Optically switchable organic light-emitting transistors

Lili Hou¹, Xiaoyan Zhang^{1,4}, Giovanni F. Cotella², Giuseppe Carnicella², Martin Herder³, Bernd M. Schmidt³, Michael Pätzel³, Stefan Hecht^{3,*}, Franco Cacialli^{2,*}, Paolo Samori^{1,*}
¹ Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France. Email: samori@unistra.fr
² Department of Physics and Astronomy (CMMP Group) and London Centre for Nanotechnology, University College London,

- 7 Gower Street, London WC1E 6BT, United Kingdom. Email: <u>f.cacialli@ucl.ac.uk</u>
- 8 3 Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- 9 Email: <u>sh@chemie.hu-berlin.de</u>

10 ⁴ Present address: Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.

- 11
- 12

Organic light-emitting transistors (OLETs) are pivotal components for emerging 13 14 opto- and nano-electronics applications, such as logic circuitries and smart 15 displays. Within this technology sector, the integration of multiple functionalities in a single electronic device remains the key challenge. Here, for the first time, 16 we have fabricated optically switchable organic light-emitting transistors 17 (OSOLETs) through a judicious combination of light-emitting semiconductors 18 and photochromic molecules. The irradiation of the solution-processed films at 19 selective wavelengths enables the efficient and reversible tuning of charge 20 transport and electroluminescence simultaneously, with a high degree of 21 modulation (on/off ratios up to 500) in the three primary colors. Different 22 emitting patterns can be written and erased, through a non-invasive and 23 24 mask-free process, on a length scale of few microns in a single OSOLET, thereby rendering our devices of interest for optically gated highly-integrated full-color 25 26 displays and active optical memory technologies.

27

Organic light-emitting transistors (OLETs), combining in a single device the functions of light generation of organic light-emitting diodes (OLEDs) with the current modulation (and signal amplification) of organic thin-film transistors (OTFTs), have emerged as a promising new class of devices with significant potential for integrated optoelectronics, smart display technology, and organic lasers¹⁻⁵. The emitting layer of the unencapsulated OLETs is easily accessible for comprehensive optical and electrical investigation of the fundamental physical processes, thereby providing

35 powerful insights into device physics^{6,7}. The architecture and ease of fabrication of

36 OLETs potentially omit multi-step metal and materials evaporation that might damage the interface between electrodes and active layers, greatly simplifying the device 37 architecture and thereby enabling its potential use in active matrix displays. 38 Furthermore, the position of the recombination region in the channel of ambipolar 39 OLETs can be shifted away from the electrodes as a function of the applied bias, 40 avoiding the metal-induced quenching of excitons⁸⁻¹⁰. Capelli et al. recently 41 42 demonstrated that the performance of OLET can be boosted by exploiting a trilayer heterostructure, surpassing the equivalent OLED efficiency over 100 times¹¹. OLETs 43 comparable to display pixels driven by polycrystalline-silicon backplane transistors 44 have been reported, which can be operated at low-voltage and low-power 45 $consumption^{12}$. 46

47

Beside the efforts to enhance the charge carrier mobility, efficiency, and 48 brightness of OLETs¹³⁻¹⁶, the integration of further functionalities into a single device 49 50 represents another important challenge with the prospect of realizing controllable integrated circuitry^{17,18}. Electrically switchable chiral light-emitting transistors (LETs) 51 have been demonstrated, in which the current direction can be used to control the 52 polarization of light from pn junctions in tungsten diselenide (WSe₂), which serves as 53 a channel material of LETs¹⁹. Another example is an all-graphene based light-emitting 54 field-effect device featuring an external electrical bias tuning of the emission 55 spectrum²⁰. However, these multifunctional LETs, based on two-dimensional (2D) 56 materials differ in terms of the nature of the charge transport and mechanism of light 57

generation compared to OLETs. The current approach to control "multifunctional"
LETs still relies on external electrical driving. Conversely, optical control offers
various advantages, such as non-invasivity, high spatial and temporal resolution, and
the possibility to tune both wavelength and intensity of the emitted light²¹.

62

63 Some of us recently demonstrated that it is possible to fabricate optically switchable multifunctional OTFTs²²⁻²⁴, by blending organic semiconductors with 64 65 photochromic diarylethenes (DAEs). Upon exposure to light of different wavelength, DAEs can be toggled between two isomers with different electronic properties, and 66 they also show high thermal stability and fatigue resistance during continuous 67 photoswitching²⁵⁻²⁷. Such optically responsive OTFTs exhibited high current 68 switching ratios and large charge carrier mobilities, and have been applied for the 69 fabrication of flexible non-volatile optical memory with over 256 distinct levels²⁸. 70

71

72 Here we report the fabrication and characterization of the first optically switchable organic light-emitting transistors (OSOLETs), by integrating DAEs into 73 the light-emitting semiconducting layer of OLETs via simple solution processing. 74 Both charge transport and electroluminescence (EL) are simultaneously modulated by 75 76 irradiating the devices at distinct wavelengths. We demonstrate three classes of OSOLETs emitting over the entire visible spectrum (green, red, and blue), which can 77 78 reversibly and remotely switch charge transport and EL on and off via visible and UV light irradiation. In addition, emitting patterns within one pixel of the OSOLET can be 79

