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Collision detection, which refers to the computational problem of finding the relative 
placement or configuration of two or more objects, is an essential component of many 
applications in computer graphics and robotics. In image-guided robotic surgery, real-
time collision detection is critical for preserving healthy anatomical structures during 
the surgical procedure. However, the computational complexity of the problem usually 
results in algorithms that operate at low speed. In this paper, we present a fast and 
accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs) 
that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm 
can perform a preliminary filtering to reduce the number of objects that need to be 
tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest 
are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm 
to obtain accurate overlapping status between them. To accelerate the execution, our 
Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a 
high-performance scalable hardware architecture is proposed by analyzing the intrinsic 
parallelism of our algorithm and is implemented on FPGA platform. Results show that 
our hardware design on the FPGA platform can achieve around 8× higher running speed 
than the software design on a CPU platform. As a result, the proposed algorithm can 
achieve a collision frame rate of 1 kHz and fulfill the requirement for the medical surgery 
scenario of Robot-Assisted Laparoscopy.

Keywords: OBB, collision detection, Sweep and Prune, FPga, cPU, robotic-assisted laparoscopy, computer 
vision

1. inTrODUcTiOn

Current state-of-the-art surgical systems provide stereo vision and tele-operated robotic control 
of instruments to enable highly dexterous surgical actions in small spaces. However, soft-tissue 
deformation, restricted workspace, and limited field-of-view impose significant challenges on safe, 
accurate, and effective surgical interventions. To encounter the problems, there is an increasing 
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FigUre 1 | geometric modeling of three bounding volumes.
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demand for augmenting and enhancing the visual and force-
based (haptic) feedback. Advances in computer vision techniques 
(Stoyanov, 2012; Maier-Hein et al., 2013, 2014) have enabled the 
real-time 3D surface reconstruction from laparoscopic images 
to generate improved visualization of the surgical site (Sridhar 
et al., 2013). Despite the promising information that real-time 3D 
geometry provides during surgery, the technology has not been 
utilized to provide haptic feedback due to the lack of real-time 
collision detection techniques to provide low-level information 
of interaction between multiple instruments and anatomical 
structures.

Achieving in  vivo haptic sensing is difficult during robot-
assisted laparoscopic surgery, due to the complex interactions 
between the surgical instruments and many objects, such as 
trocar, anatomical structures, and other instruments. It is techni-
cally challenging to embed multiple miniaturized force sensors 
onto different parts of the instrument (Okamura, 2004) due to 
difficulties in meeting the biocompatibility and surgical steriliza-
tion requirements. A promising alternative to hardware sensing is 
to provide simulated haptic feedback based on potential collision/
contact between image-based anatomical models and surgical 
instruments (Gibson et al., 1997; Bethea et al., 2004; Meijden and 
Schijven, 2009; Okamura, 2009; Kwok et al., 2013). The simulated 
haptic feedback can raise surgeon’s instant and distinct awareness 
on the relative configurations between the surgical instruments 
and the tissue of interest. To achieve this, fast and robust collision 
detection is the prerequisite. The virtual complex-shape objects at 
the surgical site will have to be decomposed and generalized into 
numerous primitives, such as spheres and boxes. After that, these 
uniform geometric representations are effectively parallelized in 
order to maintain smooth and continuous haptics at a rate above 
1 kHz (Basdogan et al., 2004). This 1 kHz rate is the recognized 
requirement for providing smooth and continuous haptics dur-
ing the medical surgery.

Collision detection is the process of determining whether 
two or more bodies are colliding at one or more points. It is a 
fundamental technique used in a wide spectrum of applications 
including computer graphics, virtual prototyping, gaming, 
haptics (Peterlik and Filipovic, 2011), robot motion planning 
(Vadakkepat et al., 2008; Sudha and Mohan, 2011), robotic con-
trol with constraints (Vachhani et al., 2009), molecular modeling, 
etc. Such detection is usually employed to prevent virtual objects 
from penetrating each other by identifying their geometric 
interface. The penetration prevention can also be important for 
the surgical safety, as it reduces unnecessary tissue perforation. 
Spheres, axis aligned bounding boxes (AABBs) and oriented 
bounding boxes (OBBs) are typically used primitives to represent 
objects for collision detection. Figure  1 illustrates the state of 
space representations of their geometries. The data structure of 
a sphere is relatively simple, comprising of the radius and center 
coordinate, for which Chow et al. (2011) has already proposed 
a Field-programmable gate array (FPGA)-based computational 
scheme to detect potential collisions. AABB is a cuboid, where the 
edges are parallel to XYZ coordinates, respectively. The OBB is 
also a cuboid, but flexibly oriented in 3D. Altomonte et al. (2008) 
also demonstrates a full force feedback chain in an anatomical 
environment with a good performance.

During collision detection, the Sweep and Prune (SAP) algo-
rithm is an efficient method for preliminary filtering among a 
large number of cuboids and reducing the amount of objects to 
be tested. However, SAP can only be used in the format of AABBs. 
Thus, its application is highly restricted on free-form objects in 3D, 
which their longitudinal axes are seldom aligned with the coordi-
nate axes. Therefore, fast and accurate computation schemes are 
proposed to process collision detection among OBBs. OBB is a 
widely used bounding volume in many applications because of 
its flexible and tight-bound characteristics, despite of its relatively 
high computational complexity compared to other primitives 
due to its flexibly oriented edges. For checking the intersection 
between two OBBs, the most classical algorithm is the Separating 
Axis Test (SAT). However, if the amount of OBB is large, using 
brute force method to check all overlap statuses between OBBs 
consume large amount of computing resources and become inef-
ficient. The complexity of brute force method is O(n2), where n is 
the number of OBBs, which exceeds the threshold in our scenario. 
To solve this, we derive a fast and accurate algorithm that allows 
us to reduce the computational complexity from O(n2) to sorting 
algorithm-dependent, which the computational complexity is 
controlled by our choice of sorting algorithm.

