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Abstract 

Background: This manuscript describes a new, multidimensional and data-driven approach 

to identify outlying datapoints from a first-level fMRI dataset. 

New method: Using three different indicators of data corruption (the fast variance 

component of DVARS [Δ%D-var], scan-to-scan total displacement [STS], and each scan’s 

overall explained variance [R2]), it identifies outlying datapoints while being balanced using 

Akaike’c corrected criterion (AIC C) to avoid overcorrection. We then explore the impact of 

censoring, interpolating, or both, to remove a bad scan’s contribution to the final 

timeseries. 

Results and comparison with existing methods: Our results (using three real-life datasets 

and extensive simulations) show that motion-corrupted datapoints as well as non-motion 

related image artefacts are detected reliably. Using several indicators is shown to be an 

advantage over existing single-indicator solutions in different settings. As a result of using 

our algorithm, stronger activation (as detected by both T-value and number of activated 

voxels) and an increase in the temporal signal-to-noise ratio can be seen. The effects of 

censoring and interpolation are distinct and complex. 

Conclusions: The multidimensional approach described here is able to identify outlying 

datapoints in fMRI timeseries, with demonstrable positive effects on several outcome 

measures. While censoring datapoints may be preferable in many settings, the ultimate 

choice on which approach to choose may depend on the data at hand. Recommendations 

are provided for different scenarios. 
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Highlights 

• a new, multidimensional and data-driven approach to identify outlying datapoints in 

fMRI timeseries is described 

• outlier removal is driven by three parameters (Δ%D-var, STS, and R2) while being 

balanced by Akaike’s corrected information criterion 

• the effect of censoring datapoints in the design matrix vs. interpolating them on the 

raw data level is assessed and compared in different datasets 

• stronger activation and a higher signal to noise ratio is seen as an effect of both 

censoring and interpolation 

• some recommendations are provided but the optimal choice of approach may 

depend on the data at hand 
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Introduction 

Functional MRI has firmly established itself as a prime neuroscience research tool over the 

last decades. However, it also continues to be a challenging technique which is plagued by a 

low signal-to-noise ratio (SNR), and consequently is vulnerable to the influence of artefacts 

(Afyouni & Nichols, 2018; Caballero-Gaudes & Reynolds, 2016; Chen & Glover, 2015; Liu, 

2016). Such technical or physiological artefacts may add (random or systematic) noise to a 

session, rendering a given study harder (or impossible) to interpret (Dipasquale et al., 2017; 

Liu, 2016; Murphy et al., 2013). Further, the detrimental effects of subject motion are 

substantial. While it was shown already a long time ago that a large portion of the variance 

in an fMRI time series is attributable to motion (Friston et al., 1996), the full impact (on 

resting state studies in particular) has only become clear in recent years (Havsteen et al., 

2017; Power et al., 2018; Wilke, 2012b). Consequently, ever more strict guidelines have 

been suggested with regard to what amount of motion is acceptable, and subjects failing 

these criteria are often removed from a group study (Afyouni & Nichols, 2018; Power et al., 

2012, 2015). 

However, there are scenarios in which the decision to discard a subject’s dataset is not an 

easy one, particularly in the presurgical application of fMRI. Termed “clinical functional MRI” 

early-on (Thulborn et al., 1996), such exams are usually performed in the pre-operative 

context in subjects with tumorous brain lesions, or structural epilepsy (Benjamin et al., 

2017; Krings et al., 2001; Lorenzen et al., 2018; Szaflarski et al., 2017, Wilke et al., 2018). In 

this setting, much depends on the outcome of a given scanning session, and in the case of 

failure it may not always be possible to repeat or redo the scan. Here, both sensitivity and 

specificity are important: “real” activation must not be missed in order to provide correct 



Optimizing artefact reduction Wilke & Baldeweg 5 

information about “eloquent cortex” to the neurosurgeon; this commonly leads to the 

exploration of several, and lower thresholds to maximize sensitivity (Tyndall et al., 2017; 

Vlieger et al., 2004; Zsoter et al., 2012). However, false positive (spurious) foci of activation 

are also a concern (Juenger et al., 2009) as their misinterpretation may lead to a less-

aggressive surgical procedure than might otherwise have been considered. The challenge 

here is to get reliable results out of a given individual dataset of sub-optimal quality, even if 

it means investing some time and effort. In such a situation, different solutions as compared 

to a pure research setting are required (Chong, 2017; Wilke et al., 2018). 

One of the mainstays to achieving this aim are approaches that aim to “clean” the fMRI 

dataset of outlying datapoints (Caballero-Gaudes & Reynolds, 2017). One common 

approach to reduce the impact of the artefacts on ensuing analyses is to include censoring 

regressors in the statistical design, with the aim to explicitly model the outlier’s undesired 

variance. To achieve this, the contribution of a given datapoint to the final parameter 

estimates is down-weighted by introducing a new, binary regressor that contains a “1” for 

this datapoint and “0” for all others (Lemieux et al., 2007; Siegel et al., 2014). Consequently, 

unique contributions of this datapoint are very effectively removed (or censored) from the 

resulting statistical maps, allowing to account for, e.g., fast motion spikes exceeding a given 

threshold. Encouragingly, real-life analyses showed that usually, one or a few successive 

datapoints are outliers (Satterthwaite et al., 2013), indicating that single datapoint 

censoring is a valid starting point. An acknowledged downside is that the loss of degrees of 

freedom (due to more parameters in the model) leads to an increase in statistical thresholds 

(Caballero-Gaudes & Reynolds, 2017; Liu et al., 2001; Wilke, 2012b).  
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Another approach is interpolation: as compared to censoring, interpolation happens at the 

raw data stage. Here, “bad scans” are removed by directly interpolating the affected 

datapoint (Caballero-Gaudes & Reynolds, 2017; Mazaika et al., 2009), using information 

from the unaffected neighboring volumes. To this effect, popular toolboxes are available 

(Artrepair, 2018). The general idea of this approach is not to explicitly model more variance 

on the statistical level, but instead to remove unwanted datapoints (and hence, their 

unwanted variance) from the data before proceeding to statistics. 

While the approaches are different, there are similar issues. For one, as datapoints are 

removed from the analysis, less data is available to fit the model to. This corresponds to a 

loss of temporal power (Liu et al., 2001). Further, issues pertaining to the identification of 

which points to censor or interpolate are similar. As motion is the main offender, the most 

common approach is to apply a motion threshold to identify outlying datapoints (Caballero-

Gaudes & Reynolds, 2017), ideally making sure all parameters are meaningfully combined 

(Wilke, 2014). However, there are at least two distinct disadvantages to this approach. One, 

the observable motion (usually derived post-hoc by applying a rigid body realignment) may 

not truly reflect subject motion: for example, a fast moving subject’s trajectory in the 

scanner will not be fully captured when only assessed at each TR, and quick motion only 

during the acquisition of one volume is not appropriately captured at all (Vaillant et al., 

2014). External motion tracking devices could help to overcome this shortcoming (Todd 

et al., 2015) but are not yet in widespread use. And two, image imperfections induced by 

other sources (such as RF artefacts, breathing etc. [Birn, 2012; Campbell-Washburn et al., 

2016; Liu, 2016; Murphy et al., 2013]) are not reflected in the realignment parameters at all. 

