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ABSTRACT

This work presents a study that aims to compare two discretization methods for solving
parameter estimation using multiparametric programming. In our earlier work, parameter
estimation using multiparametric programming was presented where model parameters were
obtained as an explicit function of measurements. In this method, the nonlinear ordinary

equations (ODEs) model was discretized by using explicit Euler’s method to obtain algebraic



equations. Then, a square system of parametric nonlinear algebraic equations was obtained by
formulating optimality condition. These equations were then solved symbolically to obtain
model parameters as an explicit function of measurements. Thus, the online computation burden
of solving optimization problems for parameter estimation is replaced by simple function
evaluations. In this work, we use implicit Euler’s method for discretization of nonlinear ODEs
model and compare with the explicit Euler’s method for parameter estimation using
multiparametric programming. Complexity of explicit parametric functions, accuracy of

parameter estimates and effect of step size are discussed.

1. INTRODUCTION

In process systems, the accuracy of parameter estimates is important for the development
of mathematical models and requires reliable parameter estimation techniques. In these models,
ordinary differential equations (ODEs) or differential-algebraic equations (DAEs) are widely
used to describe the processes. Most commonly used parameter estimation techniques involve
solving an optimization problem for minimization of the sum of squared differences between the
measurements and the model predictions. Parameter estimation is also used in fault detection
(Jiang et al., 2008, Isermann, 1993, Huang, 2001, Garatti and Bittanti, 2012, Park and
Himmelblau, 1983, Pouliezos et al., 1989). The principle involved in parameter estimation based
fault detection is that the specific parameters of the model can be associated with faults. For
example, heat transfer coefficient in heat exchanger model can be related to fouling (Delmotte et
al., 2013), cross section of outlet holes related to the tank leakage (Johansson, 2000) and specific
growth rate, half saturation coefficient and inhibition coefficient which affect the respiration rate

in the wastewater treatment (Wimberger and Verde, 2008). With this assumption, parameters of



a system are estimated on-line repeatedly using well known parameter estimation methods. If
there is a discrepancy between the estimated parameters and the ‘true’ parameters, it gives an
indication of faults. An overview for fault detection using parameter estimation can be found in
(Venkatasubramanian et al., 2003, Hwang et al., 2010).

Parameter estimation of the nonlinear ODE system, requires solving a dynamic
optimization problem, where the optimization is difficult due to the presence of nonconvexities
(Vassiliadis, 1994, Papamichail and Adjiman, 2002, Papamichail and Adjiman, 2004, Sakizlis et
al., 2003). Several approaches for parameter estimation have been presented and can be
categorized as decomposition and sequential / simultaneous approaches. In the decomposition
method, the direct integration of ODEs model is not required and the parameter estimation is
solved in two steps. Firstly to fit the experimental data and secondly solve the optimization
problem to minimize the difference between estimates of the derivatives obtained from fitted
model and the derivatives evaluated from the equations in the given ODEs model at the
experimental data points. Varah (1982) has developed a parameter estimation technique where
they fitted the measurement data using splines method. Principal differential analysis (PDA) has
been extended to nonlinear ODEs and improved by repeating the two steps, introducing iterated
PDA (iPDA) to overcome the issues of precision (Poyton et al., 2006, Varziri et al., 2008). Dua
(2011) has proposed a method using artificial neural network (ANN) model to fit the data and
utilized differential derivatives of ANN approximation to estimate the parameters of nonlinear
ODE systems. Least squares support vector machines (LV-SVM) (Mehrkanoon et al., 2014) and
two stage (TS) method (Chang et al., 2015, Chang et al., 2016) are other proposed methods for

parameter estimation involving fitting the data and solving the optimization problem. In Bhagwat
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et al. (2003), nonlinear process is decomposed into multiple local-linear regimes using a multi-
linear model-based fault detection approach.

The parameter estimates which explicitly require theintegral of ODEs model can be
categorized as sequential and simultaneous approach. In the sequential approach (Hwang and
Seinfeld, 1972, Kim et al., 1991, Bilardello et al., 1993), the optimization problem is solved
separately from numerical solution of ODEs model whilst in the simultaneous approach, the
optimization problem of parameter estimation is solved together with differential equations
model which is converted into algebraic equations (Chen et al., 2016, De et al., 2013). A
collocation approaches for parameter estimation has been demonstrate in (Chen et al., 2016,
Villadsen, 1982, Tjoa and Biegler, 1991) and ANN implementation is used in Dua and Dua
(2011) for simultaneous parameter estimation.

However, the above mentioned approaches are computationally expensive and may not
converge in a reasonable time. Hence, a multiparametric programming approach was proposed
to overcome these limitations by obtaining model parameters as an explicit function of
measurements in our earlier work (Che Mid and Dua, 2017). Multiparametric programming
provides the optimization variables as an explicit function of the parameter (Dua and
Pistikopoulos, 1999, Pistikopoulos, 2009, Oberdieck et al., 2016, Pistikopoulos et al., 2007b,
Pistikopoulos et al., 2007a, Charitopoulos and Dua, 2016). In that work, the model parameters
were considered as optimization variables and the measurements as the parameters in the context
of multiparametric programming. The nonlinear ODEs model was discretized to obtain algebraic
equation using explicit Euler’s method. Then, a square system was formulated by writing the
Karush-Kuhn-Tucker (KKT) conditions and the symbolic solution of model parameters as an

explicit function of measurements is obtained. Thus, the computational burden of online
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parameter estimation problem is replaced by computing the model parameters as an explicit
function of measurement.

