
Integr. Equ. Oper. Theory (2019) 91:1
https://doi.org/10.1007/s00020-018-2500-4
Published online January 14, 2019
c© The Author(s) 2019

Integral Equations
and Operator Theory
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1. Introduction

By the truncated Wiener–Hopf operator we understand the operator

Wα = Wα(a; Λ) = χΛ Opα(a)χΛ, α > 0,

where χΛ is the indicator function of a region Λ ⊂ R
d, d ≥ 1, and the notation

Opα(a) stands for the α-pseudo-differential operator with symbol a = a(ξ),
i.e.

(
Opα(a)u

)
(x) =

αd

(2π)
d
2

∫∫
eiαξ·(x−y)a(ξ)u(y)dydξ, u ∈ S(Rd).

If the symbol a is bounded then the operator Opα(a), and hence Wα(a; Λ),
are bounded in L2(Rd). Given a test function f : R → C, we are interested
in the difference operator

Dα(a,Λ; f) := χΛf(Wα(a; Λ))χΛ − Wα(f ◦ a; Λ). (1.1)

Under appropriate conditions on f, a and Λ this operator is trace class, and
the subject of this paper is to study the trace of (1.1) as α → ∞. We inter-
pret the trace formulas to be obtained as “Szegő asymptotic formulas” or

http://crossmark.crossref.org/dialog/?doi=10.1007/s00020-018-2500-4&domain=pdf


1 Page 2 of 28 A. V. Sobolev IEOT

“Szegő formulas”, following the tradition that is traced back to the origi-
nal G.Szegő’s papers [16] and [17], see e.g. [20] and references therein. The
reciprocal parameter α−1 can be naturally viewed as Planck’s constant, and
hence the limit α → ∞ can be regarded as the quasi-classical limit. By a
straightforward change of variables the operator (1.1) is unitarily equivalent
to D1(a, αΛ; f), so that the asymptotics α → ∞ can be also interpreted as
a large-scale limit, which makes the term “Szegő asymptotics” even more
natural.

At this point we need to make one preliminary remark about the oper-
ator (1.1) being trace class. If

1. Λ is bounded,
2. the function f is smooth and satisfies f(0) = 0, and
3. the symbol a decays sufficiently fast at infinity,

then both operators on the right-hand side of (1.1) can be easily shown to be
trace class. However, as we see later, the difference (1.1) may be trace class
even without the conditions (1) and (2). In particular, being able to study
unbounded Λ’s is important for applications.

The Szegő type asymptotics for the truncated Wiener–Hopf operators
for smooth bounded domains Λ and smooth functions f have been intensively
studied in the 1980’s and early 1990’s, see [1,9,18,19] and [20] for further ref-
erences. In particular, a full asymptotic expansion of trDα(a,Λ; f) in powers
of α−1 was derived independently in [1] and in [20]. We are concerned only
with the leading term asymptotics: they have the form

tr Dα(a,Λ; f) = αd−1(Bd(a) + o(1)), α → ∞, (1.2)

where the coefficient Bd(a) = Bd(a; ∂Λ, f) is defined in (2.10). Our objective
is to generalize this formula in two ways: namely, we extend it
– to non-smooth functions f , such as, for example, f(t) = |t|γ with some
γ > 0, and
– to piece-wise smooth regions Λ.
The extension to non-smooth functions for d = 1 was implemented in [7]. In
this paper we concentrate on the multi-dimensional case, i.e. on d ≥ 2. The
precise statement is contained in Theorem 2.3.

We need to emphasize a few points:

1. In the main theorem the non-smoothness conditions do not concern the
symbol a: it is always assumed to be a C∞-function.

2. In contrast to the results of [1] and [20], for non-smooth functions f we
are only able to establish the first term of the asymptotics.

3. The case of a symbol having jump discontinuities (e.g. the indicator
function of a bounded domain in R

d, d ≥ 2) was studied in [10] (smooth
f and Λ) and later in [12,14] (non-smooth f and Λ). In this case the
asymptotics for the operator (1.1) have a form different from (1.2), and
their proof requires different methods.

4. In [15] the transition between the smooth and discontinuous symbol
was studied: the smooth symbol a was supposed to depend on an extra
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“smoothing” parameter T > 0 so that a = aT converged to an indica-
tor function as T → 0. The obtained asymptotic formula described the
behaviour of the trace of (1.1) as the two parameters, α and T , inde-
pendently tended to their respective limits: α → ∞ and T → 0. On the
other hand, the results of [15] did not cover the case α → ∞, T = const.
One aim of the current paper is to bridge this gap.

The non-smooth generalizations are partly motivated by new applica-
tions of the Szegő asymptotics in Statistical Physics, connected with the
entanglement entropy for free fermions (EE), see [2,3,5,6] and references
therein. In particular, the asymptotic trace formula for smooth symbols a
(i.e. the one in Theorem 2.3) is used to describe the EE at a positive tem-
perature (see [6]) , whereas the zero temperature case requires the use of
discontinuous symbols (see [5]). We briefly comment on these applications in
Subsect. 2.3.

The paper is organized as follows. In Sect. 2 we provide some preliminary
information and state the main result, followed by a short discussion of the
applications to the EE. It is not so trivial to see that the main asymptotic
coefficient Bd(a, ∂Λ; f) is finite, if the function f is non-smooth. This point
and other useful properties of Bd(a, ∂Λ; f) are clarified in Sect. 3. In Sect. 4
we collect some known and some new bounds for trace norms of Wiener–
Hopf operators. Among other bounds, Sect. 4 contains the crucial trace-
norm estimate for the operator (1.1) with a non-smooth function f(see (4.2))
borrowed from [7]. The bounds of Sect. 4 are instrumental in the proof of the
“local” asymptotics for the operator (1.1), see Theorem 5.6 in Sect. 5. The
local results are put together to complete the proof of Theorem 2.3 in Sect. 6.
The proof follows the ideas of [7,12,14]. Specifically, to justify the formula
(1.2) we use the standard method of asymptotic analysis: first we prove it
for polynomial functions f , then “close” the asymptotics using the estimate
(4.2) from Sect. 4.

Throughout the paper we adopt the following convention. For two non-
negative numbers (or functions) X and Y depending on some parameters,
we write X � Y (or Y � X) if X ≤ CY with some positive constant C
independent of those parameters. For example, α � 1 means that α ≥ c
with some constant c, independent of α. If X � Y and X � Y , then we
write X 	 Y . To avoid possible misunderstanding we often make explicit
comments on the nature of (implicit) constants in the bounds.

For a trace class operator T we denote by tr T its trace and by ‖T‖1 its
trace norm.

The notation B(z, R) ⊂ R
d, z ∈ R

d, R > 0, is used for the open ball of
radius R, centred at the point z. The function χz,R stands for the indicator
of the ball B(z, R).

For any t ∈ R
n, n ≥ 1, we use the standard notation 〈t〉 =

√
1 + |t|2.

For a smooth domain Λ ⊂ R
d we denote by nx the unit outward normal

at the point x ∈ ∂Λ.
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2. Main Results

First we specify conditions on the set Λ under which we study the operator
(1.1).

2.1. The Domains and Regions

Assume that d ≥ 2. We say that Λ is a basic Lipschitz (resp. basic Cm,
m = 1, 2, . . . ) domain, if there is a Lipschitz (resp. Cm) function Φ = Φ(x̂),
x̂ ∈ R

d−1, such that with a suitable choice of Cartesian coordinates x =
(x̂, xd), the domain Λ is the epigraph of the function Φ, i.e.

Λ = {x ∈ R
d : xd > Φ(x̂)}. (2.1)

We use the notation Λ = Γ(Φ). The function Φ is assumed to be globally
Lipschitz, i.e. the constant

MΦ = sup
x̂�=ŷ

|Φ(x̂) − Φ(ŷ)|
|x̂ − ŷ| , (2.2)

is finite. Throughout the paper, all estimates involving basic Lipschitz domains
Λ = Γ(Φ), are uniform in the number MΦ.

A domain (i.e. connected open set) is said to be Lipschitz (resp. Cm) if
locally it coincides with some basic Lipschitz (resp. Cm-) domain. We call Λ
a Lipschitz (resp. Cm-) region if Λ is a union of finitely many Lipschitz (resp.
Cm-) domains such that their closures are pair-wise disjoint. The boundary
∂Λ is said to be a (d − 1)-dimensional Lipschitz surface.

A basic Lipschitz domain Λ = Γ(Φ) is said to be piece-wise Cm with
some m = 1, 2, . . . , if the function Φ is Cm-smooth away from a collection of
finitely many (d − 2)-dimensional Lipschitz surfaces L1, L2, · · · ⊂ R

d−1. We
denote

(∂Λ)s = Φ(L1) ∪ Φ(L2) ∪ · · · ⊂ ∂Λ. (2.3)

This is the subset where the Cm-smoothness of the surface ∂Λ may break
down. A piece-wise Cm-region Λ and the set (∂Λ)s for it are defined in the
obvious way. An expanded version of these definitions can be found in [11,12],
and here we omit the standard details.

