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Abstract

Background: The MR-Egger (MRE) estimator has been proposed to correct for directional

pleiotropic effects of genetic instruments in an instrumental variable (IV) analysis. The

power of this method is considerably lower than that of conventional estimators, limiting

its applicability. Here we propose a novel Bayesian implementation of the MR-Egger esti-

mator (BMRE) and explore the utility of applying weakly informative priors on the inter-

cept term (the pleiotropy estimate) to increase power of the IV (slope) estimate.

Methods: This was a simulation study to compare the performance of different IV estima-

tors. Scenarios differed in the presence of a causal effect, the presence of pleiotropy, the

proportion of pleiotropic instruments and degree of ‘Instrument Strength Independent of

Direct Effect’ (InSIDE) assumption violation. Based on empirical plasma urate data, we

present an approach to elucidate a prior distribution for the amount of pleiotropy.

Results: A weakly informative prior on the intercept term increased power of the slope

estimate while maintaining type 1 error rates close to the nominal value of 0.05. Under

the InSIDE assumption, performance was unaffected by the presence or absence of plei-

otropy. Violation of the InSIDE assumption biased all estimators, affecting the BMRE

more than the MRE method.

Conclusions: Depending on the prior distribution, the BMRE estimator has more power

at the cost of an increased susceptibility to InSIDE assumption violations. As such the

BMRE method is a compromise between the MRE and conventional IV estimators, and

may be an especially useful approach to account for observed pleiotropy.
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Introduction

Instrumental variable analyses using genetic instruments,

often termed Mendelian randomization (MR) analyses, use

genetic exposures as instruments to determine the causal

association between an intermediate phenotype, often a

biomarker, and a particular outcome such as disease. The

estimate of such an MR analysis reflects an unbiased causal

estimate of the phenotype effect on the outcome, if (among

others) the following assumptions are met.

i. The instruments are associated with the phenotype.

ii. The instruments are independent of observed and un-

observed confounders of the phenotype-outcome

association.

iii. Conditional on the phenotype and confounders, the in-

struments are independent of the outcome (i.e. the ex-

clusion restriction assumption).

Given that biomarkers are the (indirect) products of mul-

tiple genes, it is often possible to select a set of genetic instru-

ments that meet assumption (i). Furthermore, because genes

are randomly allocated at conception,1 assumption (ii) is

often plausible as well. Assumption (iii) states that the genes

can only be related to disease due to their effects on the

phenotype (i.e. no pleiotropy other than that mediated by

the phenotype). Whether this assumption generally holds

has been contested.2 For example, if one is interested in esti-

mating the causal relation between high-density lipoprotein

cholesterol (HDL-C) and coronary heart disease (CHD), it is

often difficult to find genes that affect HDL-C but not low-

density lipoprotein cholesterol (LDL-C) or triglycerides.3,4

Such a situation may indicate violation of assumption (ii)

(when LDL-C is viewed as a confounder of HDL-C and

CHD), of assumption (iii) (when a gene effects both

pathways independently) or of both assumptions. In prac-

tice, such distinctions are difficult to make and hence robust

IV methods are preferred.

Recently Bowden et al.5 proposed a novel method

related to the Egger test,6 ‘Mendelian randomization

Egger’ (MR-Egger/MRE), which corrects for potential vio-

lations of assumption (iii) by quantifying the amount of

directional pleiotropy. This MR-Egger method assumes

that the ‘Instrument Strength is Independent of the Direct

Effect’ (i.e. the InSIDE assumption), which means that

across single nucleotide polymorphisms (SNPs), pleiotropic

effects are independent of phenotypic effects. The MR-

Egger method corrects for pleiotropy by introducing a

nuisance parameter which quantifies the average amount

of directional pleiotropy. However, including this nuisance

parameter greatly reduces precision and power to detect a

causal effect. Despite this reduced power, the MRE method

has been frequently used in empirical settings.4,7–9

In this paper, we propose a novel Bayesian implementa-

tion of the MR-Egger method, ‘BMR-Egger’, which in-

creases power of the causal estimate by introducing a

(weakly) informative prior on the nuisance parameter,

which is the intercept in a linear regression. From a

Bayesian perspective, the standard inverse variance

weighted (IVW) estimator and the MRE estimator can be

unified by noticing that the IVW method corresponds to

putting an optimistic informative prior on the intercept

with mean and variance of zero; conversely, the MRE ap-

proach can be seen as a pessimistic non-informative prior

with infinite variance. Whereas pessimistic and optimistic

priors are often used, for example in randomized con-

trolled trials (RCTs) in rare diseases,10 in genetics consider-

able data may be available on the magnitude of pleiotropy

Key Messages

• Absence of pleiotropy is an essential assumption for instrumental variable analyses using genetic instruments, known

as Mendelian randomization. The MR-Egger method corrects for the presence of pleiotropy by introducing a nuisance

parameter which captures directional pleiotropy. However, including this nuisance parameter greatly reduces power

to detect a causal effect as compared to the traditional inverse variance weighted (IVW) estimator.

