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Myo-inositol changes precede amyloid
pathology and relate to APOE genotype in
Alzheimer disease

ABSTRACT

Objective:We aimed to test whether in vivo levels of magnetic resonance spectroscopy (MRS) me-
tabolites myo-inositol (mI), N-acetylaspartate (NAA), and choline are abnormal already during pre-
clinical Alzheimer disease (AD), relating these changes to amyloid or tau pathology, and functional
connectivity.

Methods: In this cross-sectional multicenter study (a subset of the prospective Swedish BioFINDER
study), we included 4 groups, representing the different stages of predementia AD: (1) cognitively
healthy elderly with normal CSF b-amyloid 42 (Ab42), (2) cognitively healthy elderly with abnor-
mal CSF Ab42, (3) patients with subjective cognitive decline and abnormal CSF Ab42, (4)
patients with mild cognitive decline and abnormal CSF Ab42 (Ntotal 5 352). Spectroscopic
markers measured in the posterior cingulate/precuneus were considered alongside known dis-
ease biomarkers: CSF Ab42, phosphorylated tau, total tau, [18F]-flutemetamol PET, f-MRI, and
the genetic risk factor APOE.

Results: Amyloid-positive cognitively healthy participants showed a significant increase in mI/cre-
atine and mI/NAA levels compared to amyloid-negative healthy elderly (p , 0.05). In amyloid-
positive healthy elderly, mI/creatine and mI/NAA correlated with cortical retention of [18F]
flutemetamol tracer (b̂ 5 0.44, p 5 0.02 and b̂ 5 0.51, p 5 0.01, respectively). Healthy elderly
APOE e4 carriers with normal CSF Ab42 levels had significantly higher mI/creatine levels (p ,

0.001) than e4 noncarriers. Finally, elevated mI/creatine was associated with decreased func-
tional connectivity within the default mode network (rpearson 520.16, p5 0.02), independently of
amyloid pathology.

Conclusions: mI levels are elevated already at asymptomatic stages of AD. Moreover, mI/creatine
concentrations were increased in healthy APOE e4 carriers with normal CSF Ab42 levels, sug-
gesting that mI levels may reveal regional brain consequences of APOE e4 before detectable
amyloid pathology. Neurology® 2016;86:1754–1761

GLOSSARY
AD5 Alzheimer disease; Cho5 choline; Cr5 creatine;DMN5 default mode network; fMRI5 functional MRI;GLM5 general
linear model;MCI5mild cognitive impairment;mI5myo-inositol;MMSE5Mini-Mental State Examination;MRS5magnetic
resonance spectroscopy; NAA 5 N-acetylaspartate; PCC 5 posterior cingulate cortex; SCD 5 subjective cognitive decline;
t-tau 5 total tau; VOI 5 volume of interest.

Potential biomarkers for predicting onset and progression of Alzheimer disease (AD) can be de-
tected by proton magnetic resonance spectroscopy (MRS)—a noninvasive imaging technique
that allows in vivo assessment of brain biochemistry. Decreased levels of neural marker
N-acetylaspartate (NAA) and increased concentrations of myo-inositol (mI) belong to the more
consistent MRS findings in patients with AD dementia.1–4
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To understand the underlying causes of the
observed abnormalities in the MRS neuro-
chemical profile in AD, it is important to
study their association with known pathologic
processes in individuals at different disease
stages. We hypothesized that at the early pre-
dementia stages, incipient AD pathology is
responsible for MRS metabolite abnormalities.

We aimed to evaluate the relationship
between MRS-detected brain metabolites
and known AD biomarkers in the following
4 predementia groups: healthy controls with
no evidence of amyloid pathology, healthy
controls with abnormal levels of CSF Ab42,
patients with subjective cognitive decline
(SCD) with abnormal Ab42 levels, and pa-
tients with mild cognitive impairment (MCI)
with abnormal Ab42 levels.