The minimal assumptions on the sets featuring in this paper are laid
out in the following condition.

Condition 2.1. The set Λ ⊂ R
d, d ≥ 2, is a Lipschitz region, and either Λ or

R
d \ Λ is bounded.

Some results, including the main asymptotic formula in Theorem 2.3,
require higher smoothness of Λ. Note that if Λ is a Lipschitz (or Cm-) region,
then so is the interior of R

d \ Λ.

2.2. The Main Result

Suppose that a ∈ C∞(Rd) satisfies the condition

|∇ma(ξ)| � 〈ξ〉−β , β > d, (2.4)

for all m = 0, 1, 2, . . . , with some implicit constants that may depend on m.
Here we have used the standard notation 〈ξ〉 =

√
1 + |ξ|2.
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In order to state the main result we need to introduce the principal
asymptotic coefficient. For a function g : C �→ C define

U(s1, s2; g) =
∫ 1

0

g
(
(1 − t)s1 + ts2

) − [(1 − t)g(s1) + tg(s2)]
t(1 − t)

dt, s1, s2 ∈ C.

(2.5)
This quantity is well-defined for any Hölder function g. For d = 1 the function
U immediately defines the asymptotic coefficient:

B1(a; g) =
1

8π2
lim
ε↓0

∫

R

∫

|t|>ε

U
(
a(ξ), a(ξ + t); g

)

t2
dtdξ. (2.6)

As explained in the next section, for functions g ∈ C2(R) the integral above
exists in the usual sense.

As already mentioned previously, our main interest is to include less
smooth functions in the consideration. Precisely, we are interested in the
functions satisfying the following condition.

Condition 2.2. Assume that for some integer n ≥ 1 the function f ∈ Cn(R \
{x0}) ∩ C(R) satisfies the bound

f n = max
0≤k≤n

sup
x�=x0

|f (k)(x)||x − x0|−γ+k < ∞ (2.7)

with some γ > 0, and is supported on the interval [x0 − R, x0 + R] with some
R > 0.

As shown in [13], for such functions the principal value definition (2.6)
becomes necessary if γ is small, see Proposition 3.3 in the next section. We
often use the notation

κ = min{γ, 1}, ∀γ > 0. (2.8)

For d ≥ 2 we introduce the functional of a, defined for every e ∈ S
d−1 as a

principal value integral similar to (2.6):

Ad(a, e; f) =
1

8π2
lim
ε↓0

∫

Rd

∫

|t|>ε

U
(
a(ξ), a(ξ + te); f

)

t2
dtdξ. (2.9)

Assuming that Λ satisfies Condition 2.1, for any continuous function ϕ define
{
Bd(a, ϕ; ∂Λ, f) := 1

(2π)d−1

∫
∂Λ

ϕAd(a,nx; f)dSx,

Bd(a; ∂Λ, f) := Bd(a, 1; ∂Λ, f).
(2.10)

Recall that nx denotes the unit outward normal at the point x ∈ ∂Λ. When
it does not cause confusion, sometimes some or all variables are omitted from
the notation and we write, for instance, Bd(a), Bd.

It will be useful to rewrite Ad, d ≥ 2, via B1. For each unit vector
e ∈ R

d, d ≥ 2, define the hyperplane

Πe =
{
ξ ∈ R

d : e · ξ = 0
}

.
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Introduce the orthogonal coordinates ξ = (ξ̂, t) such that ξ̂ ∈ Πe, t ∈ R.
Then, thinking of the symbol a(ξ) as depending on the real variable t, and
on the parameter ξ̂, we can rewrite the definition (2.9) as follows:

Ad(a, e; f) =
∫

Πe

B1

(
a(ξ̂, · ); f

)
dξ̂. (2.11)

The next theorem constitutes the main result of the paper.

Theorem 2.3. Suppose that a ∈ C∞(Rd), d ≥ 2, is a real-valued function
that satisfies (2.4). Assume also that Λ is a piece-wise C1-region satisfying
Condition 2.1.

Let X = {z1, z2, . . . , zN} ⊂ R, N < ∞, be a collection of points on the
real line. Suppose that f ∈ C2(R \ X) is a function such that in a neighbour-
hood of each point z ∈ X it satisfies the bound

|f (k)(t)| � |t − z|γ−k, k = 0, 1, 2, (2.12)

with some γ > 0.
If β > dκ

−1, then the operator Dα(a,Λ; f) is trace-class and

lim
α→∞ α1−d tr Dα(a,Λ; f) = Bd(a, ∂Λ; f). (2.13)

The above asymptotics are uniform in symbols a that satisfy (2.4) with the
same implicit constants.

Remark 2.4. Since Dα(a,Λ; g) = 0 and Bd(a, ∂Λ; g) = 0 for linear functions
g, in the formula (2.13) we can always replace f by f+g with a linear function
g of our choice. This elementary observation becomes useful in the proof of
Theorem 2.6 below.

Theorem 2.3 has two useful corollaries describing the asymptotics of
Dα(λa,Λ; f) as α → ∞ and λ → 0, λ > 0. The first one is concerned with
asymptotically homogeneous functions f .

Theorem 2.5. Let the region Λ be as in Theorem 2.3. Suppose that the family
of real-valued symbols {a0, aλ}, λ > 0, satisfies (2.4) with some β > dκ

−1,
uniformly in λ, and is such that aλ → a as λ → 0 pointwise.

Denote f0(t) = M |t|γ with some complex M and γ > 0. Suppose that
the function f ∈ C2(R \ {0}) satisfies the condition

lim
t→0

|t|n−γ dn

dtn
(
f(t) − f0(t)

)
= 0, n = 0, 1, 2. (2.14)

Then

lim
α→∞ λ→0

(
α1−dλ−γ tr Dα(λaλ,Λ; f)

)
= Bd(a0, ∂Λ; f0). (2.15)

In the next theorem instead of the homogeneous function |t|γ we con-
sider the function

h(t) = −t log |t|, t ∈ R,

which still leads to a homogeneous asymptotic behaviour.
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Theorem 2.6. Let the region Λ be as in Theorem 2.3. Suppose that the family
of real-valued symbols {a0, aλ}, λ > 0, satisfies (2.4) with some β > dκ

−1,
uniformly in λ, and is such that aλ → a as λ → 0 pointwise.

Suppose that the function f ∈ C2(R \ {0}) satisfies the condition

lim
t→0

|t|n−1 dn

dtn
(
f(t) − h(t)

)
= 0, n = 0, 1, 2. (2.16)

Then

lim
α→∞ λ→0

(
α1−dλ−1 tr Dα(λaλ,Λ; f)

)
= Bd(a0, ∂Λ; h). (2.17)

We do not discuss applications of Theorems 2.5 and 2.6, but observe
nevertheless that the entropy functions (2.19) and (2.20) satisfy the condi-
tions (2.14) and (2.16) respectively.

2.3. Entanglement Entropy

Here we briefly explain how Theorem 2.3 applies to the study of the entan-
glement entropy. More detailed discussion of the subject can be found in
[5–7].

We consider the operator (1.1) with the Fermi symbol

a(ξ) := aT,μ(ξ) :=
1

1 + exp h(ξ)−μ
T

, ξ ∈ R
d, (2.18)

where T > 0 is the temperature and μ ∈ R is the chemical potential. The
function h ∈ C∞(Rd) is the free (one-particle) Hamiltonian, and we assume
that h(ξ) � |ξ|β1 as |ξ| → ∞ with some β1 > 0, so that a decays fast at
infinity, and that |∇mh(ξ)| � 〈ξ〉β2 , m = 0, 1, . . . with some β2 > 0. This
ensures that (2.18) satisfies (2.4) with an arbitrary β > 0. The parameters
T and μ are fixed. For the function f we pick the γ-Rényi entropy function
ηγ : R �→ [0,∞) defined for all γ > 0 as follows. If γ �= 1, then

ηγ(t) :=
{

1
1−γ log

[
tγ + (1 − t)γ

]
for t ∈ (0, 1),

0 for t �∈ (0, 1),
(2.19)

and for γ = 1 (the von Neumann case) it is defined as the limit

η1(t) := lim
γ→1

ηγ(t) =
{−t log(t) − (1 − t) log(1 − t) for t ∈ (0, 1),

0 for t �∈ (0, 1). (2.20)

For γ �= 1 the function ηγ satisfies condition (2.12) with γ replaced with
κ = min{γ, 1}, and with X = {0, 1}. The function η1 satisfies (2.12) with an
arbitrary γ ∈ (0, 1), and the same set X.

For arbitrary Λ ⊂ R
d we define the γ-Rényi entanglement entropy (EE)

with respect to the bipartition R
d = Λ ∪ (Rd \ Λ), as

Hγ(Λ) = Hγ(T, μ; Λ) = trD1(aT,μ,Λ; ηγ) + tr D1(aT,μ, Rd \ Λ; ηγ). (2.21)

These entropies were studied in [6,7]. In particular, in [7] it was shown that
for any T > 0 the EE is finite, if Λ satisfies Condition 2.1. We are interested
in the scaling limit of the EE, i.e. the limit of Hγ(αΛ) as α → ∞.