In this work, for the discretization of nonlinear ODEs we use implicit Euler’s method
instead of the explicit Euler’s method. The explicit Euler’s method has simple calculations per
time step, which are relatively easier to implement and the implicit method on the other hand is
relatively more difficult, which makes it computationally intensive. However, the advantages of
the implicit method include that it is usually more numerically stable for solving stiff differential
equations and provides more accurate approximate solution (Acary and Brogliato, 2009, Acary
and Brogliato, 2010, Benko et al., 2009, Hasan et al., 2014, Koch et al., 2000, Sun et al., 2014).
Once the nonlinear ODEs are converted to the algebraic equations using implicit Euler’s method,
then the model parameters will be obtained as an explicit function of measurements. The rest of
this paper is organized as follows: Section 2 presents the parameter estimation algorithm using
multiparametric programming and in Section 3, three examples are presents to illustrate the

proposed works. Concluding remarks are presents in Section 4.

2. PROBLEM STATEMENT AND SOLUTION APPROACH

2.1. Problem definition

The objective of the fault detection problem is to estimate the model parameters, O , such

that the error, €gp, between the measurements, X j(ti), and model predicted values of state

variables, X; (ti ) , 1s minimised as follows follows (Dua and Dua, 2011):

Problem 1:



fee =min > > {%, (1) =%, (1)} (1)

jed iel

Subject to:

dxét(t) = f,(x(®),u(t),0,t), jel )
X(t=0)=x;,jel ®3)
te[0,t,] (4)

where x(t;) is the J-dimensional vector of state variables in the given ODE system, X(t)
represents the measurements of the state variables at the time points, t,, U(t) is the vector of

control variables and 0 is the vector of parameters.

2.2.  Discretization of Ordinary Differential Equations
In this work, we propose an implicit Euler’s method to discretize nonlinear ODEs to

algebraic equations. Consider the ODE initial value problem where Equations (2) to (3) are to be

solved on the interval, t<[0,t,], thus the discretization of an ODE model using an implicit
Euler’s method is given by

X; (i +2) =X, (i) + Atf (X(i+D),u(i).0),iel, jed (5)

where step size is given by At.

2.3.  Parameter Estimation using Multiparametric Programming
The algorithm to obtain the model parameters as an explicit function of measurements using

multiparametric programming is summarized as below:



Q) Formulate the optimization in Problem 1 as a Nonlinear Programming (NLP) problem.

Problem 2:
o = mi(gj;;{f(j (i+D)-x,(+D) (6)
Subject to:
hj :xj(i +1)—xj(i)—Atfj (X(i +l),u(i),0)=0,i el,jel (7)
X(0)=X, je (8)

where h; represents the set of nonlinear algebraic equations obtained by discretizing the ODEs

given by Equation (5) and we consider | = {0,1} in this work.

(i) Formulate Karush-Kuhn-Tucker (KKT) conditions for Problem 2. The Lagrangian

function is given by

L=g+TAh, ©)
where

g=j;;{xj(i+1)—xj(i+1)}2 (10)
h;=0,jel (11)

and ﬂj represents the Lagrange multipliers. The KKT conditions are given by the Equality

Constraints as follows
VoL=V,9+V,> A4h =0,jel (12)

h;=0 (13)



(iii)  Solve the Equality Constrains in Equations (12) and (13) of the KKT conditions

parametrically using a symbolic solution technique to obtain Lagrange multiples. The model
parameters, 0, as a function of measurements, X, i.e., B(i) are obtained. For systems

involving simultaneous polynomial equations techniques, such as Groebner Basis can be used for
obtaining symbolic solution using software such as Mathematica. Note that for the case | = {0,1}
considered in this work, the initial conditions (i = 0) would be given and the state variables at i =
1 can be eliminated by using equation (11). Therefore, x and @ appear as optimisation variables
in (1) and (6) but x can be eliminated using (11) and the gradient of L is obtained only with

respect to 0 as shown in (12).

(iv)  Screen the solutions obtained in the previous step and ignore solutions with imaginary

parts.

(V) Calculate the estimated model parameters, @, using the measurements, X, by simple

evaluation of 0(X).

3. ILLUSTRATIVE EXAMPLES
We present three examples using both the implicit and explicit Euler’s methods for discretizing
the nonlinear ODEs for parameter estimation using multiparametric programming. The

comparison results are described next.



3.1. Example 1: Irreversible Liquid—phase Reaction of the First Order
Consider the following first-order irreversible chain reactions (Dua, 2011, Esposito and Floudas,

2000, Dua and Dua, 2011) :

where the nonlinear ODE model is described by two differential equations given by:

dx,
e R 14
ot X (14)
dx
d_t2 = ‘91)(1 - ‘92)(2 (15)

where x, and x, are concentrations of A and B respectively and 6, and 6, are the rate constant

parameters. The objective of parameter estimation is to solve the following problem:

Problem 3:

o =Min S {(R ()~ (0)) + (o (0) -3, (0))’) (16)

Subject to:

Equations (14) - (15)



where the estimates of model parameters, ¢, and 6,, are obtained by minimizing the sum of

squares of the differences between measurements and model predicted values.

