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Abstract. We introduce a novel algorithm for deriving meaningful maps
from multi-contrast MRI experiments. Such experiments enable the esti-
mation of multidimensional correlation spectra, in domains such as T1-
diffusivity, T2-diffusivity, or T1-T2. These spectra combine information
from complementary MR properties, and therefore have the potential
for improved quantification of distinct tissue types compared to single-
contrast analyses. However, spectral estimation is an ill-conditioned prob-
lem which is highly sensitive to noise and requires significant regulari-
sation. We propose an Expectation-Maximisation based method - which
we term InSpect - for unified analysis of multi-contrast MR images. The
algorithm simultaneously estimates canonical spectra associated with
distinct tissue types within an image, and produces maps quantifying
the spatial distribution of these spectra. We test the algorithm’s capa-
bilities on simulated data, then apply to placental diffusion-relaxometry
data. On placental data we identified significant within-organ and across-
subject variation in T2*-ADC spectra - showing the potential of InSpect
for detailed separation and quantification of distinct microstructural en-
vironments.

1 Introduction

Multidimensional magnetic resonance (MR) experiments simultaneously mea-
sure multiple MR properties, and hence promise more specific characterisation
of tissue. Examples of multidimensional MR techniques include various types
of correlation spectroscopy, such as relaxometry-relaxometry [6] and diffusion-
relaxometry [12]. Several recent papers have leveraged recent advances in scanner
hardware to extend these ideas into imaging, in the T1-diffusion [4], T2-diffusion
[13,9], and T1-T2-diffusion [2] domains.
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An attractive approach to analysing such data is continuum modelling. This
assumes that spins have a distribution of values (e.g. relaxivity, diffusivity),
which are quantified by a multidimensional spectrum. The exponential depen-
dence on relaxation constants and diffusivity leads to a Laplace transform model
on the MR signal; the spectrum can therefore be estimated using an inverse
Laplace transform with regularisation [6].

However, fitting the spectrum requires high signal-to-noise ratio (SNR) data,
which can make individual voxel fits - and hence the derivation of quantitative
maps of spectral variation across an image - particularly problematic. In prac-
tice, this means that additional spatial regularisation is often necessary. This
can mean averaging the signal over a region of interest (ROI), or also “spec-
trally integrating” within user-defined regions. This usually involves identifying
canonical components in ROI-derived spectra, then integrating voxelwise spectra
within the regions corresponding to these components, hence obtaining apparent
spectral volume fraction estimates [10,9,2].

Recently, methods have been proposed for increasing robustness of voxel-
wise spectral fits, utilising marginal distributions [1] or spatial regularisation [9].
These methods can improve subsequent spatial mapping, yet there are inher-
ent limitations to existing approaches which motivate this paper. Specifically,
canonical spectral components require manual identification, and therefore may
be ill-defined if estimated over inhomogeneous regions, and may not cover the
full range of observations over the extent of an image.

In this paper we present a method - named InSpect - which addresses these
problems in a data-driven way. Our algorithm automatically segments multidi-
mensional MR images by clustering voxels with similar spectra, and simultane-
ously infers representative spectra for these clusters. This offers many potential
advantages over voxelwise approaches. By averaging over similar voxels we reduce
noise in canonical spectrum estimates. Additionally, the method is fully data-
driven so is unlikely to miss any important spectral components that appear in
the data. In short, the InSpect algorithm seeks a compact representation of the
whole image that captures intrinsic variation in the data without overfitting.

The paper proceeds as follows: we first define the InSpect model, then derive
an Expectation-Maximisation algorithm for its inference. We finally test the
algorithm’s utility on simulated and real multidimensional MRI data. We present
a general form of InSpect in two dimensions, but emphasise that extension to
higher dimensions is simple.