For explicitly modelling physiological effects in the data, other approaches exist, but these 

often require prospective collection of such data (Misaki et al., 2015; Murphy et al., 2013) 
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which again is not commonly available. As there is a limit to how many processing steps, or 

statistical adjustments can be applied to a given dataset (Powers 2015), a single approach 

integrating and combining different data-driven criteria seems preferable to identify 

outliers. 

The aim of this manuscript therefore is twofold: one, develop and test a new, 

multidimensional and data-driven approach to identify outlying datapoints from a first-level 

fMRI dataset, assessing the effects of motion as well as other sources of artefacts. Two, 

assess the impact of censoring, interpolating, or both, on the chosen image quality 

parameters and the resulting statistical maps.   
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Materials and methods 

General Approach and Implementation  

In order to evaluate each individual scan’s impact on a given session, three parameters are 

initially calculated, identifying different aspects of data corruption (such as subject motion 

or imaging artefacts). To then balance the removal of unwanted variance/scans against the 

increasingly complex design and/or the resulting loss of degrees of freedom, the corrected 

Akaike information criterion (AIC C [Akaike, 1974]) is calculated as a fourth parameter. 

Individual parameter settings are described and discussed in the conclusion section, below.  

Δ%D-var: The concept of DVARS (root mean square variance over the differenced 

timeseries) was first introduced by Smyser et al., 2010, and then expanded upon later 

(Power et al., 2012). In our approach, the percent change in the magnitude of the fast 

variance component of DVARS (Δ%D-var) is computed (Afyouni & Nichols, 2018). This 

parameter allows to identify datapoints showing a suspiciously fast change in signal (see 

Figure 1 for an illustration). Most elegantly, significance can be calculated on this parameter 

using a robust estimator of variance and employing χ2 statistics, allowing to formally 

designate a scan as an outlier. In our algorithm, processing is done over all voxels in a slice, 

yielding one value per slice. Additionally or as an alternative, an excessively high value of 

Δ%D-var itself can be taken to indicate data corruption, especially if present in several slices.  

Subject motion: subject motion is described by the scan-to-scan total displacement (STS, 

also known as framewise displacement, describing subject motion between two consecutive 

image volumes; Power et al., 2012; Wilke, 2012, 2014). Motion (and fast motion in 

particular) has long since been recognized as one of the main sources of unwanted variance 

in fMRI (Friston et al., 1996), and the identification of such fast-motion datapoints is very 
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commonly used to “scrub” time series (Caballero-Gaudes & Reynolds, 2017). Tukey’s 

criterion (Bliss et al., 1956; Tukey, 1977) is applied to find outliers (see below). However, an 

upper limit (above which scans are always considered outliers) will usually be specified. On 

the other end of the spectrum, minute movements may even be “detected” in the absence 

of actual movement due to outside influences; hence, a lower threshold (below which scans 

are never considered outliers) can also be set.  

Overall explained variance: each scan’s contribution to the variance explained by the whole 

session (expressed in the squared correlation coefficient, R2 [Pernet, 2014]) is assessed. To 

this effect, the explained variance of the original model is calculated. Thereafter, each scan 

is consecutively removed, and the overall variance explained by this reduced model is 

related to the original model. In the case of an outlier, the variance explained by the new 

model increases (as the outlier’s influence is explicitly explained). This yields a single value 

for each scan, reflecting the beneficial (ratio > 1) or detrimental (ratio < 1) effect of 

removing this datapoint from the session. These values are then assessed using Tukey’s 

outlier criterion (see below). Of note, both Δ%D-var and R2 will detect outliers irrespective 

of the underlying reason (subject motion, an image artefact, or both). There are no 

customizable settings for this parameter. 

Model complexity: After an outlier is removed, there is always one datapoint that is the 

next-outlying; however, removing datapoints cannot go on indefinitely (Wilke, 2012a). To 

achieve balance, the Akaike information criterion was used (McLaren et al., 2012). Its 

original implementation can be calculated within the SPM-framework according to 

AIC = 2 × k + n × [log(ResMS × DOF / n)] 



Optimizing artefact reduction Wilke & Baldeweg 10 

where k is the number of regressors in the model, n is the number of time points, ResMS are 

the mean squared residuals and DOF are the model’s degrees of freedom (McLaren et al., 

2012). Of note, in a setting where the number of datapoints n does not far exceed k 2 (which 

is rarely the case in fMRI), a corrected version should be used (Glatting et al., 2007; 

Hurwich & Tsai, 1989). This is particularly relevant when comparing models with different 

numbers of regressors, as done here. The corrected AIC can be computed according to  

AIC C = 2 × k + n × [log(ResMS × DOF / n)] + (2 × k × (k + 1) / (n - k - 1)) 

the only difference being the appended term penalizing higher model complexity. In our 

algorithm, AIC C is initially calculated on the original model. Following the identification of 

outliers, these are then removed progressively upon which the calculation is repeated. The 

AIC C of each (modified) model is then related to the original AIC C and the global minimum 

(reflecting the best compromise) is determined. Rules have to be established that describe 

how to reconcile potentially conflicting suggestions of AIC C and the other three parameters 

(see section on combining parameters, below). Other than that, here are no customizable 

settings for this parameter. 

Censoring vs. interpolation: censoring is achieved by modifying the existing design matrix by 

adding an additional regressor for each outlying volume (“1” for the outlier, “0” for all other 

volumes). Interpolation is achieved here by a straightforward linear interpolation between 

neighboring non-outlying volumes, using the approach available within the popular 

art_repair toolbox (Artrepair, 2018; used here with kind permission). 

