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ABSTRACT
The first variational calculation of the rotational-vibrational levels of PF3 are per-
formed and intensities for dipole transitions between them computed. This is ac-
complished using new state of the art potential energy and dipole moment surfaces.
This allows the infrared spectrum of PF3 to be simulated, providing a complete
overview of the ro-vibrational spectrum up to J = 100 in the wavenumber range
0–3100 cm−1. The behaviour of PF3 at high rotational excitations is also investi-
gated. The formation of quasi-degenerate 6-fold rotational energy clusters at high
rotational excitation are investigated up to J = 270 and are found to occur around
J = 200. The clustering effect is analysed in terms of semi-classical rotational energy
surfaces.
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1. Introduction

Phosphorus trifluoride, PF3, is a colourless, odourless and highly toxic gas [1] which
can bind with haemoglobin in blood in a similar way to carbon monoxide as it is
able to act as a pi-acceptor ligand in metal complexes [1–3]. As a triagonal-pyramidal,
oblate symmetric top with C3v point group symmetry at equilibrium and the molecular
symmetry group C3v(M) [4], the molecular structure of PF3 is similar to ammonia, NH3

[5, 6], or phosphine, PH3 [7]. The inversion barrier for PF3 is high in energy with early
calculations suggesting over hc× 40, 000 cm−1 [8, 9] while a DFT approach suggested
around hc × 20, 000 cm−1 [10]. Interestingly, the lowest energy planar structure has
been suggested to have a C2v symmetry [10, 11] rather than D3h as for NH3. With a
large barrier, inversion motion in PF3, which is well known to occur in ammonia [12]
and potentially in phosphine [13], is suppressed.

PF3 has been the subject of spectroscopic study for decades [14–20] and research
on this molecule remains active [21–26]. The four fundamental bands have been well



characterised [20–22, 26–29] as well as a number of overtone [23, 24, 30] and combi-
nation [28, 31, 32] bands. The dense spectrum has in some instances made it difficult
to comprehensively study some bands [30]. The microwave rotational spectrum has
also been rather well studied [17, 27, 33–36]. Very recently a study of vibrational and
electronic inelastic electron scattering on PF3 has been reported [37].

There has also been limited theoretical work carried out on PF3. Breidung, et al.
computed a force field at the Hartree-Fock level of theory as part of a study of phos-
phorus containing compounds [38]. More recently, Ceausu-Velcescu et al. computed a
quadratic and cubic force field and other spectroscopic constants using a variety of
coupled cluster methods, including the explicitly correlated coupled cluster CCSD(T)-
F12b method [26].

In this paper we carry out the first variational calculation of the rotational-
vibrational levels of PF3 and compute intensities for dipole transitions between them.
This is accomplished using new state of the art potential energy and dipole moment
surfaces (PES and DMS respectively). This allows the infrared spectrum of PF3 to
be simulated, providing a complete overview of the ro-vibrational spectrum with the
level of rotational excitation up to J = 100 and vibrational band centers covering the
range 0–3100 cm−1.

We also investigate theoretically the behaviour of PF3 at high rotational excitations.
Rotational energy clustering is a phenomenon whereby several symmetrically equiv-
alent stable axes of rotation form at high rotationally excited energies. These highly
excited rotational states are said to form near-degenerate energy clusters. Rotational
energy clustering has been observed theoretically for XY2 molecules [39] such as H2S
[40], H2Se [41, 42], and H2Te [43, 44], and more recently for XY3 molecules; in the
ground excited state for PH3 [45], SO3 [46], BiH3 and SbH3 [47], and in excited vi-
brational states for BiH3 and SbH3 [47]. Experimentally, rotational energy clustering
was confirmed for H2Se by Kozin et al. [48] and Flaud et al. [49]. It has also been
theoretically predicted to occur in spherical tops such as CF4 [50, 51], CH4 [52], and
SiH4 [52, 53]. It has been observed experimentally in SF6 [54]. However transitions
between very highly excited rotational states will be very weak and so bring obser-
vational challenges. Novel experimental methods, such as optical centrifuge, should
now be capable of generating and studying the rotationally-induced chirality [55], an
intriguing phenomena characteristic for molecules with rotational energy clustering.
In this work we use similar methods to previous studies [45–47], allowing direct com-
parisons to be made between different molecules and the behaviour that drives the
clustering effect.