For execution of the algorithm, hardware platform is essential. 
Field-Programmable Gate Arrays (FPGA) is a hardware platform 
for engineers to design a special processor to execute their 
work. An FPGA mainly consists of six components, including 
programmable I/O units, configurable logic block that consists 
of LUTs and registers, embedded RAM, rich routing resources, 
hard IP cores. All these components support the engineers to 
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design a customized “computer” to execute a special task. The 
architecture will be designed and loaded into FPGA chip, and 
the compilation takes several minutes to several hours, depends 
on the complexity of architecture. Generally, the customized 
hardware platforms would generally have better performance 
than the routine hardware platforms in executing a specific task. 
However, the architectures of most hardware platforms only allow 
to be written once, and no redesigning of the architecture can 
be done. FPGA platform, in contrast, has the advantage to sup-
ports architecture redesigning features without losing too much 
performance comparing with other non-redesignable hardware. 
Moreover, reconfigurable feature of FPGA platform also supports 
better scalability than other hardware platforms, like ASIC. At the 
same time, FPGA platform support highly customized processing 
architectures to fulfill the algorithm-specific requirements, like 
the other hardware platforms.

General-purpose GPU (Graphics Processing Unit) and 
FPGA (Field-Programmable Gate Array) have been widely 
used to accelerate computationally intensive algorithms in 
a wide range of areas, such as machine learning, image pro-
cessing, bioinformatics, etc. Such HPC (High-Performance 
Computing) systems are usually equipped with a CPU and one 
or more coprocessors as accelerators to cooperate with CPU. 
As an implementation of SIMD (Single instruction, multiple 
data), GPUs analyze data as if it is in graphic form, and process 
using thousands of cores in parallel. One example is CUDA 
(Compute Unified Device Architecture), which is a parallel 
computing architecture and programing model developed by 
Nvidia (Kestur et al., 2010). On the other hand, unlike GPUs, 
FPGAs do not have any fixed instruction-set architecture. They 
provide an array of programmable logic blocks and reconfigur-
able interconnects, which can be routed to perform any complex 
logic or functions. They also include fast on-chip memory and 
DSPs for dedicated use (Papadonikolakis et al., 2009). FPGAs 
are programed using HDL (hardware description language), 
such as Verilog. Compared with FPGAs, GPUs are easier to 
program and debug with the high level language and APIs and 
require less time for design and implementation. However, 
this implementation easiness comes at a cost. FPGA, which 
consists of high density arrays of uncommitted logic, is very 
flexible in hardware infrastructure, and developers can have 
choice to trade-off resources and performance by adjusting the 
hardware architecture. With fine-grained bit-wise parallelism, 
FPGAs can achieve higher performance and lower latency for 
most algorithms (Brost et al., 2014). The reconfigurable nature 
of FPGA enables the developers to create a high-performance 
functional prototype that can emulate and verify solutions. The 
prototype could also be integrated into the final system (Brost 
et al., 2014). Besides, FPGA outperforms GPU in terms of less 
energy consumption and higher performance per joule (Che 
et al., 2008). Nevertheless, FPGA design can be transformed to 
ASIC (Application-Specific Integrated Circuit) design with less 
effort. In our study, the proposed algorithm requires the adjust-
ment of the parallelism in any level to customize its precision 
or performance. Therefore, FPGA is the platform that meets 
our requirements and is chosen in our study as the hardware 
platform.

This paper generally focuses on collision detection, also 
known as broad phase proximity query, between OBBs. A fast 
and accurate algorithm is developed to be executed on FPGA 
platform with a customized hardware architecture for collision 
detection among numerous OBBs. The algorithm is designed 
and optimized such that its computational processes can be fully 
pipelined. The data independence parts are designed in parallel, 
so as to maximize the advantages of FPGA platform. Temporary 
memory units are adopted to reduce the data dependence. 
Besides, the precision of data does not always require the use of 
the floating point in the algorithm. In this paper, mixed-precision 
techniques are used to define the data format. In the sorting pro-
cess, reduced precision data format, which consumes fewer logic 
resources than high precision one, is used to increase the data-
path parallelism; meanwhile, the data precision is appropriately 
defined based on the flexible input requirement of accuracy. To 
our knowledge, this is the first work to exploit a reconfigurable 
computing architecture for collision detection. Overall, the key 
contributions of this paper include:

 1. Development of a fast and accurate algorithm for collision 
detection among OBBs. It can reduce the complexity from 
O(n2) to sorting complexity, n is defined as the number of 
OBBs. As a result, the ratio of acceleration increases with a 
growth of the number of objects.

 2. Design of a scalable, parallel, and fully pipeline hardware 
architecture, which accelerates the presented algorithm on an 
FPGA platform.

 3. Implementation of FPGA-based mixed-precision techniques 
to reduce the complexity of number sorting required for 
Improved Sweep and Prune algorithm.

 4. Comparison of the speedup and energy efficiency between our 
Improved Sweep and Prune algorithm and the conventional 
Sweep and Prune algorithm on various computing platforms. 
It validates the feasibility and practical value of our algorithm 
in real-time haptic interaction of tele-operated laparoscopic 
surgery.

2. MaTerials anD MeThODs

2.1. configuration of the FPga and cPU 
Platforms
The FPGA platform was built on a Xilinx Virtex-6 XC6VHX565T 
FPGA platform with 16,384 datasets. It contains 864 DSP slices 
(with 25 × 18 multipliers and 48-bit adder/subtracter/accumula-
tor), 912 intern Block RAMs and 88,560 configurable logic blocks 
(CLBs), which can configured for logic, arithmetic, ROM, RAM, 
or data register functions. Xilinx ISE design suite 14 was used for 
the programing processes on the platform. The code was written 
in Verilog. The design process using Xilinx ISE consisted of five 
steps: Design Entry, Synthesis, Implementation, Verification, 
and Download. The programing model was firstly designed 
on the ISE design suite, and then the clock cycle was obtained 
after synthesis. After that, the programing model went through 
the implementation stage, which involved translation, mapping, 
placing, and routing. In the step of verification, we checked for the 
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FigUre 2 | The work flow of proposed algorithm. The dotted arrows 
indicate the output of one module and input of the next module, while the 
solid arrows show the data flow of algorithm.
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errors of our code through the waveforms between the input data 
and output data. Lastly, we downloaded our code into real demo-
board of FPGAs. The download time was around a few seconds. 
The total compiling and loading time of the design process was 
about 30 min. The price of FPGA was around $6000. The software 
platform was executed on a CPU platform, with the configuration 
of Intel CoreTM i7 CPU 860 @ 2.8 GHz with 4 GB RAM, and the 
compiler was Visual Studio 2012. No multi-threading was used 
in the Visual Studio.