 

Outlier Definition 

While formal statistics can be calculated for Δ%D-var and the negative maximum of a simple 
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ratio is used for AIC C, a criterion is required to find outliers in STS and R2. An outlier is 

defined as a datapoint outside of the normal range “which appears to be inconsistent with 

the remainder of the dataset” (see Hodge & Austin, 2004, and Cousineau & Chartier, 2010, 

for a review). A common definition in a normal population is “a datapoint outside of two 

standard deviations of the mean”. However, in the case of non-normally distributed data, 

the mean as well as the standard deviation are subject to bias (Leys et al., 2013). The 

standard deviation in particular scales with both the number of outliers and the outlier 

weight (see upper panel in supplementary Figure 1), making this approach ill-suited in a 

setting with more than a few, and/or severe outliers (Cousineau & Chartier, 2010). We 

therefore decided to use Tukey’s outlier criterion (Bliss et al., 1956; Tukey, 1977), which is 

based on the more robust estimators of the third quartile and the interquartile range. Here, 

the upper limit UL of the normal range is defined per  

UL = Q3 + F × IQR 

with Q3 being the third quantile, F being Tukey’s factor, and IQR being the interquartile 

range. An outlier is usually assumed with F = 1.5 (also used here), while F = 3 signifies a far 

outlier. As can be shown empirically (see lower panel in supplementary Figure 1), the 

approach is very robust both to outlier weight and outlier number, but only up to a 

percentage of outliers of about 25. This effect is immediately clear from the formula given 

above, as both the third quantile as well as the interquartile range (the distance between 

the 25th and the 75th percentile) are directly affected if the number of outliers exceeds 25%.  

Above that threshold, there is an increased vulnerability towards both number of outliers 

and the outlier weight, severely diminishing the advantage of this robust estimator. Our 

algorithm therefore will, if more than 25% of datapoints are removed, re-estimate the 
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outlier range on the remaining datapoints. This will effectively re-establish the original 

robustness of the criterion with regard to outliers in both number and weight. Additionally, 

the third quartile and the interquartile range were derived here using a bootstrap estimator, 

with 10.000 estimates.  

 

Combining parameters 

Regarding the combination of the results from the 4 parameters (Δ%D-var, STS, R2, and 

AIC c), the following rules were implemented: by default, each datapoint identified as a 

definite outlier in either Δ%D-var, STS, or R2, is marked for removal. If the total number 

across parameters is below the value suggested by AIC C, no further action is taken (as AIC C 

is only meant to provide an upper limit). If, on the other hand, the combined number 

exceeds the value suggested by AIC C, definite outliers will still be removed until a 

prespecified distance factor for AIC C is reached (default: 2). For example, the removal of 

13 datapoints due to subject motion may conflict with the suggestion to only remove 

10 datapoints (based on AIC C). The distance factor then states that (detrimental) increases 

in AIC C are only accepted until a factor of 2 w.r.t. the optimum AIC C value is reached (i.e., if 

AIC C increases to more than twice the optimal value). If this criterion is met, no further 

datapoints are removed. Two individual analyses are illustrated in Figure 2. 

 

Datasets 

For this study, we used three datasets: dataset 1 consists of 38 “scientific” imaging sessions 

from healthy children performing an acoustically-cued verb generation task (Northam et al., 

2012). Dataset 2 consists of 84 “clinical” imaging sessions from 28 pediatric patients 
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performing a left (n = 41) or right (n = 43) hand motor task as part of their assessment prior 

to epilepsy surgery. Datasets 1 & 2 were acquired at the Great Ormond Street Institute of 

Child Health, University College London, UK. Dataset 3 consists of 80 “scientific” imaging 

sessions from 20 adults performing 3 language tasks (Máté et al., 2016; Fiori et al., 2018) 

and one motor task designed to induce movement artefacts (active ankle movement). It was 

acquired at Tuebingen University Hospital, Tuebingen, Germany. Demographic details of the 

participants and further information about the sequence parameters and the task design 

can be found in Table 1. 

 

Assessing algorithm performance: impact of subject motion  

It is very difficult to realistically model motion artefacts as their effects are so diverse (Liu, 

2016; Power et al., 2015; Satterthwaite et al., 2013; Wilke, 2012). As no ground truth exists, 

it is conceptually difficult to use a simulation to validate our approach. We therefore opted 

to investigate a “research” dataset (of healthy children performing a covert language task, 

likely of better quality; dataset 1) vs. a “clinical” dataset (of pediatric patients performing a 

motor task, likely of worse quality; dataset 2). Total subject motion was quantified by 

summing the absolute scan-to-scan values over time and related to the number of outlying 

datapoints as detected by the algorithm. This experiment was used to assess the hypothesis 

that, in more motion-corrupted series, the algorithm would detect more outliers. 

 

Assessing algorithm performance: impact of data corruption 

Non-motion image artefacts may be less relevant when compared with subject motion, but 

they may also be less easy to detect (Liu, 2016). As a model for image degradation, we 
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decided to simulate a common image artefact by introducing “stripes”. Such artefacts 

usually are brought about by radiofrequency noise bursts (Astrakas et al., 2016; Campbell-

Washburn et al., 2016). We here chose to introduce a very slight signal intensity change 

(+3%) to each alternating slice of a randomly selected image, mimicking an effect as it might 

occur in an interleaved image acquisition sequence. This model has the advantage that the 

ground truth is known. The scans-to-be-corrupted were randomly selected from each 

individual time series from dataset 1, mimicking the unpredictability of the artefact. The 

artefact was introduced before realignment and smoothing, and the number of corrupted 

scans was systematically increased, affecting none (original analyses) or 10/20/30/40/50% 

of the images, resulting in 6 datasets of 38 sessions each. This experiment was used to 

assess the hypothesis that, in more artefact-corrupted series, the algorithm would detect 

more outliers. 

 

Assessing algorithm performance: adaptability 

As laid out above, the algorithm uses three different parameters to identify outliers, with 

the aim to detect outliers due to different influences in a self-adaptive manner, without 

having to change settings. This adaptability was tested here by assessing its performance in 

dataset 3, consisting of adults performing three (low-motion) language tasks and one 

(higher-motion) motor task. All subjects performed all tasks, minimizing between-subject 

differences. This experiment was used to assess the hypothesis that the different 

parameters will contribute differently to the final selection of outlying volumes in different 

settings.  
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Assessing algorithm performance: impact on resulting statistical map 

One issue with declaring a statistical map “better” than another is, again, that no ground 

truth exists. While this is difficult to test in a cognitive task, the motor task used in dataset 2 

must, if performed correctly, induce predictable activation in contralateral primary 

somatosensory brain regions (Guzzetta et al., 2007). We therefore chose to assess the 

change in strength of activation (before and after outlier removal) at this cortical location as 

an indicator of successful outlier removal. To this effect, we manually screened all 84 t-maps 

from dataset 2 to identify activation in the targeted sensorimotor hand region, in native 

space. Around the center voxel of this activation, a cubic ROI was defined of ± 1 voxel in 

each dimension, resulting in a 3 × 3 × 3 voxel ROI. We then assessed the voxelwise t-values 

within the ROI, as well as the sum of activated voxels (after surviving an initial threshold of 

p ≤ 0.001, uncorrected), before and after running our algorithm. This experiment was used 

to assess the hypothesis that stronger activation would be seen after outlier removal. 