Our motivation to study high rotational excitations in PF3 is to find molecules for
which the rotational clustering effects could be observable. PF3 is a heavy molecule
with a small rotational constant, which should easily populate states high values of J .
The question however is whether the molecular bonds are flexible enough to allow for
the centrifugal effects to stabilize the rotational motion of PF3 at reasonable energies,
in the same way as it is found to stabilize the high J rotations of PH3, BiH3 or SbH3.
We also note that gas phase experiments, such as the above mentioned spectroscopic
studies on PF3, have already been carried out and so it would seem a suitable molecule
to work with. None of the previously mentioned studies into the microwave and tera-
hertz spectrum of PF3 have, thus far, detected rotational clustering experimentally.

The paper is organised as follows. In Section 2 we describe how the PES and DMS
were constructed and give details of the variational nuclear motion and transition in-
tensity calculations. In Section 3 we compare the results of our ab initio calculations
of vibrational and rotational energies to experimental values, and discuss the partition
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function. We then present simulations of the room temperature PF3 spectrum as both
idealised ‘stick’ spectra and with broadened lines to give cross sections. The investiga-
tion into rotational energy clustering is given in Section 4 and semi-classical analysis
of the rotational energy surface is carried out in Section 5. We present conclusions in
Section 6.

2. Methods

2.1. Potential Energy Surface

A new ab initio potential energy surface is used for this work which was calculated
using the explicitly correlated coupled cluster method, CCSD(T)-F12b [56]. The F12-
optimized correlation consistent polarized valence cc-pVTZ-F12 [57] basis set was used
in the frozen core approximation. A Slater geminal exponent of β = 1.0 a−1

0 was used
[58]. For the resolution-of-the-identity approximation to the many-electron integrals,
we utilized the OptRI [59] basis set. The additional many-electron integrals required
for explicitly correlated methods were calculated using the density fitting approach,
for which we employed cc-pV5Z/JKFIT [60] and aug-cc-pwV5Z/MP2FIT [61] auxil-
iary basis sets. All calculations were carried out using MOLPRO2012 [62]. Electronic
energies were calculated on a grid of about 20 000 molecular geometries for energies of
up to hc× 40 000 cm−1 above the equilibrium geometry value.

We employed a Morse-type parametrised potential energy function,

V (y1, y2, y3, y4, y5, y6) =
∑
i,j,k,...

cijkl...yiyjykyl · · · . (1)

This is expressed in terms of three stretching variables

y1 = 1− exp (−a(r1 − re)), (2)

y2 = 1− exp (−a(r2 − re)), (3)

y3 = 1− exp (−a(r3 − re)), (4)

with equilibrium re = 1.56 Å and the Morse parameter a = 1.0 Å−1; two symmetrized
bending variables

y4 =
1√
6

(2α1 − α2 − α3) (5)

y5 =
1√
2

(α2 − α3). (6)

and the ‘umbrella’ coordinate

y6 =
2√
3

sin[(α1 + α2 + α3)/6]. (7)

These are similar to the variables used for the potential function of BiH3 and SbH3

[47], PH3 [63–65], NH3 [66], OH+
3 , CH+

3 [67], CH3 [68] and SO3[69]. The bond lengths,
r1, r2, r3, are the instantaneous distances between the central P atom and each of
the F atoms, respectively. αi denotes the bond angle ∠(FjPFk) where (i, j, k) is a
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permutation of the numbers (1,2,3) (see Figure 1). The root-mean-square error for the
fit of this potential was of the order of 1 cm−1, up to 10,000 cm−1. Although not the
focus of this work, we have used our PES to investigate the inversion barrier. At planar
geometries our PES gives a barrier of around 32,500 cm−1 relative to equilibrium for
the D3h geometry reported by Gutsev [10] with a slightly lower energy of 31,000 cm−1

for the C2v geometry. The PES is given as a Fortran 90 subroutine in the supplementary
information.

Figure 1. Equilibrium configuration of PF3.

2.2. Dipole Moment Surface

A new ab initio dipole moment surface was used for this work, calculated using MOL-
PRO at CCSD(T) level of theory with an aug-cc-pVTZ basis set in the finite field
approximation. For each of the x, y and z Cartesian components an electric field of
strength ±0.001 a.u. was applied and the dipole moment projections µx, µy and µz
computed as derivatives of the electronic energy with respect to the field strength us-
ing central finite differences. Calculations were carried out using the same grid as for
computing the ab initio potential energy surface. The dipole moment function was of
a similar form to that of PH3 utilising the Molecular-Bond (MB) representation [70].
In the MB representation the electronically averaged dipole moment vector, µ̄ is given
as

µ̄ = µ̄Bond
1 e1 + µ̄Bond

2 e2 + µ̄Bond
3 e3 (8)

where the µ̄Bond
i are three functions of vibrational coordinates and ei is a unit vector

along the P-Fi bond,

ei =
ri − r4

|ri − r4|
(9)

with ri the position vector of Fi and r4 the position vector of the phosphorus nucleus.
Due to the symmetry of the molecule all three projections of the dipole can be

expressed as a single function µ̄(0)(r1, r2, r3, α1, α2, α3) such that

µ̄Bond
1 = µ̄(0)(r1, r2, r3, α1, α2, α3) (10)