3.1.1. Discretization of Ordinary Differential Equations

The nonlinear ODE model in Equations (14) and (15) is discretized using both the implicit and

explicit Euler’s methods and reformulated as the following algebraic equations:

Implicit Euler’s method:

()
%(1+1) = 1+ At6, (17)
. AtG X, (i+1) + X, (i
X, (i+1) = Xil(JIthL: % (1) (18)
Explicit Euler’s method:
X (1+1) = x, (i) — Atg X, (i) (19)
X, (1+1) = X, (1) + Atgx, (1) — AtO, X, (i) (20)

3.1.2. Parameter Estimation Problem

The parameter estimation problem is reformulated as the following NLP problem for both the
discretization methods to estimate the model parameters, 6, and 6,, such that the error, &ypp,

between the measurement of state variables, X (i+1), and model predicted value of state

10



variables, x. (i +1), is minimized. Problem 4 describes the parameter estimation problem using the

implicit Euler’s method for discretization of ODEs (Equations 17 and 18) as follows:

Problem 4:

e = I S { (4 (+D) = (+D)7 + (%, +1) = x, (i +1)?}

Subject to:
- X, (1)
= 1 _—— =
h=x(+D)-=1 8
h, =%, (i+1)— AtOx, (i +1) + x, (i) 0

1+ At6,

Equations (22) and (23) are substituted into Equation (21) to obtain:

g =(>?1(i +1)—1fi] +(>22(i +1)— At@lxil(l:); Xz(i)]

The gradients of g with respect to €, and &, are given by:

1

1+ At6,)%) + (At x, (i) / L+ AtO))(—(((At, x, (i) I 1+ AtE) + x, (1)) /

(L+ At6,)) + %, (i +1))) / (L+ At6,)
-0

ae_g = (20t x, ()(=(x, (i) 1 1+ At,) + %, (i +1))) / 1+ Atg,)* — (2(-((At°G, x, (D)) /

(21)

(22)

(23)

(24)

(25)

11



(Z_g = (2At((At6x, (1)) / (1+ At6)) + X, (N(=(((Atex (1)) / L+ AtG) + x, (1)) /

2

.\ , (26)
(1+At6,)) + X, (1+1))) / (L+ At6)
=0

Equality Constraints in Equations (25) and (26) are solved analytically in Mathematica, and the

solution for Example 1 with discretization using implicit Euler’s method is given by

Solution 1:

X, (1) g~ XD+ XA +D) =%, (1) ~ X, (i +1)

T TAM M M) T ARG +D) 4% () @)
Solution 2:
o KO -RGHD ) X0 - R D+ x,() -l 4D o8

LOAtR(i+) 7 At %, (i +1)
The discretization of nonlinear ODEs using implicit Euler’s method for parameter
estimation using multiparametric programming provides the parameter estimates as given by
solutions 1 and 2. Considering the positive values of model parameters in this example, & >0
and 6, > 0; solution 1 is ignored because it implies that the concentration of B, X, (i) is negative,

which is not true. Hence, model parameters are evaluated using solution 2. Next, we provide the

NLP problem formulation using explicit Euler’s method as given in Equations (19) and (20).

Problem 5:

Evpp = MIN D AR+ —x (+1)* + (R, (i +1) — %, (1 +12))%} (21)
2 el

Subject to:

hy =x,(i+1) =X (i) + Atgx, (i) = 0 (29)

h, =X, (i +1)—x, (i) — Atgx, (i) + AtE,x, (i) =0 (30)

Equations (29) and (30) are substituted into Equation (21) to obtain:

12



g = (& (i +1) =% (i) + Atgx (1))* + (&, (i +1) — X, (i) — At x, (i) + AtO,, (i))* 31)

The gradients of g with respectto 6, and 6, are given by

s—g = 2A0¢ (1) (=% (1) + AtGx, (1) + X, (i +1)) — 2Atx, (1) (-At x, (i) =%, (i) +

1 o (32)
AtG, X, (1) + X, (1 +1))
=0
a_g_ N N . . N e
56, = 2At X, (1) (At 6, x, (1)) —x, (1) + At 6, X, (i) + X, (i +1)) (33)
=0

Equality Constraints in Equations (32) and (33) are solved analytically in Mathematica, and the

solution of parameter estimation with discretization using explicit Euler’s method is given by

__x+x0+D) ., X)X (1) =% () + %, (1 +1)

b Atx (i) T ° At X, (i)

(34)

Next, a comparison between solution in Equation (28) and Equation (34) is carried out for

analyzing the accuracy of parameter estimates and effect of step size.

3.1.3. Results for Example 1

In this example, three different step size are used to estimate model parameters. The simulated

data for state variables profile, x, and Xx,, is generated at t=t, with initial values given by
X, (0) =1 and x,(0) =0. The model parameters, & and 6,, obtained in Equations (28) and (34)

are calculated and compared for effectiveness and accuracy between the two discretization

methods of ODEs. The comparison of model parameters for different step size,

At=[0.10,0.05,0.01] is shown in Figures 1 and 2 for 6, and 6,, respectively. From these

figures, we can see that for the smallest step size, At =0.01, the estimated model parameters, 6,

13



and @, are close to the actual true values of the model parameters (él =5 and 92 =1). Table 1

shows that percentage error (%) of the implicit Euler’s method is smaller than that obtained by

explicit Euler method for At=0.01. This figure indicates that the present method provides
better results than that obtained by explicit Euler method. (Note: The time (t;) in Table 1 only

show the selected time for the purpose of presenting the percentage error results).

3.2. Example 2: Lotka—Volterra model
Consider the following Lotka—\Volterra model (Dua, 2011, Dua and Dua, 2011, Esposito and

Floudas, 2000) where the nonlinear ODE model is model is described by two differential

equations:

d

d_)f[l = ‘91X1 (1_ Xz) (35)
dx

d_tz = 6’2X2 (X1 -1 (36)

where 6, and 6, are the model parameters to be estimated. The objective of parameter

estimation is to solve the following problem:

Problem 6:

pe =N D {(%,(6) %, (6))° + (R (8) %)) (37)

Subject to:

Equations (35)-(36)

14



where the parameters, ¢, and 6, must be estimated such that the error, &, between

measurements and model predicted values is minimized.