80	written and erased easily by using a light beam as an external, non-invasive, and
81	mask-free writing tool with a spatial resolution down to the far-field diffraction limit,
82	i.e. $\lambda/2NA < 1 \ \mu m$ (with λ being the wavelength of visible light and NA the numerical
83	aperture of the optical tool used). In view of current minimum pixel sizes, e.g. in the
84	best "retina" displays (~55.5 μ m), the present system holds particular potential of
85	reversibly encoding high-density visual information into a single pixel of a
86	high-resolution display.
87	
88	Results and discussion
89	Three commercially-available semiconducting light-emitting polymers
90	poly(9,9-dioctylfluorene- <i>alt</i> -bithiophene) (F8T2),
91	poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-para-phenylenevinylene] (MDMO-PPV),
92	and poly(9,9-dioctylfluorene) (F8) were used to fabricate OLETs having fluorescence
93	emission ranging from blue to red (Fig. 1a), thus covering the entire visible spectrum
94	(supplementary Fig. S1 for the absorption and photoluminescence (PL) spectra). To
95	enable the optical switching in OLETs, an energetic matching between the
96	photochromic molecules and the emissive materials is required, i.e., the highest

97 occupied molecular orbital (HOMO) levels of the emissive polymers should

98 energetically be positioned in between those of the open and closed DAEs (Fig. 1b).

According to cyclic voltammetry (CV) measurements of the light-emitting polymers
(see supplementary Fig. S2) and previous studies on DAEs^{23,29,30}, the HOMO levels of
DAEs in their open forms are slightly below the one of the green and blue-emitting
hosts (~100 meV) and comfortably below that of MDMO-PPV (~200 meV).

103 Conversely, the HOMO levels of the DAEs in their closed forms are > 600 meV104 higher than the HOMO of the light-emitting polymers in all three binary components, and thus significant hole trapping is expected for the DAEs in their closed form. In 105 view of the different HOMO levels of the three polymers responsible for red, green, 106 and blue light emission, we have selected two DAEs, i.e., DAE tBu and DAE F (Fig. 107 1a)^{29,30} having high fatigue resistance over repetitive photoswitching cycles in the 108 solid state (Fig. S4). Based on the energetic considerations above, DAE tBu 109 110 molecules act as switchable charge traps within the matrix of the emissive F8T2 and MDMO-PPV, whereas the lower HOMO level of DAE F makes it suitable in 111 112 combination with the blue emitter (F8).

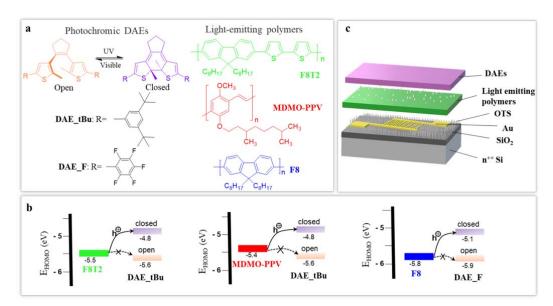


Fig. 1 | Molecules, energetics, and device structure of OSOLETs. a, Chemical 114 115 structures of photochromic diarylethenes (DAE tBu and DAE F) and light-emitting polymers (green: F8T2; red: MDMO-PPV; blue: F8). b, Schematic illustration of the 116 switchable charge trapping mechanism of OSOLETs based on the HOMO energy 117 118 levels of DAEs. As an illustrative example, for F8T2, its hole transport is greatly favoured to the closed form of DAE tBu but not to the open form of the latter. Thus, 119 there is minimal trapping for the open form, while it is significant for the closed form 120 of DAE tBu. c, Structure of the OSOLETs (substrate, dielectric layer, source and 121 drain electrodes are the same for all the devices, while the light-emitting polymers and 122