2.2. Fast algorithm for collision  
Detection between OBBs
In this section, a collision detection algorithm, which OBBs are 
generated to represent the tissue and medical devices, is intro-
duced for applications in robot-assisted medical surgery. With 
the aim to be implemented on FPGA efficiently, its computation 
was parallelized. The method involved three steps: (i) projection 
and transformation of the geometric model of OBBs into the 
state-space representation of AABBs; (ii) reduction of number 
of candidates in a preliminary selection using the SAP algorithm; 
(iii) acquisition of the overlapping status among the selected 
OBBs with SAT, so as to prescribe the corresponding precision 
required for further process. Figure 2 shows the work flow of the 
presented algorithm.

The related information about Sphere, AABB, and OBB are 
shown in Figure 1 and defined as follow:

(1) The coordinate of center point of Sphere: (cpx, cpy, cpz). The 
radius of Sphere: r.

(2) The coordinate of center point of AABB: (cpx, cpy, cpz). Half 
length of three sides of AABB: (hw0, hw1, hw2).

(3) The coordinate of center point of OBB: (cpx, cpy, cpz). Three 
unit direction vectors along each side of OBB: (dv00, dv01, 
dv02), (dv10, dv11, dv12), (dv20, dv21, dv22) or define them as  
dv0,1,2

0,1,2. Half length of three sides of OBB: (hw0, hw1, hw2).

2.2.1. Converting OBB to AABB
Bounding volume was used to bound tissue and medical devices 
to check the collision status between them in the robot-assisted 
medical surgery. The SAP was an efficient algorithm to reduce the 
number of bounding box candidates during collision detection. It 
was defined base on the bounding volume whose edges  parallel to 
the axis, such as the AABB. In order to use SAP algorithm to 
reduce the number of OBB candidates, OBBs were converted 
to AABBs. This processing and the detailed information about 
how to convert OBB to AABB were defined in pseudo code of 
Algorithm 1.

2.2.2. Improved Sweep and Prune
In the robot-assisted medical surgery, the collision detection 
between tissue and medical devices was the crucial part. In 
robot-assisted laparoscopic surgery, the tissue and laparoscopic 
grippers were transformed to OBBs for the convenience of over-
lap-checking between them. SAP was a broad phase algorithm 
for limiting the number of pairs of bounding boxes candidates 
during the collision detection. This was achieved by sorting 
the starts min-bound and the ends max-bound of the bounding 
volume of each object along a number of arbitrary axes. When 
the bounding volumes of two objects overlap in all axes, they 
were flagged to be tested by more precise and time consuming 
algorithm. Figure  3 shows the principle of SAP algorithm in 
1-dimension. SAP algorithm was an efficient algorithm to filter 
highly separated objects and reduces the complexity of collision 
detection from O(n2) (Brute Force) to the complexity depends on 
the choice of sorting algorithm.

The SAP algorithm can be considered as four steps.

(1) Data initialization: the first step is to store the OBB’s maxi-
mum and minimum values on x, y, z axis into three structure 
arrays respectively, and tag with an OBB-index and flag. 
The OBB-index specifies the OBB, which the data belongs 
to, while the flag specifies if the value is a maximum or a 
minimum.

algorithm 1 | converting OBB to aaBB.

1 Input: (1) cpx,y,z: the coordinate of center point of OBB; (2) dv0,1,2
0,1,2 : three direction 

vectors of OBB; (3) hw0,1,2: three half width of sides of OBB.
2 Output: Data struct Point(obbname, flag, data,SP).

1: for 0 ≤ i < obbnumber do
2:   ( , , )

1 8
X Y Z V −

← f cp dv hwx y z( , , ), , 0,1,2
0,1,2

0,1,2

3:   Max Min( )x y z, , ←  Max Min( ){( , , ) }
1 8

X Y Z V −4: end for
5: for 0 ≤ i < obbnumber do
6:  Pointx,y,z[i].data ← Maxx,y,z

7:  Pointx,y,z[i].obbname ← i
8:  Pointx,y,z[i].flag ← 1
9:  SP ← P

10: end for
11: for obbnumber ≤ i < (2 × obbnumber) do
12: Pointx,y,z[i].data ← Minx,y,z

13: Pointx,y,z[i].obbname ← (i – obbnumber)
14: Pointx,y,z[i].flag ← 0
15: SP ← P
16:  end for
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(2) Sorting: the second step is to sort the data values in the three 
arrays separately.

(3) Traversing: the third step is to traverse the sorting result 
sequence according to its flag. When a minimum value 
was identified, its OBB-index is stored into an active list. 
Then, the active list is traversed, and the collision pairs 
are returned. When a maximum value was identified, the 
active list is traversed to find the OBB-index, which is 
the same as the current OBB-index and remove it from 
active list. After this step, three groups of collision pairs are 
obtained.

(4) Searching same pair: the fourth step is to search the same 
pairs among above three groups.

By analyzing the SAP algorithm, the following parts were 
identified and considered as bottlenecks.

(1) In the third step of the SAP algorithm, using a linked list to 
store current OBBs, traverse, insert new members and delete 
members were time and resources consuming on FPGA 
platform.

(2) In the fourth step of the SAP algorithm, finding the same 
pairs among three groups was a repetitive work. It consumed 
a lot of time and resources for searching, especially on FPGA 
platform.

Since FPGA platform was not efficient for sequential or 
conditional work, these steps did not execute smoothly on FPGA 
platform. In this paper, a novel method was proposed to avoid 
above time and source consuming parts. Algorithm  2 showed 
the detail information about the Improved Sweep and Prune 
algorithm.