• In this paper we propose a novel Bayesian implementation of the MR-Egger, ‘BMR-Egger’, which increases the power

of the causal estimate by introducing a weakly informative prior on the nuisance parameter. Our motivation is that

the BMR-Egger can be seen as a compromise between two extreme prior distributions. Specifically, the IVW method

corresponds to applying an optimistic informative prior on the intercept with a mean and variance of zero, whereas

MR-Egger corresponds to a pessimistic non-informative prior with an infinite variance.

• When the ‘Instrument Strength Independent of Direct Effect’ (InSIDE) assumption holds, the BMR-Egger has increased

power with acceptable type 1 error rates as compared to the MR-Egger. If the InSIDE assumption is violated, all esti-

mators are biased and show inappropriately high rejection rates. In this case, adding prior beliefs increases bias and

rejection rates of the BMR-Egger towards that of the IVW estimator.
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and consequently less extreme, more believable priors may

be usefully employed.

One reasonable approach may be a prior belief that ex-

treme departures from balanced pleiotropy are unlikely, as

strong pleiotropic effects of genetic variants may have been

previously identified. This is similarly optimistic to the

IVW method; however, instead of (unrealistically) assuming

a zero prior variance, we suggest use of weakly informative

priors to allow for a degree of pleiotropy. Alternatively, as

we will discuss using an empirical example of urate and

coronary heart disease (CHD),7 often considerable (aggre-

gated) data will be available on potential pleiotropic path-

ways, which can be used to further elucidate a prior

distribution to fit the specific data at hand. We note that

defining what constitutes a pleiotropic pathway is difficult

and will depend on subjective criteria such as statistical sig-

nificance and the availability of relevant datasets (such as

MR-base11).

In the following, we introduce notations, and the

outcome model, followed by a review of the MR estimators

and the proposed novel Bayesian MR estimator. Subsequently

we evaluate the discussed methods in a simulation study,

and the empirical example noted above.

Methods

Notation, and outcome model

Let us assume there are data available from j ¼ 1; . . . ; J in-

dependent single-nucleotide polymorphisms (SNPs) G

(an i ¼ 1; . . . ; n subject by J matrix), with aj representing

the (marginal) effect of SNP j on a biomarker X, bj the

(marginal) SNP effect on an outcome Y, and variance of

their estimators r2
aj

and r2
bj

. We note that aj and bj may be

estimated from the same data (one-sample MR study) or in

separate data (two-sample MR study); we focus on the lat-

ter.12 Based on these data we are interested in estimating

the causal effect of X on Y, assuming Y is generated by

the linear model Yi ¼
PJ

j /jGij þ hXi þ ey, with h a scalar,

and Y;G and X as defined above. When assumptions (ii–iii)

hold, /j ¼ 0 and Yi ¼ hXi þ ey. Note that the absence of

an intercept term in the above equations should be inter-

preted as meaning the intercept (arbitrarily) equals zero,

and should not be misinterpreted as an absence of plei-

otropy which is represented by /j:

MR estimators

When there are multiple instruments available, the causal

(IV) effect of X on Y can be estimated using a weighted or-

dinary least squares (OLS) regression of bj on aj while

supressing the intercept. Given that bj and aj are unknown,

they are estimated from the data, with the estimates col-

lected in the following matrices:

A ¼
â1

..

.

âJ

2
64

3
75;

B ¼
b̂1

..