 

Assessing algorithm performance: impact on quality indices (Δ%D-var and STS) 

An obvious choice for assessing algorithm performance is the change in the parameters we 

used to find outliers in the first place. Hence, we assessed in how far our selected data 

quality indicators changed as a function of progressively removing datapoints identified as 

outliers, in dataset 1 and dataset 2. As both likely differ in data quality, this also allows 

observing in how far the original data quality impacts these parameters. To this effect, we 

assessed the percent change in these parameters following removal of outlying volumes in 

5%-steps. Of note, only the first two parameters (Δ%D-var and STS) can be assessed 

independently of the approach (censoring, interpolation, or both). The effect on R2 and AIC C 
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will vary depending on that approach, they are therefore assessed in a following 

experiment. 

 

Assessing methodological approach: impact on quality indices (R2 and AIC C) 

The variance explained by the model (R2) as well as its complexity (AIC C) will depend on the 

chosen approach (censoring, interpolation, and both). To this effect, results from the 

previous analyses (progressively removing outliers in steps of 5% in dataset 1 and dataset 2) 

were additionally assessed as a function of approach. 

 

Assessing methodological approach: impact on detection power 

Either censoring or interpolation can be pursued following the initial step of identifying the 

outlying volumes (and they can of course also be combined); however, it is unclear which 

approach is preferable and both are widely used (Siegel et al., 2014; Mazaika et al., 2009).  A 

downside of censoring is that more complex models have fewer degrees of freedom, 

resulting in a loss of statistical power (Caballero-Gaudes & Reynolds, 2017; Liu et al., 2001; 

Wilke, 2012b). An obvious drawback inherent in both approaches is the loss of temporal 

power, in that less data is available to fit the model to. We therefore investigated this effect 

here by randomly censoring or interpolating an increasing number of datapoints and 

assessed the impact on the original statistical map, in the form of counting the 

suprathreshold voxels at an p ≤ 0.001, uncorrected. This was performed in dataset 1, in 

steps of 5, from 5 to 60 scans (i.e., up to a maximum of 50% of scans in this dataset). The 

procedure was repeated 100 times for each subject. Results were expressed as percent of 

suprathreshold voxels, as compared to the original images before manipulation (taken here 
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as the ground truth). The effect of an increase in statistical threshold and the decrease in 

temporal power were also calculated for comparison. 

 

Assessing methodological approach: impact on temporal signal to noise 

To further assess the influence of censoring or interpolation on the resulting timeseries, 

their temporal signal to noise (tSNR) was calculated, using the simple approach of dividing 

the mean of a timeseries by its standard deviation (Curtis & Menon, 2014; 

Welvaert & Rosseel, 2013). To assess the effect of censoring, tSNR was calculated for the 

reduced (leaving out the censored timepoints) as well as the interpolated timeseries. All 

results were related to the corresponding original timeseries in a voxelwise fashion. This 

was done for dataset 1 and dataset 2. Of note, this analysis cannot be conducted on the 

combined approach. 

 

Image data processing 

All processing steps and analyses were conducted within the SPM12 software environment 

(Wellcome Department of Imaging Neuroscience, UCL, London, UK), running in Matlab (The 

Mathworks, Natick, MA, USA), partly using custom scripts and functions. Functional MRI 

data preprocessing was minimal in that only realignment, reslicing, and spatial smoothing 

(FWHM = 6 mm) were performed. Single-subject, first level analyses were performed in 

native space using the general linear model (Friston et al., 1995), contrasting the active 

periods with the intermittent rest periods. This yields native-space T-maps reflecting the 

active > control contrast.  
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Statistics 

Normality assumptions in the data were assessed using an initial Kolmogorov-Smirnov-

Liliefors-Test. Results are presented as means ± standard deviation in the case of normally-

distributed data, and as median [standard error of the mean] in the case of non-normally-

distributed data. If normality was demonstrated, differences in the mean were assessed 

using Student’s T-test, while correlations were assessed using Pearsons’s correlation 

coefficient. Otherwise, non-parametrical statistical tests were used instead. Specifically, 

differences in the median were assessed using the Mann-Whitney-U-Test, while correlations 

were assessed using Spearman’s rank correlation. Significance was assumed at p ≤ 0.05, 

Bonferroni-corrected for multiple comparisons where appropriate. 
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Results 

Algorithm performance: impact of subject motion  

Results of this experiment are shown in Figure 3. Subjects in dataset 2 showed more subject 

motion (left panel), but the difference did not reach significance (Mann-Whitney, p > 0.05). 

The algorithm identified and removed significantly more datapoints in dataset 2 vs. 

dataset 1 (middle panel; Mann-Whitney, p < 0.001), and there is a significant positive 

correlation between subject motion and number of removed datapoints (right panel) in 

both dataset 1 (Spearman, p < 0.001) and dataset 2 (Spearman, p = 0.0024). 

 

Algorithm performance: impact of data corruption 

Results of this experiment are shown in Figure 4. There is a clear increase in the number of 

removed datapoints as a function of increasing data corruption, up to a level of corruption 

of 30%. This increase is significant until then (no corruption vs. 10%, T-test, p < 0.001; 10% 

vs. 20%, Mann-Whitney, p < 0.001; 20% vs. 30%, Mann-Whitney, p < 0.001). At 40% and 50% 

corruption, the median decreases (although non-significantly) and the spread of results 

becomes much wider, indicating decreasing stability of outlier detection. 

 

Assessing algorithm performance: adaptability 

Results of this experiment are shown in Figure 5. In the three language tasks of dataset 3, 

the algorithm removes an average of 4-7 outliers out of 100 images, with remarkably stable 

contributions from the different parameters (mainly based on R2; Figure 5, left upper and 

lower panels). In the motor task, the picture changes in that not only more (on average 22) 
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outliers are detected but also, their vast majority is now identified by Δ%D-var (Figure 5, 

right upper and lower panel), demonstrating that the algorithm displays a different 

(adaptive) behavior in different settings. 

 

Algorithm performance: impact on resulting statistical map 

Results of this experiment are shown in Figure 6, and some individual examples are 

provided in the supplementary Figure 2. Regarding activation strength as assessed by the T-

value in the target ROI, there is a significant difference only for the original vs. censoring 

(Mann-Whitney, p < 0.001) and the original vs. both approach (Mann-Whitney, p < 0.001). 

The original vs. interpolation difference does not reach significance (Mann-Whitney, 

p > 0.05). Regarding activation strength as assessed by the number of activated voxels in the 

target ROI, the pattern is similar with a significant difference only for the original vs. 

censoring (Mann-Whitney, p < 0.05) and the original vs. both approach (Mann-Whitney, 

p < 0.05). The original vs. interpolation difference again does not reach significance (Mann-

Whitney, p > 0.05). 

 

Algorithm performance: impact on quality indices (Δ%D-var and STS) 

Results of this experiment are shown in Figure 7. As expected, the progressive removal of 

outlying datapoints leads to a consistent and substantial reduction in both Δ%D-var and STS. 