The first bottleneck was substituted by identifying all OBBs 
between the maximum value and the minimum value of each 
OBB. This approach avoided frequent access to the active linked 
list, which was not efficient on FPGA and CPU platform. When 
traversing the sorting result sequence, if a minimum value was 
identified, its OBB-index was printed. The sequence continued to

algorithm 2 | Proposed Sweep and Prune.

1 Let parameters of cpx,y,z dv0,1,2
0,1,2 ,  hw0,1,2 max/minx,y,z, S be a Data Struct: OBB.

2 Input: The Data Struct Point.
3 Output: OBB pairs that need to rechecked by SAT.

1:  sort for three structure Pointx,y,z according to their data
2:  for 0 ≤ i < (2 × obbnumber) do
3:  if pointx,y,z[i].flag == 0 then
4:  jx,y,z ← 1
5:  while

pointx,y,z[i + jx,y,z].obbname ≠ pointx,y,z[i].obbname and pointx,y,z[i + jx,y,z].SP 
≠ pointx,y,z[i].SP 
do

6:  ax,y,z ← pointx,y,z[i].obbname
7:  bx,y,z ← pointx,y,z[i + jx,y,z].obbname
8:  saT(OBB[ax,y,z],OBB[bx,y,z])
9:  jx,y,z ← jx,y,z + 1

10:  end while
11:  end if
12:  end for

be traversed and the OBB-indices were printed one-by-one before 
the maximum value of the initial OBB-index was identified. If 
a maximum value was identified, the sorting result sequence 
continued to be traversed. In short, for an OBB, all OBB-indices 
between its minimum value and maximum value were checked. 
The algorithm considered all OBBs close to it, while ignored ones 
those are far away. The modification can reduce the traversal 
complexity considerably.

The second bottleneck was solved by performing the SAT 
algorithm for all pairs on three axes, respectively. Actually, the 
same pairs among three axes were considered to be checked by 
the SAT algorithm. However, searching for same pairs on three 
axes was time and resources consuming, which had been replaced 
in this method. Even more, these three axes were independent in 
this method and could be executed in parallel to save time.

2.2.3. Separating Axis Test
Tissue and medical devices were generated into OBBs for the sake 
of using OBBs to substitute them to check their intersection status 
in the robot-assisted medical surgery. OBB was a bounding box 
with flexible edge orientations. SAT was a classical algorithm for 
various shapes of bounding boxes to implement the intersection 
test between them. A number of researches used this algorithm 
to check the overlapping status between bounding boxes (Redon 
et  al., 2004; Akenine-Moller, 2005). It was developed from the 
Separating hyperplane theorem, a basic theorem of convex analy-
sis. This theorem referred that given two convex objects A and B, 
either these two objects were overlapping or there was a separat-
ing hyperplane H, with A on one side of H and B on the other side.

According to the above description, for overlap test for OBB 
A and OBB B, the overlapping status between them should be 
checked in at most 15 axes. These axes were three coordinate axes 
of A, three coordinate axes of B and nine axes perpendicular to 
an axis from each. If two OBBs were separated on all these 15 
axes, they would be considered as separated. If there was an axis 
they were overlapping on it, these two OBBs would be regarded 
as intersecting. On each potential separating axis L, two OBBs 
were considered as separated on an axis when the sum of their 
projected radii was less than the distance between the projections 
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of their center points. This is illustrated in equation (1). Figure 4 
shows the principle about the algorithm SAT on one potential 
separating axis.

 | |>T L r rA B⋅ +  (1)

2.2.4. Analyzing Parallelism and Pipelining
In the interest of accelerating the data update rate about the col-
lision detection in the robot-assisted medical surgery, according 
to the above introduction of proposed algorithm, it was obvious 
that this algorithm could be speeded up by designing a paral-
lel hardware architecture. In this section, a scalable hardware 
architecture was developed for the proposed robot-assisted 
medical surgery collision detection algorithm. The architecture 
took the advantages of intrinsic parallelism on an FPGA platform 
to accelerate the algorithm. This acceleration of the algorithm 
was implemented to fulfill the data update rate requirement of 
Robot-Assisted Laparoscopy surgery. Programmable hardware 
devices, such as FPGAs, nowadays provided advanced features 
and resources for rapid modeling of system-on-chips space 
(Monmasson and Cirstea, 2007). In order to fully utilize the flex-
ibility of FPGAs, we explored the hardware architecture design in 
two levels of parallelism, task-level parallelism and pipeline (Li 
et al., 2011). The hardware design mainly included three parts: 
convert OBB to AABB, Improved Sweep and Prune, and Separating 
Axis Test. The structure of each part will be introduced separately 
in this section. Figure 5 shows the overview of the whole system 
architecture, which describes the computing logic within this 
hardware architecture design. In the practical implementation, 
registers were implemented between two adjacent steps of calcu-
lation to increase the working frequency of the system.

2.2.5. Parallel Hardware Design for  
Converting OBB to AABB
OBBs were converted to AABBs for the convenience of using 
SAP to reduce the number of bounding box candidates in the 
proposed robot-assisted medical surgery collision detection 
algorithm. The hardware architecture took advantages of intrinsic 
parallelism on an FPGA platform to accelerate this part. There 

were two major parts included in this architecture. The first part 
was the hardware design for proposed algorithm to calculate the 
projection of 8 vertices of OBB on three axes. The second part 
was the hardware design for finding the max-projection and the 
min-projection among 8 vertices of OBB on three axes. Both 
parts took full advantage of the FPGA platform by efficiently 
pipelined structural design. Furthermore, the processes of cal-
culating the projection for 8 vertices of OBB and the processes 
of finding the max-projection and min-projection on three axes 
were performed in parallel.

2.2.6. Improved Sweep and Prune Using  
Adjustable Data Format
The Improved Sweep and Prune algorithm in Section 2.2.2 was 
used to reduce the computation complexity of collision detection 
algorithm from Brute Force method O(n2) to linear computation 
complexity in robot-assisted medical surgery. A mixed-precision 
hardware architecture on FPGA platform was proposed in this 
part to further reduce the number of OBB candidates, which were 
far from each other.