In these groups, we studied the relationship
among metabolites NAA, mI, and choline
(Cho) in the posterior cingulate cortex
(PCC)/precuneus and Ab deposition mea-
sured by [18F]-flutemetamol PET or CSF
Ab42 as well as the CSF neurodegenerative
markers total tau (t-tau) and phosphorylated
tau. In addition, we evaluated MRS metabo-
lites in relation to (1) carriership of the APOE
e4 allele—the main known genetic risk factor
for AD5 and (2) functional connectivity in the
PCC/precuneus measured using functional
MRI (fMRI), due to the default mode net-
work (DMN) involvement in predementia
AD.6

METHODS Standard protocol approvals, registrations,
and patient consents. All participants gave written consent to

participate in the study. Ethical approval was given by the ethical

committee of Lund University, Sweden. [18F]-flutemetamol PET

imaging approval was obtained from the Swedish Medicines and

Products Agency and the local Radiation Safety Committee at

Skåne University Hospital, Sweden.

Participants. The study population stemmed from the prospec-

tive and longitudinal Swedish BioFinder study (more information

available at www.biofinder.se and the coinvestigator list on the

Neurology® Web site at Neurology.org). Among others, the

BioFinder consecutively enrolls (1) cognitively healthy elderly

participants and (2) patients without dementia with mild

cognitive symptoms. Individuals from these 2 cohorts were

selected for the present study. Data were collected between

2009 and 2014 in accordance with a standardized protocol.

The first cohort consisted of cognitively normal elderly partic-

ipants who were eligible for inclusion if they (1) were aged $60

years old, (2) scored 28–30 points on Mini-Mental State Exam-

ination (MMSE) at the screening visit, (3) did not have any

subjective cognitive impairment, and (4) were fluent in Swedish.

Exclusion criteria included presence of significant neurologic dis-

ease (e.g., stroke, Parkinson disease, multiple sclerosis), severe

psychiatric disease (e.g., severe depression or psychotic syn-

dromes), dementia, or MCI.

The second cohort contained patients who were enrolled con-

secutively at 3 memory outpatient clinics in Sweden. They were

referred for assessment of cognitive complaints and assessed by

physicians with special interest in dementia disorders. The inclu-

sion criteria were as follows: (1) referred to the memory clinics

because of cognitive impairment; (2) not fulfilling the criteria

for dementia; (3) MMSE score of 24–30 points; (4) age 60–80

years; and (5) fluent in Swedish. The exclusion criteria were (1)

cognitive impairment without doubt explained by another con-

dition (other than prodromal dementia); (2) severe somatic dis-

ease; and (3) refusing lumbar puncture or neuropsychological

investigation. Further, patients were classified into MCI and

SCD based on a neuropsychological battery assessing the cogni-

tive domains of verbal ability, visuospatial construction, episodic

memory, and executive functions and the clinical assessment of

a senior neuropsychologist.

For the current study, only participants with CSF analysis and

a high-quality MRS spectrum were eligible (see figure e-1 for

flowchart). This resulted in the following 4 groups: from cohort

1, (1) healthy controls with normal (negative) CSF Ab42 (n 5

156) and (2) healthy controls with abnormal (positive) CSF

Ab42 (n 5 59); from cohort 2, (3) patients with SCD with

abnormal (positive) CSF Ab42 (n 5 49); and (4) patients with

MCI with abnormal (positive) CSF Ab42 (n 5 88).

CSF Ab42 levels at and below 530 ng/L were considered

abnormal.7

MRS acquisition. Single-voxel MRS was performed at 3T on

a Siemens TrioTim scanner; the point-resolved spectroscopy

sequence was applied at echo time of 30 ms and repetition

time of 2,000 ms. The 2 3 2 3 2 cm3 voxel was placed

midsagittally in the PCC/precuneus area (figure 1). This region

demonstrates histopathologic changes,8 cortical thinning,9 and

decreased glucose metabolism10 early in the disease course. The

PCC/precuneus area has previously been selected for MRS voxel

placement in large-scale spectroscopy studies11,12 and was

recommended for MRS studies in AD by the MRS consensus

group.13

For details on structural MRI and resting-state fMRI, see

appendix e-1.