123 DAEs are varied).

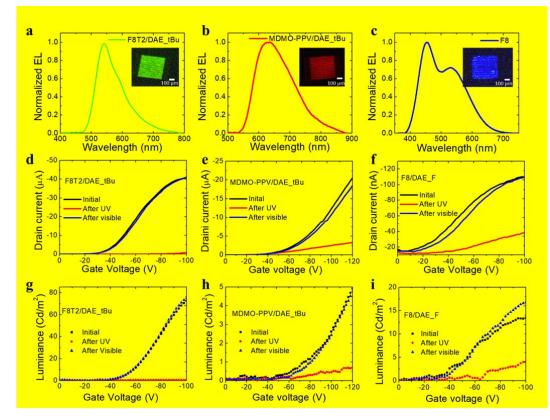
124

The OSOLETs were fabricated in a bottom-gate bottom-contact configuration 125 with SiO₂/Si as substrates and the pre-patterned gold interdigitated electrodes as 126 source and drain contacts (Fig. 1c, see supplementary information for details). To 127 enhance the charge carrier mobility, self-assembled monolayers (SAMs) of 128 octadecyl-trichlorosilane (OTS) were chemisorbed onto the SiO₂/Si substrates^{31,32} 129 130 prior to spin-coating the solutions of the light-emitting polymers, followed by their to leverage their optoelectronic properties.³³ To avoid thermal annealing at 170 131 thermal degradation of the DAEs at such high temperature, the photochromic 132 133 molecules were dissolved in solvents orthogonal to those used for the polymers and 134 spun on top of the emissive layer. A gentle post-annealing process was applied to 135 activate the thermal diffusion of DAE molecules into the polymer matrix (80 for 136 1 h in the case of F8T2 and MDMO-PPV, while 40 for 1.5 h with regards to F8). 137 The morphologies of the deposited light-emitting polymer/DAE bicomponent films 138 were investigated by atomic force microscopy (AFM, see supplementary Fig. S3). The deposition of DAE tBu via this permeation process did not modify the 139 morphology of F8T2 and no phase separation was observed. Only minor morphology 140 variations were monitored in the case of MDMO-PPV. However, the exposure of neat 141 142 F8 to both the solvent and thermal treatment, helps the diffusion of DAE F into F8, and further promotes the formation of supramolecular structures (such as the 143 crystalline phase³⁴ and the conformational isomer β -phase³⁵) of F8, resulting in a 144 rougher morphology (from $R_{rms} = 3.0$ nm for the neat F8 film to $R_{rms} = 12.3$ nm for 145

146 the F8/DAE_F film) due to the presence of micron-sized islands from the 147 aggregation³⁶.

148

We assessed the retained photoisomerization ability of DAEs in the solid state in 149 the presence of the selected light-emitting polymers for the OSOLETs. UV/visible 150 151 absorption spectroscopy on the light-emitting polymer/DAE bicomponent films 152 revealed upon UV (312 nm) irradiation the appearance of the typical spectral features in the visible region for the closed DAE isomer that disappear upon green light (> 520 153 nm) irradiation (see supplementary Fig. S5). These observations provide unambiguous 154 155 evidence that after diffusion into the three polymer matrices the DAEs are still able to undergo reversible photoisomerization. 156


157

158 The performance of OSOLETs in the three primary colors was characterized by 159 using EL spectroscopy as well as transfer curves of current density and luminance vs. 160 gate voltage, as summarized in Fig. 2. The light generated within the channel was 161 observed when OSOLETs were in operation, and thereby EL spectra and optical images (inset) of the green, red and blue OSOLETs (channel length $L = 2.5 \mu m$ and 162 163 channel width W = 1 cm) were recorded (Fig. 2a-c). The emission peaks of the green 164 and red OSOLETs are located at 540 nm (FWHM = 90 nm) and 630 nm165 (FWHM = 143 nm), respectively. Two emissive bands appear in the F8/DAE F based 166 OSOLET with the main peak at 450 nm. The red-shift of EL spectra, compared to that of glassy F8 film with the S₁ to S₀ vibronic peaks at 420 nm, suggests a high fraction 167

168 of β -phase chain conformations in the F8/DAE_F binary component film³⁵. 169 Furthermore, we note the presence of an emission band at longer wavelengths, i.e. a 170 green band, which is common in F8-based emissive devices due to the formation of 171 inter-chain states and/or fluorenone defects³⁷⁻⁴⁰. Importantly, the emissive bands of the 172 three OSOLETs cover well both the visible region (400-700 nm) and even stretch into 173 the near infrared (NIR) up to 800 nm.

174

175 Although light emission requires bipolar injection, most of the transport of our OSOLETs can be described as essentially unipolar, as inferred from the dependence 176 177 of the drain current on the applied gate voltage, in line with previous literature on non-switchable OLETs⁴¹⁻⁴³. While the holes are evenly distributed within the device 178 179 channel, light emission provides indeed evidence for electron injection and diffusion 180 ranging to several nm inside the channel. Yet electrons remain minority carriers up to 181 the highest (gate and drain) voltages tested here, as their contribution to the overall current is never appreciable. Because of this reason, electron transport and light 182 modulation thereof cannot be determined by using the chosen materials (lowest 183 unoccupied molecular orbital (LUMO) levels listed in Scheme S1). The 184 corresponding light is emitted closely to the electrode in F8T2 based OLET with a 185 longer channel width (L = 20 μ m) (see supplementary Fig. S6). However, owing to 186 the resolution of our camera and the narrow channel width of the OSOLETs, the light 187 188 emission was observed over the entire channel area in the optical images (Figs. 2a-c).

