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ABSTRACT

Drug-target residence time, the length of time for which a small molecule stays bound to 

its receptor target, has increasingly become a key property for optimization in drug discovery 

programs. However, its in silico prediction has proven difficult. Here we describe a method, 

using atomistic ensemble-based steered molecular dynamics (SMD), to observe the dissociation 

of ligands from their target G protein-coupled receptor in a timescale suitable for drug discovery. 

These dissociation simulations accurately, precisely, and reproducibly identify ligand-residue 

interactions and quantify the change in ligand energy values for both protein and water. The 

method has been applied to 17 ligands of the A2A adenosine receptor, all with published 

experimental kinetic binding data. The residues that interact with the ligand as it dissociates are 

known experimentally to have an effect on binding affinities and residence times. There is a 

good correlation (R2 = 0.79) between the computationally calculated change in water-ligand 

interaction energy and experimentally determined residence time. Our results indicate that 

ensemble-based SMD is a rapid, novel and accurate empirical method for the determination of 

drug-target relative residence time.

INTRODUCTION

G protein-coupled receptors (GPCRs), the largest membrane protein family present in 

humans, are also an important therapeutic target, giving rise to 34% of approved pharmaceutical 

compounds and worldwide sales of $890 billion from 2011-20161. Despite this success, the rate 

of new GPCR pharmaceuticals making it to market has remained constant since the 1990s2 and 

GPCRs remain a significantly under exploited drug discovery target, as those compounds that 

have made it to market target only ~10% of all GPCRs3. The A2A receptor is a prototypical class 
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A GPCR. This class, also known as the rhodopsin-like receptors, account for 85% of all GPCRs4. 

Recently, the view that binding affinity is the definitive parameter for the clinical success of a 

drug candidate has been complemented by evidence from GPCRs and other receptor systems 

showing a higher correlation between efficacy and the length of time for which the drug stays 

bound to its receptor target, residence time5–7. The ‘ideal’ residence time may vary from target to 

target. Longer residence times permit less frequent dosing. For example when targeting M3 

muscarinic acetylcholine, a GPCR, Tiotropium can be dosed less frequently than Ipratropium, as 

the former has a 50-fold longer residence time.8,9. Conversely, shortening residence time may 

also have benefits by, for example, decreasing off-target toxicity10. These considerations suggest 

that residence time may be more important than affinity, therapeutically, and that the 

optimization of residence time in addition to binding affinity in the early phases of drug 

discovery is critical to ensure that more drugs make it to market with fewer drugs failing in 

clinical trials.

Very little is known about the properties that affect residence time. The presence of 

buried protein-ligand hydrophilic interactions have been noted to increase residence time11. With 

compensation for the breaking of this bond provided, for example, through hydration, this state is 

less energetically unfavorable than it otherwise would be. Larger ligands are more likely to yield 

buried hydrophilic interactions, hence the observed correlation between molecular weight and 

residence time10. The kinetic rates of ligand binding, and thus residence time, have been proven 

to be adjustable by destabilisation of binding transition-states12. If understanding ligand-receptor 

residence time is critical to support the development of therapies with better efficacy in vivo13, 
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then accurate and reproducible methods to allow for the rationalization of drug-target residence 

time need to be developed.

There are two categories of methods that are used to experimentally determine residence 

times of GPCRs: (i) methods that require a labeled ligand and (ii) label-free methods. Label-free 

methods, such as surface plasmon resonance (SPR), require purification and immobilization of 

the GPCR, which is not straightforward. However, SPR has been successfully used to calculate 

residence time using thermostabilized receptors14. Methods that require a labeled ligand account 

for the majority of kinetic studies performed on GPCRs15. Indirect kinetic radioligand binding 

assays require only one labeled ligand, and new bead-based methods remove the need for 

previously required filtration steps16,17. However, these improvements do not overcome the 

major limitation of these methods, which is the requirement of a suitable labeled ligand. 

Radiolabeled ligands are not readily available for all receptors and this is especially true of 

orphan GPCRs. Experimental methods of residence time determination are limited in their 

throughput15 making rapid, accurate and reproducible computational methods the most 

practicable way to assess residence time for existing compounds and the only way to determine 

residence time for virtual candidate molecules as part of the drug discovery pathway.

Atomistic molecular dynamics (MD) has been used successfully to calculate 

macromolecular properties such as binding free energies for a number of different biological 

systems18–21. Single molecular dynamics (MD) simulations behave as random Gaussian 

processes22, meaning that obtaining an accurate property of the system is impossible from a 

single run hence ensemble-averaging should be used for all MD simulations performed in both 
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academia and industry. In recent times, there has been great success using multiple, relatively 

short simulations (ensemble averaging) with binding affinity calculators, to obtain convergence 

of results and meaningful errors20,21,23,24. To compute any macroscopic property, be it binding 

affinity or rate parameters, from a microscopic (molecular) description of matter, statistical 

mechanics decrees that this must be done by use of ensemble averaging. With the use of 

ensembles, computational calculations are reproducible therefore two independently run 

ensembles should produce identical results within the reported error22.

Use of classical molecular dynamics for the simulation of ligand dissociation is 

computationally very demanding and cannot be realistically used in drug discovery. Even Anton, 

the HPC (high-performance computing) cluster designed specifically for MD simulations, is only 

able to calculate these in the millisecond timescale for a 75,000 atom system25, which is the size 

of a GPCR-membrane-water model, and Anton is only able to perform one simulation at a time, 

making ensemble-based analyses in this manner currently infeasible. In order to viably study 

ligand dissociation and its related parameter, residence time, one must engage methods to 

accelerate or enhance sampling. A metadynamics method, which describes the system by 

collective variables, has previously been used to rank the residence times of ligands, categorizing 

them in discrete classes (short, medium or long residence times)26. Another metadynamics 

method has attempted to predict absolute residence time values for 4 different recepetors27. Other 

methods have tried to predict relative residence times for a ligand series. A scaled molecular 

dynamics method, which also enhances sampling by modifying the potential energy surface and 

employing a reweighting scheme solely based on the populations of different states, has been 

used to predict the relative residence time of 12 ligands (one ligand series comprising 4 ligands 
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for each of three different protein systems)28. Random-accelerated MD (RAMD) accelerates the 

rate of ligand dissociation from the receptor. In RAMD, a direction of pulling is chosen 

randomly then, if a defined level of progress is not made, a new random direction is chosen. 

Using this method, the time taken for dissociation to occur was compared to experimentally-

determined residence time for ligands of HSP-9029 (heat shock protein 90), obtaining good 

correlation within ligand series but not across more varied datasets. The time taken to perform 

RAMD calculations, by definition, is not constant; indeed there is a 40-fold range in simulation 

times of dissociation30.

Equilibrium MD simulations are typically used to compute absolute binding free 

energies; however, non-equilibrium MD can be used to calculate absolute free energies, an 

equilibrium property, through the use of Jarzynski’s inequality30. In RAMD, accelerated ligand 

dissociation is used to predict relative residence time, a parameter related to, but not correlated 

with, binding free energy. Steered molecular dynamics (SMD), another non-equilibrium MD 

method, also accelerates ligand dissociation. The time taken for ligand dissociation to occur is 

constant when using constant velocity SMD, making it impossible to correlate computationally-

accelerated dissociation against experimentally-determined residence time. Despite this, constant 

velocity SMD can be used to identify the changing forces from the bound to the partially 

dissociated state and this, in turn, can be used to predict relative residence time. The 

computational cost of this method is therefore constant for different ligands of the same receptor, 

which is a significant advantage over RAMD31–34. In the present paper, we present the 

development of a robust, ensemble-based SMD method for predicting relative drug-target 
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residence time by a novel means, namely identifying the molecular interactions that take place 

during dissociation of a ligand from its receptor.