µ̄Bond
2 = µ̄(0)(r2, r1, r3, α2, α1, α3)

µ̄Bond
3 = µ̄(0)(r3, r2, r1, α3, α2, α1).
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This is expanded as

µ̄(0)(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = µ(0) +
∑
k

µ
(0)
k ξk +

∑
k,l

µ
(0)
kl ξkξl +

∑
k,l,m

µ
(0)
klmξkξlξm + . . . (11)

The function µ̄(0) is expressed in terms of the same three stretching variables, relating
to bond lengths r1, r2 and r3, and equilibrium bond length re (which is common for
all three bonds) as the PES, along with Morse parameter, β = 1.0 Å−1 and the three
αi angles with αe = 98.0◦ such that

ξi = (ri − re) exp (−β2(ri − re)
2) (i = 1, 2, 3) (12)

ξj = cos (αj−3)− cos (αe) (j = 4, 5, 6) (13)

The root-mean-square error for the dipole moment fit was of the order of 10−4 Debye.
At equilibrium our fitted DMS gives a dipole moment of 0.93 D. This is in reasonable
agreement with the values calculated by Ceausu-Velcescu et al. of 0.985 D at the
CCSD(T)/AWCVQZ level of theory (0.955 D using frozen core approximation) and
the experimental value of 1.029(1) D [71].

The DMS is given as a Fortran 90 subroutine in the supplementary information.

2.3. Variational Calculations

Variational ro-vibrational calculations were carried out using the TROVE program.
The TROVE methodology is well documented [72–76] and has been applied to a
variety of molecules, mostly as part of the ExoMol project [7, 65, 69, 73, 77–85]. Only
the specific details relevant to this work on PF3 will be discussed here.

The ro-vibrational Hamiltonian was constructed numerically as implemented in
TROVE [72]. The Hamiltonian was expanded using a power series around the equilib-
rium geometry of the molecule. The coordinates used were linearised versions of the
stretching coordinates; ξli = ri − re (i = 1-3) and bending coordinates; ξli = αi−3 − αe

(i = 4-6). The kinetic energy operator was expanded to 6th order and the potential
energy operator to 8th order. Morse coordinates of form ξli = 1− exp(−aξli) (i = 1− 3
and a = 1.0 Å−1 is the Morse parameter) were used in the potential expansion for
the stretching coordinates with the bending coordinates expanded as ξli (i = 4-6)
themselves. Atomic masses were used throughout.

A multistep contraction scheme was used to build the vibrational basis set [75].
For each coordinate ξli a one-dimensional Schrödinger equation was solved using the
Numerov-Cooley approach [72, 86, 87] to generate basis functions φni

(ξli) with vi-
brational quantum number ni. The vibrational basis set functions |v〉 are formed as
products of the 1D basis functions

|v〉 =
∏
ν

|nν〉 = φn1
(ξl1)φn2

(ξl2)φn3
(ξl3)φn4

(ξl4)φn5
(ξl5)φn6

(ξl6). (14)

The basis set is truncated by the polyad number P via

P = 2(n1 + n2 + n3) + n4 + n5 + n6 ≤ Pmax = 14. (15)
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A contracted basis set was then formed by reducing the six dimensional problem
into two detached subspaces: (ξl1, ξ

l
2, ξ

l
3) for stretching coordinates and (ξl4, ξ

l
5, ξ

l
6) for

bending coordinates. A Hamiltonian matrix is constructed and diagonalised for each
of these subspaces to give symmetrised contracted vibrational basis functions for the
stretching and bending coordinates respectively. The details of this step have been
discussed in a recent publication [75]. Products of these eigenfunctions are formed
which are also truncated via Eq. (15).

This procedure generated 1455, 1125 and 2571 vibrational eigenfunctions |Φ(i)
vib〉 for

the A1, A2 and E states respectively with term energies Ẽ
(J=0)
i up to 8 000 cm−1 above

the ground state (with zero point energy of 1901.0 cm−1). As is usual for TROVE, the
J = 0 contraction scheme is employed for computing states with J > 0 [73]. This uses
the vibrational eigenfunctions combined with symmetrized rigid-rotor functions as a
basis set for J > 0 calculations rather than the primitive vibrational functions [73, 75].
As the PF3 molecule has a relatively large moment of inertia, levels up to high values
of J are required to simulate the infrared spectrum, even at modest temperatures. To
obtain a manageable basis set size, only vibrational eigenfunctions with term energies
less than 3100 cm−1 were used in the J = 0 contraction. This will make the basis
set slightly less flexible compared to using all states but greatly reduce computational
time. The most intense bands in the PF3 spectrum are below 2000 cm−1 so limiting
the basis to this energy range is reasonable. After this basis truncation 105, 70 and 161
vibrational eigenfunctions for each symmetry are retained. As the vibrational energies
were computed with the full Pmax = 14 basis, the accuracy of the vibrational band
centres is retained.