190 Fig. 2 | EL spectra, optical micrographs, and optoelectronic characteristics. a to c, EL spectra and emitting images of F8T2/DAE tBu, MDMO-PPV/DAE tBu and 191 F8/DAE F containing OSOLETs. d to f, Transfer characteristic curves of 192 193 F8T2/DAE_tBu OSOLET (V_d = -100 V), MDMO-PPV/DAE_tBu OSOLET (V_d = -120 V) and F8/DAE F OSOLET ($V_d = -100$ V), and light-triggered current switching 194 195 upon UV and visible light irradiation. \mathbf{g} to \mathbf{i} , Luminance and light-triggered switching 196 of the luminance in green, red and blue OSOLETs upon UV and visible light irradiation. 197

The transfer characteristics of green, red, and blue OSOLETs using DAEs as photo-switchable units were measured (Figs. 2d-f). When the DAEs are in their open forms, the hole mobilities extracted from the transfer characteristics in the saturation regime (see supplementary information for device characterization) are about 1.5×10^{-3} , 1×10^{-4} , and 5×10^{-7} cm² V⁻¹s⁻¹, respectively. For the sake of comparison, the field-effect mobilities in pristine green, red, and blue polymers based OLETs have been measured to be ca. 5×10^{-3} , 2.0×10^{-4} , and 8×10^{-5} cm² V⁻¹s⁻¹, respectively (see supplementary Fig. S7). Clearly the hole mobility of F8T2 and MDMO-PPV is
slightly reduced due to the scattering (and/or residual trapping) of DAEs in the
polymeric matrix. However, the mobility in the blue OSOLETs with the open isomer
of DAE_F drops by two orders of magnitude with respect to the one using the neat
polymer. It appears that domain boundaries and disordered interphase regions in the
F8/DAE_F bicomponent film result in a much rougher morphology, thereby hindering
charge transport⁴⁴.

213

The luminance of the OSOLETs was collected simultaneously during 214 215 measurement of the transfer characteristics (Figs. 2g-i), and it shows a similar trend as 216 drain current vs. gate voltage (Vg). It should be noted that the pristine F8T2 and 217 MDMO-PPV based OLETs exhibit slightly higher EL intensity as bicomponent ones measured under identical conditions (see supplementary Fig. S7). Interestingly, in the 218 219 case of F8/DAE F, despite the reduction of the output current with respect to the 220 pristine material, we observe an increase of luminance, which can be ascribed to the higher PL efficiency (η_{PL}) of F8 in the so-called β -phase as already reported by 221 Perevedentsev and Hsu et al^{35,45}. Therefore, F8T2 and MDMO-PPV based OLETs 222 exhibit a minor variation of EQE, between pristine and bicomponent devices (EQE at 223 $V_g = -80 \text{ V}$ for: MDMO-PPV 2×10⁻³ %, MDMO PPV/DAE tBu 6×10⁻³ %, F8T2 224 0.4×10⁻² %, and F8T2/DAE tBu 1.0×10⁻² %). However, the big change in the 225 morphology leads to a remarkable increase of the EQE (again at $V_g = -80$ V) of the 226 F8/DAE F bicomponent device (1.2 %) when compared to the neat F8 device (1.2 %)227

228 ×10⁻² %). Although the controlled formation of the β-phase of F8 *via* dipping in 229 solvent/non-solvent mixtures has already been exploited to improve the EQE of 230 F8-based OLEDs⁴⁶, no similar investigation has been reported on OLETs yet and we 231 consider this as an additional benefit of combining F8 with DAE_F.

232

233 The remote control via light irradiation of the electrical and optical OSOLETs 234 output was investigated. UV (315 nm) irradiation of the OSOLETs yields a 235 remarkable decrease of both drain current and luminance, which we attribute to ring-closing of the DAEs and subsequent efficient trapping of the majority of carriers. 236 237 In the case of F8T2/DAE tBu bicomponent devices, the on/off ratios (the ratio of the 238 current/luminance in the initial state and after UV irradiation) in both transport current 239 and EL exceed 500 (see Figs. 2d and 2g). Such a large degree of modulation is 240 comparable with the reports of photo-programmable OLEDs and non-volatile organic memories^{47,48}. A high modulation of the drain current and luminance was also 241 242 observed for MDMO-PPV/DAE tBu OSOLET devices (85 % decrease in current and 87 % decrease in luminance, at $V_g = -120 \text{ V}$, see Figs. 2e and 2h) as well as 243 F8/DAE F OSOLET devices (65% decrease in current and 75% decrease in 244 luminance, at $V_g = -100$ V, see Figs. 2f and 2i). Further irradiation with green 245 246 (528 nm) light converts the DAEs back to their open form, and leads to full recovery 247 of the initial state in all three-color OSOLETs. Under the same irradiation conditions, 248 neat polymer based OLETs did not show any modulation of output current and EL (see supplementary Fig. S7). 249

251 It should be noted that the energy transfer from the light-emitting polymers to DAEs in their closed form, favored by the spectral overlap of the emission of the 252 253 polymers with the absorption of the DAEs in ring-closed form, can also contribute to the modulation of the intensity of the emitted light. Indeed, a slight modulation of the 254 255 PL spectra was detected on the light-emitting polymer/DAE films upon UV and visible irradiation (see supplementary Fig. S9). However, as the switching 256 257 phenomenon can be observed both on charge transport and light emission, we conclude that energy transfer is not the main operating principle of OSOLETs. 258 Nevertheless, the energy transfer process might help to further modulate the intensity 259 260 of EL, which can be used to explain the larger modulation degree in the luminance 261 than in the current.