2 Methods

2.1 Multidimensional Spectrum Estimation

The standard approach for estimating the spectrum from a multidimensional
MRI experiment proceeds as follows [6]; for a general 2D multi-contrast MRI
experiment the signal, S, can be described by a continuum model

S(t1, t2) =

∫ ∫
F (ω1, ω2)K(t1, t2, ω1, ω2) dω1dω2 (1)
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where t1 and t2 are experimental parameters which are varied to yield con-
trast in intrinsic MR properties ω1 and ω2, via the specific form of the kernel
K(t1, t2, ω1, ω2). F (ω1, ω2) is the 2D spectrum of ω1 and ω2, i.e. the distribution
of these values across all spins. Discretising onto a Nω1 by Nω2 grid yields

S(t1, t2) =

Nω1∑
i=1

Nω2∑
j=1

F (ω
(i)
1 , ω

(j)
2 )K(t1, t2, ω

(i)
1 , ω

(j)
2 ) (2)

By choosing a suitable ordering of spectrum coordinates ω1, ω2, the signal for
all MR encodings in the experiment can be written in matrix form

S = KF (3)

where S is a column vector, length Ns of the signals at each encoding, K is an
Ns by Nω1

Nω2
matrix of discretised kernel values, and F is an Nω1

Nω2
length

column vector of spectrum values. The spectrum F can then be calculated as
follows, including a non-negativity constraint and regularisation term

F = arg min
F≥0

‖KF− S‖22 + α‖F‖22 . (4)

By solving the above equation with non-negative least squares regression the
spectrum can be estimated within a single voxel. However, as mentioned earlier,
low SNR can lead to noisy spectrum estimates and hence poor spatial maps.
This is the case whether these maps are produced directly from the estimated
spectra, or through picking canonical spectral regions and integrating the fitted
voxelwise spectra within them. In the following section we describe our novel
approach to this problem.

2.2 InSpect model

We move from considering the signal from a single voxel, to an image (or volume)
consisting of N voxels in total. We assume that the signal from each voxel, Sn, is
described by the continuum model of Equation (1) as described in the previous
section.

Rather than naively fitting spectra to each Sn, we seek a data-driven lower di-
mensional representation of the spectral image. Thus, we assume a small number
of voxel types each defined by a canonical spectrum. We then seek to simulta-
neously estimate the set of canonical spectra and the assignment of voxels to
spectra. This has the effect of grouping voxels into clusters, so a byproduct is a
segmentation of the image into distinct regions based on spectral properties.

We start from the assumption that there are M clusters of voxels, with each
cluster having an associated spectrum Fm, which we estimate from the data. In
practice, we do not know each voxel’s cluster a-priori and also need to estimate it.
These cluster membership indices are hence model latent states, which we write
as zn = m if voxel n belongs to cluster m. The set of latent states for the whole
image is therefore z = {zn}Nn=1, where zn ∈ {1, ...,M}. The cluster membership
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probabilities are modelled with a categorical distribution, the parameters are
the number of clusters, M , and the cluster probabilities {pm}Mm=1.

We consider a Gaussian model on the observed signal. For a voxel, n be-
longing to cluster m the expected value for each element of the observed signal
vector, Sn, is the corresponding KFm term. We also assume that all observations
in a voxel have the same variance σ2

n. We write this as follows

Sn ∼ N (KFm, σ
2
n). (5)

Assuming that voxels are independent, the complete data model likelihood for
an image given the parameters θ is therefore

π(D, z|θ) = π(z|θ)π(D|z, θ) =

N∏
n=1

pznN(Sn; KFzn , σ
2
n) (6)

where N(Sn; KFzn , σ
2
n) refers to the product over the Normal PDFs of each

measured signal value within the voxel, and we have denoted D = {Sn}Nn=1

for notational simplicity. By summing over all possible clusterings we get the
marginal likelihood

π(D|θ) =
∑
all z

π(D, z|θ) =

M∑
m=1

N∏
n=1

pznN(Sn; KFzn , σ
2
n) (7)

The maximum likelihood estimate (MLE) of θ is the value that maximises
this. This calculation is intractable in practice, so we derive an Expectation-
Maximisation (EM) algorithm [5]. The full set of model parameters is θ =
{p1, ..., pM ,F1, ...,FM , σ

2
1 , ..., σ

2
N}, but in practice we estimate the σ2

n’s by cal-
culating the empirical variance of the observed data at each voxel, so do not
consider this in the EM algorithm. We also need to choose the number of clus-
ters M - ideally from the data. We do this by fitting the model for a range of
reasonable M , then comparing model selection statistics - such as the Bayesian
information criterion (BIC) and Akaike information criterion (AIC) - across this
range.