METHODS

Here, we aim to develop a reproducible and accurate MD protocol that can be used to 

observe the dissociation of ligands from GPCRs. This will be accomplished by using steered 

molecular dynamics to forcibly accelerate the dissociation of the ligand from its receptor, 

observing the receptor residues that are involved during exit. To generate an ensemble average 

and to ensure that calculations are reproducible30, the number of replicas required to make up the 

ensemble, needs to be established. Determination of the appropriate ensemble size, a 

precondition for accumulating results, is described at the end of the methods section.

Amino acid residues will be defined as initial contacts if any atom of the residue is within 

3.5 Å of any atom of the ligand during the first five frames (0.2 ns) of the SMD simulation (after 

the 2 ns equilibration) in greater or equal to 50% of the replicas in an ensemble. Contacts that 

form as dissociation progresses and the ligand exits the receptor will be defined as intermediate 

contacts, with the same distance cut-off as initial contacts but taking place at a distance that is 

greater than 3.5 Å away from the initial binding pose. Additionally, intermediate contacts must 

remain within the distance requirement for a minimum of 10 consecutive frames (0.4 ns). 

Residues that form a hydrogen bond or are involved in π-stacking (as defined by visual 

inspection of the simulation trajectories) with the ligand will be defined as interactions, 

regardless of the distance between the two. Residues will be described by their amino acid 

identity (single letter code) and position (amino acid number) within the specific GPCR with the 
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Ballesteros and Weinstein numbering22, a scheme for class A GPCRs, whereby X.50 represents 

the defined centrally conserved residue on helix X, in superscript, as published previously35. In 

addition to identifying contacts and interactions, the SMD simulations will be used to calculate 

dissociation energies of the ligands with water. The differences in dissociation energies, 

calculated between the ligand in its initial receptor-bound location and the extracellular 

vestibule, will be quantified and compared with experimentally-determined residence time.

10x replicas

Ensemble

SMD - 10 nsEquilibration - 6 ns Equilibration - 2 ns

Ligand binding-site

X-ray structure or docking

DPPC membrane

CHARMM-GUI

X-ray structure or ChEMBL

Ligand structure

X-ray or homology structure

GPCR model

Step 1 Step 2 Step 3

Figure 1. Graphical overview of the SMD protocol, including the two equilibration steps. The replica 

runs of the ensemble are shown in the light grey box. Timescales and programs/web services used in the 

protocol are indicated.

There are three stages to the SMD protocol we have developed (see Figure 1). First, the 

GPCR is placed in a DPPC membrane in the absence of ligand and equilibration is performed for 

6 ns, the time it takes for the previously-defined membrane density and membrane thickness to 

be achieved24. Second, each ligand is docked into this structure and equilibrated for a further 2 

ns, the time that is needed for the binding pocket of the receptor to accommodate the ligand36. 

Third, SMD is performed for a duration of 10 ns on this equilibrated, ligand-bound, protein-
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9

membrane system. Computational cost is reduced by starting from the protein-membrane 

equilibration output and repeating steps 2 and 3, in order to produce ten replicas in an ensemble. 

With this protocol, each replica completed within 10 hours using 256-cores on Grace, an HPC 

cluster at University College London (UCL) (technical specifications of this cluster can be found 

at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs). Although it was deemed 

to be unnecessary for the development of the protocol, automation would be needed for the 

robust implementation of this protocol in academia or industry. To increase the scale of 

compounds analyzed, this protocol could be readily implemented as an extension to the highly 

scalable BAC software, which offers a high-throughput environment for simultaneous binding 

free energy determinations for thousands of compounds19.

Creation of A2A receptor systems

Figure 2. Diagrams of the active and inactive A2A receptor GPCR models. The DPPC membrane is 

shown in green and water in blue. The location of the extracellular vestibule and binding pocket is 

indicated.
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Models were created for the A2A receptor that were based on the highest resolution X-ray 

structures available that contained activity-defining thermostabilizing mutations shown to bias 

the receptor to a particular physiological state20,21,37. The active and inactive state models (see 

Figure 2) were built from PDB accession numbers 4UHR38 and 5IU439, respectively. The 

cytochrome b562-RIL (bRIL) fusion domain was removed from the 5IU4 model. Using the wild 

type human A2A sequence accessed from GPCRdb (gpcrdb.org)40, missing loops from all models 

were reconstructed with MODELLER 9.1241 and the thermostabilizing mutations in the model 

were removed using UCSF’s Chimera 1.11.242. The disulfide bonds present in the crystal 

structures (4 in both the ‘active’ form and the ‘inactive’ form) were restored by manually adding 

CONECT lines to the PDB snapshots using a text editor. These models were then inserted into a 

100% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane, using CHARMM-GUI43 

with approximately 150 of these membrane molecules needed to make a simulation box of a size 

sufficient to surround the receptor (75 x 75 Å). Using CHARMM-GUI, approximately16,000 

water molecules were added and electroneutrality was achieved by using Na+ or Cl- as 

counterions to balance the net charge of the system to zero. As none of the ligands under study 

were charged, neutralization was carried out prior to ligand addition. Ligand binding poses from 

A2A crystal structures were superimposed onto the appropriate equilibrated protein-membrane 

system, using Chimera’s MatchMaker; the coordinates of the binding position were added to the 

PDB snapshot of the equilibrated model. The structures from which the ligand binding pose was 

superimposed from are listed in Table 1. If a co-crystallized structure was unavailable for a given 

ligand, docking was performed using AutoDock 4.244 embedded in Chimera. The structures of 

the ligands used in this study are shown in Figure 3.

Table 1. PDB accession numbers of the structures used for obtaining ligand binding poses.
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11

Ligand PDB

CGS-21680 4UHR

NECA 2YDV

Theophylline 5MZJ

UK-432,097 3QAK

XAC 3REY

ZM-241,385 5IU4

Figure 3. Structures of the 17 A2A receptor ligands used in this study. The ‘aromatic ring extensions’, 

referred to in results section, are highlighted by boxes on the 2D structures.

Atomistic MD simulations

Atomistic MD simulations were carried out using NAMD 2.1145 as the MD engine. To 

parameterize the system, AMBER 14 forcefields were used, specifically, AMBER GAFF46, 

protein14.SB47, lipid 1448 and the TIP3P model for the ligand, protein, membrane and water 

molecules, respectively. Ligand parameterization was carried out using the Antechamber 
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program49 within the AM1-BCC charge model50. The initial velocity of the atoms were drawn 

randomly from a Maxwell−Boltzmann distribution at 310 K (the human physiological 

temperature); replica runs were otherwise identical, apart from these initial velocity seeds. An 

ensemble of 30 replicas was performed for three ligands, NECA (an agonist), theophylline (an 

antagonist) and UK-432,097 (the largest ligand in the test set), to determine the optimal number 

of replicas in an ensemble. For subsequent ligands, 10 replicas were performed on each protein-

ligand system. Step 1 of the protocol was conducted in the constant volume, constant 

temperature (NVT) ensemble. With the exception of this initial equilibration step, all other 

simulations were conducted with a barostat in the constant pressure, constant temperature (NPT) 

ensemble. The temperature was controlled at 310 K using Langevin dynamics whilst pressure 

was kept constant at 1 bar by the Nose-Hoover-Langevin algorithm. The Langevin piston period 

used was 100 fs with a piston decay of 50 fs. An integration timestep of 2 fs was used for all 

simulations and the SHAKE constraint algorithm applied to all hydrogen bonds to achieve this. 