262

263 The effect of DAE photoswitching on both output current and luminance of the 264 OSOLETs was monitored over three cycles with alternative UV and visible irradiation 265 (Fig. 3). The large modulation of both maximum drain current and luminance of the three-color OSOLETs, normalized to the initial value for each measurement, is 266 reversible and the optical switching behaviour of OSOLETs is stable over several 267 268 cycles. Reference OLETs prepared with pristine light-emitting polymers did not show 269 any optically induced modulation, neither on drain current nor on luminance by UV or visible irradiation (see supplementary Fig. S8). 270

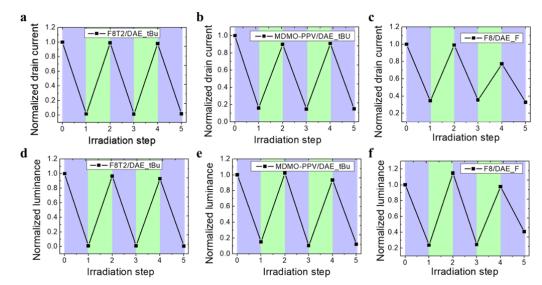
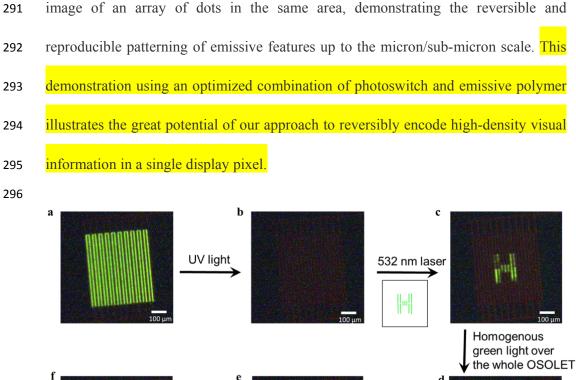
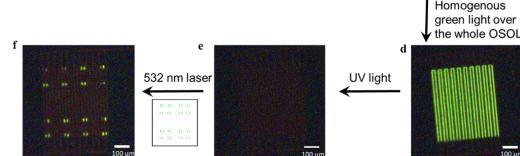
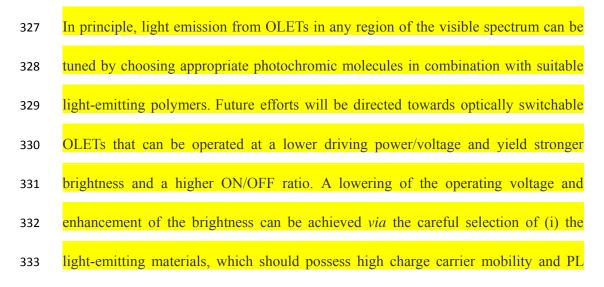




Fig. 3 | Reversible modulation of OSOLETs' current and luminance during
irradiation cycles. a-c Drain current and d-f luminance of green, red, and blue
OSOLETs over three irradiation cycles with UV light (315 nm, 0.6 mW, 10 min,
violet shaded areas) and visible green light (528 nm, 7 mW, 90 s, green shaded areas).
All values are normalized to initial value before any irradiation and the connecting
lines serve as 'guides to the eye'.

271

279 More importantly, since light is used as an external control of our OSOLETs, it is possible to generate emitting patterns with high spatial and temporal resolution on a 280 281 single transistor as demonstrated by optical images of patterns created and erased in a 282 single OSOLET (Fig. 4). In the initial configuration, the F8T2/DAE tBu OSOLET was in an all light-emitting on-state (Fig. 4a). Then, the device was irradiated 283 284 homogenously using UV light yielding a dark state (Fig. 4b). More interestingly, a 285 well-focused green laser (532 nm) can be used to form patterns on the OSOLET with the aid of a microscope. Fig. 4c shows a light-emitting on-area with a pattern of 'H' 286 287 shape on the same device. Subsequently, the irradiation of the entire device with green light erased the patterns and the all light-emitting on-state can be seen again (Fig. 4d). 288 The second pattern can be written in the same pixel with another step of UV 289 290 irradiation and followed by one more laser writing step. Fig. 4f exhibits a pattern



298 Fig. 4 | Emitting pattern created and erased within a single OSOLET. a, Optical 299 image of a F8T2/DAE_tBu OSOLET device biased with $V_d = V_g = -100$ V. b, Optical image of a dark state in the same device after UV light irradiation. c, Optical image of 300 an 'H' shape emitting pattern from the OSOLET written with a well-focused green 301 302 laser (532 nm). d, Optical image of the second all light-emitting on-state upon homogenous green light irradiation to erase the pattern. e, Optical image of the second 303 dark state after homogenous UV irradiation. f, Optical image of an array of dots 304 305 emitting patterns written by the irradiation with a 532 nm laser. The dark area in the pattern is due to the variation of the intensity and/or focus of the laser. 306 307