The data from Section 2.2.5 was sorted together with their 
relevant information. Because sorting of floating-point data was 
time and resources consuming, the fixed-point data representa-
tion (reduced precision) was adopted to reduce the complexity 
of sorting part. The reconfigurability of FPGAs could provide 
customized trade-off between accuracy and performance. In the 
proposed algorithm, 3 max-projections and 3 min-projections 
(Xmax, Xmin, Ymax, Ymin, Zmax, Zmin) for sorting were converted from 
floating point to fixed point, of which the bit-width depended on 
the precision requirement of collision detection result and the 
speed requirement of hardware architecture running on FPGA 
platform.

In the hardware design, the Radix Sort algorithm was employed 
to perform sorting because of its non-comparative characteristic 
and low time and resource consumption. The complexity of Radix 
Sort was O(kn), where k was the number of radix and n was the 
amount of data to be sorted.

Collision pairs of interest were obtained after this primary 
selection. After that, these collision pairs were processed using the 
SAT. The processes of data sorting on three axes were designed 
to work in parallel and fully pipelined. Thus, result could be 
obtained in each clock cycle on FPGA platform, and the clock 
cycle could reach ns level.

2.2.7. Separating Axis Test
The SAT was final step of medical surgery collision detection algo-
rithm to check the intersection status among OBBs, which used 
to bind the tissue and medical devices. A hardware architecture, 
which took advantages of intrinsic parallelism on FPGA platform, 
was proposed to accelerate this part to fulfill the requirement of 
data update rate of 1 kHz in surgery.

In this part, the overlapping statuses between the remaining 
OBB candidate pairs on 15 different axes as L1–15 were checked. 
These axes were three coordinate axes of OBB A, three coordinate 
axes of OBB B and nine axes perpendicular to an axis from each. 
These 15 different tests were independent. They were designed to 
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FigUre 5 | Top-level structure for the hardware architecture includes three major components. (1) Calculation pipeline part: calculate the projection of  
8 points of OBB on three axes. (2) Sorting part: sort for the data in algorithm Sweep and Prune. (3) Separating Axis Test: test overlapping status between two OBBs 
on 15 different axes.
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run in parallel and were fully pipelined in hardware architecture. 
This part mainly consisted of arithmetic and comparisons between 
the related information defined for OBB, especially add, subtract, 
and multiply. These arithmetic functions were mostly independ-
ent, and thus were designed in parallel and fully pipelined.

2.2.8. Analysis for Proposed Algorithm
The SAP algorithm was an efficient way to filter far separated 
OBB pairs in medical surgery collision detection algorithm, but it 
became less significant as the collision gets dense. The Minimum 
Period for Improved Sweep and Prune algorithm and Minimum 
Period for the SAT algorithm were defined as Ps and Po, respec-
tively. The number of OBB candidates of original and reserved by 
Improved Sweep and Prune was defined as n and m, respectively. 
Only when the inequality (2) was true, Improved SAP algorithm 
would be used to perform a preliminary filtering to reduce the 
number of OBB candidates. The result of inequality showed that if 
collision was dense, Brute Force algorithm would be more efficient.

 m n P n P Po s o< ( 32 ) /2 × − × ×  (2)

2.3. Vision-Based haptic Feedback in 
robotic assisted surgery
In robot-assisted surgery, stereo laparoscopes are available 
and often used by the surgeons to perceive the surgical envi-
ronment inside the body in 3D. With the stereoscopic video, 
reliable 3D tissue reconstruction provides detailed geometric 
information of the surgical site, which can be used to generate 

haptic feedback or guidance for improving surgical accuracy, 
consistency, and safety. There are studies demonstrated that 
haptics can provide cues to the surgeon, allowing protection 
and avoiding damage to critical structures, such as blood ves-
sels (Carter et al., 2005; Abolhassani et al., 2007; Schostek et al., 
2009; Wang et al., 2013).

We used the video from a robotic prostatectomy surgical 
procedure with the da Vinci surgical robot to recover a 3D surface 
reconstruction of the surgical site based on stereo vision. The 3D 
surface of prostate tissue was reconstructed by establishing corre-
spondence of points between the left and right images (Stoyanov, 
2012). This allows estimation of the depth of each image points 
based on triangulation principle, thus forming a set of 3D cloud 
points consistent with the tissue morphology. The raw 3D point 
cloud was transformed into a mesh, and we separated the triangle 
mesh figure of the tissue and two grippers. In the algorithm, two 
triangles were combined as a rectangle, which could be identified 
as a face of OBB. After reconstruction, automatic cube tessellation 
(Barequet and Har-Peled, 2001; Huebner et al., 2008) was applied 
on the instruments, and the 3D tissue points to construct OBBs 
for further detection of potential collision, which was considered 
the prerequisite information for rendering instantaneous guid-
ance to surgical manipulation.

3. resUlTs

3.1. implementation and results
In this paper, we mainly focused on the collision detection between 
OBBs, which applied to the robot-assisted medical surgery. In 
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FigUre 6 | The time consumption for collision detection on a cPU 
platform with varying number of objects.

TaBle 1 | resource utilization of SAT.

name Used available Utilization (%)

LUT 31,504 354,240 8
Register 30,543 708,480 4
Occupied Slices 15,491 88,560 17
DSPs 525 864 60

Wordsize Single precision
Minimum period 8.110 ns
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order to accelerate the algorithm to satisfy the requirement of 
data update rate in surgery, a fast and accurate algorithm was 
proposed and utilized to design a hardware architecture on FPGA 
platform. The efficiency was compared with its performance on 
CPU platform. We took advantages of FPGA platform to imple-
ment the hardware design in two levels of parallelism. The first 
was task-level parallelism, which was based on the independence 
of each task in algorithm. The second was pipelining, which was 
a deep parallel. In this parallel level, we could obtain the collision 
result in each digital clock cycle. This digital clock cycle could 
reach ns level.

