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Abstract

In this paper, we extend some usual techniques of classification resulting from a large-scale
data-mining and network approach. This new technology, which in particular is designed to
be suitable to big data, is used to construct an open consolidated database from raw data on
4 million patents taken from the US patent office from 1976 onward. To build the pattern net-
work, not only do we look at each patent title, but we also examine their full abstract and
extract the relevant keywords accordingly. We refer to this classification as semantic
approach in contrast with the more common technological approach which consists in taking
the topology when considering US Patent office technological classes. Moreover, we docu-
ment that both approaches have highly different topological measures and strong statistical
evidence that they feature a different model. This suggests that our method is a useful tool
to extract endogenous information.

Introduction

Innovation and technological change have been described by many scholars as the main
drivers of economic growth as in [1] and [2]. [3] advertised the use of patents as an economic
indicator and as a good proxy for innovation. Subsequently, the easier availability of compre-
hensive databases on patent details and the increasing number of studies allowing a more
efficient use of these data (e.g. [4]) have opened the way to a very wide range of analysis.
Most of the statistics derived from the patent databases relied on a few key features: the iden-
tity of the inventor, the type and identity of the rights owner, the citations made by the patent
to prior art and the technological classes assigned by the patent office post patent’s content
review. Combining this information is particularly relevant when trying to capture the diffu-
sion of knowledge and the interaction between technological fields as studied in [5]. With
methods such as citation dynamics modeling discussed in [6] or co-authorship networks
analysis in [7], a large body of the literature such as [8] or [9] has studied patents citation net-
work to understand processes driving technological innovation, diffusion and the birth of
technological clusters. Finally, [10] look at the dynamics of citations from different classes to
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show that the laser/ink-jet printer technology resulted from the recombination of two differ-
ent existing technologies.

Consequently, technological classification combined with other features of patents can be a
valuable tool for researchers interested in studying technologies throughout history and to pre-
dict future innovations by looking at past knowledge and interaction across sectors and tech-
nologies. But it is also crucial for firms that face an ever changing demand structure and need
to anticipate future technological trends and convergence (see, e.g., [11]) to adapt to the result-
ing increase in competition discussed in [12] and to maintain market share. Curiously, and in
spite of the large number of studies that analyze interactions across technologies [13], little is
known about the underlying “innovation network” (e.g. [14]).

In this monograph, we propose an alternative classification based on semantic network
analysis from patent abstracts and explore the new information emerging from it. In contrast
with the regular technological classification which results from the choice of the patent
reviewer, semantic classification is carried automatically based on the content of the patent
abstract. Although patent officers are experts in their fields, the relevance of the existing classi-
fication is limited by the fact that it is based on the state of technology at the time the patent
was granted and cannot anticipate the birth of new fields. To correct for this, the USPTO regu-
larly make changes in its classification in order to adapt to technological change (for example,
the “nanotechnology” class (977) was established in 2004 and retroactively to all relevant previ-
ously granted patents). In contrast we don’t face this issue with the semantic approach. The
semantic links can be clues of one technology taking inspiration from another and good pre-
dictors of future technology convergence (e.g. [15] study semantic similarities from the whole
text of 326 US-patents on phytosterols and show that semantic analysis have a good predicting
power of future technology convergence). One can for instance consider the case of the word
optic. Until more recently, this word was often associated with technologies such as photogra-
phy or eye surgery, while it is now almost exclusively used in a context of semi-transistor
design and electro-optic. This semantic shift did not happen by chance but contains informa-
tion on the fact that modern electronic extensively uses technologies that were initially devel-
oped in optic.

Previous research has already proposed to use semantic networks to study technological
domains and detect novelty. [16] was one of the first to enhance this approach with the idea of
visualizing keywords network illustrated on a small technological domain. The same approach
can be used to help companies identifying the state of the art in their field and avoid patent
infringement as in [17] and [18]. More closely related to our methodology, [19] develop a
method based on patent semantic analysis of patent to vindicate the view that this approach
outperform others in the monitoring of technology and in the identification of novelty innova-
tion. Semantic analysis has already proven its efficiency in various fields, such as in technology
studies (e.g. [20] and [21]) and in political science (e.g. [22]).

Building on such previous research, we make several contributions by fulfilling some short-
comings of existing studies, such as for example the use of frequency-selected single keywords.
First of all, we develop and implement a novel fully-automatized methodology to classify pat-
ents according to their semantic abstract content, which is to the best of our knowledge the
first of its type. This includes the following refinements for which details can be found in Sec-
tion Semantic Classification Construction: (i) use of multi-stems as potential keywords; (ii) fil-
tering of keywords based on a second-order (co-occurrences) relevance measure and on an
external independent measure (technological dispersion); (iii) multi-objective optimization of
semantic network modularity and size. The use of all this techniques in the context of semantic
classification is new and essential from a practical perspective.
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Furthermore, most of the existing studies rely on a subsample of patent data, whereas we
implement it on the full US Patent database from 1976 to 2013. This way, a general structure
of technological innovation can be studied. We draw from this application promising qualita-
tive stylized facts, such as a qualitative regime shift around the end of the 1990s, and a signifi-
cant improvement of citation modularity for the semantic classification when comparing to
the technological classification. These thematic conclusions validate our method as a useful
tool to extract endogenous information, in a complementary way to the technological
classification.

Finally, the statistical model introduced in Section Statistical Model seems to indicate that
patents tend to cite more similar patents in the semantic network when fitted to data. In partic-
ular, this propensity is shown to be significantly bigger than the corresponding propensity for
technological classes, and this seems to be consistent over time. On the account of this infor-
mation, we believe that patent officers could benefit very much from looking at the semantic
network when considering potential citation candidates of a patent in review.