308 Conclusion

309 We have fabricated a novel OLET device in which the charge transport and 310 electroluminescence, emitting in the range of the three primary colors, can be 311 switched efficiently and reversibly using light as an external stimulus. The active

312	layer in such optically switchable organic light-emitting transistor (OSOLET)
313	comprises an organic light-emitting semiconductor and a photochromic DAE, in
314	which the photo-tunable energy levels of DAEs can either transport or trap the charge
315	carriers, toggled by UV and visible light irradiation. Such a dual external control is
316	achieved through the engineering of the energy levels of the light-emitting polymers
317	and those of the DAEs isomers. We are able to write and erase emitting patterns in a
318	single OSOLET through a non-invasive and mask-free process, with a spatial
319	resolution of a few micrometers, and a response on the microsecond time scale ²² . The
320	stimuli-responsive multifunctional devices proposed in this work are all readily
321	fabricated via solution processing, thus potentially transferrable to roll-to-roll
322	compatible or ink-jet printing lines to produce low-cost and flexible
323	stimuli-responsive (nano)electronics on a large scale. Ink-jet printing appears being a
324	most suitable deposition method to fabricate full color displays by precisely
325	positioning red, green, and blue emissive inks on each sub-pixel.

 (iii) the optimal device structures, with a shorter channel length and asymmetric electrodes, and (iv) a hole transport layer and/or an electron transport layer integrated as active component^{7,11-16}. Deeper investigations into the amount of incorporated photochromic molecules, energy levels matching, irradiation dose, and the thickness of active film, will surely enable further improvement of the ON/OFF ratios^{22,28,47,48} Our approach opens intriguing perspectives towards the development of novel optically gated, integrated full-color displays, micro-sized light sensors, active optical memories, light controlled inverters, and logic circuitries. Methods Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotight on organic transistors: <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Snall</i> 12, 1252-1294 (2016). Zaumseil, J., & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Nature Photon.</i> 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect fuer. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone		entele	ncies, (ii) the dielectric materials, which should exhibit a high gate capacitance,
 as active component^{7,11-16}. Deeper investigations into the amount of incorporated photochromic molecules, energy levels matching, irradiation dose, and the thickness of active film, will surely enable further improvement of the ON/OFF ratios^{22,28,47-48}. Our approach opens intriguing perspectives towards the development of novel optically gated, integrated full-color displays, micro-sized light sensors, active optical memories, light controlled inverters, and logic circuitries. Methods Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References 1 Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296–1323 (2007). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296–1323 (2007). Zaumseil, J. Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-e	335	(iii) th	e optimal device structures, with a shorter channel length and asymmetric
 photochromic molecules, energy levels matching, irradiation dose, and the thickness of active film, will surely enable further improvement of the ON/OFF ratios^{22,28,47,48} Our approach opens intriguing perspectives towards the development of novel optically gated, integrated full-color displays, micro-sized light sensors, active optical memories, light controlled inverters, and logic circuitries. Methods Methods Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References 1 Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). 2 Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007). 3 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). 4 Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). 5 Zaumseil, J., & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). 6 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Hare</i> 24, 1171-1175 (2012). 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Aph. Phys. Lett.</i> 87, 253511 (2005). 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mate</i>	336	electro	des, and (iv) a hole transport layer and/or an electron transport layer integrated
 of active film, will surely enable further improvement of the ON/OFF ratios^{22,28,47-48}. Our approach opens intriguing perspectives towards the development of novel optically gated, integrated full-color displays, micro-sized light sensors, active optical memories, light controlled inverters, and logic circuitries. Methods Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References 1 Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605-613 (2006). 2 Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007). 3 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392-393 (2011). 4 Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). 5 Zaumseil, J. & Siringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). 6 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69-74 (2005). 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistor. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>App. Phys. Lett.</i> 87, 253511 (2005). 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728-1735 (2009). 	337	as act	ive component ^{7,11-16} . Deeper investigations into the amount of incorporated
 Our approach opens intriguing perspectives towards the development of novel optically gated, integrated full-color displays, micro-sized light sensors, active optical memories, light controlled inverters, and logic circuitries. Methods Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistors. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	338	photoc	hromic molecules, energy levels matching, irradiation dose, and the thickness
 optically gated, integrated full-color displays, micro-sized light sensors, active optical memories, light controlled inverters, and logic circuitries. Methods Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References 1 Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). 2 Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). 3 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). 4 Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). 5 Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). 6 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	339	of acti	ve film, will surely enable further improvement of the ON/OFF ratios ^{22,28,47-48} .
 memories, light controlled inverters, and logic circuitries. Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392– 393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J., & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	340	Our a	pproach opens intriguing perspectives towards the development of novel
 Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392– 393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	341	optical	ly gated, integrated full-color displays, micro-sized light sensors, active optical
 Methods Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nature Photon. 5, 392– 393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. Adv. Mater. 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005). Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009). 	342	memo	ries, light controlled inverters, and logic circuitries.
 Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392– 393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	343		
 and references, are available in the online version of the paper. References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	344	Metho	ods
 347 348 References 349 1 Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). 351 2 Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). 353 3 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). 355 4 Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). 357 5 Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). 360 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). 361 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 363 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 365 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	345	Metho	ds, including statements of data availability and any associated accession codes
 References Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	346	and ret	ferences, are available in the online version of the paper.
 Muccini, M. A bright future for organic field-effect transistors. <i>Nature Mater.</i> 5, 605–613 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. <i>Adv. Funct. Mater.</i> 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	347		
 (2006). Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nature Photon. 5, 392– 393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. Adv. Mater. 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005). Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009). 	348	Refere	ences
 Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nature Photon. 5, 392– 393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. Adv. Mater. 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005). Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009). 		1	
 Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007). Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nature Photon. 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2005). Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. Adv. Mater. 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005). Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009). 		2	
 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 		2	Cicoira, F. & Santato, C. Organic Light Emitting Field Effect Transistors: Advances and
 393 (2011). 255 4 Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). 257 5 Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). 259 6 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). 361 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 363 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 365 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 		3	Perspectives. Adv. Funct. Mater. 17, 3421-3434 (2007).
 configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 			
 357 5 Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). 359 6 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). 361 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 363 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 365 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	551		Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nature Photon. 5, 392-
 transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 		4	Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5 , 392–393 (2011).
 Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355	4	Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5 , 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device
 ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355 356		Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5 , 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12 , 1252-1294 (2016).
 361 7 Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting 362 field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 363 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting 364 polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 365 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal 366 light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355 356 357		 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect
 362 field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). 363 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting 364 polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 365 9 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal 366 light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355 356 357 358	5	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007).
 363 8 Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting 364 polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). 365 9 Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal 366 light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355 356 357 358 359	5	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an
 polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355 356 357 358 359 360	5	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005).
 Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. <i>Adv. Funct. Mater.</i> 19, 1728–1735 (2009). 	355 356 357 358 359 360 361	5	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting
366 light-emitting transistors. <i>Adv. Funct. Mater.</i> 19 , 1728–1735 (2009).	355 356 357 358 359 360 361 362	5 6 7	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012).
	355 356 357 358 359 360 361 362 363	5 6 7	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting
	355 356 357 358 359 360 361 362 363 364	5 6 7 8	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005).
367 10 Capelli, R. <i>et al.</i> Interface functionalities in multilayer stack organic light emitting transistors	355 356 357 358 359 360 361 362 363 364 365	5 6 7 8	 Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. <i>Nature Photon.</i> 5, 392–393 (2011). Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. <i>Small</i> 12, 1252-1294 (2016). Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. <i>Chem. Rev.</i> 107, 1296-1323 (2007). Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. <i>Nature Mater.</i> 5, 69–74 (2005). Hsu, B. B. Y. <i>et al.</i> Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. <i>Adv. Mater.</i> 24, 1171-1175 (2012). Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. <i>Appl. Phys. Lett.</i> 87, 253511 (2005). Bisri, S. Z. <i>et al.</i> High mobility and luminescent efficiency in organic single-crystal