Our proposed algorithm reduced computation complexity 
from O(n2) (n is the number of objects) of brute force method 
to the complexity of sorting method. In our proposed algorithm, 
radix sorting algorithm with the complexity of O(k × n) was used. 
In order to reduce computation complexity, OBBs were converted 
to AABBs, and Improved SAP algorithm was used to perform a 
primary filtering to culling OBBs that were far away from each 
other. This part was designed as a pipelined hardware architecture 
on FPGA platform. A pipelined hardware architecture for the 
SAT algorithm was also designed, and a minimum clock period 
of 8.110 ns was achieved. Therefore, a collision result between two 
OBBs can be obtained in 8.110 ns. Table 1 shows the resource 
usages utilization of our FPGA platform hardware design. The 
LUTs were the abbreviation of Look-Up-Tables. They were mem-
ory unit and were responsible for storing the value we defined into 
related memory address. The Register was a single memory unit 
and was responsible for storing a bit data. The Occupied Slices was 
a logic unit, which consist of several LUTs and Register. The DSP 
was the abbreviation of Digital Signal Processing and defined as a 
processing unit. The Wordsize was used to define the bit-width of 
data. The Minimum Period was defined as the digital clock cycle.

Figure  6 shows the time consumption of proposed medical 
surgery collision detection algorithm on a CPU platform in a 
scenario with a large number of objects. The time consumptions 
for collision detection between different numbers of OBBs using 
the SAP and the Improved Sweep and Prune on a CPU platform 
are shown in Figure  7. It demonstrated that the acceleration 
ratio increased with the growth of the number of objects, and the 
average speedup for proposed algorithm over original algorithm 
was about 10×. Next, time consumption for proposed algorithm 
to process different number of objects with floating-point data 
on a CPU platform and with 36 bit-width of data on an FPGA 
platform are compared in Figure  8. The results suggested that 
the hardware design about the proposed algorithm on an FPGA 
platform could further speedup the algorithm when comparing 

with the software design on a CPU platform, which the speedup 
was about 8×. Moreover, Figure 9 shows the time consumptions 
with different numbers of OBBs and different bit-widths of data 
on FPGA platform. The result indicated a scalable performance of 
our hardware architecture. In addition, low power consumption 
and highly portable are very important features in medical sur-
gery, which reduce the system footprint and improve the surgical 
ergonomics inside operating theater. Compare to the size of PC 
or other larger medical devices, FPGA platform composed of 
cm level chips and was more portable. Nevertheless, the power 
consumption of our FPGA platform was 7.249  w. Comparing 
with the 95 w power consumption of software design on CPU, our 
FPGA platform design was extremely energy efficient. Table  2 
shows the resource utilization of hardware implementation of the 
proposed algorithm with 16384 datasets on our Xilinx Virtex-6 
FPGA platform.

3.2. Qualitative example results  
for robotic surgery
The positions and orientations of both left and right laparoscopic 
instruments relative to the coordinate frame of camera were com-
puted given the robot kinematics along with its joint configura-
tion and hand-eye calibration. The prostate gland was visualized 
with image pair obtained by a stereo laparoscope. Figures 10A,B 
illustrate the surgical site for a typical robot-assisted laparoscopy, 
radical prostatectomy. Figure 10C shows a surface mesh of such 
cloud points textured with the tissue image, of which its anatomi-
cal margin is of interest for the surgeon to carry out a dissection, 
while preserving nearby blood vessels, canals and nerves. After 
reconstruction and automatic cube tessellation, two triangles 
were combined into rectangle, and three sets of OBBs were con-
structed based on these rectangles to represent the tissue and two 
laparoscopic grippers (Figure 10D). As a result, number of OBBs 
equaled with the number of rectangles. Three sets of OBBs were 
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FigUre 7 | The comparison between the algorithm Sweep and Prune and the Improved Sweep and Prune on time consumption for cPU platform-
based collision detection.

FigUre 8 | The comparison between our FPga platform and cPU platform on time consumption for collision detection using our proposed 
algorithm.
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generated to represent the tissue and two laparoscopic grippers 
for the purpose of checking the overlapping status between them, 
which the tissue and the grippers consisted of 17.5 k (10 k + 7.5 k) 
OBBs. We applied our collision detection method on these 17.5 k 

OBBs using a data bit-width of 20. According to the experimental 
results in Section 3, we could achieve around 1 kHz rate feedback 
update. This update rate was able to meet the requirements of 
robotic assisted surgery and robotic control, which usually 
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TaBle 2 | resource utilization of proposed algorithm.

name Used available Utilization (%)

LUT 66,061 354,240 18
Register 47,634 708,480 7
Occupied Slices 31,833 88,560 36
DSPs 630 864 72
RAM 705 912 77

Minimum period 8.509 ns

FigUre 9 | The time consumption of our FPga platform in processing 
different number of OBBs with different input data bit-width.
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operated at high frame rates for smooth perception. Our result 
indicated that the proposed algorithm and the parallel, fully 
pipelined architecture on our FPGA platform are very promising 
for applications in image-guided, haptic-enabled robotic surgery.

4. DiscUssiOn

In this study, we analyzed the Sweep and Prune algorithm and 
found out the time and resources consuming parts. Based on the 
findings, we proposed modifications on the Sweep and Prune 
algorithm and tested its performance in the CPU platform. Our 
results demonstrated that the Improved Sweep and Prune algo-
rithm can speed up the collision detection on computing plat-
form when comparing with the conventional Sweep and Prune 
algorithm. The speedup rate would increase proportionally with 
the number of objects. These evidences indicated that we suc-
cessfully spotted out the bottleneck on Traversing and Searching 
the Same Pair steps. Moreover, our novel modifications on the 
Sweep and Prune algorithm, as mentioned in Section 2.2.2, solved 
these bottlenecks effectively, through minimizing the traversal 
complexity and elimination of the repetitive works.