.

b̂J

2
664

3
775;

Xjk ¼ r̂bj
r̂bk

pjk;

where X is the sample variance-covariance matrix for B,

with pj¼k ¼ 1 and, assuming that SNPs are independent,

pj6¼k ¼ 0. In the case of correlated SNPs, pj 6¼k can be esti-

mated based on the pairwise between SNP correlations13

and the regression fitted by generalized least squares. The

following regression is weighted by the precision of the

SNP effect estimates, giving the IVW point estimate and

standard error estimates (assuming no pleiotropy, or bal-

anced positive and negative pleiotropic effects under the

InSIDE assumption)14 as:

ĥIVW ¼ ðAtX�1AÞ�1AtX�1B; (1)

with the weighted residuals:

êj ¼ diagðX�1Þ
1
2ðB� ĥIVWAÞ;

where diagð�Þ indicates the diagonal elements. The variance

of the error term is then:

r̂2
e ¼

1

J � k
þ
XJ

j ¼ 1

ê2
j ;

where k equals the number of parameters (k ¼ 1 in this

specific case). Finally, the standard error of the slope is:

r̂hIVW ¼ diag
�
r̂2

e ðAtX�1AÞ�1
�1

2

: (2)

Here, and in the following derivations, the sigma term

r̂2
e will only be included if it is larger than 1, resulting in

standard errors following a multiplicative random effects

model.15

The MR-Egger method corrects for (unmeasured) dir-

ectional pleiotropy by introducing an intercept term

which captures the expected effect of an instrument on

outcome when it has no effect on the biomarker, and is

hence a measure of the average amount of pleiotropy. To

implement the MR-Egger we first recode the data as

follows:
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b̂
�
j ¼ b̂jsgnðâjÞ;

with sgn the sign function;

â�j ¼ jâjj;

A ¼

1 â�1

..

. ..
.

1 â�J

2
664

3
775;

B ¼
b̂
�
1

..

.

b̂
�
J

2
664

3
775

/̂MRE

ĥMRE

" #
¼ ðAtX�1AÞ�1AtX�1B;

r̂/MRE

r̂hMRE

" #
¼ diag

�
r̂2

e ðAtX�1AÞ�1
�1

2

;

with r̂2
e derived as before, ĥMRE the slope estimate, and

/̂MRE the intercept estimate.

Next, we describe our proposed Bayesian MR-Egger

method [BMRE] using a bivariate normal likelihood

and the conjugate prior distribution with hyperpara-

meters for the prior mean and variance of the intercept

and slope:

l0 ¼
l/

lh

� �

R0 ¼
r2

l/
0

0 r2
lh

2
4

3
5:

Then the posterior distribution is bivariate normal with

mean lN and variance-covariance matrix RN:

k0 ¼ R�1
0 ;

lN ¼ ðAtX�1Aþ k0Þ�1ðk0lt
0 þ AtX�1BÞ;

RN ¼ r̂2
e ðAtX�1Aþ k0Þ�1;

with r̂2
e derived as before.

To explore the effect of including prior information using

weakly informative priors, we performed the simulation

study described below. Specifically, we were interested in

exploring the advantage of specifying a prior on the intercept

/̂BMRE to increase precision of the posterior ĥBMRE and on

the robustness of prior misspecification. In our empirical ex-

ample, we illustrate how to use empirical data on observed

pleiotropy signals to elucidate reasonable priors, decreasing

the likelihood of prior misspecification.

Our results will also discuss a further method to allow

for pleiotropy, the weighted median (WM) estimator.16

This estimator assumes that at least 50% of the weights,

wj ¼
â2

j

r̂2
bj

, come from valid instruments. If this assumption is

true, a consistent estimate of causal effect is the 50th per-

centile of the empirical distribution function of SNP-

specific IV estimates
â j

b̂ j

, with the percentile distribution

based on
sj�

wj
2

S ; where sj ¼
Pj

k ¼ 1wk, the cumulative sum

up to the jth SNP, and S ¼
PJ

k ¼ 1wk.

Data-generating process

Similar to the original publication by Bowden et al.,5 data for

i ¼ 1; . . . ; n subjects were simulated, with n ¼ 1000

and J ¼ 20 SNPs. Gij were sampled from a trinomial distri-

bution with minor allele frequency pj ¼ 0:30 under Hardy–

Weinberg equilibrium. An unmeasured confounder was

generated based on Ui ¼
PJ

j x1jGij þ �u; �u � Nð0;2Þ
and a biomarker Xi ¼

PJ
j ajGij þ x2Ui þ �x; �x � Nð0;2Þ:

Finally, the outcome was generated following Yi ¼
PJ

j /jGij

þhXi þ x3Ui þ �y; �y � Nð0; 2Þ: Based on the two-sample

MR principle,12 this algorithm was run twice (with the same

parameters) to generate two independent datasets, the first

used to derive the genetic effects on the biomarker by fitting

the linear model Xi ¼ ajGij þ �x, and the second to estimate

the genetic effects on the outcome from the linear model

Yi ¼ bjGij þ �y.