MRS analysis. Metabolite quantification was carried out using

the LCModel software14 relative total creatine (Cr) concentra-

tion (a resonance peak, composed of the metabolites creatine

and phosphocreatine). This means of internal referencing is

often used in clinical spectroscopy due to the relative stability

of the Cr peak.15 All processed spectra were visually inspected

for quality and artefacts. Only spectra with full width at half

maximum #11 Hz were considered. For complete quality con-

trol procedures, see appendix e-1. Examples of spectra can be

found in figure 1.

Resting-state fMRI analysis. Initial preprocessing of resting-

state fMRI data was performed with an FSL-based pipeline.16 A

15-mm-diameter sphere centered in the MRS region of interest

was used as a seed. Correlation maps were obtained between the

seeds’ average and all gray matter voxels’ processed blood

oxygenation level–dependent time series. A normal connectivity

mask was defined by averaging the maps of all Ab42-negative

controls and applying a correlation threshold of approximately

0.2 (corresponding to p , 0.01). Participant-specific functional

connectivity summary statistic was extracted as the sum of all seed
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correlation values within the normal connectivity mask. For

detailed description of fMRI procedures, see appendix e-1.

PET acquisition and analysis. The cerebral Ab burden of the

patients was visualized using [18F]-flutemetamol PET.17 Images

were analyzed using the software NeuroMarQ provided by GE

Healthcare. A volume of interest (VOI) template for different

cortical and subcortical regions was applied. The following 9

bilateral regions were used in the study: prefrontal, parietal, lateral

temporal, medial temporal, sensorimotor, occipital, anterior cin-

gulate, PCC/precuneus, and a global neocortical composite

region.18 The standardized uptake value ratio was defined as the

regional tracer uptake in a VOI, normalized for the mean uptake

in the cerebellar cortex. For details on PET procedures, see appen-

dix e-1.

CSF collection and analysis. The procedure and analysis of

the CSF followed the Alzheimer’s Association Flow Chart for

CSF biomarkers.19 Lumbar CSF samples were collected at 3 cen-

ters, stored in polypropylene tubes at280°C, and analyzed at the

same time using 2 different ELISAs. CSF Ab42 and tau phos-

phorylated at Thr181 were analyzed by INNOTEST ELISAs

(Fujirebio Europe, Ghent, Belgium).20 CSF t-tau was analyzed

by EUROIMMUN ELISA (EUROIMMUN AG, Lübeck,

Germany).

Statistical procedures. Statistical analyses were performed

within the general linear model (GLM) framework. Associations

between MRS metabolites and other variables were assessed using

multiple stepwise linear regression with backward elimination.

Thus, age and sex were included in the model and their partial

effects accounted for only when these variables were demon-

strated to be significant predictors.

Between-group differences were tested using independent-

samples t test or using analysis of variance followed by Tukey

honestly significant difference test for post hoc comparisons. x2

test was used to analyze categorical variables. Cohen d was used to
measure effect size. For estimating the association between mI/Cr

and functional connectivity, Pearson correlation coefficients were

calculated.

Due to the putative neuroprotective effect of the APOE e2
allele, participants carrying at least one e2 allele were excluded

from statistical analyses of genotype data.

Statistical analyses were performed using SPSS version 22 and

R (R Foundation for Statistical Computing, Vienna, Austria;

www.r-project.org).

RESULTS Sample characteristics. Demographic de-
tails of the diagnostic groups are provided in table 1
(additional cognitive tests in table e-1).

MRS, MRI, and CSF data were available for all
participants, whereas PET and fMRI data were avail-
able for a subset (NPET 5 166, NfMRI 5 206). An
overview of modalities per diagnostic group is avail-
able in table e-2.