The next theorem is a direct consequence of Theorem 2.3:
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Theorem 2.7. Assume that Λ is a piece-wise C1-region satisfying Condi-
tion 2.1. Let the symbol a = aT,μ and the functions ηγ , γ > 0, be as defined
in (2.18) and (2.19)–(2.20) respectively. Then

lim
α→∞ α1−dHγ(αΛ) = 2Bd(aT,μ, ∂Λ; ηγ).

This result was stated in [6], but the article [6] contained only a sketch
of the proof.

The EE can be also studied for the zero temperature, see [5]. In this
case the Fermi symbol is naturally replaced by the indicator function of the
region {ξ ∈ R

d : h(ξ) < μ}.
It is worth pointing out that it is also instructive to study the behaviour

of Hγ(T, μ;αΛ) as α → ∞ and T → 0 simultaneously. This study was under-
taken in [7] (for d = 1) and [15] (for arbitrary d ≥ 2). The results of [7] require
αT � 1, α → ∞, so that, in particular, T = const is allowed. On the con-
trary, in the paper [15], where the multi-dimensional case was studied, both
the final result and its proof always require that α → ∞, T → 0. Thus, the
results of [15], together with Theorem 2.7, describe the large-scale asymptotic
behaviour (i.e. as α → ∞) for the entire range of bounded temperatures (i.e.
T � 1) for d ≥ 2.

3. Asymptotic Coefficient Bd

In this section we collect some useful properties of the coefficient Bd in all
dimensions d ≥ 1.

3.1. Smooth Functions g. Estimates for the Coefficient Bd

The following result is a basis for our asymptotic calculations:

Proposition 3.1. (see [19, Theorem 1(a)]) Suppose that a is bounded and
satisfies

∫∫ |a(ξ1) − a(ξ2)|2
|ξ1 − ξ2|2 dξ1dξ2 < ∞. (3.1)

Let g be analytic on a neighbourhood of the closed convex hull of the function
a. Then the operator Dα(a, R±; g) is trace class and

tr Dα(a, R±; g) = B1(a; g). (3.2)

In fact the above asymptotics are known to hold under weaker conditions
on the symbol a and function g (see [8]), but Proposition 3.1 is sufficient for
our purposes.

Now we concentrate on estimates for the coefficient (2.10). As observed
in [19], if g is twice differentiable, we can integrate by parts in (2.5) to obtain
the formula

U(s1, s2; g) = (s1 − s2)2
∫ 1

0

g′′((1 − t)s1 + ts2

)(
t log t + (1 − t) log(1 − t)

)
dt.
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Thus, assuming that g′′ is uniformly bounded, we arrive at the estimate

|Ad(a, e; g)| � ‖g′′‖L∞

∫

Rd

∫

R

|a(ξ) − a(ξ + te)|2
t2

dtdξ. (3.3)

For the sake of simplicity, further estimates are stated for symbols a satisfying
the bounds (2.4). Unless otherwise stated, all the estimates are uniform in
the symbols a satisfying (2.4) with the same implicit constants.

Lemma 3.2. Suppose that g ∈ C2(R) and g′′ is bounded. Suppose that a sat-
isfies (2.4) with some β > d/2, d ≥ 2, and that Λ satisfies Condition 2.1.
Then

|Ad(a, e; g)| � ‖g′′‖L∞ , (3.4)

uniformly in e ∈ S
d−1, and

|Bd(a, ϕ; ∂Λ, g)| � ‖g′′‖L∞‖ϕ‖L∞ measd−1(∂Λ ∩ suppϕ), (3.5)

for any continuous function ϕ.
If, in addition, g′ is uniformly bounded and β > d, then for all e,b ∈

S
d−1, we have

|Ad(a, e; g) − Ad(a,b; g)| � (‖g′‖L∞ + ‖g′′‖L∞)|e − b|δ, (3.6)

for any δ ∈ (0, 1), with an implicit constant depending on δ.

Proof. The bound (3.5) follows from (3.4) in view of the definition (2.10). Let
us prove (3.4). Let r ∈ (0, 1), and assume that |t| ≤ r. Write the elementary
bound

|a(ξ) − a(ξ + te)| ≤ |t| max
|η−ξ|≤1

|∇a(η)| � |t|〈ξ〉−β . (3.7)

Thus the right-hand side of (3.3) (with ‖g′′‖L∞ omitted) is bounded by

∫

Rd

∫

|t|<1

|a(ξ)−a(ξ+te)|2
t2 dtdξ +

∫

Rd

∫

|t|>1

|a(ξ) − a(ξ + te)|2
t2

dtdξ

�
∫

Rd

〈ξ〉−2β dξ +
∫

Rd

〈ξ〉−2β

∫

|t|>1

1
t2

dtdξ � 1. (3.8)

By (3.3) this leads to (3.4).
Let us prove (3.6). For arbitrary r ∈ (0, 1), R > 1, split Ad(e) =

Ad(a, e; g) into three terms:

8π2Ad(e) = K1(e; r) + K2(e; r,R) + K3(e;R),
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with

K1(e; r) =
∫

Rd

∫

|t|<r

U
(
a(ξ), a(ξ + te); g

)

t2
dtdξ,

K2(e; r,R) =
∫

Rd

∫

r<|t|<R

U
(
a(ξ), a(ξ + te); g

)

t2
dtdξ,

K3(e;R) =
∫

Rd

∫

|t|>R

U
(
a(ξ), a(ξ + te); g

)

t2
dtdξ.

Similarly to the first step of the proof,

|K1(e; r)| � r‖g′′‖L∞

∫

Rd

max
|η−ξ|≤r

|∇a(η)|2dξ � r‖g′′‖L∞ ,

and

|K3(e;R)| � ‖g′′‖L∞

∫

Rd

|a(ξ)|2
∫

|t|>R

1
t2

dtdξ � 1
R

‖g′′‖L∞ .

In order to estimate the middle integral, i.e. K2, we point out the following
elementary estimate:

|U(s1, s2; g)−U(r1, r2; g)| � ‖g′‖L∞
(|s1−r1|δ + |s2−r2|δ

)
, ∀δ ∈ (0, 1), (3.9)

with an implicit constant depending on δ. Substituting s1 = r1 = a(ξ) and
s2 = a(ξ + te), r2 = a(ξ + tb), and using (3.7), we can estimate as follows:

|U(s1, s2; g) − U(r1, r2; g)| � ‖g′‖L∞ |a(ξ + te) − a(ξ + tb)|δ
� ‖g′‖L∞ |t|δ|e − b|δ〈ξ + te〉−βδ.

Taking δ ∈ (0, 1) such that βδ > d, we obtain

|K2(e; r,R) − K2(b; r,R)| � ‖g′‖L∞ |e − b|δ
∫

r<|t|<R

|t|δ−2

∫

Rd

〈ξ + te〉−βδ dξdt

� ‖g′‖L∞ |e − b|δrδ−1.

Collecting the bounds together, we get:

|Ad(e) − Ad(b)| � |K1(e; r)| + |K1(b; r)|
+ |K3(e;R)| + |K3(b;R)| + |K2(e; r,R) − K2(b; r,R)|

� (‖g′‖L∞ + ‖g′′‖L∞)(r + R−1 + |e − b|δrδ−1).

Take r = |e − b|δ, R−1 = |e − b|, so that the last bracket is bounded by
|e − b|δ2

. Re-denote δ2 �→ δ. The proof of (3.6) is complete. �
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3.2. Non-smooth Test Functions

For functions f , satisfying Condition 2.2, the coefficient B1(a; f) was studied
in [13]. In order to use the results of [13] we need to recall the notion of
multi-scale symbols. Consider a C∞-symbol a(ξ) for which there exist positive
continuous functions v = v(ξ) and τ = τ(ξ), such that

|∇k
ξa(ξ)| � τ(ξ)−kv(ξ), k = 0, 1, . . . , ξ ∈ R

d. (3.10)

It is natural to call τ the scale (function) and v the amplitude (function). We
refer to symbols a satisfying (3.10) as multi-scale symbols. It is convenient
to introduce the notation

Vσ,ρ(v, τ) :=
∫

v(ξ)σ

τ(ξ)ρ
dξ, σ > 0, ρ ∈ R. (3.11)

Apart from the continuity we often need some extra conditions on the scale
and the amplitude. First we assume that τ is globally Lipschitz, that is,

|τ(ξ) − τ(η)| ≤ ν|ξ − η|, ξ,η ∈ R
d, (3.12)

with some ν > 0. By adjusting the implicit constants in (3.10) we may assume
that ν < 1. It is straightforward to check that

(1 + ν)−1 ≤ τ(ξ)
τ(η)

≤ (1 − ν)−1, η ∈ B
(
ξ, τ(ξ)

)
. (3.13)

Under this assumption on the scale τ , the amplitude v is assumed to satisfy
the bounds

v(η)
v(ξ)

	 1, η ∈ B
(
ξ, τ(ξ)

)
. (3.14)

If a satisfies (2.4), then it can be viewed as a multi-scale symbol with

v(ξ) = 〈ξ〉−β , τ(ξ) = 1, ξ ∈ R
d, (3.15)

so that

Vσ,ρ(v, τ) 	 1, ∀σ > dβ−1,∀ρ ∈ R.

