibit the

processing of a subset of TRBP-bound miRNAs (Komuro et al, 2016;

Takahashi et al, 2018). Whether LGP2 additionally inhibits dsRNAi

via TRBP remains to be addressed.

It is unclear why somatic cells should inhibit dsRNAi during an

IFN response. A clue may come from the observation that mamma-

lian cells stably expressing Drosophila dcr-2 to artificially boost

dsRNAi have impaired induction of IFN upon treatment with

poly(I:C), a dsRNA analog (Girardi et al, 2015). Viral infection or

treatment with poly(I:C) also induces poly-ADP-ribosylation of Ago2

and other RISC components, which inhibits RISC activity and causes

a relief in miRNA-mediated repression of some ISGs (Seo et al,

2013). Perhaps, inhibition of Dicer and RISC is essential for effective

stimulation of the IFN pathway, in part by preventing loss of dsRNA

substrates for RLR activation. Preservation of dsRNA in infected

cells may also ensure that the activity of antiviral proteins encoded

by ISGs is not compromised. For example, PKR requires dsRNA of

> 30 nts to dimerise and become active for translational repression

(Husain et al, 2012). Dicer-mediated cleavage of long dsRNA could

starve the cell of substrates for PKR activation or, more likely, lead
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to accumulation of 21–22 nt siRNA duplexes that would “quench”

PKR monomers, blocking substrate-dependent dimerisation.

Intrinsic inefficiency of mammalian Dicer in processing long dsRNA

DsRNAi in mammalian cells is further influenced by the molecular

properties of its central component: Dicer. This large multi-domain

enzyme comprises an N-terminal DExD/H helicase domain (contain-

ing an ATPase site) followed by a small domain of unknown func-

tion (DUF283), a Piwi Argonaute Zwille (PAZ) domain, two tandem

RNAse III domains and a C-terminal dsRNA-binding domain (dsRBD

—Fig 1). The PAZ domain binds the 30 2nt-overhangs found at the

extremity of dsRNA substrates, while the RNAse III domains each

mediate the cleavage of one strand of the RNA duplex. In vitro stud-

ies revealed that human Dicer (hDcr) processes long dsRNA into

siRNAs less efficiently than pre-miRNA into miRNAs (Ma et al,

2008; Chakravarthy et al, 2010). Deletion or partial proteolysis of

the helicase domain increases rate of dsRNA cleavage, while only

modestly affecting the cleavage of pre-miRNAs (Provost et al, 2002;

Zhang et al, 2002; Ma et al, 2008). Similarly, a deletion mutant of

hDcr lacking nearly the entire helicase domain displayed an

enhanced ability to process endogenously transcribed long dsRNA

and long hairpin RNAs into siRNAs and conferred dsRNAi activity

to engineered cells (Kennedy et al, 2015). Finally, mouse oocytes, in

which dsRNAi is active, express a shortened isoform of Dicer

(DicerO) that lacks the N-terminal helicase domain and processes

endogenous or ectopically expressed long hairpin RNAs more effi-

ciently (Flemr et al, 2013). Together, these data suggest that the

helicase domain of Dicer inhibits its catalytic activity for long

Ago2

m7G (A)n

Viral dsRNA
Cellular determinants Viral determinants

VSRs
e.g. B2 from NoV
 NS1 from IAV
 3A from HEV71

Autoinhibition by
the helicase domain

Regulation by
cellular factors 

LGP2

Other ISGs

viRNAs

RISC 

Virus

Replication factories;
Shielding by viral factors

Modification of replication
intermediates

Dicer

IFN
responseesponserespons

NFI

Other ISGs

P5’

3’OH
OH

P

OH

P

Figure 2. Impact of viral and cellular determinants on antiviral RNAi.
Recognition and dicing of viral dsRNA by Dicer can be influenced by various viral determinants or cellular factors, as described in main text. Known or putative mechanisms
that counteract antiviral RNAi are represented with a plain or dashed red line, respectively. Structure of Dicer is based on Liu et al (2018).
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dsRNA and that its incorporation into the mature enzyme might be

regulated by alternative transcription. However, expression of

DicerO has not been detected outside mouse germ cells and expres-

sion of truncated Dicer isoforms in humans has been reported only

in certain cancer cell lines (Potenza et al, 2010; Hinkal et al, 2011;