3.2.1. Discretization of Ordinary Differential Equations

The nonlinear ODE model in Equations (35) and (36) is discretized using implicit and explicit

Euler’s methods and reformulated as the following algebraic equations:

Implicit Euler’s method:

Ay X, (1)
x(1+D)= 1— At6, + Atdx, (i +1) (38)
C o X, (1)
%(+1)= —1— At6, + AtO,x, (i +1) (39)
Explicit Euler’s method:
X, (i +1) = x (1) + Atg x, (i) — At6)x, ()X, (i) (40)
X, (1+1) = X, (1) — AtO,x, (i) + At6,x, (1) X, (i) (41)

3.2.2. Parameter Estimation Problem
The parameter estimation problem is formulated as the following NLP problem such that the

error, &pp, between the measurement of state variables, X;(i+1)and model predicted value of

state variables, x;(i+1)is minimized to estimate model parameters, 6, and &,. Problem 7 is the

15



parameter estimation problem using proposed discretization of an ODE using implicit Euler’s

method given in Equations (38) and (39).

Problem 7:

Eypp = rgig?;{(&(i +1) =%, (D)7 + (R, (i +2) — x,(i +1)?} 42)
Subject to:

hy =% (i+1)— %(0) -0 (43)

1-Ath, + AtOx, (i+1)

. %, (i)
h, = 1) - - =0
» =% 0+D) ~1— At6, + At (i +1) (44)

The Equations (43) and (44) are substituted into Equation (42) to obtain:

g = (X (+1)=x (i) / (L-Atg, + A6, (i +1)))° + (R, (i +1) = x, ()

(~1— AL, + A6, (x,(i) / (1— AtO, + AtX, (i +1)))))° )

The gradients of g with respect to 6, and 6, are given by:

‘Z—g = (2%, (1) (~At + At (i + D)(R (i +1) — %, (i) / (1— At&, +AtOX, (i +1)))) /

(1— A6, + AtOX, (i +1)) + (2A0,, (1) X, (1) (~At + Atx, (i + D))(R, (i +1) +
X, (i) / (=1 At6, + (AtO,x (i) / (L— A, + AtOx, (i +1))))) / (1 - Atd, +
AtOX, (i +1))° (~1— At6, + (At0,x, (i) / (L— At6, + Ata,x, (i +1)))°)
=0

(46)

Z—g = —((2%, (I)(=At + (At X, (i) / (L— A6, + AtOX, (i + 1)) (R, (i +1) + X, (i) /

(—~1— Atd, + (AtO,x (i) / (L— Atd, + AtOX, (i +1))))) / (~1— At6), + (47)
(A%, (1)) / (L At6, + AtOx, (i +1))))
=0

16



Equality Constrains in Equations (46) and (47) are solved analytically in Mathematica, and the

solution for Example 2 with discretization using implicit Euler’s method is given by

Solution 1:
N (j; Z?i)ﬂ)) 02 = Atxz(i;& Zl)(iti)(u 1) (48)
Solution 2:
X, (1) — %, (i +1) 0 - =%, (1) + X, (i +1) (49)

T AR (i +1)(-1+ %, (i +2)) 2 At 1+ X (1+D) %, (i+2)
The solution for Example 2 using implicit Euler’s method gives two set of model
parameters as explicit function of measurements as given in solutions 1 and solution 2.

Considering the positive values of model parameters in this example, 6 >0and 6, >0, the
solution 1 is ignored because it implies that the concentrations of A, x (i) is negative which is

not true. Hence, model parameters are evaluated using solution 2. Next, we describe the similar
NLP problem using explicit Euler’s method.
Problem 8 describes the parameter estimation problem using explicit Euler’s method for

discretization of ODEs given in Equations (40) and (41), as follows:

Problem 8:

e =N D LR (4D =X (+D) + (% (+D) -, +D)7} (42)
Subject to:

hy =X (i +1) —x, (i) — At x, (i) + Atg x (1)%, (1) =0 (50)
h, =X, (i +1) — X, (i) + AtE,x, (i) — At€,x, ()X, (i) =0 (51)

The Equations (50) and (51) are substituted into Equation (42) to obtain:

17



g = (& (i+D —x (1) — Atox, (i) + At x, ()%, (1)) + (R, (i +1) — %, (i) +

: L (52)
AL, X, (i) — Atd,x, (1), (1))
The gradients of g with respectto 6, and 6, are given by:
09 o0 g NEPRUI L o
26 = 2(—Atx, (i) + At (1), (D) (=%, (i) — At x, (i) + X, (i +1) + At G, (i) X, (1)) (53)
=0
2—9 = 2(Atx, (1) — Atx (1), (D)) (=%, (i) + AtO,x, (i) — AtO,x, ()X, (i) + X, (i +1)) (54)

=0
Equality Constrains in Equations (53) and (54) are solved analytically in Mathematica, and the

solution for Example 2 with discretization using explicit Euler’s method is given by

Cox)-%G+) . )+ %0+
L A o) 2T AL ())o) (59)

Next, a comparison between solution from Equation (49) and Equation (55) is carried out for

investigating accuracy of parameter estimates and effect of step size

3.2.3. Results for Example 2

In Example 2, the simulated data for state variables profile, x, and X,, is generated at t =t; with
initial values given by x (0) =1.2 and x,(0) =1.1. The model parameters are estimated using the

explicit function as given in Equations (49) and (55). Three different step size are used to

estimate model parameters, At=[0.10,0.05,0.01]. The estimated model parameters, 6, and 6,

for different step size, At are shown in Figures 3 and 4. As the step size decreased, the

estimated model parameter values for 6, and &, become closer to the true values of the model

parameters (él =3 and éz =1). Table 2 shows that percentage error of the implicit Euler’s

18



method is smaller than that obtained by explicit Euler methods for At=0.01. Thus, the
discretization using implicit Euler’s method gave more accurate model parameters estimates as

compared to explicit Euler’s method. (Note: The time (t;) in Table 2 only show the selected time

for the purpose of presenting the percentage error results)