As shown in Section 3, the ab initio vibrational band centres are mostly in good
agreement with the experimental values. The PES could be improved further by re-
fining to the experimental data [6]. This has been carried out for constructing high
temperature line lists [7, 80, 81, 83, 84] with the motivation that improving the PES
near equilibrium will also improve the PES for higher energies where there is typically
less experimental data available. Refinement can be an expensive procedure however,
often requiring dozens of PES parameters to be adjusted for multiple values of J [84]
and can lead to over fitting if care is not taken [80]. As an alternative, for this room
temperature line list where the main adsorption bands occur between 0-2000 cm−1,
we replace the calculated vibrational energies with experimental values where possible
[88] as the J = 0 basis is diagonal with respect to the vibrational component of the
Hamiltonian [73]. This should give an accuracy for the vibrational bands in line with
the rotational energies (section 3.2).

2.4. Line Intensities

The eigenvectors from the variational calculation along with the DMS were used to
compute Einstein-A coefficients of transitions. These satisfy the rotational selection
rules [89]

J ′ − J ′′ = 0,±1, and J ′ + J ′′ 6= 0, (16)

where J ′ and J ′′ are the upper and lower values of the total angular quantum number
J and the C3v(M) symmetry selection rules

A1 ↔ A2 and E ↔ E. (17)
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The absolute absorption intensities are then given by [89]

I(f ← i) =
Afi
8πc

gns(2Jf + 1)
exp(−c2Ẽi/T )

Q(T )ν̃2
fi

×
[
1− exp

(
−
c2ν̃fi
T

)]
, (18)

where Jf is the rotational quantum number for the final state, ν̃fi is the transition

frequency (ν̃fi = Ẽf − Ẽi), Ẽi and Ẽf are the initial and upper state term values,
respectively, Q(T ) is the partition function (Section 3.3), and c2 is the second radiation
constant. The Einstein-A coefficients Afi between the ro-vibrational states i and f have
been defined previously [90]. 19F nuclei have a nuclear spin of 1/2 and so the nuclear
spin statistical weights gns for PF3 are the same as those of phosphine [7]: (8,8,8)
for states of symmetry (A1, A2, E) respectively, within the HITRAN convention of
including the full nuclear spin of each species [91].

The temperature independent Einstein-A coefficients were computed using the
GAIN-MPI program [92]. Intensities were computed using a lower energy range of
0 – 4500 cm−1 taking into account up to J = 100 for transition frequencies between 0
and 4000 cm−1. An intensity cut-off of 10−30 cm molecule−1 was used at 298 K.

3. Results

3.1. Ab Initio Vibrational Energies

The vibrational energies obtained from the ab initio PES with the full Pmax = 14
basis set are shown in Table 1. The results for the ν2 and ν4 bands and combina-
tions/overtones of these fundamentals are in good agreement with experimentally de-
rived values. For the ν1 and ν3 fundamentals the agreement with experiment is not
as good but still reasonable for an ab initio PES at the level of electronic structure
theory used. To estimate the convergence of vibrational energies with this basis set
we used a complete vibrational basis set (CVBS) extrapolation procedure similar to
that described by Owens et al. [82]. Variational calculations were carried out with
Pmax = 12, 14 and 16 basis sets respectively. From this we estimate that the basis set
incompleteness error for the Pmax = 14 basis is of the order 10−3 cm−1 for the fun-
damental bands and therefore our errors largely come from the approximations made
in the ab initio calculations of the PES. For the energy range 0-2000 cm−1 (the main
region of the infrared spectrum) and 0-3100 cm−1 (the range of basis functions used
for J > 0 calculations) the convergence errors are estimated to be around 0.1 and 3.5
cm−1 respectively. As discussed above, to obtain a more accurate simulation of the
infrared spectrum we replaced the ab initio calculated band centres with empirical
values [88].
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Table 1. Comparison of computed vibrational band origins for PF3 with the empirical values. Energy term

values are in cm−1.