2.3 Expectation-Maximisation algorithm

To implement an EM algorithm we first calculate an expression for the expected
value of log π(D, z|θ) (complete data log-likelihood) with respect to π(z|D) (pos-
terior probability of latent states given the data and current parameters). Using
the notation of Bishop [3] we write this function as

Q(θ, θ(t−1)) = Ez|D,θ(t−1)

[
log π(D, z|θ)

]
=
∑
z

π(z|D, θ(t−1)) log π(D, z|θ) (8)

where θ(t) denotes the model parameters at step t of the algorithm. Marginalising
over the clusters, applying the independence of voxels, substituting the likelihood
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(Equation (6)), and taking the log gives the final expression for Q

Q(θ, θ(t−1)) =

N∑
n=1

M∑
m=1

wnm

log pm −
Ns
2

log 2πσ2
n −

∥∥∥∥∥Sn −KFm√
2σ2

n

∥∥∥∥∥
2

2

 (9)

where wnm = π(zn = m|Sn, θ(t−1)). These wnm terms are calculated (for all n
and m) in the E-step, and the M-step maximises Q(θ, θ(t−1)) with respect to the
parameters θ.

E-step For the E-step we first note the full posterior distribution for the model

π(θ, z|D) ∝ π(D|θ, z)π(z, θ) =

N∏
n=1

pznN(Sn; KFzn , σ
2
n) (10)

where we have assumed a uniform prior on both the latent states z, and the pa-
rameters θ. The posterior distribution for each zn - normalised across all clusters
- is therefore

wnm = π(zn = m|Sn, θ(t−1)) =
pmN(Sn; KFm, σ

2
n)∑M

i=1 piN(Sn; KFi, σ2
n)
. (11)

M-step In the M-step we optimise the parameters given the current cluster
weights wnm. In other words we solve

θ = arg max
θ

Q(θ, θ(t−1)) (12)

sequentially for each parameter θ = {p1, ..., pM ,F1, ...,FM}. For p1, ...pM max-

imising this equation, whilst implementing the constraint
∑M
m=1 pm = 1 using a

Lagrange multiplier (e.g. Bishop [3]), gives

pm =
1

N

N∑
n=1

wnm (13)

in other words the current mean cluster weight over all voxels.
For the canonical cluster-associated spectra, F1, ...FM , we have (ignoring

constant terms, and swapping arg maxFm
for arg minFm

due to the sign)

Fm = arg min
Fm

N∑
n=1

wnm

∥∥∥∥Sn −KFm√
2σn

∥∥∥∥2
2

(14)

Taking the derivative with respect to Fm, setting equal to zero and rearranging
gives

KFm =
1

Wm

N∑
n=1

wnmSn (15)
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where Wm =
∑N
n=1 wnm. In other words, we need to minimise the difference

between KFm and the mean signal over all voxels normalised by cluster weights.
This implies the following modification to Equation (4) to calculate the spectrum
associated with each cluster

Fm = arg min
Fm>0

∥∥∥∥∥∥KFm −
1

Wm

N∑
n=1

wnmSn

∥∥∥∥∥∥
2

2

+ α‖Fm‖22 (16)

which we can solve with non-negative least squares regression as described ear-
lier. By iterating E and M steps we therefore calculate the MLE of model pa-
rameters (cluster probabilities and cluster-associated spectra for each cluster),
and posterior distribution of latent states (cluster weights for each voxel).

2.4 Application to Placenta Diffusion-Relaxometry Data

We applied our algorithm to data from combined diffusion-relaxometry experi-
ments previously published by Slator et al. [11]. In this work the authors varied
the b-value and echo time (TE) using a sequence called ZEBRA [8], yielding
simultaneous diffusivity and T2* contrast. The sequence consists of 66 diffusion
weightings (ranging from b = 5 to 1600 s mm−2, including six b = 0 volumes)
and 5 TEs (78, 114, 150, 186, 222 ms) for a total of 330 contrast-encodings.
Other acquisition parameters were FOV = 300×320×84 mm, TR = 7 s, SENSE
= 2.5, halfscan = 0.6, resolution = 3mm3.

We fit InSpect to placental scans from 12 participants, of whom 9 were cat-
egorised as healthy controls, two had chronic hypertension in pregnancy, and
one had pre-eclampsia (PE) with additional fetal growth restriction (FGR). One
participant with chronic hypertension was scanned two times, four weeks apart,
and developed superimposed pre-eclampsia by the second scan. A placenta and
uterine wall region of interest (ROI) was manually segmented on all images.