3.3.  Example 3: Single-stage evaporator system

A mathematical model of a single-stage evaporator system (Dalle Molle and Himmelblau, 1987)

is given as :

dw

5 (W E)-V (56)
d_T:ﬂFXF-i-(V—F)(T _TB) (57)
dt W

where

v (UA(TS -T)-FC,(T —TF>—QLJ (58)

AH,

Here, W and T are the state variables representing the holdup and temperature, respectively, and
the model parameters for this process system are heat transfer coefficient, UA, and composition

of feed, X . Also, V is the vapor flow rate from the evaporator, F is the feed flow rate, T is

19



the steam temperature, T, is the temperature for normal boiling point of the solvent, TF is the
temperature of the feed system, C is the heat capacity of the solution, Q, is the rate of heat

loss to the surroundings, and AH,, is the heat of vaporization of the solvent.

The objective of parameter estimation is to solve the following problem:

Problem 9:

oe =N AV () -W ) + (T (1) -TE)} (59)

Subject to:
Equations (56)-(58)

where the parameters, UA and X, must be estimated such that the error, & between

measurements and model predicted values is minimized.

3.3.1. Discretization of Ordinary Differential Equations
The nonlinear ODE model in Equations (56) to (58) is discretized using implicit and explicit
Euler’s methods and reformulated as the following algebraic equations:

Implicit Euler’s method:

W(i+1)=(—(F-E — (VAT -T(@{+)-FC (T>{A+1)-T)-Q.)/

. (60)
AH, )At-W (i)) / (~5At —1)

20



1 (61)

T@(+1 =1 C FT.,At—C _FT_At—FAH, At +T,UAAt +
p B p F \Y B

2 M(C,F +UA)
TUAAt —Q At —AH W (i +1) — (C2F *TFAt? — 2C F*T T At +
CIF*TZAt? +4C F?BAH, At?x. +2C F*T,AH, At® —

2C F*T.AH, At® + 2C_FT;UAAt? —2C FT,T.UAAt? —

2C FT,TUAAL? + 2C FT.TUAAL? + 4FUASAH, At?x. +
2C,FQ T At? —2C_FQ T At* +4C FT (i)W (i +1)AH, At —

2C FT,W (i +1)AH, At—2C FT.W (i +1)AH, At + F°AH, *At? +
2FT,UAAH, At? + 2FT,UAAH, At® + T,2UA’AL® — 2T, TUA%AL? —
TAUA%AL? + 2FQ, AH, At? + 2FW (i +1)AH, *At + 2Q, T,UAAL® —
2Q, TLUAAL? + 4T (i)UAW (i +1)AH, At — 2T,UAW (i +1)AH, At —
2T,UAW (i +1)AH, At + Q, *At? + 2Q W (i + 1) AH, At +

W (i +1)2AH, *)"%)

Explicit Euler’s method:

W (i +12) =W (i) + At(F — (oW (i) + E, ) — (UATs —T(i)) - FC, (T (i) ~T¢) —Q )/ AH, ) (62)

T(+D) =T0)+At(BFx + (VAT =T(1)) - FC,(T(1)~Te) Q) / AH, ) -
F)(T()=Tg) /W (i)

3.3.2. Parameter Estimation Problem

(63)

The parameter estimation problem is formulated as the following NLP problem such that the

error, &,,», between the measurement of state variables, W(i+1) and T(i+1), and model

predicted value of state variables, W(i+1) and T(i+1), is minimized to estimate model
parameters, UA and X.. Problem 10 is the parameter estimation problem using proposed

discretization of an ODE using implicit Euler’s method given in Equations (60) and (61).

Problem 10:

Eupe = MIN D {W (i +D) W (i +2)° +(T (i +1)-T (i+1)} (64)
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Subject to:

hy =W (i+1) - (—(F —E, — (UA(T, =T (i+1) = FC (T (i +1) - T;) —Q,) / AH, ) At =W (i)) /
(—SAt —1) (65)
-0

h, =T (i +1)—(%m
Q.At—AH W (i +1) - (C2F*T/At? — 2C F T, T At? + CIF*T2At? +
4C F?BAH, At*x. +2C F*T,AH, At? — 2C F*T.AH, At? + 2C_FT UAAt® —
2C FT,T.UAAt? - 2C FT,TUAAt? + 2C FT_T,UAAt? + 4FUASBAH, At*X +
2C,FQ T At? —2C FQ T At* +4C FT (i)W (i +1)AH, At — 2C FT W (i +1)AH, At — (66)
2C, FT.W (i +1)AH, At + F?AH, *At? + 2FT,UAAH, At? + 2FTUAAH, At® + T,2UA’AL? —
2T, TLUAAL? —TAUAAL? + 2FQ AH, At? + 2FW (i +1)AH, *At + 2Q, T,UAAL? —
2Q, TUAAL® + 4T (i)UAW (i +1)AH, At — 2T,UAW (i +1)AH, At — 2T,UAW (i +1)AH, At +
Q. °At” +2Q W (i +)AH, At +W (i +1) *AH, *)"?))
=0

(C,FTyAt —C FT.At - FAH, At + TJUAAE + TUAAL -

The Equations (65) and (66) are substituted into Equation (64) to obtain:
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g =W (i+1) - ((~(F—E, — (VAT T (i+1) - FC,(T(i+1)~T¢)-Q.) / AH, At -

W (i) / (—6At —1))) + (T (i +1) - (%m

T,UAAL + TJUAAL - Q At — AH W (i +1) — (C2F*TAt? — 2C2F *T T At” + CIF T2 At +
4C_F?BAH, At?x. +2C F*T,AH, At® —2C F*T_AH, At® + 2C FTJUAAL® -