The paper is organized as follows. Section Background presents the patent data, the existing
classification and provide details about the data collection process. Section Semantic Classifi-
cation Construction explains the construction of the semantic classes. Section Potential Results
tests their relevance by providing exploratory results. Finally, section Conclusion discusses
potential further developments and conclude. More details, including robustness checking,
figures and technical derivations can be found in S2, S3 and S4 Text.

Background

In our analysis, we will consider all utility patents granted in the United States Patent and
Trademark Office (USPTO) from 1976 to 2013. A clearer definition of utility patent is given in
S1 Text. Also, additional information on how to correctly exploit patent data can be found in
[4] and [23].

An existing classification: The USPC system

Each USPTO patent is associated with a non-empty set of technological classes and subclasses.
There are currently around 440 classes and over 150,000 subclasses constituting the United
State Patent Classification (USPC) system. While a technological class corresponds to the tech-
nological field covered by the patent, a subclass stands for a specific technology or method
used in this invention. A patent can have multiple technological classes, on average in our data
a patent has 1.8 different classes and 3.9 pairs of class/subclass. At this stage, two features of
this system are worth mentioning: (i) classes and subclasses are not chosen by the inventors of
the patent but by the examiner during the granting process based on the content of the patent;
(ii) the classification has evolved in time and continues to change in order to adapt to new
technologies by creating or editing classes. When a change occurs, the USPTO reviews all the
previous patents so as to create a consistent classification.

A bibliographical network between patents: Citations

As with scientific publications, patents must give reference to all the previous patents which
correspond to related prior art. They therefore indicate the past knowledge which relates to
the patented invention. Yet, contrary to scientific citations, they also have an important legal
role as they are used to delimit the scope of the property rights awarded by the patent. One can
consult [24] for more details about this. Failing to refer to prior art can lead to the invalidation
of the patent (e.g. [25]). Another crucial difference is that the majority of the citations are actu-
ally chosen by the examiners and not by the inventors themselves. From the USPTO, we gather
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information of all citations made by each patent (backward citations) and all citations received
by each patent as of the end of 2013 (forward citations). We can thus build a complete network
of citations that we will use later on in the analysis.

Turning to the structure of the lag between the citing and the cited patent in terms of appli-
cation date, we see that the mean of this lag is 8.5 years and the median is 7 years. This distribu-
tion is highly skewed, the 95 percentile is 21 years. We also report 164,000 citations with a
negative time lag. This is due to the fact that some citations can be added during the examina-
tion process and some patents require more time to be granted than others.

In what follows, we choose to restrict attention to pairs of citations with a lag no larger than
5 years. We impose this restriction for two reasons. First, the number of citations received
peaks 4-5 years after application. Second, the structure of the citation lag is necessarily biased
by the truncation of our sample: the more recent patents mechanically receive less citations
than the older ones. As we are restricting to citations received no later than 5 years after the
application date, this effect will only affect patents with an application date after 2007.

Data collection and basic description

Each patent contains an abstract and a core text which describe the invention. To see what a
patent looks like in practice, one can refer to the USPTO patent full-text database http://patft.
uspto.gov/netahtml/PTO/index.html or to Google patent which publishes USPTO patents in
pdf format at https://patents.google.com. Although including the full core texts would be natu-
ral and probably very useful in a systematic text-mining approach as done in [26], they are too
long to be included and thus we consider only the abstracts for the analysis. Indeed, the seman-
tic analysis counts more than 4 million patents, with corresponding abstracts with an average
length of 120.8 words (and a standard deviation of 62.4), a size that is already challenging in
terms of computational burden and data size. In addition, abstracts are aimed at synthesizing
purpose and content of patents and must therefore be a relevant object of study (see [27]). The
USPTO defines a guidance stating that an abstract should be “a summary of the disclosure as
contained in the description, the claims, and any drawings; the summary shall indicate the
technical field to which the invention pertains and shall be drafted in a way which allows the
clear understanding of the technical problem, the gist of the solution of that problem through
the invention, and the principal use or uses of the invention” (PCT Rule 8).

We construct from raw data a unified database. Data is collected from USPTO patent red-
book bulk downloads, that provides as raw data (specific dat or xm1 formats) full patent
information, starting from 1976. Detailed procedure of data collection, parsing and consolida-
tion are available in S2 Text. The latest dump of the database in Mongodb format is available
at http://dx.doi.org/10.7910/DVN/BW3ACK. Collection and homogenization of the database
into a directly usable database with basic information and abstracts was an important task as
USPTO raw data formats are involved and change frequently.

We count 4,666,365 utility patents with an abstract granted from 1976 to 2013. A very small
number of patents have a missing abstract, these are patents that have been withdrawn and we
do not consider them in the analysis. The number of patents granted each year increases from
around 70,000 in 1976 to about 278,000 in 2013. When distributed by the year of application,
the picture is slightly different. The number of patents steadily increase from 1976 to 2000 and
remains constant around 200,000 per year from 2000 to 2007. Restricting our sample to patent
with application date ranging from 1976 to 2007, we are left with 3,949,615 patents. These pat-
ents cite 38,756,292 other patents with the empirical lag distribution that has been extensively
analyzed in [4]. Conditioned on being cited at least once, a patent receives on average 13.5 cita-
tions within a five-year window. 270,877 patents receive no citation during the next five years
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following application, 10% of patents receive only one citation and 1% of them receive more
than 100 citations. A within class citation is defined as a citation between two patents sharing
at least one common technological class. Following this definition, 84% of the citations are
within class citations. 14% of the citations are between two patents that share the exact same
set of technological classes.