The reduction was significantly more pronounced in dataset 2, for both indices (T-test, each 

p < 0.05).  
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Methodological approach: impact on quality indices (R2 and AIC C) 

Results of this experiment are shown in Figure 8. There is a strong impact of approach on R2, 

with the approaches involving censoring leading to a substantial increase of explained 

variance. In contrast to this, R2 is almost unchanged in the interpolation approach. While 

there is an appreciable effect of dataset, neither difference reached significance (T-test, 

each p > 0.05). The effect of outlier removal on AIC C is more complex: there is an early 

increase of AIC C in the higher-quality dataset 1 in the censoring approaches, in stark 

contrast to a consistent decrease in the lower-quality dataset 2. This difference was highly 

significant for both approaches (T-test, each p < 0.001). For the interpolation approach, a 

consistent decrease was seen, with no differences between the datasets (T-test, p > 0.05). 

 

Methodological approach: impact on detection power 

Results of this experiment are shown in Figure 9. When progressively and randomly 

removing datapoints, there is an expected decrease in suprathreshold voxels when more 

datapoints are removed. This is true for all approaches, but is differently pronounced, in 

that the interpolation approach shows a lower loss of detection power then both censoring 

approaches. When assessing the known contributors (higher threshold due to fewer 

degrees of freedom and lower temporal power due to fewer datapoints), the effect of 

threshold is only minimal (when removing 50 datapoints, the T-threshold is only 2.84% 

higher) while temporal power naturally scales linearly with the number of datapoints.  
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Methodological approach: impact on temporal signal to noise 

In dataset 1, there were slight increases in tSNR for both approaches (median 107.8% 

[SEM 2.0] for censoring and 108.6% [SEM 2.1] for interpolation), but neither difference 

reached significance, nor were they significantly different from each other. In dataset 2, 

there were substantial and significant increases in tSNR (median 165.0% [SEM 7.9] for 

censoring and 171.9% [SEM 8.0] for interpolation) for both approaches (T-test, each 

p < 0.001). Again, there was no significant difference between the approaches. 
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Discussion 

This manuscript was aimed at (1) developing a new multidimensional approach to artefact 

reduction in first-level functional MRI sessions, and (2) assessing the impact of censoring 

versus interpolation. After evaluating the impact of subject motion and data corruption, we 

assessed the impact on the resulting statistical maps and on the four selected quality indices 

(Δ%D-var, STS, R2 and AIC C). Finally, the impact on detection power and temporal signal to 

noise was evaluated. These results shall now be discussed in more detail.  

 

Impact of subject motion: While seemingly trivial and somewhat expected, ascertaining that 

the algorithm removes more datapoints in subjects that show more subject motion 

(Figure 3) seemed prudent as an initial step of assessing algorithm performance. Supporting 

the notion that the observable motion (described by the realignment parameters) does not 

represent the full extent of the ensuing data corruption (Friston et al., 1996; Siegel et al., 

2014; Smyser et al., 2010; Wilke, 2012b, 2014), the difference in subject motion did not 

reach significance while the number of removed datapoints did. Importantly, the correlation 

between subject motion and number of removed datapoints was significant in both 

datasets, confirming that the effect is not driven by the few high-motion subjects in 

dataset 2.  

 

Impact of data corruption: Somewhat less trivial was the exploration of the algorithm’s 

behavior in the context of an increasing (and known) amount of realistic data corruption 

(Figure 4). These results show that the algorithm is well able to detect datapoints 

contaminated by our synthetically-generated, but realistic non-motion image artefact 
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(Astrakas et al., 2016; Campbell-Washburn et al., 2016), with significantly increasing 

numbers removed up to a level of contamination of 30%. This demonstrates that the three 

indicators not relying on subject motion (Δ%D-var, R2 and AIC C) in fact do enable the 

algorithm to identify outliers not due to subject motion. Beyond a contamination level of 

30%, this part of the algorithm becomes unstable, in that no more datapoints are removed 

despite more severe data corruption. While this could be considered algorithm failure, it 

should be noted that non-motion artifacts contaminating more than 30% of a dataset must 

be considered an extremely unlikely scenario. Further, this instability underlines the well-

known and obvious fact (Hodge & Austin, 2004; Cousineau & Chartier, 2010) that the 

identification of an outlier requires the presence of a sufficient amount of normal 

datapoints (even in a robust implementation [Bliss et al., 1956; Tukey, 1977], as also 

illustrated in supplementary Figure 1). Hence, attention should always be paid to the 

amount of datapoints removed during any censoring or interpolation procedure as, if a 

certain number is exceeded, this may indicate that the dataset is beyond repair (therefore, 

the final toolbox will generate a warning if more than 40% of datapoints are flagged as 

outliers). Also, this instability is only present in the case of non-motion induced image 

artefacts: due to the option to specify an absolute (lower and/or upper) motion threshold, 

datapoints contaminated by unacceptable subject motion will always be flagged 

(irrespective of their number) if they exceed a prespecified threshold.  

 

Adaptability: In a real-world setting (and in the clinical application of fMRI in particular; 

Siegel et al., 2014; Wilke et al., 2018), contaminating influences of all sorts must be 

expected. Hence, the algorithm should ideally be equally-suitable for different scenarios, 
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requiring a high degree of adaptability. The results presented in Figure 5 illustrate that this 

actually is the case: in high-quality, very low-motion (language task) sessions, a low number 

of datapoints is removed (based mainly on R2). The pattern changes substantially in that 

almost four times as many outliers (22 vs. ~6) are identified in the higher-motion (motor) 

task. It is interesting to note that STS does not dominate the motor task’s outlying volume, 

arguing in favor of the more sophisticated Δ%D-var approach (Afyouni & Nichols, 2018) 

being more sensitive (although it must be admitted that this may also be an effect of the 

chosen STS threshold). This pattern demonstrates that the algorithm does not rely on one 

parameter only and underlines the importance of using a combined outlier detection 

approach. Further, the excellent performance of the same algorithm with the same settings 

not only in this “very low vs. low motion” (Figure 5) but also in a “medium vs. high motion” 

(Figure 3) and in a “low vs. -high artefact” setting (Figure 4) underscores its adaptability. On 

the single-subject level, this can also be seen in the “best” and “worst” cases: here, some 

datapoints clearly identified as outliers using Δ%D-var and/or R2 did not show excessive 

subject motion (red and green rectangles in Figure 2) which is why it is all the more 

important to not a priori focus on one aspect only. 

 

Impact on resulting statistical maps: The results of outlier removal on the strength of 

activation in dataset 2 (Figure 6) show that both censoring and interpolation of outlying 

volumes lead to an observable increase in activation. Some illustrative cases are shown in 

the supplementary Figure 2. However, in this dataset the difference is only significant in the 

censoring approaches. While the overall effects are similar and while therefore, this lack of 

significance should not be over-interpreted, it is based on 84 imaging sessions and the 
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pattern is similar for both the absolute T-scores as well as for the activated voxels. Results 

from this experiment therefore indicate that there may be an advantage of the approaches 

relying on censoring regressors in a real-life scenario, in this respect. 