2C FT,T.UAAt® —2C FT,TUAAL? + 2C_FT_TUAAL” + 4AFUASAH, At*x. + (67)
2C,FQ TyAt? —2C FQ T At* +4C FT (i)W (i +1)AH, At — 2C FTW (i +1)AH, At —

2C, FTW (i +1)AH, At + F2AH, *At? + 2FT,UAAH, At® + 2FTUAAH, At? + T,2UA’AL? —

2T, TUA’AL® —~TUAAL? + 2FQ_ AH, At® + 2FW (i +1)AH,, °At + 2Q, T,UAAL® —

2Q, TUAAL® + 4T (i)UAW (i +1)AH, At — 2T,UAW (i +1)AH, At — 2T,UAW (i +1)AH, At +

Q. 2At? +2Q W (i +)AH, At +W (i +1)*AH, *)"?)))

(C,FT,At—C FT At —FAH, At +

The gradients of g with respect to UA and x. are given by:
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3—i = —(L/ 2)T,At+ T, At — (1/ 2)(2C, FT,2At? - 2C, FT,T. At? - 2C, FT, T, At? +

2C FT T At? +4F BAH, At?X. + 2FT,AH, At? = 2FT,AH, At? + 2T 2UAAL? —

4T, TUAAL + 2T 2UAAL® +2Q, T, AL? — 2Q, T AL +4T (i)W (i +1)AH, At —

2T, W (i +)AH, At — 2TW (i +)AH, At) / sqrt(C,*F*T,°At* — 2C 2 F T, T  At* +
Co2F2T°At” +4C,F? BAH, At*x, + 2C,F*T,AH, At® — 2C,F°T. AH, At* +
2C,FT,"UAAL® — 2C, FT,T.UAAt* — 2C FT,T.UAAt? + 2C FT, TUAAL® +
4FUABAH, At*x, +2C,FQ, T At? — 2C FQ, T At? + 4C . FT (i)W (i + 1) AH, At —
2C, FTW (i +1)AH, At —2C FT.W (i +1)AH, At + F°AH, *At* + 2FT,UAAH, At —
2FT,UAAH, At® + TZUAPAL® — 2T, TUAPAL® + T SUAAL? + 2FQ  AH, At® +

2FW (i +D)AH, *At + 2Q T,UAAL? — 2Q, TJUA* At? + 4T (i)UAW (i +1)AH, At —
2T,UAW (i +)AH, At — 2T,UAW (i +1)AH, At + Q, *At? + QW (i +1)AH, At + (68)
W (i +1)°AH, %)) / (At(C.F +UA)) + (1/ 2)(C,FT At + C,FT At — FAH, At +
TLUAAL + TUAAL —Q At — AH W (i +1) —sqrt(C,*F *T,°At* — 2C 2 F T, T At® +
C.°F?T.2At* + 4C,F? BAH, At*x. + 2C,F*T,AH, At* — 2C,F*T.AH, At® +
2C,FT,"UAAt? —2C FT,T.UAAt* — 2C,FT,T.UAAt? + 2C, FT.T,UAAt* +
4FUABAH, At*x +2C,FQ T At? —2C FQ T At* + 4C,FTW (i +1)AH, At —

2C, FTW (i +1)AH, At —2C FT.W (i +1)AH, At + F°AH, *At* + 2FT,UAAH, At’ —
2FT,UAAH, At® + T,2UAPAL? — 2T, TUA’AL® + T, UAPAL? + 2FQ  AH, At? +

2FW (i +D)AH, *At + 2Q, T,UAAL? — 2Q, TSUAAL? + 4T (i)UAW (i +1)AH, At —
2T,UAW (i+)AH, At — 2TJUAW (i +1)AH, At +Q,_*At? + 2Q W (i +1)AH, At +

W (i +1)°AH, ) / (At(C.F +UA)?)

=0
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a9

F

= (1/ 2)(T (i+1) - (1/ 2)(C,FT,At + C,FT. At — FAH, At + T,UAAt + TUAALt —

Q At—AH W (i +1) —sqrt(C,*F*T,°At> — 2C,*F °T, T At* + C,°F T *At® +
4C, F?BAH, A’X. +2C F T AH, At? —2C F*T_AH, At* + 2C FT 2UAAt” —
2C,FT,T.UAAt* — 2C FT,T,UAAL? + 2C FT. T,UAAL® + 4FUABAH, At*x, +
2C,FQ T At —2C FQ T-At* + 4C_FT (i)W (i + 1) AH, At — 2C, FT W (i + ) AH, At —
2C,FT W (i +1)AH, At + F2AH, *At* + 2FT,UAAH, At> — 2FT,JUAAH, At® +
TP UAPAL? — 2T, TJUAPAL® + T PUAAL? + 2FQ, AH, At? + 2FW (i +1)AH, *At +
2Q, T,UAAL? — 2Q, TJUAAL® + 4T (i)UAW (i +1)AH, At — 2TUAW (i +1)AH, At —
2TUAW (i +D)AH, At +Q, *At* + 2Q W (i +1)AH, At +W (i +1)*AH, *)) /
(At(C,F +UA)))(4C . F?BAH, At* + AFUABAH, At?) [ (sqrt(C,*F T *At? —
2C.°FT, T  At> + C.°F°T.*At? + 4C_ F? BAH, At’X. +2C,F*T,AH, At —
2C,F?T.AH, At® + 2C_ FT,°UAAt?* — 2C,FT,T.UAAt* — 2C,FT,T,UAAL* +
2C, FT. T,UAAt® + 4AFUABAH, At*x, +2C,FQ T At* —2C,FQ T At* +
4C,FTW (i +1)AH, At — 2C,FT,W (i + ) AH, At — 2C FT.W (i + 1) AH, At +
F2AH, *At? + 2FT,UAAH, At* — 2FTUAAH, At® + T,2UA’At® — 2T, TUA%AL? +
T SUA%AL? + 2FQ, AH, At® + 2FW (i + 1) AH, *At + 2Q, T,UAAL® — 2Q, TUAAL? +
4T (I)UAW (i +1)AH, At — 2TLUAW (i +1)AH, At — 2TUAW (i +1)AH, At +
Q. °At* +2Q W (i +D)AH, At +W (i +1)° AH, *)At(C, F +UA))
=0