Cantini et al, 2014). An alternative possibility is that modulation of

inhibition by the helicase domain could come about not through

alternative transcription but through the activity of Dicer-associated

proteins. Structural studies show that the co-factors TRBP and PACT

(Protein Activator of PKR) induce a conformational change in the

Dicer helicase domain (Taylor et al, 2013) that could mimic the

effect of deletion (Lee et al, 2006; Ma et al, 2008; Chakravarthy

et al, 2010; Ota et al, 2013). The exact role and cellular context in

which TRBP and PACT might modulate the ability of Dicer to

process long dsRNA in vivo remains to be explored.

Viral determinants of antiviral RNAi

Antiviral RNAi is distinct from dsRNAi in (i) the origin of the

substrate dsRNA (viral RNA vs exogenous sources) and (ii) the

RNAs targeted by the RISC (viral RNA vs host cell mRNA). Antiviral

RNAi therefore depends on the efficient production of viRNAs from

viral dsRNA and the efficient targeting of viral RNA by the RISC

machinery.

Targeting of viral RNA by exogenous small RNAs

Cells transfected with siRNAs or expressing an shRNA targeting

viral genomes display sequence-specific reductions in viral RNA

accumulation and virus replication upon challenge with homolo-

gous viruses, including human immunodeficiency virus (HIV),

hepatitis C virus (HCV), influenza A virus (IAV), West Nile virus

(WNV), SARS coronavirus, human papilloma virus and various

picornaviruses (Gitlin et al, 2002; Jacque et al, 2002; Lee et al,

2002; Ge et al, 2003; Kapadia et al, 2003; Konishi et al, 2003;

Randall et al, 2003; Lu et al, 2004; Phipps et al, 2004; Takigawa

et al, 2004; Bitko et al, 2005; Shi et al, 2005; Sim et al, 2005; Werk

et al, 2005; Yuan et al, 2005; Kumar et al, 2006; Bousarghin et al,

2009; Qureshi et al, 2018). Similarly, delivery of siRNAs to mice,

prior to or concomitant with viral challenge, provides protection

against infection with various viruses (Ge et al, 2003; Giladi et al,

2003; McCaffrey et al, 2003; Tompkins et al, 2004; Bitko et al, 2005;

Tan et al, 2007; Shah & Schaffer, 2011). RNA viruses engineered to

contain perfectly complementary target sites for cellular miRNAs are

restricted in cells or tissues expressing the cognate miRNAs

(Cawood et al, 2009; Perez et al, 2009; Kelly et al, 2010; Langlois

et al, 2013). Finally, in IFN-defective somatic cells, introduction of

long dsRNA conferred sequence-specific protection from viral chal-

lenge dependent on the “slicing” activity of Ago2 (Maillard et al,

2016). Together, these studies show that, if siRNAs are provided

directly (bypassing Dicer processing) or are generated from

substrates in the absence of an IFN response (shRNAs or dsRNAs in

IFN-defective cells), RISC can access and target viral RNAs to limit

viral accumulation. As such, much of the current debate on the role

of antiviral RNAi in mammalian cells ultimately centres on the ques-

tion of whether, during a viral infection, viRNAs are ever produced

in sufficient amounts to engage the latent antiviral activity of RISC

and exert an antiviral effect.