 

Impact on quality indices (Δ%D-var and STS): Again somewhat as expected, the impact of 

removing outlying datapoints on Δ%D-var and subject motion is very clear (Figure 7). Both 

parameters show a substantial and consistent decrease upon removing more “outlying” 

datasets. Of note, the initial reduction even in the better-quality dataset 1 is already on the 

magnitude of about 20% when only removing 5% of datapoints. Also, there is a clear 

difference between the two datasets, with a substantially (and significantly) stronger 

reduction of both parameters in the worse-quality dataset 2. This clearly indicates that the 

effect of removing a similar number of outlying datapoints is stronger in worse datasets.  

 

Impact on quality indices (R2 and AIC C): When assessing the impact of removing outlying 

datapoints on R2 and AIC C, a more complex pattern emerges (Figure 8), both as a function 

of approach and of data quality. When assessing R2, the impact of the methodological 

approach is very obvious: there is a clear and substantial increase in the total variance 

explained by the model including censoring regressors (top and bottom left panels in 

Figure 8). The impact of data quality is visually suggestive in that relatively more variance is 

explained for the worse-quality dataset 2, but this difference does not reach significance. In 

stark contrast to this, the interpolation approach has only a negligible (negative) influence 

on the explained variance (middle left panel in Figure 8). Here, there is no perceptible 

difference between the datasets. The picture is different for AIC C, where the influence of 
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dataset predominates for the censoring approaches. Here, an early increase in the better-

quality dataset 1 clearly indicates that the removal of further datapoints does not lead to a 

better balance between explained variance and model complexity. In contrast to this, AIC C 

continues to decrease in the worse-quality dataset 2, showing an additional benefit of 

removing more datapoints (top and bottom right panels in Figure 8). This behavior clearly 

illustrates that the criterion’s intended effect as a boundary condition (indicating when to 

stop removing datapoints) is achieved: while in both datasets, more variance is explained by 

censoring more outlying datapoints, AIC C ensures that a compromise is enforced between 

model complexity and explained variance (upper left and right panel in Figure 8). This 

compromise leads to an earlier termination of datapoint removal in the better-quality 

dataset than in the worse-quality dataset. Again, the picture is different for the 

interpolation approach, where model complexity does not change: the model itself remains 

unchanged as interpolation occurs on the raw data level. However, due to the interpolation 

and removal of outlying datapoints, the unexplained residual variance is reduced, which in 

turn leads to a lower AIC C (middle right panel in Figure 8). Again, the effect of dataset is not 

significant here. 

 

Impact on detection power: In the next experiment (Figure 9), the influence of 

methodological approach on detection power (proxied here using the activation strength) is 

assessed. As expected (Liu et al., 2001; Wilke, 2012b), detection power decreases across all 

approaches (censoring, interpolation, or both) upon increasingly removing datapoints. The 

effect of fewer degrees of freedom (open circles in Figure 9, only relevant for the censoring 

approaches), however, is hardly relevant; while there is an increase in the uncorrected 
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statistical cutoff, it is below 3% even when censoring 50 datapoints. Compared with this, the 

loss of datapoints contributing to the model (i.e., temporal power) is much more relevant 

(solid circles in Figure 9). Interestingly, there is a clear effect of approach in so far that the 

interpolation approach shows a less-pronounced decrease in detection power than the 

censoring approaches, becoming more obvious the more datapoints are removed. Between 

the two approaches including censoring, there is no appreciable difference. This actually, on 

a side note, confirms the effective removal of all variance explained by a datapoint if a 

censoring regressor is included (Siegel et al., 2014), as no (positive or negative) effect of 

interpolation remains if the datapoint is also censored.  

 

Impact on temporal signal to noise: In our final experiment, the influence of methodological 

approach on temporal signal to noise (tSNR; Curtis & Menon, 2014; Welvaert & Rosseel, 

2013) was calculated. Again, the influence of dataset quality is substantial, with the worse-

quality dataset 2 benefitting significantly from either censoring or interpolation. In contrast 

to this, the slight improvement observable in the better-quality dataset 1 was not 

significant, for either approach. Of note and in both datasets, there was no significant 

difference w.r.t. the change in tSNR between the two approaches. 

 

Limitations 

The question of how many datapoints can meaningfully be removed using such an approach 

is currently unanswered: if 50% of datapoints are interpolated, on average only one 

datapoint remains for each datapoint removed, raising concerns not only about the 

remaining temporal power (a similar issue for all approaches, cf. Figure 9; 
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Welvaert & Roseel, 20013) but also about the robustness of the resulting interpolation (an 

issue for interpolation only). In this context, there are also different concerns regarding the 

calculation of the temporal autocorrelation in fMRI time series between the approaches 

(Caballero-Gaudes & Reynolds, 2017). As the exact implementation of interpolation is an 

important step, we also explored other approaches and implemented a hole-filling 

interpolation (“inpainting”) approach, employing partial differential equations (D’Errico, 

2018). Here, a smooth interpolant based on the neighboring values is achieved by 

minimizing the sum of squares of the second derivative at each node, such that the whole 

dataset (including all to-be-removed datapoints) can be assessed as one single problem. 

However, while theoretically appealing (and computationally much more demanding), there 

was no appreciable difference when compared with the much more simple linear 

interpolation approach (Mazaika, 2009) when a low number of datapoints was interpolated. 

Surprisingly, the rate of false positive results actually seemed to increase when more 

datapoints were interpolated, which could be due to the higher interpolation-induced 

temporal smoothness of the data which may be counterproductive. Finally, the question of 

whether scattered outlying datapoints are of less concern for interpolation then tightly-

clustered ones was also not explored here. It should also be noted that we only investigated 

block designs: the effect of censoring and/or interpolation on event-related studies was not 

assessed here. However, given that block designs will constitute the majority of sessions 

acquired in a clinical context (Wilke et al., 2018), we considered this an acceptable 

limitation.  

 

Possible Extensions  

Following identification of outliers, the original model is re-estimated with an increasingly 
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larger number of censoring regressors. As a byproduct, the overlap between the statistical 

maps from these reduced analyses can be calculated, which is in some aspects similar to a 

previously-described approach to assess reliability on the fMRI group level (Wilke, 2012a). In 

analogy to this approach, overlapping activations could be considered more reliable if they 

are present in more of the reduced analyses, thus serving as an additional indicator for the 

robustness of observed foci of activation. 