(69)
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Equality Constrains in Equations (68) and (69) are solved analytically in Mathematica, and the

solution for Example 3 with discretization using implicit Euler’s method is given by

UA = (C,FT.At—C,FT (i +1)At +W (i + 1) AH, At + E.AH, At — FAH, At — QIAt —

: - . (70)
W (i)AH, +W (i +1)AH, ) / (AL(T (i +1) - T,))

X = —(CoFT,T T (i +1)At —C,FT,T.T (i + )At —C,FT,T (i + )T At + C,FT,T (i + )T At —
CoFT.T(i+1)2At+C,FT.T (i + 1T (i + At + C,FT (i +1)°T At —
C.FT(i+D)T (i + DT At +T,T (i + W (i +1)AH, At — T, TW (i +1)AH,, oAt —
T (i +2)°W (i +1)AH, SAt+T (i + )TW (i + ) AH, AL + ET,T (i +1)AH, At —
E T, T,AH, At —E_T (i +1)2AH, At + E_T (i + )T, AH, At — FT.T (i + 1)AH, At +
FT,T (i +1)AH, At + FT (i +1)2AH, At — FT (i + )T (i + 1) AH, At —Q, T, T (i +1)At + (71)
QT T(i +D)At+Q.T (i +1)*At—Q_T (i + )T (i + DAt + T (i)T (i + YW (i +1)AH,, —
T@)TW (i +1)AH, —T,T (i +DW (i)AH, +TT (i + YW (i +1)AH,, +T,TW (i)AH,, —
T TW (i +1)AH, +T (i +1)*W (i))AH,, —T (i +1)°W (i +1)AH,, —
TA+DT A +DW (i +1)AH, =T (i +DTW ()AH, +T (i +DTW (i +1)AH, +
T (i +D)TW (i +1)AH, )/ (T (i +1)-T,)F SAH, At)

In (Che Mid and Dua, 2017), the explicit parametric model parameters for single-stage
evaporator system with the discretization of ODEs model using explicit Euler’s method is given
as:

UA=—(L/ (At (T (i) =T, )))(~AH, AtE, + AH, AtF + AtQ, +C,AtFT (i) — C,AtFT. +

. . . (72)
AH W (i) — SAH, AW (i) — AH, W (i +1))

X = —(LI (BALF))(~AtE.T (i) + AtE,T, + 2T ()W (i) — SAT Q)W (i) — Ty (i) + SALT, 7 (i) —

. _ o . (73)
TAG+OWH) -TOW (A +D)+T, W (i +1))

The comparison between solutions from Equations (70) to (73) is carried out for investigating
accuracy of parameter estimates and effect of step size.

3.3.3. Results for Example 3
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The simulated data for state variables profile, W (i) and T(i), is generated at t =t with initial

values, W(0) =13.8 kg and T(0) =107 °C, and parameter values in Table 3 (Dalle Molle and
Himmelblau, 1987). Two different step size are used to estimated model parameters,
At =[0.10,0.05] . The estimated model parameters, UA and X, , are calculated using the explicit

function as given in Equations (70) to (73) and shown in Figures 5 and 6. As the step size

decreased to 0.05, the estimated model parameter values for UA and X. become closer to the

true values of the model parameters (UA:40.548 and X-=0.032). Table 4 shows that

percentage error of the implicit Euler’s method is smaller than that obtained by explicit Euler
methods for At=0.05. Thus, the discretization using implicit Euler’s method gave more

accurate model parameters compared to explicit Euler’s method where the estimated model
parameters are close to the true values. (Note: The time (t;) in Table 4 only show the selected

time for the purpose of presenting the percentage error results).

4. CONCLUDING REMARKS

In this work, we proposed the discretization of the nonlinear ODEs using implicit Euler’s method
for implementing parameter estimation using multiparametric programming. An implementation
of proposed method is demonstrated through three case studies. The results show that the
implementation of multiparametric programming for parameter estimation successfully obtained
model parameters as an explicit function of measurements. Differences in step size were
investigated for effectiveness of the proposed method and a small step size gave values close to
the true values of model parameters. The parametric expressions obtained for the implicit Euler’s

method were more complex than that obtained for the explicit Euler’s method. However,
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compared with the explicit discretization, the implicit Euler’s gave more accurate parameter

estimates for the same step size.
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Table 1. Comparison of the estimated model parameters, &, and 6, , for step size At=0.01

Implicit Euler’s Method Explicit Euler’s Method
Time | B o | g ooy | EmA IO | ooy
o, o, o, o, o, 0, o, o,