Figure 1 Voxel placement, example spectra, and metabolite levels across diagnostic groups

(A) Single voxel prescribedmidsagittally on a T1-weighed image. Examples of spectra obtained from the 23232 cm3 voxel
collected at echo time 30 ms in (B) a cognitively healthy control and (C) a patient with mild cognitive impairment (MCI).
Metabolite levels across different stages of predementia Alzheimer disease (D–F). (D) Myo-inositol (mI)/creatine (Cr) ratio
levels across diagnostic subgroups. (E) N-acetylaspartate (NAA)/Cr ratio levels across diagnostic subgroups. (F) Choline
(Cho)/Cr ratio levels across diagnostic subgroups. Tukey honestly significant difference tests were used for post hoc
comparisons. Significance levels: *p , 0.05, **p , 0.01, ***p , 0.001. CTL Ab422 5 controls with CSF Ab42 .530
ng/L; CTL Ab4215 controls with CSF Ab42#530 ng/L; SCDAb4215 patients with subjective cognitive decline with CSF
Ab42 #530 ng/L; MCI Ab421 5 patients with MCI with CSF Ab42 #530 ng/L.
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MRS in different stages of predementia AD. MRS out-
come variables mI/Cr, NAA/Cr, and Cho/Cr mea-
sured in the PCC/precuneus were assessed across
the 4 diagnostic groups. For a summary of metabolite
concentrations and an account of group differences,
see figure 1 and table e-3.

All spectroscopic measures were significantly dif-
ferent between the CSF Ab42-negative controls and
the CSF Ab42-positive MCI group: mI/Cr was ele-
vated (p , 0.001, d [Cohen] 5 0.64), Cho/Cr was
elevated (p , 0.01, d 5 0.44), and NAA/Cr was
reduced (p , 0.001, d 5 0.35) in the CSF Ab42-
positive MCI group.

More importantly, mI/Cr was significantly
increased in CSF Ab42-positive healthy controls
compared to CSF Ab42-negative healthy controls
(p , 0.05, d 5 0.46), revealing that mI/Cr levels
are already changed in PCC/precuneus of asymptom-
atic individuals at risk for developing AD.

MRS and CSF biomarkers. In the entire cohort, we
found that decreased CSF Ab42 was associated with
increased mI/Cr (b̂ 5 20.23, p , 0.001) as well as
decreased NAA/Cr (b̂ 5 0.11, p 5 0.05). Further,
elevated CSF tau levels correlated with decreased
NAA/Cr levels (b̂ 5 20.14, p 5 0.01).

In the cognitively healthy group, we found that
increased mI/Cr correlated with decreased CSF
Ab42 (b̂ 5 20.21, p 5 0.002), confirming that
mI levels are associated with amyloid pathology
already during asymptomatic stages.

Finally, in the CSF Ab42-positive MCI group,
we detected a significant association between
NAA/Cr and CSF t-tau. Both measures are known
correlates of the extent of neuronal injury and
degradation—a process ongoing in patients with
MCI.

See table e-4 for a complete account of significant
associations between MRS and CSF markers.

MRS and [18F]-flutemetamol PET. CSF Ab42 and amy-
loid PET reflect somewhat different aspects of Ab
pathology.21 Therefore, we explored whether MRS
metabolites were associated with cortical retention
of the amyloid PET ligand [18F]-flutemetamol in pre-
dementia AD.

We found that increased level of mI/Cr was linked
to higher [18F]-flutemetamol retention in the PCC/
precuneus region in healthy elderly individuals. Fur-
ther, this association was only present in the CSF
Ab42-positive healthy controls (table 2 and figure
2), and was absent in the CSF Ab42-negative healthy
controls.

The relationship between mI/Cr and amyloid pla-
que load in amyloid-positive healthy controls was
sustained when amyloid positivity was based on
[18F]-flutemetamol retention rather than CSF Ab42
levels (table 2 and appendix e-2). Further, when [18F]-
flutemetamol retention in the PCC/precuneus was
used as a proxy for local Ab pathology, elevated
Cho/Cr was linked to an increased plaque load in
PET-positive controls (table 2).