Simulation scenarios

The above defined MR estimators were evaluated in five

scenarios (Table 1). In scenario I there was no pleiotropy,

hence /j ¼ 0, and the confounder was independent of

the SNPs, x1j ¼ 0. In scenario II pleiotropy was gener-

ated based on /j � Uð0:00; 0:20Þ, and in scenario III the

InSIDE assumption was violated by setting x1j � UðL;UÞ;
L ¼ 0;U ¼ 0:50: In scenario IV the InSIDE assumption

was met, x1j ¼ 0, and pleiotropy was generated based on

/j � Uð0:00; 0:50Þ with probability q ¼ f0:1; 0:2; 0:3;

0:4g and 0 otherwise, resulting in (on average) qJ SNPs

violating assumption (iii). In this scenario the average

pleiotropy depends on q and ranged between Eð/jÞq
¼ f0:025; . . . ; 0:100g. Subsequently, in scenario V q

¼ 0:4 with /j and x1j generated based on q as in scenario

IV. Different types and severities of InSIDE assumption

violations were generated by first setting L ¼ 0 and B

¼ f0:10; 0:30; 0:60; 1:00g, and subsequently setting L

¼ �B and B ¼ f0:10; 0:30; 0:60; 1:00g. All scenarios

were repeated under the null- and alternative-hypotheses

setting h ¼ f0:00; 0:05g: The BMRE estimator was

evaluated using the following hyperparameters:

l/ ¼ f0;0:05; 0:10; 0:15g; lh ¼ 0, with every elem-

ent of l/ evaluated with five different variance hyperpara-

meters: r2
l/
¼ f10; 10�2; 10�2:4;10�2:7; 10�3g, and

r2
lh
¼ 10.
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Performance metrics

Performance was evaluated using the following metrics:

bias defined as h � h, with h equal to the mean of ĥ; the

root mean square error RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ ESE2
p

; with

ESE equal to the empirical standard error of ĥ: the propor-

tion of rejected null-hypotheses (i.e. depending on whether

h equals 0 this is the type 1 error or power, using an alpha

of 0.05).

All simulations were repeated 5000 times, with analyses

performed using the statistical package R version 3.1.2 for

Unix.17 The number of replications was chosen to ensure

sufficient precision to detect small deviations from the

nominal type 1 error rate of 0.05 (the 95% lower and

upper bounds were 0.044 and 0.056).

Results

Results of the simulation study

In scenario I all the MR assumptions held, hence all the

IVW, WM and MRE estimators were unbiased (Appendix

Figures 1–2, available as Supplementary data at IJE on-

line). Bias of the BMRE estimates was minimal for the

hyperparameters l0 ¼ f0:00; 0:05g, irrespective of

the variance hyperparameter. Type 1 error rates of both

the intercept and the slope estimates were generally below

0.05 using the same priors, and the RMSE markedly

decreased with smaller values of r2
l/

(Figure 1). Repeating

scenario 1 with the true slope set to 0.05, revealed that

power of the BMRE estimator (relative to the MRE) was

increased without increasing the intercept type 1 error rate

above 0.05, unless l/�0:1 and then only for small values

of r2
l/

(Figure 2).

Scenario II explored performance in the presence of

pleiotropy which biased the IVW estimates, and (because

100% of the SNPs were pleiotropic) the WM. The MRE

estimator remained unbiased (Appendix Figures 5–6, avail-

able as Supplementary data at IJE online), with the BMRE

showing a similar pattern of bias as before, with bias de-

pending on the size of r2
l/

when l/ 6¼ 0:10: Intercept rejec-

tion rates (power) were increased when l/�0:10 and

r2
l/
6¼ 101; slope rejection rates (type 1 error) were close to

nominal for all BMRE using r2
l/
�102:4 (Appendix Figure

7, available as Supplementary data at IJE online). In the

same scenario (Appendix Figure 7) the type 1 error rates of

the IVW estimator, and (to a lesser extent) the WM estima-

tor, were inflated, at 0.73 and 0.44 respectively. Setting the

phenotype effect to 0.05 (Figure 3) showed that power of

the slope estimate was improved even when l/ was misspe-

cified (i.e. not 0.10). Throughout the RMSE of the BMRE,

estimators were equal to or lower than for the MRE

estimator.