(OLETs). Adv. Funct. Mater. **24**, 5603-5613 (2014).

369	11	Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the
370		equivalent light-emitting diodes. Nature Mater. 9, 496-503 (2010).
371	12	McCarthy, M. A. et al. Low-voltage, low-power, organic light-emitting transistors for active
372		matrix displays. Science 332, 570–573 (2011).
373	13	Zaumseil, J., Donley, C. L., Kim, J. S., Friend, R. H. & Sirringhaus, H. Efficient top-gate,
374		ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene.
375		Adv. Mater. 18, 2708–2712 (2006).
376	14	Gwinner, M. C. et al. Highly efficient single-layer polymer ambipolar light-emitting
377		field-effect transistors. Adv. Mater. 24, 2728-2734 (2012).
378	15	Ullah, M. et al. Simultaneous enhancement of brightness, efficiency, and switching in RGB
379		organic light emitting transistors. Adv. Mater. 25, 6213-6218 (2013).
380	16	Park, S. K. et al. Highly luminescent 2D-type slab crystals based on a molecular
381		charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater.
382		29 , 1701346 (2017).
383	17	Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection
384		by a chiral organic semiconductor transistor. Nature Photon. 7, 634-638 (2013).
385	18	Kim, Y. L. et al. Voltage-switchable photocurrents in single-walled carbon nanotube-silicon
386		junctions for analog and digital optoelectronics. Nature Photon. 8, 239-243 (2014).
387	19	Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral
388		light-emitting transistor. Science 344, 725-728 (2014).
389	20	Wang, X. et al. A spectrally tunable all-graphene-based flexible field-effect light-emitting
390		device. Nature Commun. 6, 7767 (2015).
391	21	Zhang, X. Y., Hou, L. L. & Samorì, P. Coupling carbon nanomaterials with photochromic
392		molecules for the generation of optically responsive materials. Nature Commun. 7, 11128
393		(2016).
394	22	Orgiu, E. et al. Optically switchable transistor via energy-level phototuning in a bicomponent
395		organic semiconductor. Nature Chem. 4, 675-679 (2012).
396	23	Gemayel, M. E. et al. Optically switchable transistors by simple incorporation of
397		photochromic systems into small-molecule semiconducting matrices. Nature Commun. 6,
398		6330 (2015).
399	24	Borjesson, K. et al. Optically switchable transistors comprising a hybrid photochromic
400		molecule/n-type organic active layer. J. Mater. Chem. C 3, 4156-4161 (2015).
401	25	Irie, M. & Mohri, M. Thermally irreversible photochromic systems. Reversible
402		photocyclization of diarylethene derivatives. J. Org. Chem. 53, 803-808 (1988).
403	26	Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene
404		molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174-12277
405		(2014).
406	27	Hou, L., Zhang, X., Pijper, T. C., Browne, W. R. & Feringa, B. L. Reversible photochemical
407		control of singlet oxygen generation using diarylethene photochromic switches. J. Am. Chem.
408		Soc. 136, 910–913 (2014).
409	28	Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over
410		256 distinct levels based on an organic bicomponent blend. Nature Nanotech. 11, 769-775
411		(2016).
412	29	Herder, M. et al. Improving the fatigue resistance of diarylethene switches. J. Am. Chem. Soc.