The impact of our algorithm on second-level statistics was not assessed here as, when 

analyzing single subjects in a clinical context, the number of censored datapoints may 

entirely be oriented on individual factors (Siegel et al., 2014). However, this is not the case 

anymore if such analyses should be performed on subjects prior to entering a group-level 

statistics. While the impact of fewer degrees of freedom on the first level is not very strong 

on the second level (Wilke, 2012b), an uneven distribution of censored images between 

groups still constitutes a bias. For such a scenario (for example when studying rare diseases 

where every single subject, contributing to a small group, is precious), it is therefore 

possible to zeropad the final model by adding dummy regressors. This ensures that a 

constant number of regressors (and hence, degrees of freedom) is achieved across subjects 

to avoid an undue bias in the ensuing analyses.  

 

Summary 

In summary and in response to our first aim, the algorithm suggested here is well able to 

detect not only motion (Figure 3), but also imaging artefacts of other sources (Figure 4), in 

first-level fMRI analyses. To this effect, it assesses different dimensions of dataset quality in 

a data-driven (Figure 1) and statistically robust (supplementary Figure 1) way. Motion-
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corrupted datapoints can be flagged using different thresholds, and even sub-threshold 

motion effects on the data may be captured by the other indicators (Figure 2). Non-motion 

related image artefacts are also detected reliably (Figure 4); while this behavior is only 

stable until a contamination of about 40%, heavier contamination by non-motion artefacts 

is an extremely unlikely scenario. The approach is adaptive in that different parameters 

predominate for different scenarios (Figure 5). As a result of applying the algorithm, 

stronger activation as detected by both T-value and number of activated voxels can be seen 

(Figure 6). The multidimensional approach is effectively controlled by a model complexity 

parameter (Figures 6 & 7), balancing variance vs. complexity and reliably ensuring that 

fewer datapoints are removed in less-corrupted datasets. Its application leads to increases 

in tSNR, significantly more so in lower-quality datasets. 

 

With regard to censoring vs. interpolation, our results do not allow to formulate a clear and 

unequivocal conclusion as to which approach is superior. As evident from the analyses 

assessing explained variance and AIC C (Figure 8), both approaches have a fundamentally 

different mechanism of action: while “bad” variance is explained using the censoring 

approach, it is removed using the interpolation approach. While the analyses assessing 

activation strength (Figure 6) seem to favor censoring, the results assessing detection power 

(Figure 9) seem to favor interpolation. A similarly mixed picture emerges when assessing the 

combined approach: as can be seen from the simulations on removing datapoints (Figure 9), 

censoring so effectively removes variance associated with a given datapoint that an 

additional interpolation does not seem to make much of a difference. Then again, there is a 

clear difference in explained variance and AIC C if interpolated datapoints are additionally 
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censored (Figure 8), with an intermediate pattern apparent for both parameters in the 

combined approach. From a conceptual point of view, we believe that it is preferable to not 

disrupt the timeseries: as the effect of motion or other artefacts on its temporal consistency 

is not wholly understood (Liu, 2016; Satterthwaite et al., 2013), interpolation of a removed 

datapoint may only incompletely remove data corruption but may instead introduce new 

sources of variance. Therefore, while both approaches (and their combination) may have 

distinct advantages and disadvantages in different scenarios and while all three approaches 

seem valid, we believe that censoring will generally be preferable.  

 

Recommended settings 

Based on the experiments and simulations described herein, two default parameter settings 

will be available in the toolbox resulting from this work, one for a task-based and one for a 

resting-state fMRI scenario. While the ultimate choice of parameter settings will depend on 

many factors (and all settings can still be customized), some recommendations can be 

provided as follows (for a summary, see also Table 2).  

Settings relevant for Δ%D-var are the prespecified p-value (default for both scenarios: 0.05), 

the required percentage of slices that need to be affected in order to consider the datapoint 

corrupt (default for both scenarios: 50%), and the absolute Δ%D-var value that is considered 

excessive. In Afyouni & Nichols (2018), a Δ%D-var value of 5% was suggested for resting 

state studies; this, however, may be overly strict for task-based fMRI; for this scenario, we 

suggest a default value of 15%. 

Settings relevant for STS are the prespecified upper and lower motion thresholds. For the 

task-based studies assessed here, we used default values of 1.5 mm and 0.3 mm, 
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respectively. These, however will be too liberal for resting state studies, where the effect of 

motion is critically more important (Afyouni & Nichols, 2018; Power et al., 2012, 2015, 

2018). Here, values of 0.3 mm and 0 mm, respectively, will be used. The default for the 

assumed average cortical distance (required to convert radians into distances; Wilke, 2014) 

is 65 mm and is used for both scenarios. 

With regard to on R2, it must be borne in mind that the overall explained variance of a given 

scenario will likely be an important parameter for task-based fMRI studies, but may not be 

the focus of a resting-state study, where further analyses (such as connectivity or 

independent component analyses) may follow. Hence, requiring a datapoint to contribute 

meaningfully to a not meaningful outcome parameter does not make sense. Consequently, 

while the parameter is central for task-based fMRI (cf. Figure 5), it will by default be disabled 

for resting state analyses. 

Similarly, balancing unwanted variance vs. model complexity using AIC C also only makes 

sense if the model itself is a meaningful one. Hence, while the balancing effect of AIC C is 

central for task-based fMRI (cf. Figure 8), it will by default be disabled for resting state 

analyses. 

With regard to censoring vs. interpolation, based on our considerations above we suggest to 

usually use censoring for task-based fMRI analyses. Yet again, however, if the main aim of a 

resting state study is a follow-up analysis using a “cleaned” dataset, interpolation will be 

more helpful (as the interpolated dataset is written out by the toolbox and can be used 

instead of the original one).  
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Tables 

 

 Age 
[years] 

Gender 
[M/F] 

TR 
[s] 

VS 
[mm] 

Datapoints Task Design STS/frame 
[mm] 

Dataset 1 
(UCL, n=38, 
38 sessions) 

14.4 ± 2.6 19/19 3.32 3 × 3 × 4 120 Language 
task 

10 active 
blocks  

[6 scans] 

0.09 
[0.02] 

Dataset 2 
(UCL, n=28, 
84 sessions) 

12.7 ± 4.7 18/10 2.16 3.3 × 3.3 × 4 50 Motor 
task 

5 active 
blocks 

[5 scans] 

0.26 
[0.05] 

Dataset 3 
(UKT, n=20, 
80 sessions) 

31.7 ± 7 8/12 3.00 3 × 3 × 3 100 

Language 
tasks 5 active 

blocks 
[10 scans] 

0.06 
[0.02] 

Motor 
task 

0.14 
[0.09] 

 

Table 1: Demographic information about subjects and datasets; UCL, University 

College London; UKT, University Clinics Tübingen 
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Parameter Setting  task-based fMRI resting-state fMRI 

Δ%D-var 

p                                     
(1) 

0.05 → 

% slices                                              
(2) 

50% → 

% excessive                                       
(3) 

15% 5% 

STS 

upper threshold           
(4) 

1.5 mm 0.3 mm 

lower threshold           
(5) 