After the validation of our Improved Sweep and Prune 
algorithm, we analyzed and parallelized the execution of the 

different components of our collision detections algorithms. In 
Algorithm 1. Converts the OBB to AABB, it consisted of several 
components. The components of calculating the projection of 8 
vertices, finding maximum value and minimum value on three 
axes, writing the data and its relative information into structure 
Point on three axes, the loop from 0 to obbnumber and from 
obbnumber to 2 × obbnumber were independent, respectively, and 
could be executed in parallel. In Algorithm 2 Improved Sweep and 
Prune, the components of traversing the sorting result sequence 
on three axes were independent and could be executed in paral-
lel. In Separating Axis Test algorithm, the components of the 9 
loops of calculation for rotation matrix Rij and using Separating 
Axis Test to check the overlapping status between two OBBs on 
15 different axes were independent, respectively, and could be 
executed in parallel. The effects of parallelization were analyzed 
by comparison between the execution of our Improved Sweep and 
Prune algorithm on the CPU platform and our FPGA platform 
with the customized parallelization architecture. Our FPGA 
platform largely reduced the run time for the collision detection. 
This indicated that our parallel and fully pipeline hardware archi-
tecture on FPGA platform effectively accelerated the execution of 
presented algorithms.

Nevertheless, in contrast to the rigid instruction set of GPUs 
and CPUs, FPGA platform provides the freedom for bit-width 
optimization for specific function (Lee et al., 2006). We analyzed 
the performance of our algorithms with different bit-width of 
data on our FPGA platform and found that the reduction of data 
bit-width proportionally reduced the execution time of our col-
lision detection algorithm. The novel use of adjustable bit-width 
of FPGA platform on collision detection provides a scalable 
performance based on of requirement on precision and update 
rate, which is important for optimizing its functionality on robot-
assisted Minimally Invasive Surgery (MIS).

In actual generation of haptics interaction, a fast, accurate, and 
reliable collision detection is the prerequisite. Virtual Fixtures, 
also known as active constraints (Bowyer et al., 2014), is one of 
the typical control approaches in robot-assisted surgery, which 
assists operators by providing manipulation guidance through 
force feedback. In particular, it can generate resistive force to 
prevent surgical tools from entering a virtual forbidden region 
(Abbott et al., 2007), thus reducing the chance of undesired dam-
age to delicate tissue. The haptics interaction relies on reliable 
collision detection between surgical tools and the complicated 
patient anatomy. Such process is commonly regarded as the 
computational bottleneck because of the tight requirement on 
updating rate (>1 kHz) as well as the resolution. By utilizing the 
highly reconfigurable architecture of FPGA, our novel computa-
tion technique can resolve this bottleneck by efficient pipelining 
and parallelization, hence enables large-scale collision detection 
at high frequency.

In robot-assisted MIS, recovering the underlying 3D structure 
of the operating field in vivo is of importance to the registration 
of pre-operative imaging data with the surgical field-of-view for 
providing dynamic active constraints and motion compensa-
tion (Stoyanov et al., 2008). The recovery of 3D tissue structure 
and morphology during robot-assisted surgery is a crucial step 
toward accurate deployment of surgical guidance and control 
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FigUre 10 | Transformation of the surgical site into OBBs based on stereo vision from the da Vinci surgical robot. The left (a) and right (B) camera 
images were obtained using a stereo laparoscope of da Vinci Surgical System Si. (c) A 3D mesh outlining the tissue morphological structure. CAD models of both 
instruments were rendered based on their known kinematic configuration. (D) Three sets of OBBs were generated by a rapid tessellation of the mesh and CAD 
models. The tissue and two laparoscopic grippers were represented by 11,227 and 39,732 OBBs, respectively.
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techniques in minimally invasive therapies (Stoyanov et al., 2010). 
The recovery of 3D information from stereo images remains the 
classic problem in computer vision, and many research focuses 
in this area. A number of researches were done to find solution 
for identification of the unique correspondence of image primi-
tives across the stereo image pair using a calibrated stereo rig, 
and there were reviews providing summaries of progress in this 
area (Scharstein and Szeliski, 2002; Brown et al., 2003; Stoyanov 
et al., 2004). Our qualitative example only required an update rate 
of around 25 Hz for the 3D reconstruction, which was far lower 
than update rate of many application algorithms. The update rate 
of 25 Hz was just for showing the 3D reconstruction and letting 
the surgeon to check through the 3D display. However, in the 
practical application, such as vision-based haptic feedback in 
robotic assisted surgery, the requirement of update rate will be 
above 1 kHz (Siciliano and Khatib, 2008), which is much higher 
than 25 Hz. Thus, the significance of the speedup in the update 
rate of application algorithm will be much higher and essential.

In order to accelerate the collision detection rate, OBBs were 
used as the bounding box for detection of the collision status, 
as they were regularly shaped and consumed less computing 
resources. Although the geometries of the organ and the instru-
ments were covered completely by the OBBs and their collisions 
were avoided, the limitation of the current model was the genera-
tion of a very coarse surface, which did not precisely follow the 
organ surface. In the practical situation, medical specifications 
on resolution will be flexible depends on surgical requirements in 
terms of precision and updating rate. To meet the requirements, 
FPGA is readily run in cascade to improve its parallel process-
ing performance, according to the previous study (Chen and 

Dinavahi, 2013; Sano et  al., 2014; Njiki et  al., 2016). Based on 
this, if higher updating rate and precision are required, our FPGA 
platform will be readily scalable with more FPGA boards to run 
in cascade for fulfilling a better precision requirement, and hence, 
a better resolution. Moreover, a study introduced a rapid collision 
prediction technique to detect likely to collide region (Kim et al., 
2002). Our algorithm may also exploit the technique to refine 
the radius for collision detection. After that, the resolution of our 
collision detection algorithm would be even further improve in 
the interested region.