viRNA production and antiviral RNAi in mammalian cells

viRNAs have key features: (i) a discrete length of ~22 nt, (ii) extrem-

ities with 30 2nt overhangs and (iii) a strand derived from the posi-

tive (+)-sense viral RNA and a complementary strand commonly

derived from the negative (�)-sense viral RNA or, less frequently,

from intramolecular base pairing of viral ssRNA. Initial attempts

failed to detect viRNAs in mammalian cells infected with viruses

(Pfeffer et al, 2005; Lin & Cullen, 2007), yet the recent emergence of

high-throughput sequencing has allowed the question to be re-

explored more thoroughly. Deep sequencing of differentiated

mammalian cells infected with five mammalian viruses [HCV,

dengue virus (DENV), WNV, poliovirus and vesicular stomatitis

virus (VSV)] revealed the presence of small RNAs derived from the

viral genome (viral small RNAs or vsRNAs) (Parameswaran et al,

2010). These vsRNAs, however, did not display size uniformity

except in cells carrying a HCV replicon or infected with HCV virions

(Parameswaran et al, 2010). Additional deep sequencing experi-

ments of human cells infected with a range of viruses [WNV, DENV,

Borna disease virus, IAV, Sindbis virus (SINV)] also reported the

detection of vsRNAs but not specifically 22 nt long ones (Girardi

et al, 2013; Backes et al, 2014; Bogerd et al, 2014). In addition, deep

sequencing of RIG-I- and MDA5-deficient cells infected with SINV,

YFV and the picornavirus coxsackie virus B3 did not reveal viRNA

accumulation (Schuster et al, 2017) [although the inhibition of Dicer

activity by LGP2 might have dampened the response (Van der Veen

et al, 2018)]. Altogether, these experiments argue for limited Dicer-

mediated generation of viRNAs in IFN-competent differentiated

somatic cells.

In contrast, deep sequencing of mESCs infected with the picor-

navirus encephalomyocarditis virus (EMCV) revealed the accumula-

tion of viral reads with a specific peak at 21-23 nt and reads that

mapped within the first 200-nt of the EMCV genome and, to a lesser

extent, to the 30end and that, importantly, derived in equal parts

from the (+) strand and (�) strand (Maillard et al, 2013). The

sequences formed perfectly paired duplexes with 30 2-nt overhangs
and were produced in a phase pattern indicative of successive cleav-

age by Dicer. Finally, the duplexes could be shown to associate with

Ago2 and require Dicer for their generation, thereby fulfilling all

criteria for bona fide viRNAs (Maillard et al, 2013). Interestingly,

production of these viRNAs by mESCs was greatly reduced upon cell

differentiation (Maillard et al, 2013), in line with the aforemen-

tioned studies reporting little viRNA generation in differentiated

somatic cells.

Thus, in some IFN-deficient cells, including ESCs, infection with

viruses allows for viRNA production. Can it elicit a protective RNAi-

dependent response? Early work suggested that knockdown of Dicer

in Vero cells, an African green monkey cell line that lacks IFN-a and

IFN-b genes (Diaz et al, 1988), causes a modest increase in virus

production upon IAV infection (Matskevich & Moelling, 2007). In

contrast, later reports found that absence of Dicer in HEK 293T cells

and/or in mouse embryonic fibroblasts did not impact the accumu-

lation of flaviviruses (DENV, WNV, YFV), alphaviruses (SINV,

Venezuelan equine encephalitis virus [VEEV]), IAV, measles virus,

HIV and reovirus (Shapiro et al, 2010; Bogerd et al, 2014). Simi-

larly, in engineered cells overexpressing an artificial Dicer that lacks

the helicase domain, infection with IAV or poliovirus led to low-

level accumulation of viRNAs, which were loaded onto RISC but

had little impact on replication (Kennedy et al, 2015). Finally,
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expression of a slicing-deficient Ago2 mutant in Ifnar1�/� mouse

embryonic fibroblasts did not impact infection with Semliki Forest

virus (SFV), reovirus or IAV (Maillard et al, 2016). The overall

message from those studies is that, even in a context permissive for

dsRNAi, viRNA production from viral replication intermediates is

too weak to inhibit viral infection. Replication of (+)-sense RNA

viruses often occurs within membranous structures (replication

factories), whereas RNAs generated during replication of (�)-sense

RNA viruses rapidly associate with nucleocapsid proteins

(Conzelmann, 1998; Romero-Brey & Bartenschlager, 2014). In addi-

tion, the 50 extremities of certain viral genomes (and replication

intermediates) can display various modifications, including a 7-

methylguanosine (Cap) structure, a covalently linked protein (e.g.

Vpg, viral protein genome-linked), highly structured regions or 2–3

phosphates (Fig 2). Whether these features prevent efficient access

of Dicer to viral RNA is unknown although it is worth remembering

they do not prevent antiviral RNAi in insect cells. A key issue might

therefore be antagonism of RNAi by VSRs. This will be discussed in

the next section.