Towards a complementary classification

Potentialities of text-mining techniques as an alternative way to analyze and classify patents
are documented in [26]. The author’s main argument, in support of an automatic classification
tool for patent, is to reduce the considerable amount of human effort needed to classify all the
applications. The work conducted in the field of natural language processing and/or text analy-
sis has been developed in order to improve search performance in patent databases, build tech-
nology map or investigate the potential infringement risks prior to developing a new
technology (see [28] for a review). Text-mining of patent documents is also widely used as a
tool to build networks which carry additional information to the simplistic bibliographic con-
nections model as argued in [16]. As far as the authors know, the use of text-mining as a way
to build a global classification of patents remains however largely unexplored. One notable
exception can be found in [15] where semantic-based classification is shown to outperform the
standard classification in predicting the convergence of technologies even in small samples.
Semantic analysis reveals itself to be more flexible and more quickly adaptable to the appari-
tion of new clusters of technologies. Indeed, as argued in [15], before two distinct technologies
start to clearly converge, one should expect similar words to be used in patents from both
technologies.

Finally, a semantic classification where patents are gathered based on the fact that they
share similar significant keywords has the advantage of including a network feature that can-
not be found in the USPC case, namely that each patent is associated with a vector of probabil-
ity to belong to each of the semantic classes (more details on this feature can be found in
Section 1). Using co-occurrence of keywords, it is then possible to construct a network of pat-
ents and to study the influence of some key topological features. As reviewed previously, the
use of co-occurrences is the usual way to construct a semantic network. Other hybrid tech-
nique such as bipartite semantic/authors networks, do not have the nice feature of relying
solely on endogenous semantic information contained in data.

Semantic classification construction

In this section, we describe methods and empirical analysis leading to the construction of
semantic network and the corresponding classification.

Keywords extraction

Let P be the set of patents, we first assign to a patent p € P a set of potentially significant key-
words K(p) from its text A(p) (that corresponds to the concatenation of its own title and
abstract). K(p) are extracted through a similar procedure as the one detailed in [29]:

1. Text parsing and Tokenization: we transform raw texts into a set of words and sentences,
reading it (parsing) and splitting it into elementary entities (words organized in sentences).

2. Part-of-speech tagging: attribution of a grammatical function to each of the tokens defined
previously.
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3. Stem extraction: families of words are generally derived from a unique root called stem (for
example compute, computer, computation all yield the same stem comput) that we
extract from tokens. At this point the abstract text is reduced to a set of stems and their
grammatical functions.

4. Multi-stems construction: these are the basic semantic units used in further analysis. They
are constructed as groups of successive stems in a sentence which satisfies a simple gram-
matical function rule. The length of the group is between 1 and 3 and its elements are either
nouns, attributive verbs or adjectives. We choose to extract the semantics from such nomi-
nal groups in view of the technical nature of texts, which is not likely to contain subtle
nuances in combinations of verbs and nominal groups.

Text processing operations are implemented in python in order to use built-in functions
nltklibrary [30] for most of above operations. This library supports most of state-of-the-art
natural language processing operations. Source code is openly available on the repository of
the project at https://github.com/JusteRaimbault/PatentsMining.

Keywords relevance estimation

Relevance definition. Following the heuristic in [29], we estimate relevance score in
order to filter multi-stem. The choice of the total number of keywords to be extracted, which
we shall denote K,,, is important, too small a value would yield similar network structures but
including less information whereas very large values tend to include too many irrelevant key-
words. We choose to set this parameter to K,, = 100,000. We first consider the filtration of k -
K,, (with k = 4) to keep a large set of potential keywords but still have a reasonable number of
co-occurrences to be computed. This step has only very marginal effects on the nature of the
final keywords but is necessary for computational purposes. The filtration is done on the unit-
hood u;, defined for keyword i as u; = f; - log(1 + I;) where f; is the multi-stem’s number of appa-
ritions over the whole corpus and /; its length in words. A second filtration of K|, keywords is
done on the termhood t;, where the formal definition can be found in Eq (1). It is computed as
a chi-squared score on the distribution of the stem’s co-occurrences and then compared to a
uniform distribution within the whole corpus. Intuitively, uniformly distributed terms will be
identified as plain language and they are thus not relevant for the classification. More precisely,
we compute the co-occurrence matrix (M), where M;; is defined as the number of patents
where stems i and j appear together. The termhood score t; is defined as

2
_ Z (Mij - ZkMika]V[jk)
l ZkMika]VIjk .

Moving window estimation. The previous scores are estimated on a moving window
with fixed time length following the idea that the present relevance is given by the most recent
context and thus that the influence vanishes when going further into the past. Consequently,
the co-occurrence matrix is chosen to be constructed at year ¢ restricting to patent which
applied during the time window [t — To; t]. Note that the causal property of the window is cru-
cial as the future cannot play any role in the current state of keywords and patents. This way,
we will obtain semantic classes which are exploitable on a T time span. For example, this
enables us to compute the modularity of classes in the citation network as in section 1. In the
following, we take T = 4 (which corresponds to a five year window) consistently with the
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choice of maximum time lag for citations made in Section 1. Accordingly, the sensitivity analy-
sis for Ty = 2 can be found in Appendix S3 Text.