For the next statements recall that f n is defined in (2.7) and κ – in (2.8).

Proposition 3.3. ([13, Theorem 6.1]) Suppose that f satisfies Condition 2.2
with n = 2, γ > 0 and some R > 0. Let the symbol a ∈ C∞(R) be a multi-scale
symbol. Then for any σ ∈ (0, κ] we have

|B1(a; f)| � f 2R
γ−σVσ,1(v, τ), (3.16)

with a constant independent of f , uniformly in the functions τ, v, and the
symbol a.

Corollary 3.4. Let the function f be as in Proposition 3.3, and let Λ satisfy
Condition 2.1. Let the symbol a ∈ C∞(Rd), d ≥ 2, be a real-valued symbol
satisfying (2.4) with β > dκ

−1. Then the coefficient Bd(a, ϕ; ∂Λ, f) in (2.10)
is well-defined. Moreover, for any σ ∈ (dβ−1, κ] it satisfies the bound

|Bd(a, ϕ; ∂Λ, f)| � f 2‖ϕ‖L∞ measd−1(∂Λ ∩ suppϕ)Rγ−σ, (3.17)

with an implicit constant independent of the functions f , ϕ, and the region
Λ.
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Proof. By the definition (2.10) it suffices to prove that

|Ad(a, e; f)| � f 2R
γ−σ,

uniformly in e ∈ S
d−1. Choose the coordinates in such a way that e =

(0, . . . , 0, 1), and represent ξ ∈ R
d as ξ = (ξ̂, ξd). Thus by (2.11),

Ad(a, e; f) =
∫

Rd−1

B1

(
a(ξ̂, · ); f

)
dξ̂. (3.18)

By (2.4), the symbol a(ξ̂, · ) satisfies (3.10) with

vξ̂(t) = (1 + |ξ̂|2 + t2)− β
2 , τ(t) = 1, ∀t ∈ R.

It is immediate that

Vσ,ρ

(
vξ̂ , τ

)
� 〈ξ̂〉−σβ+1

, ∀ρ ∈ R,

and hence, by (3.16) and (3.18),

|Ad(a, e; f)| � f 2R
γ−σ

∫

Rd−1

〈ξ̂〉−σβ+1
dξ̂ � f 2R

γ−σ,

under the assumption that σβ > d. This gives the required bound. �

Let us also establish the continuity of the asymptotic coefficient Bd in
the functional parameter a:

Corollary 3.5. Let the function f be as in Proposition 3.3, and let Λ satisfy
Condition 2.1. Suppose that the family of symbols {a0, aλ}, λ > 0, satisfies
(2.4) with some β > dκ

−1, uniformly in λ, and is such that aλ → a as λ → 0
pointwise. Then

Bd(aλ, ϕ; ∂Λ, f) → Bd(a0, ϕ; ∂Λ, f), λ → 0. (3.19)

Proof. Let us consider first a test function g ∈ C2(R) with uniformly bounded
g′ and g′′, and prove that

Bd(aλ, ϕ; ∂Λ, g) → Bd(a0, ϕ; ∂Λ, g), λ → 0. (3.20)

In view of the definition (2.10) it suffices to prove that

Ad(aλ, e; g) → Ad(a0, e; g), λ → 0, (3.21)

for each e ∈ S
d−1. Indeed, by (3.4) the integrals Ad(aλ, e; g) are bounded

uniformly in e, so the Dominated Convergence Theorem would lead to (3.20).
Proof of (3.21). According to the bounds (3.7), (3.8), the family

Fλ(ξ, t) := U
(
aλ(ξ), aλ(ξ + te); g

)

has an integrable majorant. Furthermore, in view of (3.9),

|Fλ(ξ, t) − F0(ξ, t)| � ‖g′‖L∞
(|aλ(ξ) − a0(ξ)|δ + |aλ(ξ + te) − a0(ξ + te)|δ).

Since the right-hand side tends zero as λ → 0, we have the convergence
Fλ(ξ, t) → F0(ξ, t), λ → 0, for all ξ, t. By the Dominated Convergence Theo-
rem, (3.21) holds, as claimed.
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Return to the function f . Let ζ ∈ C∞
0 (R) be a real-valued function,

such that ζ(t) = 1 for |t| ≤ 1/2. Represent f = f
(1)
R + f

(2)
R , 0 < R ≤ 1, where

f
(1)
R (t) = f(t)ζ

(
tR−1

)
, f

(2)
R (t) = f(t) − f

(1)
R (t). It is clear that f

(2)
R ∈ C2(R),

and hence the convergence (3.20) holds with g = f
(2)
R , for each R > 0.

Furthermore, since f
(1)
R 2 � f 2, the bound (3.17) implies that

|Bd(aλ, ϕ; ∂Λ, f
(1)
R )| � f 2‖ϕ‖L∞ measd−1(∂Λ ∩ suppϕ)Rγ−σ,

with an arbitrary σ ∈ (dβ−1, κ]. Since R > 0 is arbitrary, this implies the
convergence (3.19). �

4. Estimates for Multidimensional Wiener–Hopf Operators

As always, we assume that a ∈ C∞(Rd) satisfies (2.4). Our main objective in
this section is to prepare some trace-class bounds for localized operators, such
as χz,�Dα(a,Λ; gp), where gp(t) = tp, p = 1, 2, . . . . Recall that χz,� denotes
the indicator of the ball B(z, �) ⊂ R

d. The obtained bounds are uniform in
z ∈ R

d, and in the symbols a satisfying (2.4) with the same implicit constants.
As we have noted previously, the symbols satisfying (2.4), can be inter-

preted as multi-scale symbols (see Sect. 3.2) with the amplitude v = v(ξ)
and the scaling function τ = τ(ξ) defined in (3.15). The bounds in the next
proposition are borrowed from [7, Lemma 3.4 and Theorem 3.5], where they
were obtained for more general multi-scale symbols. Below we state them for
the case (3.15) only.

Proposition 4.1. Let a be a symbol satisfying (2.4) with some β > d. Suppose
that Λ is a Lipschitz region, and that α� � 1. Then

‖χΛχz,� Opα(a)(I − χΛ)‖1 � (α�)d−1. (4.1)

If Λ is basic Lipschitz, then this bound is uniform in Λ.
Suppose in addition that
– Λ satisfies Condition 2.1,
– the function f satisfies Condition 2.2 with some γ > 0, R > 0 and

n = 2,
– β > dκ

−1, where κ = min{γ, 1}.
Then for any σ ∈ (dβ−1, κ) and all α � 1 we have

‖Dα(a,Λ; f)‖1 � αd−1 f 2R
γ−σ. (4.2)

The implicit constants in (4.1) and (4.2) do not depend on α, f and R, but
depend on the region Λ.

The next Proposition is a direct consequence of [15, Lemma 5.2], for the
symbols satisfying (2.4).

Proposition 4.2. Let the symbol a satisfy (2.4) with β > d. Let α > 0 and
� > 0. Then for any r > 1 and any m ≥ d + 1, we have

‖χz,� Opα(a)
(
1 − χz,r�

)‖1 � (α�)d−m, (4.3)

with an implicit constant depending on r.
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Lemma 4.3. Let Λ be a Lipschitz region, and let α� � 1. Suppose that a ∈
C∞(Rd) satisfies (2.4) with β > d. Then we have

‖χz,�Dα(a,Λ; gp)‖1 � (α�)d−1. (4.4)

Proof. The proof is by induction. First observe that Dα(a,Λ; g1) = 0, so (4.4)
trivially holds.

Suppose that (4.4) holds for some p = k. In order to prove it for p = k+1,
write:

Dα(a; gk+1) = Dα(a; gk)Wα(a) + Wα(ak)Wα(a) − Wα(ak+1)

= Dα(a; gk)Wα(a) − χΛ Opα(ak)(I − χΛ)Opα(a)χΛ.

Thus by the triangle inequality,

‖χz,�Dα(a; gk+1)‖1 ≤ ‖χz,�Dα(a; gk)‖1‖Wα(a)‖
+ ‖χz,�χΛ Opα(ak)(I − χΛ)‖1‖Opα(a)‖

� (α�)d−1,

where we have used the induction assumption, the bound (4.1) and the ele-
mentary estimate ‖Opα(a)‖ � 1. This completes the proof. �

For any R > 0 and p ∈ N define the (p + 1)-tuple of numbers

rj = rj(R) = R

(
1 +

j

p

)
, j = 0, 1, 2, . . . , p, (4.5)

so that r0 = R, rp = 2R. Denote

Tp(a; Λ; z, R) = χz,R

p∏

j=1

Wα(a;B(z, rj) ∩ Λ), (4.6)

Sp(a; Λ; z, R) =
(
1 − χz,2R

) p∏

j=1

Wα

(
a; (B(z, rp−j))c ∩ Λ

)
. (4.7)

When it does not cause confusion, sometimes we omit the dependence of these
operators on some or all variables and write, e.g., Tp(Λ), Sp(Λ) or Tp, Sp.