There are multiple approaches possible when applying InSpect to a dataset
with multiple participants: fit to each image independently and find separate
canonical spectra and clusters for each; fit to all images simultaneously and
estimate a common set of spectra; or any number of hybrid approaches. The best
approach will depend on the specific application. One important consideration is
the extent to which one wants to probe within-image heterogeneity, as opposed to
across-image differences. In this paper our aim is to gain an initial idea of typical
placental T2*-ADC spectra, and their spatial distributions, across healthy and
unhealthy tissue. We therefore fit InSpect in two ways: first to each participant’s
scan individually for various values of M , to determine a parsimonious number
of clusters from the data. Then, given this information, we fix the number of
clusters and fit InSpect to the data from all patients simultaneously.

The number of clusters which best explained the data in individual image fits,
as measured by the BIC and AIC, varied across participants. For the placentas
of participants diagnosed with a pregnancy complication the typical number
of clusters was three. For healthy placentas we tended to see BIC and AIC
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values levelling off at around eight clusters. Given this information, we fixed the
number of clusters at eight when fitting InSpect to the data from all participants
simultaneously.

We also also naively fit voxelwise T2*-ADC spectra to all scans by solving
Equation (4), and derived spectral volume fraction maps from these by integrat-
ing in six regions (defined later) of T2*-ADC space, mirroring the approach in
references [10,9,2].

2.5 Application to Simulated Data

We performed simulations, using the same contrast encodings (i.e. b-value, TE
pairs) as the placental data, to test InSpect. We constructed a minimal example
by first creating a synthetic image of 1000 voxels, with the voxels split evenly
between two clusters. Each cluster was next associated a simple one-component
spectrum with a fixed T2* and ADC value. Given a voxel’s T2* and ADC we
simulated the signal with a simple joint model as follows

S(b, TE) = exp (−bADC) exp (−TE/T ∗2 ) (17)

adding Gaussian measurement noise with a realistic SNR level of 20 (e.g. [11]) in
all voxels. We ran a total of 72 simulations by varying the properties of cluster-
associated spectra (details in Figure 1 caption). This allowed us to investigate
how different cluster-associated spectra need to be for InSpect to distinguish
them, and if this varies across regions of T2*-ADC space.

We first fit spectra in the standard voxelwise manner (using Equation (4))
for all simulated images. We subsequently derived spectral volume fraction maps
from the voxelwise fits, following the aforementioned integration approach (e.g.
[10,9,2]). We defined the areas in which to spectrally integrate as two regions
separated by the midpoint of the two cluster-associated spectra. We fit InSpect
to all synthetic images separately with the number of clusters set to two, thereby
automatically obtaining segmentations and canonical spectrum estimates.

2.6 Algorithm Implementation Details

For the voxelwise fits we set the value of α in Equation (4) at 0.01 using the
L-curve method [7]. We used the same α value in Equation (16) for the InSpect
fits. For all InSpect fits we initialised the cluster weights by sampling from a uni-
form random distribution. We estimate σ2 voxelwise by calculating the empirical
variance of the b=0 volumes with the lowest TE. We determined convergence
of the EM algorithm by manually checking for stationarity of parameters, 25
EM steps were typically sufficient for convergence. The EM algorithm output is
robust over multiple runs from different random initialisations.

3 Results

Figure 1 shows that InSpect performs significantly better than voxelwise map-
ping by spectral integration; recovering the ground truth clusters in the majority
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of simulations. These results are not a complete characterisation of the ability
of InSpect, but they do show that it works for various parameter combinations
across the T2*-ADC domain under the same contrast encodings as the placental
data. The limits of InSpect - under this acquisition sequence - were reached when
T2* was low, especially for components with close ADC values. This reflects the
fact that most signal has attenuated for these T2* values at the acquired TEs.

Figure 2 shows the InSpect fit to the placental data - with all 13 scans fit
at once. The InSpect maps show clear structure - both within organ and across
participants. The corresponding eight cluster-associated spectra show varying
number of peaks, T2*, and ADC values.

We also compare InSpect mapping to spectral integration of voxelwise fits
(Figure 3). The voxelwise maps show similar features to InSpect maps, although
they average over some small-scale features. Visualisation of these substructures
may be possible from voxelwise fits given a sufficiently delicate partitioning of
the spectral domain.