0.3 mm 0 mm 

d avg                                                   
(6) 

65 mm → 

R 2 
(7) 

enabled disabled 

AIC c 
(8) 

enabled disabled 

Default approach 
 

censoring interpolation 

 

Table 2: Summary of recommended parameter settings for different scenarios (task-

based versus resting-state fMRI). Legend: → same value as for task-based 

fMRI; (1) p-value required for assuming significance; (2) percentage of slices 

required to be outliers; (3) absolute value of Δ%D-var considered excessive; (4) 

motion above this threshold will always be considered an outlier; (5) motion 

below this threshold will never be considered an outlier; (6) value for average 

cortical distance; (7) calculation of each scan’s contribution to the overall 

explained variance; (8) calculation of corrected Akaike’s information criteria to 

balance scan removal vs. model complexity 
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Figure Legends 

 

Figure 1: Illustration of the change in the fast variance component of DVARS (Δ%D-var) in 

the “worst” subject in dataset 1 (top panel) when compared with the “best” subject in 

dataset 1 (bottom panel). Note three “bursts” of substantially contaminated datapoints in 

the top panel, corresponding to subject motion (see also Figure 2), and only very low level 

of data contamination in the lower panel (identical color scaling, 0-20%). 
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Figure 2: Comparison of all 4 

parameters in the “worst” (left 

panels) vs. the “best” subject (right 

panels) in dataset 1; cf. also 

Figure 1. First row: number of slices 

with significant change in Δ%D-var. 

Datapoints are removed (indicated 

by small red squares) if at least half 

of its slices show a significant 

change (horizontal dotted line). 

Second row: subject scan-to-scan 

motion. Datapoints are removed 

depending on prespecified 

thresholds (dotted line). Third row: 

effect of removing each datapoint 

on the overall explained variance of 

the model. Datapoints are removed according to Tukey’s outlier criterion (dotted line). 

Fourth row: corrected Akaike information criterion as a function of progressively removing 

outlying datapoints (lower values reflect a better compromise between model complexity 

and explained variance). Note progressive decrease in the artefact-ridden dataset (arrow in 

lower left panel) vs. no benefit of removing further datapoints in the best dataset (arrow in 

lower right panel). Red rectangle: removal of one frame detected as an outlier in Δ%D-var 

despite sub-threshold motion. Green rectangle: identification of the same singular outlying 

datapoint in the “best” subject by Δ%D-var and R2 (but not STS). 
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Figure 3: Subject motion versus removed datapoints in datasets 1 (white box/markers) and 

2 (gray box/markers). Note substantially higher amount of subject motion in dataset 2 vs. 

dataset 1 (left panel), leading to a higher number of removed datapoints (middle panel). 

There is a clear correlation between subject motion and removed datapoints in both 

datasets (right panel). 
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Figure 4: Non-motion data corruption versus removed datapoints in dataset 1. Note steadily 

increasing number of removed datapoints up to a contamination of 30% of datapoints. 

Thereafter, no further increase in removed datapoints can be observed.  
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Figure 5: Algorithm performance in dataset 3: language vs. motor task. Note consistent 

pattern in the language tasks: only few outlying datapoints (grey line in upper panels) are 

identified, mainly by the R2 parameter. Substantially more outliers are removed in the 

motor task (right panel), with now Δ%D-var identifying their majority.  
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Figure 6: Comparison of activation strength as assessed by the T-value (top panel) versus the 

number of suprathreshold voxels (bottom panel) in dataset 2. There is a clear effect of 

removing outliers and a clear effect of approach (censoring [C, white] vs. interpolation [I, 

light gray] vs. both [B, dark grey]).  
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Figure 7: Comparison of Δ%D-var and subject motion (STS) as a function of progressive 

outlier removal in dataset 1 (white bars) and dataset 2 (gray bars), depicted as percentage 

w.r.t. respective original dataset. Note linear and progressive reduction of both parameters 

as a function of progressive outlier removal, but more pronounced reduction in the “worse” 

dataset 2. 
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Figure 8: Assessment of explained 

variance (R2, higher values indicate 

more explained variance) and 

corrected Akaike information 

criterion (AIC, lower values indicate 

better overall model fit) as a 

function of progressive outlier 

removal in dataset 1 (white bars) 

and 2 (gray bars), depicted as 

percentage w.r.t. respective 

original dataset. Explained variance 

(left panels) strongly increases 

when censoring (top left panel), but is almost unchanged when interpolating. The combined 

approach shows an intermediate behavior for both parameters (bottom panel). For 

corrected AIC (right panels), there is a dominant effect of data quality, with AIC c 

consistently decreasing independent of approach in the bad-quality dataset 2, but showing 

an early increase in the good quality dataset 1 in the censoring approaches.  
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Figure 9: Effect of randomly removing datapoints in dataset 1 (38 subjects, 100 iterations at 

each step). Note overall clear detrimental effect of removing datapoints for all approaches 

(censoring [C, white], interpolation [I, light gray] and both [B, dark grey]). The effect is less 

pronounced for the interpolation approach. Also shown are the effects of decreasing 

degrees of freedom on the threshold (T, open circles) and the loss of temporal power (P, 

solid circles). 

  



Optimizing artefact reduction Wilke & Baldeweg 51 

Supplementary Figure 1: Effect of 

introducing an increasing number 

of outlying datapoints with an 

increasing outlier weight on the 

standard deviation (upper panel) 

and the robust estimator used here 

(Tukey’s criterion, lower panel). 

Outlier weight = 1 was defined as 

the value of the third quantile plus 

the interquartile range. Note 

relatively linear scaling of the 

standard deviation measure (upper 

panel) with both increasing number 

and increasing weight of outliers, 

and relative stability against both outlier number and outlier weight in the robust measure 

(lower panel) up to a percentage of outliers of 25%. Thereafter, the robustness of Tukey’s 

criterion is severely impaired and biased by both number and weight of outliers. Results are 

based on 1000 iterations of a simulated normally distributed random time series 

(120 datapoints). 
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Supplementary Figure 2: Effect of running our algorithm in three individual subjects from 

dataset 2 (all p < .001, uncorrected). In case 1 (upper panels), an already strong activation in 

the right motor cortex (panel a) is not visibly altered by running our algorithm (censoring 

5 images; panel b). The respective histograms (number of voxels as a function of T-value) 

are equally similar, as demonstrated by the difference between them (panel c). In the case 

of subject 2 (middle panels) with no discernible activation in the original study (panel d), a 

small but credible activation is seen following censoring 20 images (panel e). The difference 

histogram (panel f) shows a substantial shift towards higher T-values. In subject 3 (lower 

panels), a tiny speck of activation in the original study (panel g) is substantially stronger and 

larger following censoring 7 images only (panel h), again accompanied by a considerable 

impact on the difference histogram (panel i). 