Lemma 4.4. Let α > 0 and � > 0. Then for any m ≥ d + 1,
∥
∥χz,�gp(Wα(a; Λ)) − Tp(a; Λ; z, �)

∥
∥

1
� (α�)d−m, (4.8)

∥
∥(I − χz,2�)gp(Wα(a; Λ)) − Sp(a; Λ; z, �)

∥
∥

1
� (α�)d−m. (4.9)

Proof. Denote

Gp = χz,�gp(Wα(a; Λ)), Tp = Tp(a; Λ; z, �).

The proof is by induction. By definition,

G1 − T1 = χz,�χΛ Opα(a)
(
I − χz,r1

)
χΛ, r1 = r1(�).

Since r1 > �, by (4.3), the required bound (4.8) holds for p = 1. Suppose it
holds for some p = k ≥ 1, and let us derive it for p = k + 1:

Gk+1 − Tk+1 = (Gk − Tk)Wα(a; Λ)

+ TkχΛ

(
χz,rk

Opα(a) − χz,rk
Opα(a)χz,rk+1

)
χΛ.
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The last bracket equals

χz,rk
Opα(a)

(
I − χz,rk+1

)
,

so, using for the last term (4.3) again, we get

‖Gk+1 − Tk+1‖1 � ‖Gk − Tk‖1‖Wα(a; Λ)‖
| + ‖Tk‖ ‖χz,rk

Opα(a)
(
I − χz,rk+1

)‖1

� (α�)d−m,

which implies (4.8) for p = k +1, as required. Thus, by induction, (4.8) holds
for all p = 1, 2, . . . .

The bound (4.9) is derived in the same way up to obvious modifications.
�

Corollary 4.5. Suppose that for some sets Λ and Π we have

Λ ∩ B(z, 2�) = Π ∩ B(z, 2�). (4.10)

Then for any m ≥ d + 1, and any α > 0, � > 0, we have

‖χz,�

(
gp(Wα(a,Λ)) − gp(Wα(a,Π))

)‖1 � (α�)d−m.

Proof. Due to the condition (4.10), and to the definition (4.6), we have
Tp(a; Λ; z, �) = Tp(a; Π; z, �). Now the required bound follows from (4.8) used
first for Λ and then for Π. �

Corollary 4.6. Suppose that for some sets Λ and Π we have

Λ ∩ (B(z, �))c = Π ∩ (B(z, �))c. (4.11)

Then for any m ≥ d + 1, , and any α > 0, � > 0 , we have

‖(1 − χz,2�)
(
gp(Wα(a,Λ)) − gp(Wα(a,Π))

)‖1 � (α�)d−m.

Proof. Due to the condition (4.10), and to the definition (4.7), we have
Sp(a; Λ; z, �) = Sp(a; Π; z, �). Now the required bound follows from (4.9) used
first for Λ and then for Π. �

Lemma 4.7. For some set Λ ⊂ R
d and some z ∈ R

d suppose that B(z, 2�) ⊂
Λ. Then for any m ≥ d + 1, and any α > 0, � > 0, we have

‖χz,�Dα(a,Λ; gp)‖1 � (α�)d−m. (4.12)

Suppose that (B(z, �))c ⊂ Λ. Then

‖(I − χz,2�)Dα(a,Λ; gp)‖1 � (α�)d−m. (4.13)

Proof. Assume that B(z, 2�) ⊂ Λ. By Corollary 4.5,

‖χz,�

(
gp(Wα(a,Λ)) − gp(Wα(a, Rd))

)‖1 � (α�)d−m,

‖χz,�

(
Wα(gp ◦ a,Λ) − Wα(gp ◦ a, Rd)

)‖1 � (α�)d−m

Since gp(Wα(a; Rd)) = Opα(gp(a)) = Wα(gp ◦ a, Rd), by the definition (1.1),
the bounds above imply (4.12). The estimate (4.13) is proved in the same
way. �

Let us establish a variant of Corollary 4.5 without the condition (4.10).
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Lemma 4.8. Let Λ and Π be arbitrary (measurable) sets. Then for any m ≥
d + 1, , and any α > 0, � > 0, we have

‖χz,�

(
gp(Wα(a,Λ)) − gp(Wα(a,Π))

)‖1

� (α�)d−m + αd�
d
2 measd

(
B(z, 2�) ∩ (Π�Λ)

) 1
2 . (4.14)

Proof. By Lemma 4.4, it suffices to show that

‖Tp(a,Λ; z, �) − Tp(a,Π; z, �)‖1 � αd�
d
2 measd

(
B(z, 2�) ∩ (Π�Λ)

) 1
2 .

(4.15)

Denote V = Opα(a), and let rj = rj(�), j = 0, 1, . . . p be as defined in (4.5).
Estimate for each j = 1, 2, . . . , p:

‖χz,rj
(χΛV χΛ − χΠV χΠ)χz,rj

‖1

≤ |‖χz,rj
χΛ�ΠV χz,rj

‖1 + ‖χz,rj
V χΛ�Πχz,rj

‖1

≤ 2
∥
∥χz,rj

χΛ�Π Opα(
√

|a|)∥∥
2

∥
∥ Opα(

√
|a|)χz,rj

∥
∥

2

� αd�
d
2 measd

(
B(z, 2�) ∩ (Λ�Π)

) 1
2 . (4.16)

This means that (4.15) holds for p = 1. Assume that (4.15) holds for some
p = k, 1 ≤ k ≤ p − 1, and let us prove it for p = k + 1. Denoting Tp(Λ) =
Tp(a,Λ; z, �), write:

Tk+1(Λ)− Tk+1(Π)

=
(
Tk(Λ) − Tk(Π)

)
χz,rk+1χΛV χz,rk+1χΛ

+ Tk(Π)χz,rk+1

(
χΛV χΛ − χΠV χΠ

)
χz,rk+1 .

Therefore

‖Tk+1(Λ) − Tk+1(Π)‖1

= ‖Tk(Λ) − Tk(Π)‖1‖V ‖+ ‖V ‖k‖χz,rk+1

(
χΛV χΛ−χΠV χΠ

)
χz,rk+1‖1

Now, by the inductive assumption and by (4.16), we get (4.15) for p = k + 1,
and hence (4.14) holds. �

In the next section we use Lemma 4.8 with a very specific choice of
the domains Λ and Π, which is described below. Let Λ be a basic Lipschitz
domain Λ = Γ(Φ), Φ ∈ C1. Let us fix a point ẑ ∈ R

d and define the new
domain

Λ0 = Γ(Φ0), Φ0(x̂) = Φ(ẑ) + (x̂ − ẑ) · ∇Φ(ẑ). (4.17)

Thus Λ0 is the epigraph of the hyperplane tangent to Λ at the point
(
ẑ,Φ(ẑ)

)
.

Let
ε(s) = max

x̂,ẑ:|x̂−ẑ|≤s
|∇Φ(x̂) − ∇Φ(ẑ)| → 0, s → 0, (4.18)

be the modulus of continuity of ∇Φ, so that

max
|x̂−ẑ|≤s

|Φ(x̂) − Φ0(x̂)| ≤ ε(s)s.
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Lemma 4.9. Let Λ and Λ0 be as defined above. Let � 	 kα−1 with come k > 0.
Then for any m ≥ d + 1, and any α > 0, we have

‖χz,�

(
Dα(a,Λ; gp) − Dα(a,Λ0; gp)

)‖1 �
(
kd−m + kd

√
ε(2�)

)
.

Proof. Using the definition (1.1), rewrite

Dα(a,Λ; gp) = gp

(
Wα(a,Λ)

) − g1

(
Wα(gp(a),Λ)

)
.

We use Lemma 4.8 with Π = Λ0 and � 	 kα−1, first for the difference

gp

(
Wα(a,Λ)

) − gp

(
Wα(a,Λ0)

)
,

and then for

g1

(
Wα(gp(a),Λ)

) − g1

(
Wα(gp(a),Λ0)

)
.

Estimate:

measd

(
B(z, 2�) ∩ (Λ�Λ0)

)
� �dε(2�) � kdα−dε(2�).

Substituting this bound in the estimate (4.14), we get the proclaimed result.
�

5. A Partition of Unity. Local Asymptotics

In this Section we focus on the local asymptotics for basic domains, that is
we study the trace tr ϕDα(a; Λ, gp) for ϕ ∈ C∞

0 (Rd) and a basic C1-domain
Λ.