For the calculation of long-range electrostatics interactions, the particle-mesh Ewald (PME) 

method51 was used. A cut-off of 10 Å was used to calculate van der Waals interactions. During 

the 6 ns equilibration of the protein-membrane system (Step 1), decreasing constraints were 

applied to the backbone of the membrane and the protein. Following this, a PDB formatted 

snapshot was taken from the last few frames into which the ligands were docked. Equilibration 

of this protein-ligand-membrane system for 2 ns (step 2) involved an initial constraint on all of 

the elements in the system except water, followed by a decrease to zero of this constraint. After 

equilibration, the SMD production run (step 3) was carried out for 10 ns. This time was sufficient 

for all ligands to be pulled from their binding pockets to the extracellular vestibule. The SMD 

protocol used a variable force applied to the ligand to keep it moving at a constant velocity of 1 
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13

Å/ns (0.000002 Å/timestep); the output of the force used was logged every 1000 steps. The 

Newtonian spring was attached to the center of the mass of the ligand with a spring constant of 3 

kcal/mol/Å2 (208.4 pN Å). The direction of pulling was held constant for all simulations. 

Constraints on the protein were found to be necessary to prevent drifting in the direction of 

pulling. In both active and inactive systems, these restraints were applied in three dimensions to 

the alpha carbon of five residues at the top of the transmembrane helices (residues 91.35, 803.28, 

1775.38, 2566.58 and 2707.35).

Data analysis

Visualization was performed using VMD 1.9.352 and Chimera53. Tcl scripts for VMD 

were generated to produce contact with interaction residue data. Dissociation energies were 

calculated using NAMD energy 1.4 called by an in-house Tcl script. Automation of the 

workflow was achieved using bash scripts. Data were analyzed using Python scripts. VMD was 

used to identify hydrogen bonds, with 3.5 Å and 25° as the hydrogen bond cut-off. In addition, to 

be classified as a hydrogen bond, the bond must have been seen in >50% of the replicas in the 

ensemble.

To convert kinetic ligand binding values to equilibrium Kd values, the following equation 

was used:

𝐾𝑑 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛

Along with that, relating the free energy of binding to the equilibrium Kd was done using 

the following equation:

Page 13 of 47

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

∆𝐺 = 𝑅𝑇𝑙𝑛𝐾𝑑

To determine the dissociation energy (van der Waals and electrostatic interactions) of 

ligand with water (∆ELW) for each replica, the following equation was used:

∆𝐸𝐿𝑊 = 𝐸𝐿𝑊(𝑡 = 10𝑛𝑠) ― 𝐸𝐿𝑊(𝑡 = 0𝑛𝑠)

A switching and cut-off distance of 10 Å and 12 Å, respectively, was used to calculate this non-

bonded energy. The mean value of ∆ELW for each ensemble was calculated, resulting in an 

average ∆ELW for each ligand with an associated error.

Potential Mean Force calculations

The force (F) applied in the x, y and z directions, and the normalized direction of pulling, 

referred to as nx, ny and nz respectively, was logged every 1000 frames (2 ps). To convert these 

values to calculate the overall force applied, the following equation was used:

𝑭(𝑡) = 𝒏𝑥𝐹𝑥 + 𝒏𝑦𝐹𝑦 + 𝒏𝑧𝐹𝑧

Irreversible work done to the system, as a function of time, was calculated by integrating the 

force curve and multiplying this by the constant velocity of pulling, v:

𝑊(𝑡) = ∫
𝑡

0
𝒗 ∙ 𝑭(𝑡)𝑑𝑡
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Jarzynski’s identity43 was employed to calculate the potential of mean force (PMF) using the 

following equation (where kB is Boltzmann’s constant (kcal/mol/K), T is temperature (Kelvin) of 

the bulk system,  and :𝛽 =
1

𝑘𝐵𝑇 𝜎2
𝑤 = ⟨𝑊2⟩ ― ⟨𝑊⟩2

𝑃𝑀𝐹(𝑡) = ⟨𝑊⟩ ―
1
2𝛽𝜎2

𝑤

This use of Jarzynski’s identity minimizes the impact of pulling speed, enabling a better 

comparison between SMD simulations performed using different parameters31.

Determination of optimal simulation length and optimal number of runs

The simulation length of the SMD protocol needed to be sufficient for the ligand to be 

pulled from the binding site to the extracellular vestibule. Initial pulling velocities ranged from 

1-300 Å/ns, which led to ligand dissociation on a timescale ranging from 40 ps to 10 ns. The 

system was very sensitive to the rate of pulling and more rapid rates required the fixing of every 

atom in the receptor. 1 Å/ns was chosen as a pulling velocity, as it did not require the 

immobilization of the entire receptor and because this value is on the same order as those 

previously used in SMD simulations54. Pulling ceased after the ligand reached the extracellular 

vestibule to prevent potentially biased ligand interactions with the membrane environment. 

Whilst the simulation contains a biological lipid, it does not include known non-lipid 

components (e.g. cholesterol and other proteins) found in the physiological membrane 

environments of GPCRs. After the extracellular vestibule has been reached, the pulling direction 

is no longer limited to the single directional vector that had been imposed by the constraints of 

the binding pocket and the simulation was stopped to prevent bias.
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To determine the number of replicas needed in an ensemble to achieve convergence of 

results, the SMD protocol was initially performed for an agonist (NECA), for an antagonist 

(theophylline) and for the largest ligand in the dataset (UK-432,097), for ensembles of 30 

replicas each, the number of replicas performed in a previous GPCR MD study55–57. NECA and 

theophylline were selected as representative ligands because 12 of the remaining 15 ligands in 

the test set have a similar base structure. The convergence of the mean and error as a function of 

time for these three ligands were explored as values by which to determine the optimum replica 

number. The mean energy difference between ligand and water, ∆ELW, is the only single 

continuous output, since residue energy values change over time as the ligand is pulled from the 

binding site.

Figure 4. The mean of ∆ELW, the calculated energy difference between the ligand and water, before and 

after SMD, is shown as a function of number of replicas performed for the antagonist theophylline. 

Standard deviation, as a bootstrap statistic of the associated number of runs, was used to calculate error.

As shown in Figure 4, increasing the number of replicas in the ensemble results in a 

statistically significant change in the mean ∆ELW value. This means that performing one-off 

simulations could result in significantly different ∆ELW values and thus different residence time 
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prediction values. To examine the effect of ensemble size on error for both agonists and 

antagonists, the analysis was repeated using the method of bootstrapping24. This statistical 

technique uses resampling with replacement (10,000 times) of the data points (the ∆ELW value of 

each replica). The mean of each bootstrap is calculated and the standard deviation (σboot) of these 

bootstrap averages is calculated. The σboot value provides an estimate of the error associated with 

a mean derived from a given sample. Figure 5 shows a sharp decrease in the error of ∆ELW with 

increasing number of replicas performed, for all three ligands, which steadies after 10 runs. For 

theophylline (see Figure 5c), the minimum of the decreasing error occurs around 20 runs. 