Table 1 Study sample demographics

CTL CSF Ab422 (n 5 156) CTL CSF Ab421 (n 5 59) SCD CSF Ab421 (n 5 49) MCI CSF Ab421 (n 5 88) p Value

Female/male 95/61 36/23 27/22 43/45 0.283

Age, y 72.6 (4.7) 72.7 (4.7) 70.7 (5.7) 71.7 (5.2) 0.091

APOE genotype

e4 carriers/e3 homozygotes 20/93a,b,c 30/19 32/13 60/21 ,0.001

e4 carriers, % 18 61 71 74

MMSE 29.1 (0.9)b,c 29.2 (0.9)b,c 28.0 (1.6)a,c,d 26.9 (1.7)a,b,d ,0.001

Years of education 12.1 (3.7) 11.7 (3.8) 12.1 (3.8) 11.6 (3.3) 0.725

CSF Ab42, ng/L 753 (127)a,b,c 416 (75)c,d 384 (79)d 359 (84)a,d ,0.001

CSF tau, ng/L 125 (63)a,b,c 164 (103)b,c,d 231 (95)a,d 209 (100)a,d ,0.001

CSF p-tau, ng/L 51 (15)b,c 58 (25)b,c 77 (31)a,d 74 (36)a,d ,0.001

PET (PCC/precuneus SUVR) 1.26 (0.15)a,b,c 1.74 (0.41)c,d 1.96 (0.40)c,d 2.19 (0.47)a,d ,0.001

Abbreviations: MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental State Examination; p-tau 5 phosphorylated tau; PCC 5 posterior cingulate cortex;
SCD 5 subjective cognitive decline; SUVR 5 standardized uptake value ratio.
Values are reported as mean (SD).
APOE is missing for 24 participants, education data are missing for 34 participants, PET data are missing for 168 participants.
a Significantly different from CTL CSF Ab421 (p , 0.05).
bSignificantly different from SCD CSF Ab421 (p , 0.05).
c Significantly different from MCI CSF Ab421 (p , 0.05).
dSignificantly different from CTL CSF Ab422 (p , 0.05).
CTL CSF Ab422 5 healthy controls with CSF Ab42 .530 ng/L; CTL CSF Ab421 5 healthy controls with CSF Ab42 #530 ng/L; SCD CSF Ab4215 SCD
participants with CSF Ab42 #530 ng/L; MCI CSF Ab421 5 MCI participants with CSF Ab42 #530 ng/L.
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MRS and functional MRI. Next we studied whether
MRS metabolites in precuneus/PCC were associated
with functional connectivity between precuneus/
PCC and other regions within the DMN. We
found that increasing levels of mI/Cr, but not
NAA/Cr, were associated with reduced DMN con-
nectivity across all groups (r 5 20.16, p 5 0.02)
(figure 2).

We further investigated whether the association
between mI/Cr levels and DMN connectivity was
driven by Ab pathology. Entering CSF Ab42 as a co-
variate in a GLM yielded t 5 22.08 (p 5 0.04) for
mI/Cr and t 5 0.63 (p 5 0.53) for CSF Ab42,
suggesting that the relationship between functional
connectivity and mI/Cr may be Ab-independent.
Using [18F]-flutemetamol retention in the PCC/pre-
cuneus as a proxy of Ab pathology gave analogous
results (appendix e-2).

MRS and APOE genotype. Finally, we aimed to study
the relationship between APOE andMRS metabolites
in different stages of predementia AD. GLM analysis
revealed that healthy APOE e4 carriers with still nor-
mal CSF Ab42 levels had significantly higher mI/Cr
concentrations than APOE e4 noncarriers (t 5

23.61, d 5 0.47, p , 0.001). APOE e4 carriership
did not influence mI/Cr levels in the remaining diag-
nostic groups—those where CSF Ab42 levels were
already abnormal (figure 3).