The InSIDE assumption was violated in scenario III

which biased all estimators, with the more informative

BMRE faring similarly to the IVW or WM estimators

(Appendix Figures 9–10, available as Supplementary data

at IJE online). Whereas the type 1 error rates of the IVW

and WM estimators were close to 100%, the BMRE rejec-

tion rates depended on r2
l/

and often less than the IVW or

WM methods (Figure 4). The MRE estimator had only

Table 1. Simulation scenarios of a multi-SNP Mendelian randomization study, with potential pleiotropic effects (i.e. violation of

the exclusion restriction assumption)a

Parameters Scenario I Scenario II Scenario III Scenario IV Scenario V

(no pleiotropy) (pleiotropy) (InSIDE

violated)

(partial

pleiotropy)

(partial pleiotropy and

InSIDE violated)

Number of subjects n 1000 1000 1000 1000 1000

Number of SNPs J 20 20 20 20 20

Proportion of pleiotropic SNPs q 1.0 1.0 1.0 {0.1, 0.2, 0.3, 0.4} 0.4

Minor allele frequency pj 0:30 0:30 0:30 0:30 0:30

Effect of Gj on Ui ðx1jÞ 0:00 0:00 Unif ðL;UÞ 0:00 Unif ðL;UÞ
Lower limit of x1j L L ¼ 0:00 L ¼ 0

B ¼ f0:10; 0:30; 0:60;1:0g; and

Upper limit of x1j U U ¼ 0:50 L ¼ �B

B ¼ f0:10; 0:30; 0:60;1:0g
Effect of Gj on Xi ðajÞ Unif ð0:5; 4Þ Unif ð0:5; 4Þ Unif ð0:5; 4Þ Unif ð0:5; 4Þ Unif ð0:5; 4Þ
Effect of Gj on Yi ð/jÞ 0:00 Unif ð0;0:2Þ Unif ð0; 0:2Þ Unif ð0;0:2Þ Unif ð0; 0:2Þ
Effect of Ui on Xi ðx2Þ 1 1 1 1 1

Effect of Ui on Yi ðx3Þ 1 1 1 1 1

Effect of Xi on Yi ðhÞ f0:00; 0:05g f0:00; 0:05g f0:00; 0:05g f0:00; 0:05g f0:00; 0:05g

aChanges from the previous scenario (to the left) are presented in bold.
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Figure 1. Rejection rate and root mean squared error of a Mendelian randomization study (scenario I) with the true slope of 0 and no unbalanced plei-

otropy. IVW, inverse variance weighted; WM, weighted median; MRE, MR-Egger; l/ indicates the prior mean, and r2
l/

the prior variance of a Bayesian

MRE. The underlying numerical values are presented in Appendix 3, available as Supplementary data at IJE online.

Figure 2. Rejection rate and root mean squared error of a Mendelian randomization study (scenario I) with the true slope of 0.05 and no unbalanced

pleiotropy. IVW, inverse variance weighted; WM, weighted median; MRE, MR-Egger; l/ indicates the prior mean, and r2
l/

the prior variance of a

Bayesian MRE. The underlying numerical values are presented in Appendix 3, available as Supplementary data at IJE online.
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slightly inflated type 1 error rates close to 0.05. The bias

and inflated type 1 error rate of the BMRE persisted even

when the intercept prior mean was correctly specified at

0.10 (Figure 4). In these settings, the BMRE estimator was

generally more powerful than the MRE approach, which is

of limited value given the observed bias and inflated type 1

error rates (Appendix Figure 12, available as Supplementary

data at IJE online).

The performance of these estimators was further

explored in scenario IV by varying the proportion of pleio-

tropic SNPs. The BMRE results focused on the previously

optimally performing combinations of hyperparameters:

l/ ¼ f0; 0:05;0:10g; r2
l/
¼ f 10�2; 10�2:4g. Note that in

this and the next scenario, the average pleiotropy depends

on the proportion of pleiotropic SNPs, which ranged be-

tween 0.025 (for 10% invalid SNPs) and 0.100 (for 40%

invalid SNPs), resulting in differing levels of BMRE mis-

specification. Figure 5 shows the MRE to be the only un-

biased estimator in this scenario. Type 1 error rates were

inflated for the IVW and WM methods, with power of the

BMRE approach typically surpassing that of the MRE esti-

mator. Next in scenario V, we explored the impact of dif-

ferent degrees of InSIDE assumption violation, revealing a

similar amount of bias for all estimators (Figure 6). Type 1

error rates and power were general highest for the IVW,

(closely) followed by WM, the BMRE and MRE methods.