VSRs in mammalian viruses

Several proteins encoded by mammalian viruses display VSR activ-

ity (1; 2). Expression of influenza virus NS1, vaccinia virus E3L,

reovirus r3 and Nodamura virus (NoV) B2 proteins inhibits RNAi

in plants and/or insect cells (Lichner et al, 2003; Bucher et al, 2004;

Delgadillo et al, 2004; Li et al, 2004). In mammalian cells, a

plethora of mammalian virus-encoded VSRs, including primate

foamy virus type 1 (PFV-1) Tas, NoV B2, HCV core, IAV NS1, HIV

Tat, Ebola VP35, VP30 and VP40, CoV N, SARS-CoV 7a, YFV capsid,

DENV NS4B, human enterovirus 71 (HEV 71) 3A and adenovirus

virus-associated RNA I (VA1), can reduce shRNA/siRNA-mediated

knockdown of reporter genes (Table 1) (Lu & Cullen, 2004;

Andersson et al, 2005; Lecellier et al, 2005; Sullivan & Ganem, 2005;

Wang et al, 2006b; Haasnoot et al, 2007; Chen et al, 2008; de Vries

et al, 2009; Karjee et al, 2010; Fabozzi et al, 2011; Kakumani et al,

2013; Cui et al, 2015; Samuel et al, 2016; Qiu et al, 2017). Most viral

proteins identified thus far that display VSR activity share the ability

to bind dsRNA and mutations that affect their dsRNA-binding

domain block VSR activity, arguing that their principal mode of

action is sequestration of dsRNA from Dicer (Table 1). As dsRNA is

a potent inducer of the IFN pathway, most of these VSRs also act as

IFN antagonists (Garcı́a-Sastre, 2017). It is therefore unclear whether

these viral proteins specifically evolved to block RNAi or whether

their VSR activity is a byproduct of their role as IFN antagonists

(Cullen, 2006). However, some VSRs may function through mecha-

nisms other than dsRNA sequestration (Kakumani et al, 2013),

including binding to components of the RNAi pathway: e.g. Ebola

virus VP35 and VP30 proteins interact with Dicer co-factors TRBP

and PACT, while HCV core associates with Dicer (Table 1) (Wang

et al, 2006b; Chen et al, 2008; Fabozzi et al, 2011). Whether these

interactions contribute to VSR activity is unclear. Finally, adenovirus

VA1s are small, highly structured RNAs that inhibit shRNA-mediated

RNAi by acting as decoy substrates for Dicer, RISC and exportin 5

(required for nuclear export of pre-miRNAs and shRNAs) (Lu &

Cullen, 2004; Andersson et al, 2005).

Despite the evidence that many viral proteins from mammalian

viruses can act as VSRs in overexpression (i.e. gain-of-function)

studies, there are relatively few loss-of-function studies that show

that they actively suppress mammalian antiviral RNAi defence.

Persuasive experiments have been done with NoV, a member of the

Nodavirus family. Nodaviruses express B2 proteins, which bind long

dsRNA and siRNAs in vitro and associate with replication intermedi-

ates and viRNAs in infected cells (Chao et al, 2005; Lu et al, 2005;

Sullivan & Ganem, 2005; Aliyari et al, 2008). B2 proteins act as

potent VSRs in insect cells (Wang et al, 2006a; Aliyari et al, 2008).

Notably, B2-deficient NoV (NoV DB2) also replicates less efficiently

than parental NoV in mESCs but its accumulation is rescued in

mESCs lacking all Ago genes (Maillard et al, 2013). In suckling mice,

NoV DB2 is highly attenuated and induces accumulation of viRNAs

(Li et al, 2013). viRNAs are also detected, although to a lesser

degree, upon infection of somatic cells (BHK-21) with NoV DB2, but
not with NoV WT (Li et al, 2013). Altogether, these data suggest that

the ability of Dicer to process NoV replication intermediates is

actively antagonised by the B2 protein.