Band Symmetry Ab initio Experiment ([25, 88])

ν1 A1 895.742 891.940

ν2 A1 487.377 487.716

ν3 E 861.771 859.219

ν4 E 346.748 347.086

ν2 + ν4 E 833.664 834.381

2ν0
4 A1 692.286 692.847

2ν±2
4 E 694.039 694.695

2ν2 A1 974.830 975.190

3ν±1
4 E 1038.347 1039.071

3ν±3
4 A1 1041.821 1042.650

ν2 + 2ν0
4 A1 1178.665 1179.069

ν2 + 2ν±2
4 E 1180.420 1180.919

(ν3 + ν4)‖ A2 1206.483 1204.790

(ν3 + ν4)⊥ E 1206.718 1205.068

2ν2 + ν4 E 1320.610 1320.788

ν2 + ν3 E 1347.158 1345.440

ν1 + ν2 A1 1381.459 1377.754

ν1 + ν±1
4 E 1240.776 1237.386

3.2. Rotational Energies

To assess the accuracy of our pruned basis set using the J = 0 method we compare
rotational energies with experimental values for both the ground vibrational state and
the ν2 = 1 state [20, 35]. For J < 5 our observed−calculated errors are of the order
of 1×10−3 cm−1. For higher Js (40-60) this increased to 1×10−2. We thus expect
our J = 100 rotational energies to still be relatively accurate despite making the
J = 0 contraction. Our root-mean-square error for all rotational energies compared
with experiment are 8.7×10−2 cm−1 for the ground vibrational state and 2.5×10−2

cm−1 for the ν2 = 1 state.

3.3. Partition Function

The temperature-dependent partition function Q(T ) is defined as

Q(T ) =
∑
i

gi exp

(
−c2

Ẽi
T

)
, (19)

where gi = gns(2Ji + 1) is the degeneracy of the state i with energy Ei and rotational
quantum number Ji and c2 is the second radiation constant.
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Figure 2. Convergence of partition function of PF3 at 296 K with respect to the rotational quantum number
J .

To the best of our knowledge the PF3 partition function has not yet been computed.
We provide the value of the partition function calculated using our model between 1-
400 K on a 1 K grid in the supplementary information. At 296 K the partition function
has the value 4.68 ×105. Fig. 2 shows the convergence of Q(T ) as a function of J at 296
K for up to J = 100. The partition function is converged to around 0.1 %. The large
mass of the fluorine atoms gives PF3 a large moment of inertia and so rotational levels
are closely spaced in energy. To simulate the infrared spectrum at higher temperatures
as is typically done in the ExoMol project would require many Js to be calculated,
well past J = 100. This was carried out for the SO3 molecule where up to J = 130 was
required for 800 K. For PF3, even higher values of J would be required but this can
be carried out using special methods. These include saving the Hamiltonian matrix to
disc and diagonalizing using external parallel programs or making use of diagonalizers
specially developed for large matrices [46, 85].

3.4. Spectrum Simulations

The PF3 spectrum can be simulated using the model described above. This results in
68 billion transitions between 3.3 million (3 311 926) states for up to J = 100.

An overview of the PF3 infrared absorption cross section at 296 K is shown in
Figure 3 at a resolution of 0.1 cm−1 convoluted with a Voigt profile with a half-width
half-maximum (HWHM) value of 0.1 cm−1 using the Exocross program [93]. There are
only transition intensities above 1×10−25 cm/molecule for the 0–2000 cm−1 frequency
range at this temperature. The PF3 spectrum is dominated by the most intense bands
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between 800–930 cm−1 corresponding to the ν1 and ν3 bands respectively. The weaker
ν2 and ν4 fundamental bands as well as other overtone and combination bands can
also be seen at this scale. As noted by Rey et al. in their calculation of the CF4

spectrum [94], fluorine containing molecules have relatively low vibrational frequencies.
This leads to hot bands in the spectrum, even at room temperature, from transitions
between excited vibrational states. This is also the case for PF3 resulting in very
congested absorption bands. These hot bands are not visible or indicated in Figure 3
as they are hidden by the more intense bands but are discussed and partially shown
below.

Stick spectra are shown in Figure 4. As the PF3 spectrum is very dense only the
strongest transitions on a 0.05 cm−1 grid were plotted. To date, only relative absorp-
tion intensities for PF3 have been given in the literature [26–28, 30–32]. The spectra
simulations here are the first to give absolute absorption intensities for this molecule.
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Figure 3. Overview of simulated PF3 spectrum at 296 K.
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Figure 4. Stick spectra for the main PF3 absorption bands at 296 K. (a) is pure rotational band, (b),(c) and
(e) are fundamental bands and (d),(f),(g) and (h) are overtone and combination bands. Details of each band
are given in main text.
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The PF3 molecule has a permanent dipole moment giving an appreciable pure ro-
tational spectrum. This is shown in Figure 4(a). The rotational spectrum peaks at
around 18 cm−1 at 296 K.