Construction of the semantic network

We keep the set of most relevant keywords /C,, and obtain their co-occurrence matrix as
defined in Section 1. This matrix can be directly interpreted as the weighted adjacency matrix
of the semantic network. At this stage, the topology of raw networks does not allow the extrac-
tion of clear communities. This is partly due to the presence of hubs that correspond to fre-
quent terms common to many fields (e.g. method, apparat) which are wrongly filtered as
relevant. We therefore introduce an additional measure to correct the network topology: the
concentration of keywords across technological classes, defined as:

N 10s

Coan(8) = ;(Z,k—W’

where kj(s) is the number of occurrences of the sth keyword in each of the jth technological
class taken from one of the N*© USPC classes. The higher c,,, the more specific to a techno-
logical class the node is. For example, the terms semiconductor is widely used in electron-
ics and does not contain any significant information in this field. We use a threshold
parameter, defined as 6, and keep nodes with ¢;,,(s) > 0. Likewise, edges with low weights
correspond to rare co-occurrences and are considered to be noise. To account for this we
define the threshold parameter for edges 0,,, and we filter edges with a weight below 6,,, follow-
ing the rationale that two keywords are not linked “by chance” if they appear simultaneously a
minimal number of time. To control for size effect, we normalize by taking 0, = 0" - N,
where N is the number of patents in the corpus (N, = |P|). 0\ is thus a varying parameter
interpreted as a noise threshold per patent. Communities are then extracted using a standard
modularity maximization procedure as described in [31] to which we add the two constraints
captured by 6,, and 6,, namely that edges must have a weight greater than 6,, and nodes a con-

centration greater than 0. At this stage, both parameters 8, and 9‘(3) are unconstrained and
their choice is not straightforward. Indeed, many optimization objectives are possible, such as
the modularity, network size or number of communities. We find that modularity is maxi-
mized at a roughly stable value of 8,, across different 6. for each year, corresponding to a stable
0" across years, which leads us to choose 0" = 4.1 - 107" Then for the choice of 6,, different
candidates points lie on a Pareto front for the bi-objective optimization on number of commu-
nities and network size. There is a priori no reason to choose any specific point among the dif-
ferent optimums. Consequently, we have tried the analysis with all the candidate values for 6,
and found that the results are the most reasonable when taking 0, = 0.06 (see Fig 1). We show
in Fig 2 an example of semantic network visualization.

Characteristics of semantic classes

For each year t, we define as N\*"” the number of semantic classes which have been computed
by clustering keywords from patents appeared during the period [t — Ty, t] (we recall that

we have chosen T, = 4). Each semanticclassk =1, ... ,Nfsem) is characterized by a set of key-
words K(k, t) which is a subset of /C,, selected as described in previous sections. The cardinal
of K(k, t) distribution across each semantic class k is highly skewed with a few semantic classes
containing over 1,000 keywords, most of them with roughly the same number of keywords.

In contrast, there are also many semantic classes with only two keywords. There are around
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Fig 1. Sensitivity analysis of network community structure to filtering parameters. We consider a specific window 2000-2004 and the
obtained plots are typical. (Left panel) We plot the number of communities as a function of the edge threshold parameter 6,, for different
values of the node threshold parameter 6.. The maximum is roughly stable across 6, (dashed red line). (Right panel) To choose 6, we do a
Pareto optimization on communities and network size: the compromise point (red overline) on the Pareto front (purple overline: possible

choices after having fixed Gﬁ‘v’); blue level gives modularity) corresponds to 6,= 0.06.

https://doi.org/10.1371/journal.pone.0176310.g001

30 keywords by semantic class on average and the median is 2 for any t. Fig 3 shows that the
average number of keywords is relatively stable from 1976 to 1992 and then picks around 1996
prior to going down.

Title of semantic classes. USPC technological classes are defined by a title and a highly
accurate definition which help retrieve patents easily. The title can be a single word (e.g.: class
101: “Printing”) or more complex (e.g.: class 218: “High-voltage switches with arc preventing
or extinguishing devices”). As our goal is to release a comprehensive database in which each
patent is associated with a set of semantic classes, it is necessary to give an insight on what
these classes represent by associating a short description or a title as in [26]. In our case, such
description is taken as a subset of keywords taken from K(k, t). For the vast majority of seman-
tic classes that have less than 5 keywords, we decide to keep all of theses keywords as a descrip-
tion. For the remaining classes which feature around 50 keywords on average, we rely on the
topological properties of the semantic network. [32] suggest to retain only the most frequently
used terms in K(k, t). Another possibility is to select 5 keywords based on their network cen-
trality with the idea that very central keywords are the best candidates to describe the overall
idea captured by a community. For example, the largest semantic class in 2003-2007 is charac-
terized by the keywords: Support Packet; Tree Network; NetworkWide; Voic
Stream; Code Symbol Reader.

Size of technological and semantic classes. We consider a specific window of observa-
tions (for example 2000-2004), and we define Z the number of patents which appeared during
that time window. For each patenti=1, - - -, Z we associate a vector of probability where each

component pfjem) € [0,1], withj=1, - - -, N(sem) and where

N(sem)

> =1
=1

(when there is no room for confusion, we drop the subscript ¢ in N*").On average across all
time windows, a patent is associated to 1.8 semantic classes with a positive probability. Next
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Fig 2. An example of semantic network visualization. We show the network obtained for the window 2000-2004, with parameters

6:,=0.06and 0, = 0¥ - N, = 4.5e~ - 9.1€’. The corresponding file in a vector format (.svg), that can be zoomed and explored, is available
as S1 File.

https://doi.org/10.1371/journal.pone.0176310.9g002

we define the size of a semantic class as

Y4
S](sem) — Z pfjsem)
i=1

Correspondingly, we aim to provide a consistent definition for technological classes. For that
purpose, we follow the so-called “fractional count” method, which was introduced by the
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Fig 3. This figure plots the average number of keywords by semantic class for each time window [t - 4; f] from = 1980 to t=2007.
https://doi.org/10.1371/journal.pone.0176310.9003

USPTO and consists in dividing equally the patents between all the classes they belong to. For-
mally, we define the number of technological classes as N/ (which is not time dependent
contrary to the semantic case) and for j = 1, - - -, N the corresponding matrix of probability
is defined as

e _ By
Pfj ) )

where Bj; equals 1 if the ith patent belongs to the jth technological class and 0 if not. When
there is no room for confusion, we will drop the exponent part and write only p; when refer-
ring to either the technological or semantic matrix. Empirically, we find that both classes
exhibit a similar hierarchical structure in the sense of a power-law type of distribution of class
sizes as shown in Fig 4. This feature is important, it suggests that a classification based on the
text content of patents has some separating power in the sense that it does not divide up all the
patents in one or two communities.