DISCUSSION The present study aims to describe
changes in the MRS neurochemical profile across
4 well-characterized groups that follow the hypothetical
course of predementia AD.22 Biomarker-negative
participants with no evidence of subtle cognitive
decline are plausible true controls unlikely to be at risk
for AD. At-risk individuals include those with no
cognitive symptoms but with abnormal CSF Ab42

levels, as well as patients with SCD and MCI with
evidence of abnormal CSF Ab42.

In this study, stratification of participants into
groups was based in part on CSF Ab42 cutoff values.
A cutoff might in some cases mask subclinical
effects—those that take place below the set threshold.
We also used classification cutoffs based on mixture
modeling for [18F]-flutemetamol PET data. Although
this method has been extensively used previously to
establish unbiased thresholds,23 such a cutoff is nev-
ertheless study-specific.

Elevated mI/Cr and decreased NAA/Cr belong to
the more reproducible MRS findings in AD, with
abnormal mI/Cr appearing earlier and decreased
NAA/Cr later in the disease course.24 As expected,
we detected that NAA/Cr and mI/Cr ratios were
significantly different between biomarker-negative
controls and biomarker-positive patients with
MCI—the 2 groups on the opposite ends of the
predementia spectrum. More intriguingly, we de-
tected that abnormal elevation of mI/Cr in the
PCC/precuneus region occurs already in the asymp-
tomatic at-risk individuals.

We found that early changes in mI/Cr were tem-
porally associated with the initial decline in CSF
Ab42 levels, as the increase in mI/Cr was linked to
a decrease in CSF Ab42 in controls, but not in symp-
tomatic individuals. CSF Ab42 levels are already fully
decreased 10–20 years before dementia onset25,26;
brain mI/Cr is increased already at predementia stages
in individuals with Down syndrome27 and familial
dementias.28 Although the mechanistic linkage
between CSF Ab42 and mI/Cr cannot be established
directly from our study, their contemporaneous
changes may be related to the same pathologic pro-
cess, one that predates cognitive decline.

Abnormally low levels of CSF Ab42 are accurate
in revealing disturbed Abmetabolism. Although CSF
Ab42 predicts conversion to dementia, levels do not
correlate well with rate of disease progression. In con-
trast, the amount of cortical retention of amyloid
PET ligands is more directly related to the accumu-
lation of Ab fibrils in the neocortex, increasing con-
tinuously throughout the prodromal stages of AD.29

In the largest study linking changes in MRS meas-
ures to in vivo Ab deposition,11 cognitively normal
elderly participants demonstrated significant posi-
tive association between mI/Cr measured in the
PCC and cortical retention of Pittsburgh com-
pound B. We detected an analogous association
between mI and plaque load in healthy controls as
mI/Cr concentrations were shown to correlate with
[18F]-flutemetamol uptake. Moreover, we detected
that this association was driven by the subgroup
harboring amyloid burden, and was absent in
amyloid-free participants.

Table 2 Significant associations between brain metabolites measured by
magnetic resonance spectroscopy and [18F]-flutemetamol uptake in
the posterior cingulate cortex/precuneus in healthy controls

Predictor PET Ab parameters

Standardized beta b̂ T p Value

All healthy controls

mI/Cr 0.32 3.45 ,0.001

CSF Ab42-positive controls

mI/Cr 0.44 2.62 0.02

Amyloid PET-positive controls

mI/Cr 0.48 2.76 0.01

Cho/Cr 0.44 2.52 0.02

Abbreviations: Cho 5 choline; Cr 5 creatine; mI 5 myo-inositol.
Parameters of stepwise multiple linear regression models, where age and sex were used as
covariates when the effects of these confounders were significant.
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Regarding MRS measures and CSF neurodegen-
erative markers, we detected that an increase in
NAA/Cr was linked to a decrease in CSF t-tau in
the CSF Ab42-positive MCI group. Both measures
are markers of neuronal damage; an association
between the 2 in prodromal MCI only is consistent
with the fact that neuronal injury takes place at
a later time point in the predementia continuum.
Loss of NAA/Cr in the PCC/precuneus at the

symptomatic stage preceding AD is in line with this
region’s involvement in attention and memory.30