Figure 4(b) shows the spectrum between 300-390 cm−1 which is dominated by the
ν4 fundamental band. This has the PQR structure expected for a parallel band.

Figure 4(c) shows the spectrum between 460-510 cm−1 which is dominated by the
ν2 fundamental band. The appearance is similar to the ν4 = 1 band but contains a
very sharp and intense Q-branch. This region also contains weaker contributions from
the 2ν2 − ν2 [28, 88] and ν2 + ν4 − ν4 [28, 95] hot bands.

The relatively weak 2ν4 overtone band is shown in Figure 4 (d) between 670-720
cm−1.

Figure 4(e) shows the spectrum between 820–920 cm−1. This region is very dense
and contains many transitions. As remarked the ν1 and ν3 bands in the region are the
most intense of the whole spectrum. The ν1 band is a parallel band while the ν3 band
is of perpendicular type. As shown below, the ν2 + ν4 band also appears in this region
but is not apparent in the ‘stick’ plot. The ν1 band has a relatively wide Q branch
with hot band Q branches from (ν1 + nν4 − nν4) transitions [28]. The R branch of ν1

significantly overlaps with the ν3 band.
The spectral range between 1170–1260 cm−1 is another dense region as shown in

Figure 4(f). The strongest features are the two ν3 + ν4 combination bands and the
ν1 + ν4 band. Also contained in this region (but not readily visible on a ‘stick’ plot)
are the ν2 + 2ν0

4 , ν1 + 2ν±2
4 − ν±1

4 and ν1 + 3ν±3
4 − 2ν±2

4 bands [31].
Figure 4 (g) shows the spectrum between 1350–1400 cm−1. The main feature is the

ν1 + ν2 combination band. Also in this region (but not observable on the ‘stick’ plot)
are the ν1 + ν2 + ν4 − ν4 and ν1 + ν2 + 2ν4 − 2ν4 hot bands [32].

The highest frequency absorption features in the range considered is shown in Figure
4(h) between 1670–1815 cm−1. This is another congested region and to the best of our
knowledge has not yet been analysed experimentally. The dominating features of this
region are the 2ν3 overtone band at 1719 cm−1, the ν1 +ν3 combination band at 1753
cm−1 and the 2ν1 combination band at 1789 cm−1. Due to lack of experimental data,
the centres of these bands were not empirically corrected and stayed at the values
predicted purely ab initio. From Table 1, we expect our predictions to overestimate
the positions of the overtone stretching bands centres by about 3–5 cm−1.

The ‘stick’ spectra plotted in Figure 4 are idealised and do not consider the effects
of Doppler and collisional broadening. To simulate the observable spectrum we use a
resolution of 0.1 cm−1 and broaden the lines with a Voigt profile with a half-width
half-maximum (HWHM) value of 0.1 cm−1 using the Exocross program [93]. Figure 5
shows the results of this process for the main vibrational bands. From experience [83–
85] these parameters are usually sufficient for accurately simulating infrared spectra
from the PNNL database [96] (although PF3 is not yet included in this database).
Due to the density of relatively intense lines, these parameters result in very broad
features, removing most of the structure from the spectrum.
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Figure 5. PF3 spectra convoluted using Voigt profile with hwhm of 0.1 cm−1 at 296 K

To the best of our knowledge an experimental spectrum for PF3 is not currently
available as data files in the literature. To provide some comparison to experiment we
compare our results the high resolution spectra of Ben Sari-Zizi et al. [28, 31]. Figure
6 shows the simulated spectra for the ν3 and ν1 fundamental bands (left) and ν3 + ν4

and ν1 + ν4 combination bands (right). For these plots a resolution of 0.01 cm−1 was
used and lines broadened using a Voigt profile with HMWM of 0.01 cm−1. The left and
right plots are in reasonable qualitative agreement with both Figure 1s of references
[28] and [31] respectively.
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Figure 6. PF3 spectra convoluted using Voigt profile with HWHM of 0.01 cm−1 at 296 K for comparison
with Figure 1s of references [28] and [31].

4. Rotational Energy Clustering

Previous theoretical work investigating the behaviour of general XY2 [39–44], XY3 [45–
47] and XY4 [50–53] molecules at high rotational excitations have found the emergence
of several symmetrically equivalent axes of rotation as the energy is increased. These
stable axes of rotation correspond to anticlockwise/clockwise motion about each of
the X-Y bonds.