As before, the MRE had the largest RMSE throughout,

with smaller values for the BMRE, IVW and the WM

estimators.

Prior elucidation using empirical data

To illustrate the proposed BMRE method and provide an

example of how to elucidate a sensible prior distribution,

we consider the study by White et al.7 This study explored

the relation between urate and CHD using 31 SNPs col-

lected from 166 486 individuals, 9784 of whom had CHD.

White and colleagues used both the IVW and the MRE

methods, which showed conflicting results: odds ratio

(OR) 1.18 (95% confidence interval (CI) 1.03; 1.34) for

the IVW estimate compared with OR 1.05 (95% CI 0.87;

1.27) for the MRE estimate; both re-calculated here using

a pleiotropy robust multiplicative random effects model.

Aside from the difference in point estimate, the MRE esti-

mate is considerably more variable (standard error (se) of

0.096, compared with an IVW se of 0.066), resulting in

wide confidence interval bounds. Interestingly the MRE

pleiotropy (intercept) OR estimate of 1.008 (95% CI

0.998; 1.018) is precise, seemingly indicating that amount

of directional pleiotropy is minimal, thus questioning the

Figure 3. Rejection rate and root mean squared error of a Mendelian randomization study (scenario II) with the true slope of 0.05 and unbalanced

pleiotropy. IVW, inverse variance weighted; WM, weighted median; MRE, MR-Egger; l/ indicates the prior mean, and r2
l/

the prior variance of a

Bayesian MRE. The underlying numerical values are presented in Appendix 3, available as Supplementary data at IJE online.
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necessity of a MRE pleiotropy correction. In the following,

we will explore the utility of the BMRE to increase preci-

sion of the slope estimate and further explore the necessity

of the pleiotropy correction.

White and colleagues not only collected data on CHD

and urate, but also on many potential pleiotropic pathways

(Appendix Figure 13, available as Supplementary data at

IJE online) allowing a thorough exploration of the magni-

tude and direction of observed pleiotropy. We note that

four SNPs (rs1260326, rs3741414, rs1178977, rs653178)

show clear pleiotropic signals (based on a genome-wide

significant P-value). Given the number of candidate SNPs,

it would be sensible to exclude these SNPs; however, to il-

lustrate the utility of the BMRE we will include these

SNPs. Inclusion of pleiotropic SNPs may also occur in

practice, for example, when the number of candidate SNPs

is modest. Additionally, there is no a priori reason to as-

sume pleiotropy is limited to genome-wide significant sig-

nals, hence exclusion of these four SNPs will not

necessarily remove all (or even most) of the pleiotropy.

To elucidate and model the likely (known and un-

known) pleiotropic effects, we plot the SNP associations

with the different phenotypes (Appendix Figure 13), which

shows a symmetrical (balanced) pattern centred on a null

effect, with most of the estimates between 6 0.05.

Although reassuring, this does not preclude the possibility

of unobserved pleiotropy via different pathways. Based on

the observed pleiotropy effects (Appendix Figure 13), we

set the mean prior hyperparameter to l/ ¼ 0:00 and con-

sidered the following prior variance hyperparameters:

r2
l/
¼ f10�6; 10�5:8; 10�5:6; 10�5:4; 10�5:2g. These

values of the prior variance parameters were chosen to ini-

tially approximate the IVW estimator, incrementally

including more uncertainty and thereby allowing for add-

itional pleiotropy. Second, in an alternative approach we

use the empirical data to also elucidate the prior variance

hyperparameter by selecting a prior variance r2
l/
¼

6:508� 10�4 � 10�3:2, putting approximately 95% of the

prior distribution 6 0.05 (the range containing most of the

observed pleiotropy signals).

Results of the first approach are shown in Table 2, with

the BMRE method showing larger slope estimates (OR

ranges from 1.17 to 1.13), than the attenuated MRE OR

estimate of 1.05 and the WM 1.12 (95% CI 0.99; 1.27).

The BMRE credible intervals included the neutral value of

1 at a prior variance of 10�5:6; under this prior the inter-

cept odds has 95% probability of lying in (0.997,1.003)

suggesting that the balanced pleiotropy assumption has a

relevant impact on our IV estimates. Similarly when using

the empirically elucidated variance hyperparameter of

Figure 4. Rejection rate and root mean squared error of a Mendelian randomization study (scenario III) with the true slope of 0.05, and InSIDE as-

sumption violated. IVW, inverse variance weighted; WM, weighted median; MRE, MR-Egger; l/ indicates the prior mean, and r2
l/

the prior variance

of a Bayesian MRE. The underlying numerical values are presented in Appendix 3, available as Supplementary data at IJE online.