The NS1 protein from IAV also displays VSR activity when

expressed in plants and insect cells (Bucher et al, 2004; Delgadillo

et al, 2004; Li et al, 2004). In mammalian cells, NS1 is ineffective

against RISC-loaded siRNAs (Kok & Jin, 2006; Haasnoot et al, 2007;

de Vries et al, 2009; Kennedy et al, 2015) but infection of human

and African green monkey cells with IAV DNS1 but not IAV WT

yields readily detectable levels of canonical viRNAs derived from

the termini of both strands of the eight viral RNA segments (Li et al,

2016; Tsai et al, 2018). It has been reported that IAV DNS1, and to a

lesser extent parental wild-type IAV, VSV and EMCV, replicates

more extensively in mouse embryonic fibroblasts expressing a

slicing-deficient Ago2 mutant (Li et al, 2016). However, in other

studies, loss of RNAi components did not cause an increase in repli-

cation of IAV DNS1 (Maillard et al, 2016; Tsai et al, 2018). Interest-

ingly, IAV engineered to express an shRNA or a miRNA targeting a

viral gene or a reporter gene integrated in the viral genome, respec-

tively, was attenuated compared to non-targeting controls (Benitez

et al, 2015). This restriction was Dicer-dependent but independent

of NS1 suggesting that, in the context of an infection, NS10s VSR

activity inhibits viRNA production from genome segments but not

from short dsRNA hairpins (Benitez et al, 2015; Li et al, 2016; Tsai

et al, 2018).

Finally, the HEV71-encoded protein 3A inhibits shRNA-mediated

silencing in mammalian cells, as well as antiviral RNAi in insect

cells, and suppresses Dicer-mediated biogenesis of siRNAs by bind-

ing and sequestering long dsRNA in vitro (Qiu et al, 2017). A point

mutation that inactivates 3A’s VSR activity reduces viral replication

in somatic cells and in suckling mice. Concomitantly, canonical

viRNAs derived from both strands of the 50terminal region of the

HEV71 genome are produced, loaded into RISC and able to silence a

reporter bearing complementary sites (Qiu et al, 2017). Interest-

ingly, the absence of Dicer increases HEV71 accumulation in

infected cells despite the presence of an intact IFN pathway, suggest-

ing that, in this case, antiviral RNAi could function irrespective of

the IFN system (Qiu et al, 2017).

Niches for antiviral RNAi?

The generally observed antagonism between the IFN response and

dsRNAi suggests that antiviral RNAi may be especially important in

cellular niches in which the induction of or the response to IFN is

limited. One of those niches might be stem cells. Pluripotent

stem cells do not produce IFN upon viral infection or exposure to
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poly(I:C) and respond poorly to IFN treatment (Chen et al, 2010;

Hong & Carmichael, 2013; Wang et al, 2013; Guo et al, 2015;

D’Angelo et al, 2016). It is unclear why pluripotent stem cells are

refractory to IFN but it may have to do with the fact that self-renewal

is incompatible with the anti-proliferative effects and pro-apoptotic

effects of the cytokines (Hertzog et al, 1994; de Veer et al, 2001).

Furthermore, artificial induction of an IFN response in engineered

pluripotent cells compromises differentiation potential (Eggenberger

et al, 2019). Thus, pluripotent stem cells may be forced to rely on

IFN-independent mechanisms to combat virus infections. These may

include the ability to constitutively express some ISGs that confer an

efficient and permanent antiviral state (Wu et al, 2018). In this

scenario, antiviral RNAi would constitute an additional mechanism

to protect the integrity and function of tissue stem cells in the face of

Table 1. List of mammalian virus-encoded proteins with VSR activity.