Potential refinements of the method

Our semantic classification method could be refined by combining it with other techniques
such as Latent Dirichlet Allocation which is a widely used topic detection method (e.g. [33]),
already used on patent data as in [34] where it provides a measure of idea novelty and the
counter-intuitive stylized facts that breakthrough invention are likely to come out of local
search in a field rather than distant technological recombination. Using this approach should
first help further evaluate the robustness of our qualitative conclusions (external validation).
Also, depending on the level of orthogonality with our classification, it can potentially bring an
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rank

Fig 4. Sizes of classes. Yearly from t= 1980 to t= 2007, we plot the size of semantic classes (left-side) and technological classes (right-
side) for the corresponding time window [t - 4, {], from the biggest to the smallest. The formal definition of size can be found in Section
Characteristics of Semantic Classes. Each color corresponds to one specific year. Yearly semantic classes and technological classes
present a similar hierarchical structure which confirms the comparability of the two classifications. This feature is crucial for the statistical
analysis in Section Statistical Model. Over time, curves are translated and levels of hierarchy stays roughly constant.

https://doi.org/10.1371/journal.pone.0176310.9004

additional feature to characterize patents, in the spirit of multi-modeling techniques where
neighbor models are combined to take advantage of each point of view on a system.

Our use of network analysis can also be extended using newly developed techniques of
hyper-network analysis. Indeed, patents and keywords can for example be nodes of a bipartite
network, or patents be links of an hyper-network, in the sense of multiple layers with different
classification links and citation links. The combination of citation network modeling by Sto-
chastic Block Modeling with topic modeling was studied for scientific papers by [35], outper-
forming previous link prediction algorithms. [36] provide a method to compare macroscopic
structures of the different layers in a multilayer network that could be applied as a refinement
of the overlap, modularity and statistical modeling studied in this paper. Furthermore, is has
recently been shown that measures of multilayer network projections induce a significant loss
of information compared to the generalized corresponding measure [37], which confirms the
relevance of such development that we left for further research.

An other potential research development would be to further exploit the temporal structure
of our dataset. Indeed, large progress have recently been made in complex network analysis of
time-series data (see [38] for a review). For example, [39] develops a method to construct mul-
tiscale network from time series, which could in our case be a solution to identify structures in
patents trajectories at different levels, and be an alternative to the single scale modularity anal-
ysis we use.

Results

In this section, we present some key features of our resulting semantic classification showing
both complementary and differences with the technological classification. We first present
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several measures derived from this semantic classification at the patent level: Diversity, Origi-
nality, Generality (Section Patent Level Measures) and Overlapping (Section Classes overlaps).
We then show that the two classifications show highly different topological measures and
strong statistical evidence that they feature a different model (Sections Citation Modularity
and Statistical Model).

Patent level measures

Given a classification system (technological or semantic classes), and the associated probabili-
ties p;; for each patent i to belong to class j (that were defined in Section Characteristics of
Semantic Classes), one can define a patent-level diversity measure as one minus the Herfindhal
concentration index on p;; by

NG
D¥ =1-— E p;, with z € {tec, sem}.

=1

We show in Fig 5 the distribution over time of semantic and technological diversity with
the corresponding mean time-series. This is carried with two different settings, namely includ-
ing/not including patents with zero diversity (i.e. single class patents). We call other patents
“complicated patents” in the following. First of all, the presence of mass in small probabilities
for semantic but not technological diversity confirms that the semantic classification contains
patent spread over a larger number of classes. More interestingly, a general decrease of diver-
sity for complicated patents, both for semantic and technological classification systems, can be
interpreted as an increase in invention specialization. This is a well-known stylized fact as doc-
umented in [40]. Furthermore, a qualitative regime shift on semantic classification occurs
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Fig 5. Patent level diversities. Distributions of diversities (Left column) and corresponding mean time-series (Right column) for = 1980 to
t=2007 (with the corresponding time window [ - 4, {]). The first row includes all classified patents, whereas the second row includes only
patents with more than one class (i.e. patents with diversity greater than 0).

https://doi.org/10.1371/journal.pone.0176310.g005
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o
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o

originality

0.35-

1980

around 1996. This can be seen whether or not we include patents with zero diversity. The
diversity of complicated patents stabilizes after a constant decrease, and the overall diversity
begins to strongly decrease. This means that on the one hand the number of single class patents
begins to increase and on the other hand complicated patents do not change in diversity. It
can be interpreted as a change in the regime of specialization, the new regime being caused by
more single-class patents.