5.1. A Partition of Unity. Preliminary Bounds

For the time being we only assume that Λ = Γ(Φ) with a Lipschitz function
Φ. Under this assumption we make use of a partition of unity associated with
the following scaling function:

�(x) = �(κ)(x) =
1

8〈M〉
√

(xd − Φ(x̂))2 + κ2, (5.1)

with some κ ≥ 0, and with the number M = MΦ defined in (2.2). Clearly,
|∇�| ≤ 8−1. Therefore the function τ = � satisfies (3.12), and hence (3.13) is
also satisfied:

8
9

≤ �(η)
�(ξ)

≤ 8
7
, η ∈ B(ξ, �(ξ)). (5.2)

The bound |∇�| ≤ 8−1 also allows us to associate with the function (5.1) a
Whitney type partition of unity. The next proposition follows directly from
[4, Theorem 1.4.10].

Proposition 5.1. Let � = �(κ) be as defined in (5.1). Then one can find a
sequence {xj}j∈N ⊂ R

d such that the balls Bj = B(xj , �j), �j = �(xj), form a
covering of R

d for which the number of intersections is bounded by a constant
depending only on the dimension d (and not on κ). Moreover, there exists a
(non-negative) partition of unity ψj ∈ C∞

0 (Bj), such that

|∇mψj(x)| � �−m
j ,
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for each m = 0, 1, . . . , uniformly in j = 1, 2, . . . . Furthermore, the implicit
constants in these bounds are uniform in κ ≥ 0.

For a set Ω ⊂ R
d introduce two disjoint groups of indices, parametrized

by the number κ > 0:
{

Σ(κ)
1 (Ω) = {j ∈ N : B(xj , 2�j) ∩ ∂Λ �= ∅, B(xj , �j) ∩ Ω �= ∅},

Σ(κ)
2 (Ω) = {j ∈ N : B(xj , 2�j) ∩ ∂Λ = ∅, B(xj , �j) ∩ Ω �= ∅}.

(5.3)

Where it does not cause confusion we simply write Σj(Ω) instead of Σ(κ)
j (Ω),

j = 1, 2. Note the following useful inequalities.

Lemma 5.2. Let x ∈ Bj = B(xj , �j) with some j = 1, 2, . . . . If j ∈ Σ1(Rd),
then

|xd − Φ(x̂)| � κ. (5.4)

If j ∈ Σ2(Rd), then

|xd − Φ(x̂)| � κ. (5.5)

The implicit constants in both bounds may depend only on M .

Proof. First observe that
1

〈M〉 |xd − Φ(x̂)| ≤ dist(x, ∂Λ) ≤ |xd − Φ(x̂)|. (5.6)

Now, by (5.2), for every x ∈ Bj , j ∈ Σ1(Rd), we have

dist(x, ∂Λ) ≤ 3�j ≤ 24
7

�(x).

Together with the left inequality (5.6), this implies that

|xd − Φ(x̂)| ≤ 3
7

√
|xd − Φ(x̂)|2 + κ2,

whence (5.4).
If j ∈ Σ2(Rd), then by (5.2) again,

dist(x, ∂Λ) ≥ �j ≥ 8
9
�(x).

Together with the right inequality (5.6), this implies that

1
9〈M〉

√
|xd − Φ(x̂)|2 + κ2 ≤ |xd − Φ(x̂)|.

Since 〈M〉 ≥ 1, this leads to (5.5). �

For functions ψj found in Proposition 5.1, denote also

ψout =
∑

j∈Σ2(Ω)

ψj , ψin =
∑

j∈Σ1(Ω)

ψj . (5.7)

To avoid cumbersome notation we sometimes do not reflect the dependence
of ψout and ψin on the parameter κ and set Ω. It is often always clear from
the context which κ and Ω are used.
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Lemma 5.3. Let Λ = Γ(Φ) with a Lipschitz function Φ. Suppose that h is a
Lipschitz function with support in the cylinder

ΩR(ẑ) = {x : |x̂ − ẑ| < R} ,

with some ẑ ∈ R
d−1, and such that h(x) = 0 for x ∈ ∂Λ, i.e. h(x̂,Φ(x̂)) = 0

for all x̂ ∈ R
d−1. Suppose that αR � 1. Then

‖hDα(a,Λ; gp)‖1 � (αR)d−2(R‖∇h‖L∞). (5.8)

Proof. By rescaling and translation, we may assume that R = 1 and that
ẑ = 0̂,Φ(0̂) = 0. Also, without loss of generality assume that |∇h| ≤ 1, so
that |h(x)| ≤ |xd − Φ(x̂)|.

In this proof it is convenient to use the function (5.1) with κ = α−1.
Denote for brevity Σm = Σ(α−1)

m (Ω1), m = 1, 2. Let {ψj} be the partition
of unity in Proposition 5.1, and let ψout and ψin be the functions defined in
(5.7) for Ω = Ω1. If j ∈ Σ2, we get from Lemma 4.7 the following bound:

‖χBj
Dα(a,Λ; gp)‖1 � (α�j)d−m, ∀m ≥ d + 1.

In order to collect contributions from all such balls, observe that |h(x)| � �j

for x ∈ Bj , and hence
∑

j∈Σ2

‖hχBj
Dα(a,Λ; gp)‖1 � αd−m

∑

j∈Σ2

�d+1−m
j . (5.9)

In view of (5.2), we can estimate as follows:

�d+1−m
j �

∫

Bj∩Ω3

�(x)d+1−mdx, if �j ≥ 1, j ∈ Σ2,

and

�d+1−m
j �

∫

Bj∩Ω3

�(x)1−mdx, if �j ≤ 1, j ∈ Σ2.

Now we can sum up these inequalities remembering that the number of over-
lapping balls Bj is uniformly bounded:

∑

j∈Σ2

�d+1−m
j �

∫

|x̂|≤3,�(x)<1

�(x)1−mdx +
∫

|x̂|≤3,�(x)≥1

�(x)d−m+1dx

�
∫

|t|<1

(|t| + α−1)1−mdt +
∫

|t|≥1

|t|d−m+1dt

� αm−2,

where we have taken m ≥ d + 3 to ensure the convergence of the second
integral. Now it follows from (5.9) that

‖hψoutDα(a,Λ; gp)‖1 � αd−2. (5.10)

Now consider the indices j ∈ Σ1. By (5.4), α�j 	 1, and hence we get
from (4.4) that

‖χBj
Dα(a,Λ; gp)‖1 � 1.
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Taking into account that |h(x)| � α−1 for x ∈ Bj , uniformly in j ∈ Σ1, and
that #Σ1 � αd−1, we can write:

‖hψinDα(a,Λ; gp)‖1 � α−1
∑

j∈Σ1

‖χBj
Dα(a,Λ; gp)‖1 � αd−2.

Together with (5.10), this gives (5.8). �

5.2. Local Asymptotics

Let the coefficient B1 and Bd be as defined in (2.6) and (2.10) respectively.

Lemma 5.4. Let Π ⊂ R
d be a half-space. Suppose that ϕ ∈ C∞

0 (Rd) satisfies
the conditions

�|∇ϕ| � 1, supp ϕ ⊂ B(z, �),

with some z ∈ R
d and � > 0 such that α� � 1. Then

tr ϕDα(a,Π; gp) = αd−1Bd(a, ϕ; ∂Π, gp) + O
(
(α�)d−2

)
. (5.11)

These asymptotics are uniform in the symbols a satisfying (2.4) with the same
implicit constants.

Proof. Without loss of generality assume that

Π = {x ∈ R
d : xd > 0}.

Denote h(x̂) = ϕ(x̂, 0). Since ϕ − h = 0 on ∂Π, by Lemma 5.3, we have

‖(ϕ − h)Dα(a,Π; gp)‖1 � (α�)d−2(�‖∇ϕ‖L∞). (5.12)

The operator hDα can be viewed as an α-pseudo-differential operator in
L2(R) with the operator-valued symbol

h(x̂)Dα

(
a(ξ̂, · ), R+; gp

)
.

Thus its trace is given by the formula

tr hDα(a,Π; gp) =
(

α

2π

)d−1 ∫

Rd−1

∫

Rd−1

tr
(

h(x̂)Dα

(
a(ξ̂, · ), R+; gp)

)
)

dξ̂dx̂.

By Proposition 3.1, the trace under the integral equals

h(x̂)B1(a(ξ̂, · ), gp), ∀ξ̂ ∈ R
d−1

, x̂ ∈ R
d−1,

and hence, by (2.11) and (2.10), we have the identity

tr hDα(a,Π; gp) = αd−1Bd(a, ϕ; ∂Π, gp).

Here we have used the fact that h = ϕ on the hyperplane ∂Π. Together with
(5.12) this gives (5.11). �

Now we extend the above result to arbitrary C1-boundaries.

Lemma 5.5. Let Λ be a basic C1-domain. Assume that � 	 kα−1. Let ϕ be as
in Lemma 5.4. Then
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lim
k→∞

lim sup
α→∞

k1−d

∣
∣
∣
∣ tr

(
ϕDα(a,Λ; gp)

) − αd−1Bd(a, ϕ; ∂Λ, gp)
∣
∣
∣
∣ = 0,

(5.13)

uniformly in z. The convergence is also uniform in a, as in Lemma 5.4.

Proof. For brevity, for Dα and Bd we use the notation omitting the depen-
dence on all parameters except Λ, ∂Λ and ϕ, i.e. we write Dα(Λ) and
Bd(ϕ; ∂Λ).