However, a decrease of less than 0.6 kcal/mol in the error of ∆ELW requires twice the number of 

replicas in the ensemble, doubling the computational cost. Ten was determined to be the optimal 

number of replicas, permitting an effective trade-off between minimization of error, stabilization 

of the mean and computational cost.

Figure 5. Variation of the bootstrap statistics, σboot, in ∆ELW is shown as a function of number of replicas 

performed for the representative ligands UK-432,097 (a) and NECA (b) and Theophylline (c). The 

optimal number of replicas used in subsequent simulations is shown as a black solid line in all three 

graphs.
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RESULTS

Computational validation

The SMD protocol we have developed assumes that agonists and inverse agonists 

dissociate from active and inactive states, respectively. This assumption is encoded in the 

protocol by the use of two distinct starting structures that were based on crystal structures 

engineered to be trapped either in an active or an inactive state. We tested the validity of the 

assumption by pulling the inverse agonist ZM-241,385 (see Figure 3) from two starting 

structures: the inactive structure, for which numerous co-crystallized structures exist, and from 

the active structure, for which co-crystallized structures have not yet been observed. The contact 

and potential of mean force (PMF) data for both ensembles were compared with each other and 

with published experimental SDM data.

The residue contacts made with ZM-214,385 in the active and inactive state ensembles 

were different. In one specific instance, a receptor residue identified as a contact in the inactive 

state ensemble was not detected in the active state ensemble. This residue, K153ECL2, has been 

identified by temperature-accelerated MD as a dissociation contact of ZM-241,385 and 

experimental results show that mutation of this residue leads to a 26% increase in residence time 

compared with wild type58. Three of the contacts identified from the pulling of ZM-241,385 

exclusively in the inactive ensemble are confirmed by published data from SDM experiments59. 

None of the contacts identified exclusively in the active ensemble can be confirmed by published 

experimental data. These findings lead us to conclude that the activity state of the receptor’s 
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starting structure needs to be matched to the properties of the ligand to maximize the detection of 

biologically-relevant contacts.

Figure 6. Potential of mean force (PMF) profiles of the inverse agonist, ZM-241,385, being pulled from 

the active (blue) and inactive (red) states of the A2A receptor. Standard deviation, as a bootstrap statistic, 

was used to determine error of the 10 replicas, and is shown in the shaded regions.

There is a significant difference in the PMF profile when pulling ZM-241,385 from the 

active and inactive states of the A2A receptor (see Figure 6). Pulling the ligand from the inactive 

state causes 9 ± 1 kcal/mol of irreversible work to be done on the system, whereas pulling from 

the active state results in a negative PMF. A negative PMF indicates that it is less energetically 

favorable for the ligand to be bound to the receptor than for it to be unbound. It also shows that 

ZM-241,385 energetically favors binding in the inactive state to binding in the active state. The 

contact data and the PMF profile results highlight the critical need to use the appropriate receptor 

state when carrying out this protocol.

Identification of residues involved in ligand dissociation
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The dissociation pathways of agonists and antagonists were found to be similar to one 

another. This is most likely due both a narrow binding pocket and the use of the same pulling 

direction in all the SMD simulations. There are unique patterns of residues that interact with each 

of the ligands during dissociation. The residues involved in ligand dissociation can be divided 

into three categories, as described in the Methods section: (i) initial contacts, (ii) intermediate 

contacts, and (iii) sustained contacts, Figure 7 shows examples of these types of residues. Each 

type will be discussed in the context of published experimental data.

H264ECL3

Y2717.36

S672.65

L2677.32

E169ECL2

N2536.55

F168ECL2

Q157ECL2

S156ECL2

Figure 7. Diagram showing the dominant initial, intermediate and sustained residue contacts of ZM-

241,385 colored in purple, light blue and orange, respectively. ZM-241,385 in its initial binding position 

is shown in beige.

Initial contacts and interactions

Ensembles were performed for 17 A2A receptor ligands with the 10 agonists pulled from 

the active structure and the 6 antagonists and one inverse agonist pulled from the inactive 

structure (see Figure 3 for ligand structures). A summary of the interaction energy of the initial 

residue contacts to the 17 ligands tested is shown in Table 2 (the inverse agonist is included in 
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the ‘antagonist’ grouping). The initial residue contacts of the ligands at t=0 in the simulation vary 

between agonists and antagonists but there are three conserved residue contacts for all 17 

ligands: F168ECL2, N2536.55 and M2707.35. In addition, two of these three residues form specific 

interactions with many of the ligands tested. F168ECL2 forms π-stacking interactions in the 

orthosteric binding site to all of the ligands, specifically to the methylxanthine or adenine ring of 

antagonists and agonists, respectively. In particular, it forms π-stacking interactions with a 6-

membered ring group for the three non-adenine-based agonists. As a validation of our 

computational method, the importance of F168ECL2 has been confirmed experimentally, as there 

is no detectable radioligand binding when this phenylalanine residue is mutated to alanine59. 

N2536.55 forms a hydrogen bond with all but one of the agonists (LUF5834) and all but one 

(LUF5967) of the antagonists. Despite similarities in the adenine/methylxanthine moiety of 

fourteen of the ligands chosen for this study, there appears to be little conservation in the initial 

residue contacts and the interactions they make with ligands.

Table 2. Initial energies (kcal/mol) of the residue contacts of 17 A2A receptor ligands1.
A2A receptor binders

R
es

id
ue

s

C
G

S-
15

94
3

LU
F5

96
3

LU
F5

96
4

LU
F5

96
7

Th
eo

ph
yl

lin
e

X
A

C

ZM
-2

41
38

5

C
G

S-
21

68
0

LU
F5

44
8

LU
F5

54
9

LU
F5

55
0

LU
F5

63
1

LU
F5

83
3

LU
F5

83
4

LU
F5

83
5

N
EC

A

U
K

-4
32

,0
97

A632.61 -0.7 -2.5 0.4 0.3 -0.1 0.3 0.0 0.1
I662.64 -2.0 -1.0 -2.2 -1.5
S672.65 -2.1 -1.1 -3.0 -3.8 -1.4 -2.1 -1.6 -2.4 -1.7 -1.4 -1.0 -1.0 -2.3
T682.66 -1.3
A813.29 -0.7
V843.32 -0.1 0.5 -0.6 -0.8 -0.3 -3.7 -1.7 -1.4 -1.2 -1.1 -2.2 -2.1 -2.2 -3.4 -3.9
L853.33 -0.4 -0.8 -0.8 -4.6 -1.3 -1.4 -1.2 -2.3 -2.4 -2.6 -3.9 -4.2
T883.36 -5.4 -0.9 -1.8 -1.6 -1.9 -3.6 -5.3