More commonly used in the literature are the measures of originality and generality. These
measures follow the same idea than the above-defined diversity in quantifying the diversity of
classes (whether technological or semantic) associated with a patent. But instead of looking at
the patent’s classes, they consider the classes of the patents that are cited or citing. Formally,
the originality O; and the generality G; of a patent i are defined as

2 2
NG Zpi’i N@ ZP ij
i'el; i'el;
0 =1-Y[—-"—| and G =

N®) N(z
j=1 j=1

2D Pu > pu

k=1 i'el; k=1 i'el;

where z € {tec, sem}, I; denotes the set of patents that are cited by the ith patent within a five
year window (i.e. if the ith patent appears at year ¢, then we consider patents on [t — Ty, t])
when considering the originality and I, the set of patents that cite patent i after less than five
years (i.e. we consider patents on [t, t+T]) in the case of generality. Note that the measure of
generality is forward looking in the sense that G\ used information that will only be available
5 years after patent applications. Both measures are lower on average based on semantic classi-

fication than on technological classification. Fig 6 plots the mean value of 0", 0, G\*™
and G,

Classes overlaps

A proximity measure between two classes can be defined by their overlap in terms of patents.
Such measures could for example be used to construct a metrics between semantic classes.
Intuitively, highly overlapping classes are very close in terms of technological content and one
can use them to measure distance between two firms in terms of technology as done in [41].
Formally, recalling the definition of (p;)) as the probability for the ith patent to belong to the

o
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>
£
type © type
+ semantic © - semantic
i 0.40- )
technological q:) N technological
\
N
0.36-
1990 2000 1980 1990 2000
year year

Fig 6. Patent level originality (left hand side) and generality (right hand side) for = 1980 to t= 2007 (with the corresponding time
window [t - 4, f]) as defined in subsection Patent Level Measures.

https://doi.org/10.1371/journal.pone.0176310.g006
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jth class and Np as the number of patents it writes

Np

1
Overlap,, = N E PPk (2)
P

i=1

The overlap is normalized by patent count to account for the effect of corpus size: by con-
vention, we assume the overlap to be maximal when there is only one class in the corpus. A

corresponding relative overlap is computed as a set similarity measure in the number of pat-
. lAnB|
[Al+[B[*
Intra-classification overlaps. The study of distributions of overlaps inside each classifica-

ents common to two classes A and B, given by o(A, B) = 2

tion, i.e. between technological classes and between semantic classes separately, reveals the
structural difference between the two classification methods, suggesting their complementary
nature. Their evolution in time can furthermore give insights into trends of specialization. We
show in Fig 7 distributions and mean time-series of overlaps for the two classifications. The
technological classification globally always follow a decreasing trend, corresponding to more
and more isolated classes, i.e. specialized inventions, confirming the stylized fact obtained in
previous subsection. For semantic classes, the dynamic is somehow more intriguing and sup-
ports the story of a qualitative regime shift suggested before. Although globally decreasing as
technological overlap, normalized (resp. relative) mean overlap exhibits a peak (clearer for
normalized overlap) culminating in 1996 (resp. 1999). Looking at normalized overlaps, classifi-
cation structure was somewhat stable until 1990, then strongly increased to peak in 1996 and
then decrease at a similar pace up to now. Technologies began to share more and more until a
breakpoint when increasing isolation became the rule again. An evolutionary perspective on
technological innovation [42] could shed light on possible interpretations of this regime shift:
as species evolve, the fitness landscape first would have been locally favorable to cross-
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Fig 7. Intra-classification overlaps. (Left column) Distribution of overlaps Ojfor all i # j (zero values are removed because of the log-
scale). Right column) Corresponding mean time-series. (First row) Normalized overlaps. (Second row) Relative overlaps.

https://doi.org/10.1371/journal.pone.0176310.9007
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Fig 8. Distribution of relative overlaps between classifications. (Left) Distribution of overlaps at all time steps; (Right) Corresponding
mean time-series. The decreasing trend starting around 1996 confirms a qualitative regime shift in that period.

https://doi.org/10.1371/journal.pone.0176310.9008

insemination, until each fitness reaches a threshold above which auto-specialization becomes
the optimal path. It is very comparable to the establishment of an ecological niche [43], the
strong interdependency originating here during the mutual insemination resulting in a highly
path-dependent final situation.

Inter-classification overlaps. Overlaps between classifications are defined as in (Classes
overlaps), but with j standing for the jth technological class and k for the kth semantic class: p;;
are technological probabilities and p;. semantic probabilities. They describe the relative corre-
spondence between the two classifications and are a good indicator to spot relative changes, as
shown in Fig 8. Mean inter-classification overlap clearly exhibits two linear trends, the first
one being constant from 1980 to 1996, followed by a constant decrease. Although difficult to
interpret directly, this stylized fact clearly unveils a change in the nature of inventions, or at
least in the relation between content of inventions and technological classification. As the tip-
ping point is at the same time as the ones observed in the previous section and since the two
statistics are different, it is unlikely that this is a mere coincidence. Thus, these observations
could be markers of a hidden underlying structural changes in processes.

Citation modularity

An exogenous source of information on relevance of classifications is the citation network
described in Section A bibliographical network between patents: citations. The correspon-
dence between citation links and classes should provide a measure of accuracy of classifica-
tions, in the sense of an external validation since it is well-known that citation homophily is
expected to be quite high (see, e.g, [14]). This section studies empirically modularities of the
citation network regarding the different classifications. To corroborate the obtained results, we
propose to look at a more rigorous framework in Section Statistical Model. Modularity is a
simple measure of how communities in a network are well clustered (see [31] for the accurate
definition). Although initially designed for single-class classifications, this measure can be
extended to the case where nodes can belong to several classes at the same time, in our case
with different probabilities as introduced in [44]. The simple directed modularity is given in
our case by

i 1 kink(.mt
o = X [ otae)

P1<ij<np P

with Aj; the citation adjacency matrix (i.e. A;; = 1 if there is a citation from the ith patent to the
jth patent, and A;; = 0 if not), k" = |I,| (resp. k& = |I,|) in-degree (resp. out-degree) of patents
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Fig 9. Temporal evolution of semantic and technological modularities of the citation network. (Left) Simple directed modularity,
computed with patent main classes (main technological class and semantic class with larger probability). (Right) Multi-class modularity,
computed following [44].

https://doi.org/10.1371/journal.pone.0176310.9009

(i.e. the number of citations made by the ith patent to others and the number of citations
received by the ith patent). Q, can be defined for each of the two classification systems: z €
{tec, sem}. If z = tec, c; is defined as the main patent class, which is taken as the first class
whereas if z = sem, c; is the class with the largest probability.