For two functions F = F (α, k) and G = G(α, k) we use the notation
F ∼ G if

lim
k→∞

lim sup
α→∞

k1−d(F − G) = 0.

Let Λ0 be the domain defined in (4.17). By Lemma 4.9, for any m ≥ d + 1,
we have

| tr ϕDα(Λ) − tr ϕDα(Λ0)| �
(
kd−m + kd

√
ε(2�)

)
.

Since ε(2�) → 0 as α → ∞, for each k, we conclude that tr(ϕDα(Λ)) ∼
tr(ϕDα(Λ0)). Furthermore, by Lemma 5.4,

tr
(
ϕDα(Λ0)

)
= αd−1Bd(ϕ; ∂Λ0) + O(kd−2),

so tr(ϕDα(Λ0)) ∼ αd−1Bd(ϕ; ∂Λ0). Let us now compare the asymptotic coef-
ficients Bd for the boundaries ∂Λ and ∂Λ0, using the definition (2.10) and
the bound (3.6):

|Bd(ϕ; ∂Λ) − Bd(ϕ; ∂Λ0)| � max |Ad(nx) − Ad(nz)|�d−1

� �d−1 max |nx − nz|δ,
where the maximum is taken over x ∈ ∂Λ∩B(z, �), and δ ∈ (0, 1) is arbitrary.
By (4.18),

max |nx − nz| � max |∇Φ(x̂) − ∇Φ(ẑ)| ≤ ε(�).

Consequently,

|Bd(ϕ; ∂Λ) − Bd(ϕ; ∂Λ0)| � �d−1ε(�)δ � kd−1α1−dε(�)δ,

with an arbitrary δ ∈ (0, 1), and hence αd−1Bd(ϕ; ∂Λ) ∼ αd−1Bd(ϕ; ∂Λ0).
Collecting the equivalence relations established above, we get tr(ϕDα(Λ)) ∼
αd−1Bd(ϕ; ∂Λ), which is exactly the formula (5.13). �

The next step is to extend Lemma 5.5 to the functions ϕ with support
of a fixed size, i.e. independent of α.

Theorem 5.6. Let Λ be a basic C1-domain, and let ϕ ∈ C∞
0 . Then

tr
(
ϕDα(a; Λ, gp)

)
= αd−1Bd(a, ϕ; ∂Λ, gp) + o(αd−1), α → ∞. (5.14)

The convergence is uniform in a, as in Lemma 5.4. The remainder depends
on the function ϕ, and the domain Λ.
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Proof. Without loss of generality we may assume that suppϕ is contained
in the ball B = B(0, 1). Let � = �(κ) be the function defined in (5.1) with
κ = kα−1 where k ≥ 1. Let {Bj} and {ψj} be the covering of R

d and
the subordinate partition of unity a in Proposition 5.1 respectively, and let
ψout and ψin be as defined in (5.7) with Ω = B. We do not reflect in this
notation the dependence on k and α. For brevity we write Dα,Bd(ψ) instead
of Dα(a,Λ; gp) and Bd(a, ψ; ∂Λ, gp).

We consider separately two sets of indices j: Σ1(B) and Σ2(B), see (5.3)
for the definition.

Step 1. First we handle Σ2(B) and prove that for any m ≥ d + 1 the
following bound holds:

‖ψoutϕDα‖1 � αd−1k−m+1. (5.15)

By definition of Σ2, B(xj , 2�j) ∩ ∂Λ = ∅, so by Lemma 4.7, the left-hand
side of (5.15) does not exceed

∑

j∈Σ2(B)

‖ψjϕDα‖1 � αd−m
∑

j∈Σ2(B)

�d−m
j � αd−m

∑

j∈Σ2(B)

∫

Bj

�(x)−mdx

� αd−m

∫

B(0,2)

�(x)−mdx � αd−m

1∫

kα−1

t−mdt � αd−1k−m+1,

for any m ≥ d + 1. As in the proof of Lemma 5.3, when passing from the
sums to integrals, we have used the property (5.2). This completes the proof
of (5.15).

Step 2. Let us now turn to the function ψin. At this step we prove that

lim
k→∞

lim sup
α→∞

∣
∣α1−d tr

(
ψinϕDα

) − Bd(ϕ)
∣
∣ = 0. (5.16)

In view of (5.4), we have �j 	 kα−1 uniformly in j ∈ Σ1(B). Thus, by
Lemma 5.5,

lim
k→∞

lim sup
α→∞

k1−d max
j∈Σ1(B)

∣
∣
∣
∣ tr(ψjϕDα) − αd−1Bd(ψjϕ)

∣
∣
∣
∣ = 0. (5.17)

Now we can estimate the left-hand side of (5.16). Since #Σ1(B) � αd−1k1−d,
we have

∣
∣α1−d tr

(
ψinϕDα

) − Bd(ϕ)
∣
∣ = α1−d

∣
∣
∣
∣

∑

j∈Σ1(B)

(
tr(ψjϕDα) − αd−1Bd(ψjϕ)

)
∣
∣
∣
∣

� k1−d max
j∈Σ1(B)

∣
∣
∣
∣ tr(ψjϕDα) − αd−1Bd(ψjϕ)

∣
∣
∣
∣.

By (5.17) the double limit (as α → ∞ and then k → ∞) of the right-hand
side equals zero, which implies (5.16).
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Step 3. Proof of (5.14). According to (5.15), for any m ≥ d+1, we have

lim sup
α→∞

∣
∣α1−d tr

(
ϕDα

)− Bd(ϕ)
∣
∣

≤ lim sup
α→∞

∣
∣α1−d tr

(
ψinϕDα

) − Bd(ϕ)
∣
∣

+ lim sup
α→∞

α1−d‖ψoutϕDα‖1

� lim sup
α→∞

∣
∣α1−d tr

(
ψinϕDα

) − Bd(ϕ)
∣
∣ + k−m+1.

Since k > 0 is arbitrary, we can pass to the limit as k → ∞, so that, by
(5.16), the right-hand side tends to zero. This leads to (5.14), as claimed. �

6. Proof of Theorem 2.3

6.1. Proof of Theorem 2.3: basic piece-wise smooth domains Λ
Before completing the proof of Theorem 2.3 we extend the formula (5.14) to
basic piece-wise C1-domains.

Theorem 6.1. Let Λ be a basic piece-wise C1-domain, and let ϕ ∈ C∞
0 (Rd).

Then the formula (5.14) holds.

Proof. As in the proof of Theorem 5.6, assume that ϕ is supported on the ball
B = B(0, 1). Further argument follows the proof of [12, Theorem 4.1], where
the asymptotics for Dα(a,Λ; gp) were studied in the case of a discontinuous
symbol a. Thus we give only a “detailed sketch” of the proof.

Cover B with open balls of radius ε > 0, such that the number of inter-
secting balls is bounded from above uniformly in ε. Introduce a subordinate
partition of unity {φj}, j = 1, 2, . . . , such that

|∇nφj(x)| � ε−n, ∀x ∈ B,

uniformly in j = 1, 2, . . . . By Lemma 4.7, the contributions to (5.14) from the
balls having empty intersection with ∂Λ, are of order O(αd−m), ∀m ≥ d + 1,
and hence they are negligible.

Let S be the set of indices such that the ball indexed by j ∈ S has a
non-empty intersection with the set (∂Λ)s, see (2.3) for the definition. Since
the set (∂Λ)s is built out of (d − 2)-dimensional Lipschitz surfaces, we have

#S � ε2−d. (6.1)

If αε � 1, then by (4.4), for each j ∈ S we have the bound

‖ϕφjDα(a,Λ; gp)‖1 � (αε)d−1,

uniformly in j. By virtue of (6.1), this implies that
∑

j∈S

‖ϕφjDα(a,Λ; gp)‖1 � εαd−1, if αε � 1.

Since ∑

j∈S

∣
∣Bd(a, ϕφj ; ∂Λ, gp)

∣
∣ � ε,
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as well, we can rewrite the last two formulas as follows:

lim sup
α→∞

∑

j∈S

∣
∣
∣
∣

1
αd−1

tr
(
ϕφjDα(a,Λ; gp)

) − Bd(a, ϕφj ; ∂Λ, gp)
∣
∣
∣
∣ � ε. (6.2)

Let us now turn to the balls with indices j /∈ S, such that their intersection
with ∂Λ is non-empty. We may assume that they are separated from (∂Λ)s.
Thus in each such ball the boundary of Λ is C1. By Corollary 4.5, we may
assume that the entire Λ is C1, and hence Theorem 5.6 is applicable. Together
with (6.2), this gives

lim sup
α→∞

∣
∣
∣
∣

1
αd−1

tr
(
ϕDα(a,Λ; gp)

) − Bd(a, ϕ; Λ, gp)
∣
∣
∣
∣ � ε.

Since ε > 0 is arbitrary, this proves the Theorem. �

6.2. Proof of Theorem 2.3: Completion

Now we can proceed with the proof of Theorem 2.3. It follows the idea of [14]
and [7], and consists of three parts: first we consider polynomial functions f ,
then extend it to arbitrary C2-functions, and finally complete the proof for
functions satisfying the conditions of Theorem 2.3.