Viral genome Virus name Virus family VSR Properties
Proposed
mode of action References

(+)-ssRNA Coronavirus (CoV) Coronaviridae N dsRNA binding dsRNA sequestration Cui et al (2015)

Severe acute respiratory
syndrome
coronavirus (SARS-CoV)

Coronaviridae 7a – – Karjee et al (2010)

Dengue virus (DENV) Flaviviridae NS4B lack of dsRNA
binding

inhibition of Dicer activity Kakumani et al (2013)

Hepatitis C virus (HCV) Flaviviridae capsid Dicer binding inhibition of Dicer activity Wang et al (2006b),
Chen et al (2008)

Yellow Fever virus (YFV) Flaviviridae capsida dsRNA binding dsRNA sequestration Samuel et al (2016)

Human enterovirus
71 (HEV71)

Picornaviridae 3A dsRNA binding dsRNA sequestration Qiu et al (2017)

Human immunodeficiency
virus 1 (HIV-1)

Retroviridae Tat dsRNA binding – Bennasser et al (2005),
Triboulet et al (2007),
Lin and Cullen (2007)b,
Sanghvi & Steel (2011)b

Primate foamy
virus type 1 (PFV-1)

Retroviridae Tasa – – Lecellier et al (2005)

Nodamura virus (NoV) Nodaviridae B2 dsRNA binding dsRNA sequestration Sullivan and
Ganem (2005), Aliyari
et al (2008),
Li et al (2013),
Maillard et al (2013)

(�)-ssRNA Ebolavirus Filoviridae VP30 Dicer and TRBP
binding

inhibition of Dicer activity Fabozzi et al (2011)

VP35 PACT, TRBP,
dsRNA binding

inhibition of Dicer activity Haasnoot et al (2007),
Fabozzi et al (2011)

VP40 – – Fabozzi et al (2011)

Marburg virus Filoviridae VP35 dsRNA binding – Li et al (2016)

Influenza virus Orthomyxoviridae NS1 dsRNA binding dsRNA sequestration Li et al (2004),
Bucher et al (2004),
Delgadillo et al (2004),
Kok and Jin (2006)b,
de Vries et al (2009),
Kennedy et al (2015),
Benitez et al (2015)b,
Li et al (2016),
Tsai et al (2018)

NP – – Kennedy et al (2015)

La Crosse virus Peribunyaviridae NSs – – Soldan et al (2004)

dsRNA Reovirus Reoviridae r3a dsRNA binding dsRNA sequestration Lichner et al (2003)

dsDNA Adenovirus Adenoviridae VA I, VA II Dicer binding Dicer sequestration by
acting as decoy RNAs

Lu and Cullen (2004),
Andersson et al (2005)

Vaccinia virus Poxviridae E3L dsRNA binding dsRNA sequestration Li et al (2004),
Haasnoot et al (2007)

aVSR activity shown only in non-mammalian hosts.
bStudies questioning VSR activity.

ª 2019 The Authors The EMBO Journal e100941 | 2019 7 of 13

Pierre V Maillard et al Antiviral RNA interference in mammals The EMBO Journal

Published online: March 14, 2019 



virus infection and thereby contribute to tissue maintenance, repair

and regeneration (Xia et al, 2018). Notably, the ability of a virus to

infect stem cells might not be needed for its propagation and, there-

fore, stem cell-intrinsic antiviral RNAi would benefit the host but not

impact on virus transmission.

Future directions in antiviral RNAi

In line with other facets of immunity, it is likely that antiviral RNAi

is highly tuneable and that it operates in conjunction with multiple

other mechanisms of defence. Further studies are clearly needed to

disentangle the complex web that regulates dsRNAi in mammals and

to understand its ability to act as a cell-intrinsic mechanism of antivi-

ral defence. Open questions include what are the cellular factors

regulating the activity of Dicer on long dsRNA? Apart from murine

germ cells, are there similar truncated Dicer isoforms expressed in

other cell types and/or other species? Which viral proteins act as

bona fide VSRs in the context of an infection? What are the cell types

in which antiviral RNAi is active? Does antiviral RNAi directly

impact on viral accumulation upon infection in vivo? These and

other questions are likely to enliven the debate on the role of RNAi

in mammalian defence from virus attack for years to come.
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Note added in proof
While this review was in production, a study reported that Zika virus (ZIKV)

infection resulted in the production of canonical viRNAs in human neural

progenitor cells (hNPCs), the major target cells of ZIKV, but not in neurons

differentiated from hNPCs (Xu et al, 2019). This study supports the notion that

RNAi can play an antiviral role in certain progenitor cells, including those

involved in brain development.
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