The significance of the changes in Cho/Cr in AD
is not well-understood. We detected elevated Cho/Cr
levels in CSF Ab42-positive MCI compared to CSF
Ab42-negative controls—a finding often attributed
to an upsurge in membrane turnover due to neuro-
degeneration, or possibly underlying cholinergic dys-
function in the MCI group.11

Carriership of the APOE e4 is the main genetic
risk factor for AD. APOE e4 enhances AD pathology,
and is thought to trigger the initiation and accelera-
tion of Ab deposition in the brain,31 without having
any primary effect on Ab production.32 APOE e4 also
contributes to AD pathogenesis by being implicated
in the process of neuroinflammation.31 Regarding the
relationship between APOE genotype and MRS
measures, elevated mI/Cr has previously been de-
tected in the PCC/precuneus of older e4 carriers
compared to noncarriers in a healthy aging popula-
tion.12 However, whether this was a consequence of
underlying Ab pathology in e4 carriers has not been
investigated previously. We show that in cognitively
healthy amyloid-free elderly, mI/Cr levels were signif-
icantly elevated in the e4 carriers compared to the
noncarriers. In the remaining subgroups—those with
evidence of Ab pathology—mI/Cr levels were no
longer modified by APOE carriership. It seems that
mI/Cr has the potential to detect manifestations of
the APOE genetic effect, which precede cognitive
decline and may antedate or be independent of amy-
loid pathology, perhaps even detecting the more pro-
nounced proinflammatory state associated with e4
carriership.

The PCC/precuneus region plays a key role within
the DMN, operating as a node for structural and
functional connections.30 Regions involved in the
DMN are affected by amyloid deposition early in
the course of AD.33 We observed a hitherto unre-
ported association between elevated mI/Cr levels
and reduced DMN connectivity. Furthermore, our
findings suggest that the link between mI/Cr in the
PCC/precuneus and functional connectivity in this
region may not be a direct consequence of Ab
deposition.

Increasing attention is being paid to detailed char-
acterization of the earliest stages of AD, warranting
further research into cost-effective noninvasive early
markers. Although the exact mechanisms behind
early changes in the MRS profile cannot be inferred
directly from the results of this study, our findings sit-
uate changes in the MRS profile within the context of
existing clinical, pathologic, and functional informa-
tion in individuals at risk for AD. We provide evi-
dence of the involvement of brain mI at very early
stages in AD progression; in particular our data show

Figure 2 Associations between myo-inositol (mI)/creatine (Cr) and Ab plaque
load and functional connectivity

(A) Association between mI/Cr in posterior cingulate cortex (PCC)/precuneus and Ab plaque
load measured by [18F]-flutemetamol PET in CSF Ab42-positive controls: a significant asso-
ciation between mI/Cr and plaque load (b̂ 5 0.42, t 5 2.62, p 5 0.02). (B) Association
between mI/Cr in PCC/precuneus and functional connectivity. The sum of each participant’s
seed-voxel correlation within a normal connectivity mask correlated significantly with mI/Cr
levels in the seed region across participants from all groups, rpearson 520.16 (p5 0.02). The
inset shows the seed position in precuneus (in blue) and the thresholded average normal
connectivity of CSF Ab42-negative controls used to define the normal connectivity mask.
CTL Ab422 5 controls with CSF Ab42 .530 ng/L; CTL Ab421 5 controls with CSF Ab42
#530 ng/L; SCD Ab4215 patients with subjective cognitive decline with CSF Ab42 #530
ng/L; MCI Ab421 5 patients with mild cognitive impairment with CSF Ab42 #530 ng/L.
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that mI/Cr levels are elevated in APOE e4 carriers
with no evidence of amyloid pathology.
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