Step 1. Polynomial f . The local asymptotics, i.e. Theorem 6.1, extends
to arbitrary piece-wise C1-region Λ by using the standard partition of unity
argument based on Corollary 4.5.

Now we turn to proving the global asymptotics (2.13) for polynomial f .
Let R0 be such that either Λ ⊂ B(0, R0) or Λc ⊂ B(0, R0). Let ϕ ∈ C∞

0 (Rd)
be a function such that ϕ(x) = 1 for |x| ≤ 2R0, and ϕ(x) = 0 for |x| > 3R0.
Thus

tr Dα(a,Λ; gp) = tr(ϕDα(a,Λ; gp)) + tr
(
(1 − ϕ)Dα(a,Λ; gp)

)
.

As we have just observed, by (5.14), the first trace behaves as αd−1Bd

(a, ∂Λ; gp), as α → ∞. If Λ ⊂ B(0, R0), then the second term equals zero,
and hence (2.13) is proved for f = gp.

If Λc ⊂ B(0, R0), then, by Lemma 4.7, the second trace does not exceed
αd−m with an arbitrary m ≥ d + 1, and hence it gives zero contribution to
the formula (2.13). Therefore (2.13) for f = gp is proved again.

Step 2. Arbitrary functions f ∈ C2(R). The extension from polynomials
to more general functions is done in the same way as in [7], and we remind
this argument for the sake of completeness.

Since the operator Wα(a; Λ) is bounded uniformly in α, we may assume
that f ∈ C2

0(R), so that f = fζ with some fixed function ζ ∈ C∞
0 (R). For a

δ > 0, let g = gδ be a polynomial such that

‖(f − g)ζ‖C2 < δ.

For g we can use the formula (2.13) established at Step 1:

lim
α→∞ α1−d tr Dα(g) = Bd(g). (6.3)
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On the other hand, thinking of the function (f − g)ζ as satisfying Condi-
tion 2.2 with some fixed x0 outside the support of ζ, we obtain from (4.2)
that

‖Dα(f − g)‖1 = ‖Dα

(
(f − g)ζ

)‖1

� (f − g)ζ 2α
d−1 � ‖(f − g)ζ‖C2 αd−1 � δαd−1,

and also, by (3.5),

|Bd(f) − Bd(g)| = |Bd(f − g)| = |Bd

(
(f − g)ζ

)| � ‖(
(f − g)ζ

)′′‖L∞ � δ.

Thus, using (6.3) and the additivity

Dα(f) = Dα(g) + Dα(f − g), Bd(f) = Bd(g) + Bd(f − g),

we get
lim sup

α→∞

∣
∣α1−d tr Dα(f) − Bd(f)

∣
∣ � δ.

Since δ > 0 is arbitrary, we obtain (2.13) for arbitrary f ∈ C2(R).
Step 3. Completion of the proof. Let f be a function as specified in The-

orem 2.3. Without loss of generality suppose that the set X consists of one
point, and this point is z = 0.

Let ζ ∈ C∞
0 (R) be a real-valued function, such that ζ(t) = 1 for |t| ≤

1/2. Represent f = f
(1)
R + f

(2)
R , 0 < R ≤ 1, where f

(1)
R (t) = f(t)ζ

(
tR−1

)
,

f
(2)
R (t) = f(t) − f

(1)
R (t). It is clear that f

(2)
R ∈ C2(R), so one can use the

formula (2.13) established in Step 2 of the proof:

lim
α→∞ α1−dDα(f (2)

R ) = Bd(f
(2)
R ). (6.4)

For f
(1)
R we use (4.2) taking into account that f

(1)
R 2 � f 2:

| tr Dα(f (1)
R )| � Rγ−σ f 2α

d−1, α � 1,

for any σ ∈ (dβ−1, γ), σ ∈ (0, 1]. Moreover, by (3.17),

|Bd(f
(1)
R )| � Rγ−σ f 2.

Thus, using (6.4) and the additivity

Dα(f) = Dα(f (2)
R ) + Dα(f (1)

R ), Bd(f) = Bd(f
(2)
R ) + Bd(f

(1)
R ),

we get the bound

lim sup
α→∞

∣
∣α1−dDα(f) − Bd(f)

∣
∣ � f 2R

γ−σ.

Since R is arbitrary, by taking R→0, we obtain (2.13) for the function f . �

7. Proof of Theorems 2.5, 2.6

Without loss of generality assume that ‖aλ‖L∞ ≤ 1. We use the notation
fλ(t) = λ−γf(λt), t ∈ R.



1 Page 26 of 28 A. V. Sobolev IEOT

7.1. Proof of Theorem 2.5

Rewrite:

λ−γDα(λaλ,Λ; f) = Dα(aλ,Λ; fλ), .

Represent the right-hand side as

Dα(aλ,Λ; f0) + Dα(aλ,Λ; gλ), gλ = fλ − f0. (7.1)

Since |aλ| ≤ 1, we can replace the function gλ by gλζ, where ζ ∈ C∞
0 (R) is a

function such that ζ(t) = 1 for |t| ≤ 1, and ζ(t) = 0 for |t| ≥ 2.
By (4.2), the second term satisfies the bound

‖Dα(aλ,Λ; gλ)‖1 � gλζ 2α
d−1.

Notice that gλζ 2 = (f −f0)ζ(λ)
2, ζ(λ)(t) = ζ(λ−1t). It is straightforward

that the condition (2.14) implies that (f−f0)ζ(λ)
2 → 0 as λ → 0. Therefore

α1−dDα(aλ,Λ; gλ) → 0, α → ∞, λ → 0. (7.2)

By Theorem 2.3, the first term in (7.1) satisfies

lim
α→∞ α1−dDα(aλ,Λ; f0) = Bd(aλ, ∂Λ; f0),

uniformly in λ > 0. By Corollary 3.5, the right-hand side converges to
Bd(a0, ∂Λ; f0) as λ → 0. Together with (7.2) this completes the proof. �

7.2. Proof of Theorem 2.6

Let fλ(t) = λ−1f(λt). Similarly to the proof of Theorem 2.5, we can rewrite:

λ−1Dα(λaλ,Λ; f) = Dα(aλ,Λ; fλ), .

Represent the right-hand side as

Dα(aλ,Λ;hλ) + Dα(aλ,Λ; gλ), gλ = fλ − hλ. (7.3)

Since |aλ| ≤ 1, we can replace the function gλ by gλζ, as in the previous
proof. By (2.16) gλζ satisfies Condition 2.2 with γ = 1, and hence, by (4.2),
the second term in (7.3) satisfies the bound

‖Dα(aλ,Λ; gλ)‖1 � gλζ 2α
d−1.

As in the previous proof, gλζ 2 = (f − h)ζ(λ)
2, ζ(λ)(t) = ζ(λ−1t), and

the condition (2.16) implies the convergence (f − h)ζ(λ)
2 → 0 as λ → 0.

Therefore

α1−dDα(aλ,Λ; gλ) → 0, α → ∞, λ → 0. (7.4)

Since hλ(t) = −t log λ + h(t), by Remark 2.4, we have that Dα(aλ,Λ; hλ) =
Dα(aλ,Λ;h). The function h satisfies Condition 2.2 with arbitrary γ < 1.
Thus, by Theorem 2.3, the first term in (7.3) satisfies

lim
α→∞ α1−dDα(aλ,Λ;h) = Bd(aλ, ∂Λ; h),

uniformly in λ > 0. By Corollary 3.5, the right-hand side converges to
Bd(a0, ∂Λ;h) as λ → 0. Together with (7.4), this completes the proof. �
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[9] Roccaforte, R.: symptotic expansions of traces for certain convolution opera-
tors. Trans. Am. Math. Soc. 285(2), 581–602 (1984)

[10] Sobolev, A.V.: Pseudo-Differential operators with discontinuous symbols:
Widom’s conjecture. Mem. Am‘. Math. Soc. 222(1043), vi+104 (2013)

[11] Sobolev, A.V.: On the Schatten-von Neumann properties of some pseudo-
differential operators. J. Funct. Anal. 266(9), 5886–5911 (2014)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 Page 28 of 28 A. V. Sobolev IEOT

[12] Sobolev, A.V.: Wiener-Hopf operators in higher dimensions: the Widom conjec-
ture for piece-wise smooth domains. Integral Equ. Oper. Theory 81(3), 435–449
(2015)

[13] Sobolev, A.V.: On the coefficient in trace formulae for Wiener–Hopf operators.
J. Spectr. Theory 6(4), 1021–1045 (2016)

[14] Sobolev, A.V.: Functions of self-adjoint operators in ideals of compact opera-
tors. J. LMS 95(1), 157–176 (2017)

[15] Sobolev, A.V.: Quasi-classical asymptotics for functions of Wiener–Hopf Oper-
ators: smooth versus non-smooth symbols. Geom. Funct. Anal. 27(3), 676–725
(2017)
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