1224 International Journal of Epidemiology, 2018, Vol. 47, No. 4

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article-abstract/47/4/1217/4748856 by U

niversity C
ollege London user on 11 M

arch 2019

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyx254#supplementary-data
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyx254#supplementary-data
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyx254#supplementary-data
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyx254#supplementary-data
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyx254#supplementary-data
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyx254#supplementary-data


6:508� 10�4; the BMRE slope estimate becomes OR 1.05

(95% CI 0.87; 1.27) which is identical (to 2 dp) to the

MRE estimate. Using the BMRE method we can thus con-

fidently say that despite the empirical data showing bal-

anced pleiotropy, and the tight confidence interval around

the MRE intercept estimate, there is relevant directional

pleiotropy and the pleiotropy-corrected estimates should

be preferred over the IVW estimate.

Discussion

In this paper, we introduce a novel Bayesian implementa-

tion of the MR-Egger (BMRE) method for instrumental

variable analyses, robust to violation of the exclusion re-

striction assumption due to pleiotropy. We show that

under the InSIDE assumption, the BMRE estimator with

weakly informative priors on the intercept increases power

to detect a causal effect, while retaining acceptable type 1

error rates. Additionally, the root mean square error of the

BMRE estimator was lower than that of the traditional

MRE method and, in the presence of pleiotropy, lower

than the IVW estimator. Using the empirical example of

urate and CHD, we present an approach to evaluate and

elucidate sensible prior parameters for the presence of

pleiotropy.

When the InSIDE assumption was violated, all estima-

tors were biased and showed inappropriately high rejection

rates. In this case, adding prior belief increased bias and re-

jection rates of the BMRE towards those of the IVW esti-

mator. Comparing the BMRE with the WM method

showed that (depending on the prior) the BMRE approach

had lower type 1 error rates and was more robust to differ-

ent degrees of InSIDE assumption violation. Furthermore,

if 100% of the SNPs were pleiotropic, the BMRE approach

generally was less biased, with type 1 error rates closer to

nominal than the WM estimator. In the presence of InSIDE

Figure 5. Simulation results of scenario IV: the causal effect estimated in Mendelian randomization study with different proportions of pleiotropic

SNPs. IVW, inverse variance weighted; WM, weighted median; MRE, MR-Egger; l/ indicates the prior mean, and r2
l/

the prior variance of a Bayesian

MRE. The underlying numerical values are presented in Appendix 3, available as Supplementary data at IJE online.
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assumption violation, the MRE estimator performed better

than the BMRE method. The InSIDE assumption may be

violated in empirical data, for example when the plei-

otropy effects of different variants affect the outcome via

the same set of confounders. Pickrell et al., however, pre-

sent evidence that pleiotropic SNPs often work via inde-

pendent pathways, suggesting the InSIDE assumption may

hold more generally.18

The analyses presented here are naturally limited and

the following deserves consideration. First, we chose to im-

plement the BMRE using conjugate priors because these

have closed form solutions which increase ease of use and

provide exact solutions. In most empirical settings, conju-

gate priors seem sufficient and are a natural way to encode

prior knowledge. Furthermore, the normal distribution is

not sharply peaked at its mean value, allowing a reason-

able range of values to be given high prior probability,

while still discounting unreasonably large values. Second,

whereas the IVW method is susceptible to directional plei-

otropy, this estimator generally has more precision and

power and is more robust to uncertainty in the SNP-

exposure association.19 As such, the IVW method should,

Table 2. Results of a Mendelian randomization study on the

effect of plasma urate on CHD with different IV estimators

Estimates

Intercept Slope

OR (95% CI) OR (95% CI)

IVW

1.18 (1.03; 1.34)

MRE

1.008 (0.998; 1.018) 1.05 (0.87; 1.27)

BMRE

r2
/ ¼ 10�6 1.001 (0.998; 1.003) 1.17 (1.02; 1.34)

r2
/ ¼ 10�5:8 1.001 (0.998; 1.004) 1.16 (1.01; 1.34)

r2
/ ¼ 10�5:6 1.001 (0.997; 1.006) 1.15 (1.00; 1.33)

r2
/ ¼ 10�5:4 1.002 (0.997; 1.007) 1.14 (0.99; 1.33)

r2
/ ¼ 10�5:2 1.003 (0.997; 1.009) 1.13 (0.97; 1.32)

WM 1.12 (0.99; 1.27)

Results presented as odds ratio per 1 SD increase in urate with 95% confi-

dence (or credibility) interval (CI) in brackets. The intercept measures the

amount of pleiotropy, the slope estimates the effect of plasma urate on CHD.