1 Residue-ligand pairs that form hydrogen bonds are shown in bold. Error as bootstrap standard deviation 
(σboot) is not shown for residue-ligand pairs but is < 1 kcal/mol with the following exceptions: N2536.55 – 
CGS-21680 (1.1 kcal/mol), E169ECL2 – LUF5834 (1.8 kcal/mol), E169ECL2 – UK-432,097 (2.6 kcal/mol) 
and N2536.55 (1.5 kcal/mol).
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Q893.37 -0.9 -1.0
I923.40 0.1 0.1 0.2
E151ECL2 -0.8
G152ECL2 -0.1
L167ECL2 -1.9 -3.2 -1.6 -1.2 -2.5 -2.6 -2.5 -2.2 -2.0 -0.9 -0.6 -2.3
F168ECL2 -7.1 -9.9 -6.9 -6.7 -8.3 -8.7 -7.6 -8.1 -8.2 -9.4 -8.0 -8.4 -9.0 -8.2 -8.2 -7.6 -9.0
E169ECL2 -12 0.6 -2.0 -15 0.1 -14 -4.1 -0.7 -1.0 -3.5 -3.3 -3.8 -15 -8.7 -1.4 -23
M1745.35 -0.4 -1.6 -1.7 0.2 -0.5 -1.7 0.0 0.3 -0.6 -0.4 -0.8 -0.4 0.4 -0.3
M1775.38 -0.7 -2.4 -1.5 -1.1 -1.7 -1.5 -3.6 -1.6 -2.0 -2.6 -2.3 -3.3 -3.4 -3.8 -3.5 -3.1
N1815.42 -1.5 -1.3 -1.6 -1.7 -1.7 -1.6
C1855.46 -0.5 -0.3 -0.4
W2466.48 -3.1 -1.6 -1.4 -1.1 -1.3 -1.3 -2.1 -1.3 -2.5 -3.2
L2496.51 -1.7 -1.6 -1.9 -1.6 -1.7 -1.8 -3.2 -2.8 -2.6 -1.9 -2.5 -1.8 -4.1 -1.8 -2.9 -3.8
H2506.52 -1.4 -0.7 -5.8 -2.0 -1.7 -4.2 -0.6 -4.4 -5.5 -4.6
I2526.54 -1.3 -2.5
N2536.55 -9.8 -0.8 -1.9 -4.3 -3.5 0.0 -13 -6.1 -8.0 -5.6 -5.6 -6.2 -3.0 -3.0 -4.0 -5.0 -7.8
T2566.58 -0.8 -1.8
S263ECL3 -0.7
H264ECL3 -3.8 -2.7 -4.2 -0.7 -1.0 -3.9 -3.1
A265ECL3 -2.1
L2677.32 -0.4 -0.8 -1.2 -1.3 -2.7 -2.4 -2.3 -0.8 -0.8 -0.9 -0.9 -0.2 -3.0
M2707.35 -4.9 -4.3 -4.2 -4.8 -3.0 -4.2 4.2 -4.0 -3.0 -3.5 -3.0 -2.9 -3.4 -3.3 -4.1 -2.3 -7.0
Y2717.36 -0.6 -1.0 -2.1 -2.5 -1.9 -1.8 -1.7 -1.7 -7.5
I2747.39 -2.9 -2.3 -2.0 -2.3 -2.6 -1.5 -4.4 -5.9 -6.1 -3.9 -5.5 -3.6 -3.6 -3.6 -4.2 -5.7
S2777.42 -2.0 -3.2 -2.9
H2787.43 -4.9 -5.8 -5.5 -2.1 -5.0 -5.7 -4.9

There are a number of residues that make contact with agonists but not with antagonists 

(or the inverse agonist). The following nine residues make contact with a minimum of two 

agonists: T883.36, Q893.37, I923.40, N1815.42, C1855.46, V1865.47, W2466.48, S2777,43, H2787.43. A 

previous analysis of A2A crystal structures has classified four of these residues (T883.36, Q893.37, 

I923.40, N1815.42) as being agonist-only contacts60. All nine residues are located below the 

adenine ring in the binding pocket and are proximal to the ribose moiety, which is not present in 

antagonists. NECA makes hydrogen bonds with two of these residues: T883.36 and H2787.43. 

Experimental data show that mutagenesis of either of these two residues caused a reduction in 

binding affinity to agonists including NECA, but not to antagonists61. Our protocol confirms that 

there are five residues involved in the binding site of agonists only and identifies two new initial 

contacts for future experimental validation.
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Intermediate contacts

There is a diverse spread of and very little conservation in the intermediate contacts made 

for each of the 17 ligands tested (see Table 3). This, to a large extent, is dependent on the initial 

contacts made by a ligand, as initial contacts and intermediate contacts are non-overlapping 

groups therefore an intermediate contact cannot be an initial contact. Two residues stand out as 

intermediate contacts: S61.32 and H264ECL3. H264ECL3 is an intermediate contact of 13 ligands; for 

the remaining 4 ligands, it is an initial contact. S61.32, is universally conserved as an intermediate 

contact for all but one of the agonists but none of the antagonists. In summary, there is no single 

residue that forms an intermediate contact with all of the ligands tested, nor is there a single 

residue that forms an intermediate contact with all of the antagonists or with the inverse agonist.

Table 3. Average energies (kcal/mol) of the intermediate residue contacts2

A2A receptor binders

R
es

id
ue

s

C
G

S-
15

94
3

LU
F5

96
3

LU
F5

96
4

LU
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96
7
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eo
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yl

lin
e

X
A

C

ZM
-2

41
38

5

C
G

S-
21

68
0

LU
F5

44
8

LU
F5
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9

LU
F5

55
0

LU
F5
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1

LU
F5

83
3

LU
F5

83
4

LU
F5

83
5

N
EC

A

U
K

-4
32

,0
97

S61.32 -0.7 0.4 -1.3 0.8 0.4 -1.7 -2.4 -1.9 -2.7
Y91.35 -1.5 -1.1 -1.3 -1.2 -0.7 -1.1 -1.7 -1.2 -0.8 -2.1 -2.2
I101.36 -0.2 -0.1
E131.39 -6.1
A632.61 0.1 -0.7 -0.1 -0.5 -0.5 -0.4 -0.8
I642.62 -0.4 -0.2
I662.64 -1.2 -0.9 -0.1 -0.6 -0.5 -0.8 -0.8 -0.9 -1.2 -1.0 -0.7 0.1
S672.65 -2.4 -0.8 -1.2
T682.66 -1.0 -0.4 -0.6 -1.0 -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.7
G692.67 -0.6 0.0 -0.3 -0.7 -0.1 -0.3 -0.5 -0.7 -0.6 -0.3 -0.6 0.0 0.1
A813.29 -0.7 -0.7
Q893.37 -0.5