Multi-class modularity in turns is given by

Bk Bk

ic i Jicj
E E P P)A — |
NP

P c=1 1<ij<Np

where

Dur _ _Zp(pijc ) and f8 ZF@zcvpjc

We take F(pjc, pjc) = pic - pjc as suggested in [44]. Modularity is an aggregated measure of how
the network deviates from a null model where links would be randomly made according to
node degree. In other words it captures the propensity for links to be inside the classes. Over-
lapping modularity naturally extends simple modularity by taking into account the fact that
nodes can belong simultaneously to many classes. We document in Fig 9 both simple and

multi-class modularities over time. For simple modularity, Qf,’“’ is low and stable across the

years whereas Q" is slightly greater and increasing. These values are however low and sug-
gest that single classes are not sufficient to capture citation homophily. Multi-class modulari-
ties tell a different story. First of all, both classification modularities have a clear increasing
trend, meaning that they become more and more adequate with citation network. The speciali-
zations revealed by both patent level diversities and classes overlap is a candidate explanation
for this growing modularities. Secondly, semantic modularity dominates technological modu-
larity by an order of magnitude (e.g. 0.0094 for technological against 0.0853 for semantic in
2007) at each time. This discrepancy has a strong qualitative significance. Our semantic classi-
fication fits better the citation network when using multiple classes. As technologies can be
seen as a combination of different components as shown by [5], this heterogeneous nature is
most likely better taken into account by our multi-class semantic classification.

Statistical model

In this section, we develop a statistical model aimed at quantifying performance of both tech-
nological and semantic classification systems. In particular, we aim at corroborating findings
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obtained in Section Citation Modularity. The mere difference between this approach and the
citation modularity approach lies in the choice of the underlying model, and the according
quantities of interest. In addition for the semantic approach, we want to see if when restricting
to patents with higher probabilities to belong to a class, we obtain better results. To do that, we
choose to look at within class citations proportion (for both technological and semantic
approaches). We provide two obvious reasons why we choose this. First, the citations are com-
monly used as a proxy for performance as mentioned in Section Citation Modularity. Second,
this choice is “statistically fair” in the sense that both approaches have focused on various goals
and not on maximizing directly the within class proportion. Nonetheless, the within class pro-
portion is too sensitive to the distribution of the shape of classes. For example, a dataset where
patents for each class account for 10% of the total number of patents will mechanically have a
better within class proportion than if each class accounts for only 1%. Consequently, an ade-
quate statistical model, which treats datasets fairly regardless of their distribution in classes, is
needed. This effort ressembles to the previous study of citation modularity, but is complemen-
tary since the model presented here can be understood as an elementary model of citation net-
work growth. Furthermore, the parameters fitted here can have a direct interpretation as a
citation probability.

We need to introduce and recall some notations. We consider a specific window of observa-
tions [t — Ty, t], and we define Z the number of patents which appeared during that time win-
dow. Welet y, - - -, t their corresponding appearance date by chronological order, which for
simplicity are assumed to be such that ¢; < --- < t,. For each patenti=1, - - -, Z we consider C;
the number of distinctive couples {cited patent, cited patent’s class} made by the ith patent (for
instance if the ith patent has only made one citation and that the cited patent is associated with
three classes, then C; = 3). Let z € {tec, sem}, we define N,-<Z> the number of patents associated to
at least one of the ith classes at time ¢; _ ;. For I=1, - - -, C; we consider the variables B; ; which
equal 1 if the cited patent’s class is also common to the ith patent. We assume that B; ; are inde-
pendent of each other and conditioned on the past follow Bernoulli variables

N?
B<min{1,ﬁ + 9<Z>}>,
P

where the parameter 0 < 8 < 1 indicates the propensity for any patent to cite patents of its
own technological or semantic class. When 6 = 0, the probability of citing patents from its

own class is simply N* (i — 1) ', which corresponds to the observed proportion of patents
which belong to at least one of the ith patent’s classes. Thus this corresponds to the estimated
probability of citing one patent if we assume that the probability of citing any patentk=1, - - -,
i — 1 is uniformly distributed, which could be a reasonable assumption if classes were assigned
randomly and independently from patent abstract contents. Conversely if 6 = 1, we are in
the case of a model where there are 100% of within class citations. A reasonable choice of 6
lies between those two extreme values. Finally, we assume that the number of distinctive cou-
ples C; are a sequence of independent and identically distributed random variables following
the discrete distribution C, and also independent from the other quantities.

We estimate 6 via maximum likelihood, and obtain the corresponding maximum likeli-

hood estimator (MLE) 0®). The likelihood function, along with the standard deviation expres-
sion and details about the test, can be found in S4 Text. The fitted values, standard errors and
p-values corresponding to the statistical test 8™ = §%“) (with corresponding alternative
hypothesis 6™ > §“?) on non-overlapping blocks from the period 1980-2007 are reported
on Table 1. Note that the estimation included patents up until 2010 in the period 2006-2007
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Table 1. Estimated values of 6 and 6°*™ and corresponding standard errors obtained from a Maxi-

mum Likelihood estimator as presented in section Statistical Model.