We have computed rotational term values (energies) for the ground vibrational state
of PF3, using variational calculations similar to those outlined in Section 2.3 but for
a much lower basis set (Pmax = 6 for Eq. (15)), for J ≤ 270 (corresponding to 17,500
cm−1). The lower basis set was sufficient to converge the purely rotational states of
PF3 to 10−2 cm−1 or better for J = 0..100. Although the convergence error gradually
builds up with increasing J up to 270 we believe that this is effectively negligible for the
purpose of the rotational clustering analysis. Due to the stabilisation of the rotational
motion, characterised by rotational clustering, the interaction of rotation with the
vibration becomes less important, justifying the smaller vibrational basis set. This is
a qualitative effect in the vibrational ground states, which is not very sensitive to the
size of the vibrational basis set [45]. Equilibrium values of re = 1.56 Å and αe=98◦

were used for the bond lengths and bond angles, respectively. The rotational term
values, in the ν = 0 vibrational ground state, are given by ẼJ,K with K representing
the projection of the angular momentum, J , onto the molecular z-axis (see Figure
1). In order to illustrate the cluster formation, the rotational term value spacings,
ẼJ,K − Ẽmax

J,K , are plotted against J in Figure 7, where Ẽmax
J,K is the maximum energy

(this occurs at K = Ka=0 and K = Kc=0) for a given value of J , as a function of K,
in the ν=0 vibrational ground state. As can be seen in Figure 7, each cluster is formed
from four distinct states, colour-coded by their symmetry, which span the reducible
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representation

ΓCluster = A1 ⊕A2 ⊕ 2E (20)

of the Molecular Symmetry Group C3v(M) [4]. Those states of highest and lowest
energy in each cluster span the A1⊕A2 representation; for even values of J the highest
energy has A1 symmetry and the lowest energy has A2 symmetry, with the reverse true
for odd J . The middle two states are represented by the doubly-degenerate E-type
representation, giving a total of 6 ro-vibrational states for each energy cluster, resulting
from (clockwise or anti-clockwise) rotation about three symmetrically equivalent axes,
which become more pronounced as J →∞. Figure 7 only shows those states with the
highest energies in each J manifold for clarity.
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Figure 7. Rotational term value spacing, ẼJ,K − Ẽmax
J,K , as a function of J for the highest rotational energies

in the ground vibrational state of PF3. Blue stars represent states of A1 or A2 symmetries with red representing

those of degenerate E symmetry, all part of the C3v(M) molecular symmetry group.

Clear evidence of rotational clustering can be seen in Figure 7; this occurs at a
relatively high value of the rotational quantum number, around J=200. Table 2 gives
a comparison with other XY3 molecules.

Table 2. Values of rotational angular momentum J at which rotational energy clusters begin to form, for

various XY3 molecules. αe gives the equilibrium bond angles between each Y atom.

Molecule Cluster formation Type αe Reference

BiH3 J=20 Pyramidal 91.6◦ [47]

SbH3 J=30 Pyramidal 91.5◦ [47]

PH3 J=50 Pyramidal 93.4◦ [45]

PF3 J=200 Pyramidal 98◦ This work

SO3 J=240 Planar 120◦ [46]
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The characteristics determining the energy, at which level clustering is expected to
occur, are thought to be related to local-mode behaviour (see e.g. [97, 98]), with local-
mode molecules exhibiting clustering behaviour more readily, at a lower rotational
excitation. Local-mode behaviour is attributed specifically to XHN molecules (N =
2, 3, 4 . . .), with previously studied XH3 molecules (in the context of rotational energy
clustering), BiH3 and SbH3 [47], displaying strong local-mode behaviour. As shown in
Table 2 these molecules consequently form rotational energy clusters at much lower
rotational excitation than PF3 and SO3 [46]. PH3 [45] has a less pronounced local-
mode behaviour than BiH3 or SbH3, so exhibits cluster formation at a slightly higher
rotational energy, but nevertheless much lower than for PF3 and SO3. BiH3 is a typical
local-mode molecule, with an equilibrium bond angle of 91.6◦ [99], a large mass ratio
of M(Bi)/M(H), and small intermode coupling [97]. These almost orthonormal bonds
make it ideally oriented for stable rotations. Although SbH3 has similar local-mode
properties to BiH3, it has a less pronounced spherical top character, therefore forming
rotational cluster states at a slightly higher rotational excitation.