2 Residue-ligand pairs that form hydrogen bonds are shown in bold. Error as bootstrap standard deviation 
(σboot) is not shown for residue-ligand pairs but is < 1.2 kcal/mol with the following exceptions: K153ECL2 
– CGS-21680 (1.3 kcal/mol), K153ECL2 – LUF5550 (1.4 kcal/mol), K153ECL2 – LUF5631 (2.4 kcal/mol) 
and K153ECL2 – LUF5834 (1.9 kcal/mol).
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K150ECL2 -1.5
G152ECL2 -0.6 -1.8 -0.4
K153ECL2 0.6 -4.5 -1.7 -6.8 -8.0 -1.6 -4.3 -0.1 -2.5 -1.0 -1.6
H155ECL2 -1.7
S156ECL2 -0.3 -0.3 -0.7 -0.6 -1.2 -0.8
Q157ECL2 -1.0 -0.5 -2.0 -0.9 -1.3 -1.0 -0.4 -0.5 -1.5
G158ECL2 -0.4 -0.8
A165ECL2 -0.1 -0.3 0.0 0.1 -0.1 -0.1
L167ECL2 -2.9 -1.8 -1.2 -2.4 -3.0
E169ECL2 2.8
D170ECL2 -2.4 1.1 -0.6
V172ECL2 -0.1 -0.4 0.1
M1745.35 -0.7 -0.8 -0.6
I2526.54 -0.1 -0.5 -0.1 0.0 -0.9 -0.5 -0.1 -0.5 -1.1 -0.1
F2556.57 -0.1
T2566.58 -0.2 -0.1 -0.3 -0.1 -0.8 0.0 -0.3 -0.8 -0.5 -0.5 -0.9 -1.6 -0.7
P260ECL3 0.0 -0.3 -1.1 -0.5
D261ECL3 -1.0 -1.3
S263ECL3 -0.6 -0.6 -0.9 -0.2 -0.6 -0.8 -0.4 -0.9 -0.9 -0.7 -0.9 -0.6 -0.8
H264ECL3 -1.8 -2.1 -2.6 -6.1 -3.1 -2.6 -3.7 -3.0 -3.1 -1.6
A265ECL3 -0.9 -0.2 -1.6 -0.8 -1.1 -1.2 -0.1 0.4 0.4 -0.2 -0.1 -0.4 -0.5 -0.7
P2667.31 -0.3 -0.4 -0.3
L2677.32 -2.0 -2.2 -2.1 -2.1
Y2717.36 -1.5 -1.8 -3.6 -1.7 -2.8 -2.5 -2.2 -2.4
I2747.39 -1.1
H2787.43 -0.1 -0.3

Comparison of ZM-241,385 intermediate contacts and SDM radioligand kinetic data

Residue distance was initially used as a cut-off to identify initial and intermediate 

contacts, with energy values subsequently used to evaluate non-bonded interactions. These data 

are represented, as a function of time, in Figure 8. There are 13 intermediate contacts formed as 

ZM-241,385 is pulled from the A2A receptor: A632.61, I662.64, S672.65, T682.66, G692.67, G152ECL2, 

K153ECL2, S156ECL2, Q157ECL2, A165ECL2, T2566.58, Y2717.36 and I2747.39. Intermediate contacts, 

by definition, will be not identified in crystal structures where the ligand has been co-crystallized 

with the receptor. However, experimental data from mutation of these intermediate contacts may 

offer insight into binding affinity and residence time. Eight of the intermediate contacts 

identified, I662.64, S672.65, T682.66, K153ECL2, S156ECL2, Q157ECL2, T2566.58, Y2717.36, have 

Page 24 of 47

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

experimental data62,63 that can be compared with our computational findings, some of these 

residues are shown in Figure 7.

The following categories of effect are observed when these residues are experimentally 

mutated to alanine59: (i) increase in residence time with little or no effect on binding affinity 

(I662.64, S672.65 and K153ECL2); (ii) decrease in binding affinity with little or no effect on 

residence time (S156ECL2 and Q157ECL2); (iii) increase in binding affinity with a decrease in 

residence time (T2566.58); (iv) no detectable binding observed (Y2717.36); and, (v) no detectable 

effect on either binding affinity or residence time (T682.66).

I662.64, S672.65 and K153ECL2 all increase residence time when mutated to alanine. These 

three residues are located at the top of the binding pocket. Their mutation to alanine may make it 

less energetically favorable for dissociation to occur. In the simulations, S672.65 is shown to form 

a hydrogen bond that would be lost with experimental mutation to alanine. S156ECL2 and 

Q157ECL2 are each located close to the extracellular vestibule (see Figure 2 for the location of the 

extracellular vestibule in the A2A receptor) and at least 9 Å from the binding pocket. These 

residues may be involved in ligand docking and it is surprising that they do not have an effect on 

residence time when mutated. Experimental mutation of T2566.58 caused a 151% increase in 

binding affinity and a 94% decrease in residence time59. One crystal structure, PDB accession 

number 5IU459, revealed a water molecule that links T2566.58 with other residues important in 

binding (N2536.55 and E169ECL2), which may explain the increase in binding affinity. It was 

found that experimental mutation of Y2717.36 to alanine caused loss of binding for ZM-241,38540 

making it impossible to determine the effect of this residue on residence time. T682.66, which 
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falls into the final category of effect observed, does not provide a hydrogen bond in any of 

simulations, unlike S672.65, which does have a significant effect on residence time. Therefore, 

mutation of T682.66 to alanine may not affect the transient interaction energy made between this 

residue and the dissociating ligand. Our SMD protocol identifies transient contacts to ZM-

241,385 that are experimentally proven to be important in binding, confirming the validity of our 

method for identifying receptor residues that engage with the ligand as it dissociates from the 

receptor, although some of these residues clearly have a greater effect on residence time than on 

binding affinity59.

Sustained contacts, that is residues that are in contact with the dissociating ligand for the 

entirety of the 10 ns simulation, also play in a role in contributing to residence time; however, 

these can also have an effect on binding affinity. There are 5 sustained contacts: E169ECL2, 

H264ECL3, A265ECL3, L2677.32 and M2707.35. Experimental data exist for three of these59. 

E169ECL2 is an initial binding contact (see Figure 8a) but it continues be a contact of the ligand 

throughout the entire simulation because of its location on ECL2 towards the top of the binding 

pocket. Experimental mutation of E169ECL2 to glutamine caused a decrease in residence time 

with an increase in binding affinity. Experimental mutation of H264ECL3 to alanine caused a 

decrease in residence time with an increase in binding affinity. Comparatively, E169ECL2 

provides much more energy, both initially and throughout the 10 ns, to the ligand than H264ECL3 

in the SMD simulations (see Figure 8b); this supports experimental findings where the 

E169QECL2 mutant had a greater effect on binding affinity and residence time than the 

H264AECL3 mutant. Conversely L2677.32 showed a decrease in binding affinity and an increase in 

RT when mutated to alanine. Sustained contacts, which can be identified by the SMD protocol 
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we have developed, play a role in the equilibrium binding affinity and non-equilibrium residence 

time. They have effects on these that are different to those observed for intermediate contacts.

Figure 8. Heatmaps of the dissociation profile of the inverse agonist, ZM-241,385. A schematic 

representation of the receptor helices and loops involved in forming contacts and interactions is indicated 

with lettering above the residue numbers (TM = transmembrane domain; ECL = extracellular loop). 

Contacts are identified by the changing distance between residues of the A2A receptor and the ligand 

during dissociation (a). Interactions are identified by the sum of van der Waals and electrostatic energy 

interactions between receptor residues and the ligand (b).

Residues that form multiple interactions
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10 102 3 4 5 6 7 8 9

Time (ns)
A B C D

A B DC

H2787.43H2506.52

H264ECL3

H264ECL3

T883.36

F168ECL2

N2536.55

N2536.55 N2536.55

Y2717.36 S672.65

S67
T88

F168
H250
N253
H264
Y271
H278

Figure 9. Interactions made by the agonist, NECA, as it dissociates from the A2A receptor. Residues that 

form hydrogen bonds or π-stacking interactions with the ligand are shown in stick representation and are 

identified by a one letter amino acid code followed by their location in the receptor. The timeline of the 

simulation is shown by the dark grey box. Light grey boxes show replica averages for initial and 

intermediate interactions between ligand and specific receptor residues. The schematic representations 

shown in A-D are single replica snapshots. Hydrogen bond interactions (example highlighted by yellow 

ring) are shown as green solid lines, whilst π-stacking interactions (example highlighted by purple ring) 

are represented by a green dotted line.