Approach Estimated Value st.er. p-value
1980-1985 period
technological .664 .008
semantic p- =.04 741 .047 .053
semantic p- =.06 .799 .081 .049
semantic p = .08 .828 .126 .097
semantic p =.10 .834 .166 .153
1986—1990 period
technological .634 .007
semantic p- =.04 .703 .022 .001
semantic p~ = .06 .768 .040 .0004
semantic p~ =.08 .804 .069 .007
semanticp” =.10 .832 114 .041
1991-1995 period
technological .619 .006
semantic p~ = .04 .655 .009 .0004
semantic p~ =.06 713 .017 9e-08
semantic p- =.08 731 .025 7e-06
semantic p =.10 .750 .037 9e-06
1996-2000 period
technological .551 .003
semantic p” =.04 .585 .002 ~0
semantic p- =.06 .638 .004 ~0
semantic p~ = .08 .660 .006 ~0
semanticp =.10 .686 .008 ~0
2001-2005 period
technological .567 .003
semantic p~ = .04 .621 .004 ~0
semantic p = .06 .676 .007 ~0
semantic p- =.08 .701 .010 ~0
semantic p" =.10 .710 .013 ~0
2006—2007 period
technological .600 .007
semantic p- =.04 .683 .016 1e-06
semantic p- =.06 732 .025 2e-07
semantic p = .08 .760 .036 6e-06
semantic p =.10 .782 .048 9e-05
1980-2007 global period
technological .606 .002
semantic p~ = .04 .665 .009 8e-11
semantic p = .06 721 .017 9e-12
semantic p = .08 747 .025 9e-09
semanticp  =.10 .782 .035 3e-07
https://doi.org/10.1371/journal.pone.0176310.t001
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and not the patents from 1980 in the period 1980-1985 for homogeneity in size with other
periods. This doesn’t affect the significativity of the results. Semantic values are reported for
four different chosen thresholds p~ = .04, .06, .08, .1. It means that we restricted to the couples
(ith patent, jth class) such that p; > p~.

The choice of considering non-overlapping blocks (instead of overlapping blocks) is merely
statistical. Ultimately, our interest is in the significance of the test over the whole period 1980-
2007. Thus, we want to compute a global p-value. This can be done considering the local p-val-
ues (by local, we mean for instance computed on the period 2001-2005) assuming indepen-
dence between them. This assumption is reasonable only if the blocks are non-overlapping. All
of this can be found in S4 Text. Finally, note that from a statistical perspective, including over-
lapping blocks wouldn’t yield more information.

The values reported in Table 1 are overwhelmingly against the null hypothesis. The global
estimates of 0““™ are significantly bigger than the estimate of 6% for all the considered
thresholds. Although the corresponding p-values (which are also very close to 0) are not
reported, it is also quite clear that the bigger the threshold, the higher the corresponding 6™
is estimated. This is consistently seen for any period, and significant for the global period. This
seems to indicate that when restricting to the couples (patent, class) with high semantic proba-
bility, the propension to cite patents from its own class 8““™ is increasing. We believe that this
might provide extra information to patent officers when making their choice of citations.
Indeed, they could look first to patents which belong to the same semantic class, especially
when patents have high probability semantic values.

Note that the introduced model can be seen as a simple model of citations network growth
conditional to a classification, which can be expressed as a stochastic block model (e.g. [45],
[46]). The parameters are estimated computing the corresponding MLE. In view of [47], this
can be thought as equivalent to maximizing modularity measures.

Conclusion

The main contribution of this study was twofold. First we have defined how we built a network
of patents based on a classification that uses semantic information from abstracts. We have
shown that this classification share some similarities with the traditional technological classifi-
cation, but also have distinct features. Second, we provide researchers with materials resulting
from our analysis, which includes: (i) a database linking each patent with its set of semantic
classes and the associated probabilities; (ii) a list of these semantic classes with a description
based on the most relevant keywords; (iii) a list of patent with their topological properties in
the semantic network (centrality, frequency, degree, etc.). The availability of this data suggests
new avenues for further research. Linking our dataset with existing open ones can lead to vari-
ous powerful developments. For example, using it together with the disambiguated inventor
database provided by [48] could be a way to study semantic profiles of inventors, or of cities as
inventor addresses are provided. The investigation of spatial diffusion of innovation between
cities, which is a key component of Pumain’s Evolutive Urban Theory [49], would be made
possible.

A first potential application is to use the patents’ topological measures inherited from their
relevant keywords. The fact that these measures are backward-looking and immediately avail-
able after the publication of the patent information is an important asset. It would for example
be very interesting to test their predicting power to assess the quality of an innovation, using
the number of forward citations received by a patent, and subsequently the future effect on the
firm’s market value.
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Regarding firm innovative strategy, a second extension could be to study trajectories of
firms in the two networks: technological and semantic. Merging these information with data
on the market value of firms can give a lot of insight about the more efficient innovative strate-
gies, about the importance of technology convergence or about acquisition of small innovative
firms. It will also allow to observe innovation pattern over a firm life cycle and how this differ
across technology field.

A third extension would be to use dig further into the history of innovation. USPTO patent
data have been digitized from the first patent in July 1790. However, not all of them contain a
text that is directly exploitable. We consider that the quality of patent’s images is good enough
to rely on Optical Character Recognition techniques to retrieve plain text from at least 1920.
With such data, we would be able to extend our analysis further back in time and to study how
technological progress occurs and combines in time. [50] conduct a similar work by looking at
recombination and apparition of technological subclasses. Using the fact that communities are
constructed yearly, one can construct a measure of proximity between two successive classes.
This could give clear view on how technologies converged over the year and when others
became obsolete and replaced by new methods.
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