4 Discussion

We demonstrate InSpect, a data-driven method for mapping spectral compo-
nents in multi-contrast microstructural MRI experiments. This is an alternative
to mapping by spectral integration of voxelwise fits, which is inherently unstable
because of high noise, and fails to exploit the likely low variation in underlying
spectra across individual (or groups of) images. InSpect automatically maps the
spectral components, whereas voxelwise integration requires user-defined choices
of regions in the spectral domain. Another advantage of InSpect over voxelwise
approaches is speed; the method avoids computationally heavy non-negative
least squares fitting in every voxel.

On simulated data we show that InSpect significantly improves mapping
based on spectral properties, even when the total number of voxels is relatively
small compared to a typical clinical scan (Figure 1). On placental diffusion-
relaxometry MRI data InSpect segmented clear anatomically-linked structures
(Figure 2A). This suggests that InSpect maps provide insight into microstruc-
ture and microcirculation across the placenta. Clusters 8 and 6 likely represent
the centre and periphery of placental lobules respectively. The spectra associ-
ated with these clusters both have very high T2*, potentially reflecting the high
oxygen levels in healthy placentas. We also observed very clear differences in
cluster assignments between scans of participants who were diagnosed with a
pregnancy disorder compared to controls (Figure 2C).

In fact, we observed a canonical spectrum type which appears solely in patho-
logical cases (cluster 1 in Figure 2). This demonstrates a significant advantage
when fitting the model to the full data set - as we did for the placental data -
as opposed to individual images. By sharing data across subjects we automati-
cally quantify spectral differences between control and dysfunctional placentas.
It also ensures consistent interpretation across all images in a data set, avoiding
problems such as the matching of clusters across images. However, this comes at
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Fig. 1. InSpect applied to synthetic diffusion-relaxometry images. Each image com-
prises two clusters - located in the top and bottom halves of the image. Each cluster
is associated with a one component T2*-ADC spectrum. Three quantities were varied
across simulations: distance between the two cluster-associated spectral components
(either in T2* space with ADC fixed, or vice versa, we used 4 distances between 1.25
and 4), value of the fixed parameter (3 in total), and value of the varying parameter
(3 in total). There were hence a total of 72 simulations. SNR was set to 20 for all im-
ages. A) Volume fraction maps obtained from spectral integration of voxelwise fits (e.g.
[10,9,2]) in two domains delineated by the midpoint of the simulation components, and
InSpect segmentation maps (posterior weights on clusters in each voxel). Note that in
some cases where InSpect exactly infers the simulated ground truth the cluster labels
are swapped. B) Bar plots showing the proportion of voxels where InSpect successfully
recovered the ground truth for various combinations of T2* and ADC characterising
the two cluster-associated spectra.
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Fig. 2. InSpect simultaneously applied to 13 placental diffusion-relaxometry images.
A) InSpect maps and b=0 images for five of the 13 participants, including two who had
been diagnosed with a pregnancy complication at the time of the scan. B) Correspond-
ing T2*-ADC spectra for the eight clusters in A). C) Proportion of voxels assigned to
each cluster for all participants.
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Fig. 3. Comparison between InSpect mapping (top left panel) and and spectral in-
tegration of voxelwise fits for a single participant. Voxelwise maps (all but the top
left panel) were obtained by the standard spectral integration approach (e.g. [10,9,2])
within the six regions displayed in the bottom left panel. The bottom left panel also
outlines three inferred InSpect spectra (clusters 1, 5 and 8 in Figure 2), each in a
different color, for comparison.

the expense of averaging inter-organ heterogeneity - within-participant fits may
make sense in other contexts.

An advantage of the voxelwise spectral integration approach over InSpect
is that it implicitly considers partial volume effects. This observation implies a
clear direction for future work - an extension of the discrete clustering approach
we propose here to continuous spectral component mapping. This would have
continuous latent states, rather than discrete, and therefore would better quan-
tify partial voluming. These developments should work towards the ultimate aim
of using multi-contrast MRI experiments to improve tissue microstructure mea-
surements; enabling the quantification of tissue properties - both healthy and
diseased - which cannot usually be separated by a single MR contrast. These
methods have wide-ranging potential applications: spectroscopic imaging tech-
niques are prominent in the brain and other organs; there many parameters other
than T2* and ADC that could be exploited; and extending to higher dimensional
spectra is straightforward.

5 Conclusion

We introduce the InSpect algorithm, which simultaneously undertakes two com-
plementary tasks - multidimensional spectrum estimation and mapping - by
sharing information across voxels. Although we applied InSpect to diffusion-
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relaxometry data, the method is immediately applicable to any multidimensional
MR imaging experiment.
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