Some residues interact with different parts of the ligand at different times during 

dissociation. This is especially true for A2A receptor agonists, which are generally larger in size 

than antagonists and contain more moieties able to form interactions. Figure 9 shows the eight 

residues that the A2A agonist NECA interacts with during dissociation. Two of these are multiple 

interactions. N2536.55 initially makes a hydrogen bond to the adenine ring of NECA, this 

interaction is also present in the crystal structure (PDB accession code: 2YDV59). With the 

exception of LUF5967 and LUF5834, this particular hydrogen bond is conserved in all other A2A 

receptor agonists and antagonists tested, making an interaction to the adenine and 
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methylxanthine rings, of the agonists and antagonists, respectively. With the exception of the 

LUF583x series, all adenosine receptor agonists tested in this study are closely related to the 

endogenous ligand adenosine in structure. Only in simulations with these adenosine-related 

agonists does one see N2536.55 re-engaging with the ribose ring or with the ethylcarboxamido 

extension (in the case of NECA and CGS-21680). H264ECL3 is an exception within the identified 

interacting residues as it makes both π-stacking and hydrogen bond interactions. H264ECL3 first 

makes a hydrogen bond, at t=1.8 ns, with the adenine ring of the agonists, subsequently making 

π-stacking with the adenine ring of the ligand at t=5.4 ns. These results show that residues can 

make multiple distinct interactions with different parts of A2A receptor agonists as they dissociate 

from the receptor.

Ligand-water interaction energy is a predictor of drug residence time

Residence times have been experimentally determined for all of the ligands investigated 

here (see Table 4). Water has been shown to be important for residence time64; therefore the 

computationally-determined non-bonded interaction energy between ligand and water molecules, 

ELW, was calculated as a function of time. As shown in Figure 10, there is a good correlation 

between the change in interaction energy between the ligand and water, ∆ELW (described in 

methods section), and the experimentally-determined residence times for the 17 A2A receptor 

ligands tested (R2 = 0.79 where n = 17). There is no correlation between ∆ELW and 

experimentally-determined free energy of binding (R2 = 0.05), providing further evidence that 

binding affinity and residence time values do not correlate.

Table 4. Experimental ligand binding data and ∆ELW values of the adenosine A2A receptor ligands used in 
this study
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Ligand Temp.
(Kelvin)

kon
(nM-1 
min-1)

koff
(min-1)

Residence 
time

(mins)

Binding 
Free 

Energy
(kcal/mol)

Reference for 
experimental 
kinetic data

Calculated 
∆ELW 

(kcal/mol)

Calculated 
PMF 

(kcal/mol)

CGS15943 283.15 0.30 ± 
0.03

0.047 ± 
0.005 21 ± 2 -12.69 Guo et al., 

201665
21.1 ± 1.7 8.3 ± 0.9

CGS21680 278.15 0.00005 ± 
0.00001

0.02 ± 
0.00 53.0 ± 0.2 -8.17 Guo et al., 

201266
30.7 ± 3.2 8.4 ± 1.0

LUF5448 278.15 0.00028 ± 
0.00001

0.06 ± 
0.02 16.0 ± 0.3 -8.46 Guo et al., 

20126
19.6 ± 2.4 9.0 ± 1.1

LUF5549 278.15 0.0024 ± 
0.0005

0.04 ± 
0.01 24.0 ± 0.2 -9.89 Guo et al., 

20126
18.7 ± 2.2 6.5 ± 0.6

LUF5550 278.15 0.0008 ± 
0.0002

0.09 ± 
0.02 12.0 ± 0.2 -8.86 Guo et al., 

20126
16.6 ± 3.2 4.7 ± 1.1

LUF5631 278.15 0.0008 ± 
0.0002

0.05 ± 
0.02 21.0 ± 0.4 -9.19 Guo et al., 

20126
14.1 ± 2.6 6.1 ± 1.0

LUF5833 278.15 0.0085 ± 
0.003

0.16 ± 
0.08 6.3 ± 0.5 -9.83 Guo et al., 

20126
3.0 ± 2.4 7.2 ± 0.8

LUF5834 278.15 0.011 ± 
0.004 0.2 ± 0.1 4.2 ± 0.4 -9.77 Guo et al., 

20126
-0.8 ± 3.4 5.9 ± 0.6

LUF5835 278.15 0.016 ± 
0.008 0.3 ± 0.1 3.4 ± 0.3 -9.86 Guo et al., 

20126
10.4 ± 3.7 12.8 ± 1.1

LUF5963 283.15 0.00023 ± 
0.00003

0.044 ± 
0.005 23 ± 3 -8.71 Guo et al., 

20166
10.4 ± 3.1 10.5 ± 1.2

LUF5964 283.15 0.0026 ± 
0.0009

0.18 ± 
0.02 5.6 ± 0.6 -9.27 Guo et al., 

201666
12.9 ± 2.0 5.5 ± 0.9

LUF5967 283.15 0.0005 ± 
0.0001

0.12 ± 
0.04 8.3 ± 2.8 -8.45 Guo et al., 

201666
15.9 ± 1.2 7.8 ± 0.6

NECA 278.15 0.00050 ± 
0.00006

0.03 ± 
0.01 35.0 ± 0.2 -9.21 Guo et al., 

201266
28.2 ± 2.4 1.7 ± 0.4

Theophyllin
e 283.15 0.00006 ± 

0.00001
0.18 ± 
0.01 5.6 ± 0.3 -7.16 Guo et al., 

20166
3.1 ± 1.5 6.1 ± 0.9

UK-432,097 278.15 0.00050 ± 
0.00008

0.004 ± 
0.000 250 ± 0.8 -10.31 Guo et al., 

201266
61.0 ± 4.8 4.3 ± 0.8

XAC 283.15 0.006 ± 
0.001

0.10 ± 
0.03 10 ± 3 -10.10 Guo et al., 

20166
11.6 ± 3.6 6.7 ± 0.6

ZM-241,385 277.15 0.0210 ± 
0.0005

0.014 ± 
0.003 71 ± .1 -11.61 Guo et al., 

201466
24.7 ± 1.8 8.8 ± 0.6

As dissociation progresses, the ligand becomes increasingly hydrated with water. Ligands 

that have a low ∆ELW value are comparatively well-hydrated in the binding pocket and 

hydrophilic interactions are less likely to be shielded from water. As buried hydrophilic 

interactions have been shown to increase residence time67 their absence in ligands with low 

∆ELW may explain shorter residence times. The ∆ELW value is not just an indication of the 

number of hydrogen bond capable atoms (hydrogen bond donors plus hydrogen bond acceptors) 

as evidenced by a poor correlation between these atoms and the ∆ELW values (R2 = 0.57). There 

is also a weak correlation between the number of hydrogen bond capable atoms and experimental 
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pRT (R2 = 0.48). ∆ELW is a summary of the of how solvent accessibility of the ligand changes 

during dissociation, this is dependent on the shape of both the ligand and the protein binding 

pocket.

Figure 10. Correlation plot between the log10 of the experimentally determined residence time (pRT) and 

computationally-determined ∆ELW for the 17 A2A receptor ligands tested. The mean difference in the 

ligand-water energy (∆ELW) is calculated from the start to the end of these 10 ns SMD simulations. Error 

bars represent bootstrap standard deviations (σboot). Points are colored red or blue for antagonists and 

agonists, respectively. The inverse agonist ZM-241,385 is labelled and shown in orange.

Four of the ligands in the data set, CGS-21680, NECA, XAC and UK-432,097, are 

similar in base structure (see Figure 3) but have different residence times values (see Table 4). 