5. Semi-Classical Analysis: Rotational Energy Surfaces

The first classical interpretation of these quasi-degenerate energy levels in spherical
tops was formulated by Dorney and Watson in 1972 [100], inspiring many subse-
quent works [39, 52, 53, 101–113]. These investigations mostly revolve around the
concept of a “localisation” axis for high rotational excitations and are characterised
by a rotational energy surface (RES) [114]. The RES describes the classical (or semi-
classical) rotational energy of a molecule as a function of the direction of the classical
angular momentum vector in the molecule-fixed coordinate system, Euler angles θ
and φ (θ ∈ [0◦, 180◦] and φ ∈ [0◦, 360◦]), with a “quantum mechanical” length of

|J| =
√
J(J + 1)~ [47]; see Figure 8. A rotational energy surface is computed for

different excitation levels of the rotational angular momenta, with corresponding sta-
tionary points coinciding with the formation of rotational energy clusters. As long as
the molecule has structural symmetry, consisting of identical smaller atoms around a
larger central atom, which are arranged symmetrically at equilibrium, then the local-
isation axes on the RES will also be symmetrical (the three symmetrically equivalent
localisation axes are labelled as A on Figure 8, with clockwise and anticlockwise mo-
tion also equivalent for each). The phenomena is an interesting example of a quantum
system tending towards becoming classical at a high energy. In this work we have em-
ployed an approach for the semi-classical analysis whereby the classical limit is applied
to the ro-vibrational Hamiltonian and the classical energy subsequently minimised at
each molecular orientation of the rotation, as was proposed by Harter [108]; details
can be found elsewhere [41, 45, 46, 112].
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Figure 8. Illustration of the angles (θ ∈ [0◦, 360◦] and φ ∈ [0◦, 180◦]) and classical angular momentum vector

(|J| =
√
J(J + 1)~) which constitute a rotational energy surface (RES) for PF3 at a given value of J .

Figure 9 gives the progression of the 2D projection of the rotational energy sur-
face of PF3 with increasing values of J , as a function of θ and φ. The position of
the largest (classical) energy value, in units of cm−1, (in red, in the centre of the
rotational energy plots) can be associated with a semi-classical limit of the quantum

number k as k =
√
J(J + 1) cos θ. For a given J , the classical energy varies with the

angle θ in the same way as the quantum energy ẼJ,K varies with the rotational quan-
tum number K. The topology of the RES with six maxima, which form at θ = 90◦,
φ = 30◦, 90◦, 150◦, 210◦, 270◦ and 330◦, is different from that found for XH3 pyramidal
molecules [45, 47, 112]. Namely the maxima at high J do not tend to roughly coin-
cide with molecular bonds and are characterized by less pronounced barriers. This is
however similar to the RES topology of SO3 [46]. The clustering structure of Figure 7
is very similar in nature to both the XY3-type and SO3 molecules.
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Figure 9. 2D projections of rotational energy surfaces ẼJ (θ, φ) for PF3 at increasing values of J (J=125,
225 (top row), 275, 300 (middle row), 350 and 400 (bottom row)).

6. Conclusions

We have computed new ab initio PES and DMS for the PF3 molecule which were used
to carry out variational nuclear motion calculations, simulate the infrared spectrum,
and to perform an analysis of the rotational states at high rotational excitations. A
clustering phenomena was found to occur which has been analysed using semi-classical
methods and comparisons made with previous investigations into pyramidal spherical
top molecules. It would be of interest to make further comparisons with even more
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pyramidal molecules, NF3 or AsH3 [115] for example, in order to investigate the effects
of molecular properties (such as mass, equilibrium bond angle, rotational constant, how
rigid the molecule is) on the formation of rotational clustering states. An ideal molecule
to study experimentally would be accessible at room-temperature. This would have
clustering effects which begin to form at low rotational excitations, but should also
have a low rotational constant, so that states of higher rotational excitation will be
occupied for a particular temperature.

For PF3, the rotational clustering occurs at around J = 200 (within 0.0x cm−1),
which corresponds to an energy of about hc × XXX.XX cm−1. This is comparable
to the clustering energy found in, for example PH3 (6300 cm−1) [45]. Even though
the rotational excitation is quite high, it does not have enough centrifugal energy to
overcome the stiffness of the potential energy and form a stable rotation around one
of the molecular bonds. Our search for the ideal clustering system will continue.

The ab initio calculated vibrational energies up to 3100 cm−1 are in reasonable
agreement with experimental values. Rotational levels up to J = 100 were calculated
and are in good agreement with the experimental values available.

Transition intensity calculations for up to J = 100 were carried out in order to sim-
ulate the room temperature spectrum. The calculations here could be readily extended
to produce a hot PF3 line list for the Exomol database, applicable for astronomical ap-
plications, if required. This would require states with much larger values of J (well over
J = 100) to be included but techniques developed for SO3 could be employed [46]. The
room temperature PF3 line list is available from the CDS (http://cdsarc.u-strasbg.fr)
and ExoMol (www.exomol.com) data bases.
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[52] D.A. Sadovskíı, B.I. Zhilinskíı, J.P. Champion and G. Pierre, J. Chem. Phys. 92, 1523–

1537 (1990).
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