0.10 | 5.03682 | 0.99098 | 0.7364 | 0.9020 | 4.79529 | 1.05976 | 4.0942 | 5.9760
0.20 | 5.03682 | 0.99714 | 0.7364 | 0.2860 | 4.79529 | 1.01915 | 4.0942 | 1.9150
0.30 | 5.03682 | 0.99921 | 0.7364 | 0.0790 | 4.79529 | 1.00628 | 4.0942 | 0.6280
0.40 | 5.03682 | 1.00019 | 0.7364 | 0.0190 | 4.79529 | 1.00030 | 4.0942 | 0.0300
0.50 | 5.03682 | 1.00073 | 0.7364 | 0.0730 | 4.79529 | 0.99706 | 4.0942 | 0.2940
0.60 | 5.03682 | 1.00105 | 0.7364 | 0.1050 | 4.79529 | 0.99514 | 4.0942 | 0.4860
0.70 | 5.03681 | 1.00125 | 0.7362 | 0.1250 | 4.79528 | 0.99394 | 4.0944 | 0.6060
0.80 | 5.03679 | 1.00138 | 0.7358 | 0.1380 | 4.79526 | 0.99318 | 4.0948 | 0.6820
0.90 | 5.03682 | 1.00146 | 0.7364 | 0.1460 | 4.79529 | 0.99269 | 4.0942 | 0.7310
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Table 2. Comparison of the estimated model parameters, &, and 6, , for step size At=0.01

Time

(%)

Implicit Euler’s Method

Explicit Euler’s Method

Estimated model

% Error
parameters

Estimated model

% Error
parameters

0 &, 0 0,

01 92 01 92

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

2.99132 | 1.00291 | 0.289 0.291
2.99174 | 1.00303 | 0.275 0.303
2.99216 | 1.00316 | 0.261 0.316
2.99255 | 1.00329 | 0.248 0.329
2.99294 | 1.00342 | 0.235 0.342
2.99331 | 1.00356 | 0.223 0.356
2.99367 | 1.0037 | 0.211 0.370
2.99402 | 1.00385 | 0.199 0.385
2.99435 | 1.00401 | 0.188 0.401
2.99468 | 1.00417 | 0.177 0.417
2.99500 | 1.00434 | 0.167 0.434

3.04693 | 0.98652 | 1.564 1.348
3.04472 1 0.98593 | 1.491 1.407
3.04259 | 0.98531 | 1.420 1.469
3.04055 | 0.98468 | 1.352 1.532
3.03857 | 0.98403 | 1.286 1.597
3.03667 | 0.98335 | 1.222 1.665
3.03482 | 0.98265 | 1.161 1.735
3.03304 | 0.98192 | 1.101 1.808
3.03130 | 0.98116 | 1.043 1.884
3.02963 | 0.98037 | 0.988 1.963
3.02800 | 0.97955 | 0.933 2.045
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Table 3. Model parameters for single-stage evaporator system

Parameter Value

Description

U

43.6 kJ/(minm °C)

0.93 m?

0.032 mass fraction
136 °C

100 °C

4.18 kJ/(kg °C)

88 °C

400.0 kJ/min

2240 ki/Kg

8.33°C

0.06 (kg/min)/kg holdup
0.0454 kg/min

2.27 kg/min

heat transfer coefficient

area of heat transfer

the composition of the feed

the steam temperature in the steam chest
normal boiling point of the solvent

the heat capacity of the solution

the temperature of the feed system

the rate of heat loss to the surroundings

the heat of vaporization of the solvent

boiling point elevation per mass fraction of
solute

constant
constant

feed flow rate
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Table 4. Comparison of the estimated model parameters, UA and x., for step size At=0.05

Time

(%)

Implicit Euler’s Method

Explicit Euler’s Method

Estimated model

% Error
parameters

Estimated model

% Error
parameters

UA Xg UA Xg

UA Xg UA Xg

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00

40.4915 | 0.03089 | 0.138 | 3.416
40.4954 | 0.03103 | 0.129 | 2.983
40.4988 | 0.03115| 0.120 | 2.623
40.5019 | 0.03125| 0.113 | 2.323
40.5045 | 0.03133 | 0.107 | 2.069
40.507 0.0314 | 0.101 | 1.853
40.5091 | 0.03146 | 0.095 | 1.668
40.5111 | 0.03151 | 0.090 | 1.509
40.513 0.03156 | 0.086 | 1.370
40.5146 0.0316 | 0.082 | 1.249
40.5162 | 0.03163 | 0.078 | 1.142
40.5176 | 0.03166 | 0.074 | 1.048
40.519 0.03169 | 0.071 | 0.964
40.5203 | 0.03171 | 0.068 | 0.890
40.5214 | 0.03173 | 0.065 | 0.824
40.5226 | 0.03175 | 0.062 | 0.764
40.5236 | 0.03177 | 0.060 | 0.711
40.5246 | 0.03179 | 0.057 | 0.662
40.5255 0.0318 | 0.055 | 0.617
40.5264 | 0.03181 | 0.053 | 0.578
40.5273 | 0.03183 | 0.051 | 0.541

40.8357 | 0.03761 | 0.704 | 17.296
40.8155 | 0.0369 | 0.655 | 15.095
40.7979 | 0.0363 | 0.612 | 13.276
40.7825 | 0.03581 | 0.575 | 11.754
40.7687 | 0.03539 | 0.541 | 10.471
40.7563 | 0.03503 | 0.511 | 9.378
40.7451 | 0.03473 | 0.484 | 8.441
40.7349 | 0.03447 | 0.459 | 7.632
40.7256 | 0.03424 | 0.436 | 6.929
40.717 | 0.03404 | 0.415 | 6.315
40.709 | 0.03386 | 0.395 | 5.776
40.7017 | 0.03371 | 0.377 | 5.299
40.6948 | 0.03357 | 0.360 | 4.878
40.6884 | 0.03345 | 0.345 | 4.501
40.6823 | 0.03334 | 0.330 | 4.164
40.6767 | 0.03325 | 0.316 | 3.863
40.6713 | 0.03316 | 0.303 | 3.590
40.6663 | 0.03308 | 0.291 | 3.344
40.6616 | 0.03301 | 0.279 | 3.122
40.6571 | 0.03294 | 0.268 | 2.919
40.6528 | 0.03288 | 0.257 | 2.734
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