The rank order of experimentally-determined residence times and computationally-determined 

∆ELW is UK-432,097>>CGS-21680>NECA>XAC (see Table 5), which correlates directly with 

the location and number of aromatic ring extensions on these ligands (see Figure 3). Aromatic 

ring groups can influence buried hydrophilic interactions particularly when, as is the case for 

CGS-21680 and UK-432,097, the aromatic ring extension projects towards the extracellular 

vestibule (see Figure 2) and can prevent water from entering the ligand binding pocket. Aromatic 
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ring extensions at a distance from the adenine/xanthine ring are flexible and can increase both 

residence time and ∆ELW by obstructing water solvation in the binding pocket. Support for this 

can be seen in the ligand structures shown in abstract figure. NECA and CGS-21680 are identical 

in structure apart from the aromatic ring extension on C2 of the adenine ring of CGS-21680, 

which has a longer residence time than NECA. Another example of a pair of ligands with a 

similar base structure but greatly different residence times is that of DPCPX and FSCPX11, 

which we would attribute to the large aromatic ring extension on FSCPX. UK-432,097 has 

aromatic extensions on N6 and C2 of the adenine ring and has a significantly longer residence 

time than CGS-21680. Modifying ligands to add a flexible aromatic ring extension to groups that 

project away from the binding pocket may be an effective design strategy for structural-based 

drug design.

Table 5. Experimentally-determined RT and computationally-determined ∆ELW.

Ligand Calculated ∆ELW

(kcal/mol)

Experientially-determined RT

(Minutes)
XAC 11.6 ± 3.6 10 ± 3

NECA 28.2 ± 2.4 35 ± 0.2

CGS-21680 30.7 ± 3.2 53 ± 0.2

UK-432,097 61.0 ± 4.8 250 ± 0.8

XAC, with 59 atoms, is one of the largest ligands in the dataset. It has a low ∆ELW (11.6 

± 3.6 kcal/mol) and a short residence time of 10 minutes, indicating that the correlation between 

∆ELW and residence time is not due to ligand size nor to the presence of an aromatic ring group. 

This is evidenced by the poor correlation between number of atoms of the ligands and their 

associated experimentally-determined pRT for the 17 ligands (R2 = 0.47 with UK-432,097 

included and 0.15 with UK-432,097 excluded from the correlation). The aromatic ring group of 
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XAC is immediately adjacent to the xanthine ring, so the cyclic group cannot block water from 

re-hydrating the ligand, which has been desolvated during its introduction into the ligand binding 

pocket16. It is the position of the aromatic ring group that influences residence time.

For 16 of the 17 ligands, the interaction between ligand and water correlates closely with 

residence time and appears to be the determining factor of this parameter. However, in the case 

of ZM-241,385, the calculated ∆ELW is 24.7 ± 1.8 kcal/mol, which is lower than expected given 

its long experimentally-determined residence time of 71 minutes68, suggesting that there are 

other forces contributing to residence time for this ligand. ZM-241,385’s long residence time has 

previously been attributed to the stabilization of a E169ECL2-H264ECL3 salt bridge in the A2A 

receptor that slows ligand dissociation67. Interactions between E169ECL2 and H264ECL3 were 

detected in the SMD runs we conducted for ZM-241,385 (see Figure 8).

The calculated work done (PMF) on the 17 ligands (see Table 4), the traditional method 

of predicting binding free energy when using SMD simulations, does not correlate with binding 

affinity nor residence time values. However, two of the ligands (CGS-21680 and LUF5448) have 

PMF values which are within error of the experimentally-determined binding free energy values. 

The structure of the active A2A receptor used has CGS-21680 co-crystallized, however, in order 

to get accurate binding free energy predicting from using work done, one should use the crystal 

structure associated with each ligand.

CONCLUSIONS

Page 33 of 47

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34

We have described the development and use of an ensemble-based steered atomistic 

molecular dynamics (SMD) protocol that can be used to accelerate the process of ligand 

dissociation, allowing the reproducible identification of transient residue contacts and sustained 

residue interactions, also enabling the calculation of ∆ELW values that correlate with 

experimentally-determined residence times. Our simulations explain published experimental 

SDM kinetic binding data for ZM-241,385 in terms of computationally-identified transient and 

sustained residue contacts. We found that use of the appropriate receptor state (‘active’ or 

‘inactive’) is essential for the successful prediction of transient residue contacts. The protocol has 

been applied here to 17 ligands of the adenosine A2A receptor, a well-characterized GPCR for 

which numerous high-resolution structures and substantial amounts of kinetic binding data exist, 

but it can be readily applied to other receptor-ligand complexes that have water exposed binding 

pockets for which good quality structural data is available.

For the A2A receptor ligands tested, we have demonstrated that changes in water-ligand 

energy (∆ELW) from the ligand in the binding pocket to the extracellular vestibule is the most 

important factor in determining residence time. This is supported by the strong correlation 

between residence time and ∆ELW (R2 = 0.79). Based on trends observed in the experimental data 

and findings from the SMD simulations, we propose an aromatic ring extension design strategy 

for the targeted development of A2A receptor ligands with increased residence times. We have 

developed and validated a novel and rational strategy for the computational prediction and 

rationalization of relative residence time using a steered MD-based methodology that is different 

to other methods as it uses interaction energies, rather than accelerated dissociation times. The 

SMD-determined relative residence times reliably correlate with experimentally-determined 
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residence time values for 17 structurally diverse ligands of the A2A receptor and our strategy can 

be readily extended to other ligand-receptor systems. Automation of the methodology would 

need to be applied for routine use in academia and in industry, enabling the computational work 

needed for the calculation of relative residence times for a set of ligands to be achieved within 15 

hours (the sum of the wallclock times for equilibration and SMD simulations); use of GPUs 

would accelerate this protocol even further.

This SMD method, as it currently stands, is less computationally expensive (a reduction 

of approximately 40%) and faster to carry out than RAMD30, the other noteworthy relative 

residence time prediction method. Unlike any method currently used to predict residence time, 

the computational cost of this SMD method will be constant for a given receptor protein, an 

attribute that is especially beneficial as it allows one to accurately allocate computational 

resources to a project. According to their protocol, there is a potential increase of 400% in 

computational cost over the initial number of trajectories performed, this is peformed in a serial 

analysis fashion meaning that results take longer to be produced. 

RAMD was performed on total of 70 HSP-90 ligands, appreciably more than the 17 A2A 

receptor ligands in this manuscript, but the correlation obtained by the former method (R2 = 

0.45) is much weaker than the one presented here (R2 = 0.79) and the correlation between 

molecular weight (MW) and residence time is stronger than their computed relative residence 

time values (R2 = 0.61). The opposite is the case, using our method with the 17 A2A receptor 

ligand dataset: correlation of MW and residence time (R2 = 0.47) is much weaker than our 

correlation between ∆ELW values and experimental residence times. Both our method and 
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RAMD were tested on a single receptor system. A recent MD method has been used to predict 

absolute koff values for 6 ligands across 4 different systems27 however, the fold difference 

between the predicted koff values and the experimental data ranged from 1 to 107, with fewer than 

half being within a 10-fold difference. We intend to conduct a detailed and systematic 

comparison of these three methods using the A2A adenosine receptor system described here, in 

order to provide an objective measure by which to quantify the accuracy of the results and the 

computational expense of each method.
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