IVW, inverse variance weighted method; MRE, MR-Egger method; BMRE,

Bayesian MR-egger method; WM, weighted median method. l/ ¼ 0, the

slope mean and variance priors were 0 and 10 throughout, respectively.

Figure 6. Simulation results of scenario V: the causal effect estimated in a Mendelian randomization study with 40% pleiotropic SNPs and different

degrees of InSIDE assumption violation; left panel: no causal effect; right panel: causal effect of 0.05. IVW, inverse variance weighted; WM, weighted

median; MRE, MR-Egger; l/ indicates the prior mean, and r2
l/

the prior variance of a Bayesian MRE. The underlying numerical values are presented

in Appendix 3, available as Supplementary data at IJE online.
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in our opinion, remain the starting point of any MR ana-

lysis, with other approaches including the WM, MRE and

BMRE used as informative sensitivity analyses. Third, the

BMRE methods were evaluated on frequentist concepts of

power and type 1 error. Given that MR analyses are often

used to test whether a biomarker has a causal effect on dis-

ease, we feel these metrics are relevant. Fourth, whereas

the weakly informative hyperparameter of l/ ¼ f0:00;

0:05g and r2
l/
�10�2:4 had the desired property of increas-

ing power while maintaining type 1 error rates close to

nominal, this is specific to the scenarios considered.

Indeed, as we show in our empirical example, these prior

hyperparameters should be tailored to the data under con-

sideration. We encourage empirical researchers to use our

example as a blueprint to explore observed pleiotropy and

to tailor the hyperparameters. In practice, analyses should

be repeated under a range of variance hyperparameters, to

gain a sense of how precise the prior beliefs must be to

maintain significant evidence of causality. Additionally,

and similar to designing a Bayesian randomized controlled

trial, one may wish to repeat the simulations using scen-

arios based on the available empirical data and explore

performance (see Appendix 2 for the simulation code

which took 42 s to run 500 replications of scenario II).

The BMRE method can be used to explore the importance

of the balanced pleiotropy assumption of the IVW estimator,

and may be particularly useful for reconciling conflicting re-

sults from IVW and MRE methods, as we have shown in our

example of urate and CHD. Applied researchers may wish to

look to a recent framework14 reviewing the underlying as-

sumptions of the IVW and MRE methods, as well as describ-

ing a number of goodness-of-fit statistics and sensitivity

analyses. By using a conjugate Bayesian prior, the same

framework can readily be applied to the BMRE method pre-

sented here. Similarly, the SIMEX19 adjustment for uncer-

tainty in the SNP-exposure association can be readily applied

to our BMRE method as well.

In addition to MRE and WM methods, several other

approaches to deal with pleiotropy have recently been pro-

posed, each with its own assumptions, including a

weighted mode estimator20 and a Bayesian model averag-

ing21 approach conceptually similar to ours. Furthermore,

detection and removal of SNPs yielding outlier IV esti-

mates is an important step that can be combined with the

pleiotropy robust estimators.14 A full comparison of meth-

ods under realistic settings is beyond the scope of this

paper, but a sensible strategy in general is to perform a ser-

ies of complementary sensitivity analyses in addition to the

standard IVW analysis. In this regard, our BMRE method

can increase the precision of the MRE estimator and pro-

vide insight into discrepancies between IVW and MRE

analyses. Further, our BMRE method may be especially

useful when candidate instruments show likely pleiotropic

effects, but there are too few strong instruments to exclude

these pleiotropic SNPs.

In conclusion, we introduce a Bayesian version of the

MR-Egger method, which, by placing weakly informative

priors on the intercept term increases power over MR-

Egger while retaining acceptable type 1 error rates.

Violations of the InSIDE assumption increase bias and type

1 error rates beyond those of the MR-Egger method. We

suggest that Bayesian MR-Egger is a useful sensitivity ana-

lysis that can strengthen the evidence for causal effects in

MR studies, particularly in the presence of observed

pleiotropy.

Supplementary Data

Supplementary data are available at IJE online.
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