Another important feature of the FPGA platform is that the 
pipelining and parallel architecture of FPGA can grantee the col-
lision detection module to execute independently. Therefore, the 
speed bottleneck of other components will not affect the 1 kHz 
execution speed of our collision detection module. Theoretically, 
when integrated into a complete force-feedback generation pro-
cess, our algorithm can maintain the 1 kHz speed, as long as the 
data input rate equal or high than 1 kHz. There are studies that 
proof the feasibility of implementing the FPGA-based architec-
ture for acceleration of CPU platform performance on different 
purposes (Smach et al., 2007; Fons et al., 2013). Nevertheless, we 
can also exploit the scalability of our FPGA platform by adjusting 
the OBB numbers and bit-width that used to define the OBBs in 
our algorithm to further improve the execution speed.

Previously, some studies attempted to fulfill a certain real-
time requirement for collision detection among the bounding 
boxes using GPU. Avril et al. (2011) presented a technique that 
dynamically adapt the first step (broad phase) of the collision 
detection process on GPU platform during simulation. Pabst 
et al. (2010) proposed a hybrid CPU/GPU collision detection 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


12

Zhang et al. FPGA-Based High-Performance Collision Detection

Frontiers in Robotics and AI | www.frontiersin.org August 2016 | Volume 3 | Article 51

technique for rigid and deformable objects based on spatial sub-
division. Liu et al. (2010) demonstrated an algorithm of SAP for 
collision detection between very large numbers of moving bod-
ies using GPUs. Govindaraju et al. (2006) provided a collision 
culling implemented on a GPU platform. Nevertheless, fixed 
bit-width will consume more resources, and branch divergence 
may kill the performance. Compared to FPGA, however, GPU-
based methods do not perform well in power consumption and 
achieve the real-time processing rate requirement of 1 kHz with 
a lower number of tetrahedra (1300 tetrahedra) (Courtecuisse 
et al., 2010), comparing with our study (17.5 k OBBs). Another 
study presented a GPU-based approach to detect collision of 
items of 14.4 k, 2 k, and 1.7 k triangles with a processing rate of 
153 Hz, which cannot meet the medical specification of 1 kHz 
(Mainzer and Zachmann, 2015). Nevertheless, Altomonte et al. 
(2008) demonstrated the realization of a surgical simulation 
with haptic feedback at over 1  kHz rate, under a very high 
resolution. To achieve the comparable resolution, the previously 
mentioned FPGA cascading method has to be investigated and 
applied.

In contrast to GPU computation, FPGA platforms allow 
highly customized processing architectures according to algo-
rithm specific requirements. FPGAs deploy a reconfigurable 
computing architecture so that both parallelism and precision 
of data structure can be customized to enable independent data 
flow and reduce the processing time. For scenarios involving the 
collision detection of a large number of objects, FPGA platform 
is a suitable implementation choice to construct a complete algo-
rithm pipeline. As a result, collision detection can be performed 
once at a clock cycle, which is a single electronic pulse of the 
CPU. The clock cycle of the FPGA platform can reach the ns 
level faster than the GPU platform. Each cycle can process one 
computing operation, such as computing, accessing memory, or 
writing data to memory. With the bit-wise operations on FPGA, 
the FPGA data format can be flexibility defined upon the require-
ment of the algorithm, while GPUs and CPUs are disadvantaged 
for algorithms amenable to bit-width modifications (Cope 
et al., 2005). Mixed-precision (Chow et al., 2011) computation 
is also a technique to save computing resources and speedup 
algorithms by reducing precision below the floating-point 
bit-width, particularly for objects that are distant to each other 
and for which approximate computation is sufficient. In addi-
tion, FPGA platforms can be self-contained embedded systems 
without the need of PCI Express connectivity like GPU boards. 
In our study, the hardware architecture of our FPGA platform 
was further designed to be scalable. With more resources on 
the FPGA platform, the proposed medical surgery collision 
detection algorithm could process a larger number of collision 
bounding volume candidates with little loss of data update 
rate. The design could be scaled-up and scaled-down with the 
utilization of different number of BRAMs. The data processing 
power could be increased by a larger number of BRAMs. For 
example, implementing the hardware architecture on a Virtex-7 
platform would increase the amount of processing data with little 
degradation of frame rates, because the main action of sorting 
part was the data transfer between BRAMs, and data transfer was 

not a complex operation on an FPGA platform. Our study also 
demonstrated that the power consumption of FPGA platform 
(8 W) was also much less than that of a GPU in a computer plat-
form in another study (Collange et al., 2009), which the power 
consumption of GPU would be about 110 W during operation. 
When adding up the power consumption of CPU (about 90 W), 
the total power consumption of GPU platform would be as high 
as 200 W. The low power consumption property of FPGA allows 
the use of portable computation and reduces surgical robotics 
system footprint, thus improving the surgical ergonomics inside 
operating theater.

4.1. conclusion and Future Work
The current study has proposed a novel fast and accurate 
collision detection algorithm among OBBs with potential 
applications in medical surgery. The inherited computational 
complexity of collision detection has been a major bottleneck 
for many practical applications that require real-time feedback, 
such as robot-assisted surgery. Our algorithm efficiently reduces 
the computation complexity comparing with the brute force 
method. Moreover, a novel mixed-precision hardware archi-
tecture on FPGA platform, designed based on SAP and SAT 
algorithm, is also built to further accelerate the data update rate 
of the proposed algorithm for the purpose of robot-assisted 
medical surgery. Our study illustrates that the combination 
of our proposed algorithm and our hardware architecture on 
FPGA platform is about 8× more efficient than its execution on 
CPU platform. As a result, the frame update rate can reach up 
to 1  kHz, even in a large-scale scenario, which certificated by 
the data extracted from robot-assisted laparoscopic surgery. This 
frame update rate can also satisfy the requirement and extend 
its use to many other practical applications, like camera, robot-
assisted minimally invasive surgery, medical imaging, and inter-
operative, etc. In the next stage, we will also explore the method 
for high-performance collision detection of deformable objects. 
Prior to implementation on surgical systems, integration of the 
proposed fast collision detection system with a haptic rendering 
engine used in computer surgical simulation will be essential 
to conduct user experiment and understand the role of our 
developed system in a computational approach. The computer 
surgical simulation can help surgeons to learn through virtual 
surgical tasks and rehearsals involving interaction between 
instruments and tissues.
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