413		137 , 2738–2747 (2015).
414	30	Herder, M. et al. Light-controlled reversible modulation of frontier molecular orbital energy
415		levels in trifluoromethylated diarylethenes. Chem. Eur. J. 23, 3743-3754 (2017).
416	31	Salleo, A., Chabinyc, M. L., Yang, M. S. & Street, R. A. Polymer thin-film transistors with
417		chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 4383-4385 (2002).
418	32	Ito, Y. et al. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic
419		field-effect transistors. J. Am. Chem. Soc. 131, 9396–9404 (2009).
420	33	Lee, TW. & Park, O. O. The effect of different heat treatments on the luminescence
421		efficiency of polymer light-emitting diodes. Adv. Mater. 12, 801-804 (2000).
422	34	Grell, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. A glass-forming conjugated
423		main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater.
424		9 , 798–802 (1997).
425	35	Perevedentsev, A., Chander, N., Kim, J. S. & Bradley, D. D. C. Spectroscopic properties of
426		poly(9,9-dioctylfluorene) thin films possessing varied fractions of β -phase chain segments:
427		enhanced photoluminescence efficiency via conformation structuring. J. Polym. Sci. Pol. Phys.
428		54 , 1995–2006 (2016).
429	36	Caruso, M. E., Lattante, S., Cingolani, R. & Anni, M. Microscopic investigation of the
430		poly(9,9-dioctylfluorene) photoluminescence dependence on the deposition conditions by
431		confocal laser microscopy. Appl. Phys. Lett. 88, 181906 (2006).
432	37	Lim, S. F. <i>et al.</i> Suppression of green emission in a new class of blue-emitting PF copolymers
433		with twisted biphenyl moieties. Adv. Funct. Mater. 15, 981–988 (2005).
434	38	List, E. J. W., Guentner, R., Scanducci de Freitas, P. & Scherf, U. The effect of keto defect
435		sites on the emission properties of polyfluorene-type materials. Adv. Mater. 14, 374-378
436		(2002).
437	39	Honmou, Y. et al. Single-molecule electroluminescence and photoluminescence of
438		polyfluorene unveils the photophysics behind the green emission band. <i>Nature Commun.</i> 5,
439		4666 (2014).
440	40	Gong, X. et al. Stabilized blue emission from polyfluorene-based light-emitting diodes:
441		elimination of fluorenone defects. Adv. Funct. Mater. 13, 325-330 (2003).
442	41	Hepp, A. et al. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev.
443		<i>Lett.</i> 91 , 157406 (2003).
444	42	Santato, C. et al. Tetracene-based organic light-emitting transistors: optoelectronic properties
445		and electron injection mechanism. Synth. Met. 146, 329-334 (2004).
446	43	Roelofs, W. S. C., Adriaans, W. H., Janssen, R. A. J., Kemerink, M. & Leeuw, D. M. d. Light
447		emission in the unipolar regime of ambipolar organic field-effect transistors. Adv. Funct.
448		Mater. 23, 4133–4139 (2013).
449	44	Redecker, M., Bradley, D. D. C., Inbasekaran, M. & Woo, E. P. Mobility enhancement through
450		homogeneous nematic alignment of a liquid-crystalline polyfluorene. Appl. Phys. Lett. 74,
451		1400–1402 (1999).
452	45	Hsu, B. B. Y. et al. Ordered polymer nanofibers enhance output brightness in bilayer
453		light-emitting field-effect transistors. ACS Nano 7, 2344–2351 (2013).
454	46	Lu, H. H., Liu, C. Y., Chang, C. H. & Chen, S. A. Self-dopant formation in
455		poly(9,9-di-n-octylfluorene) via a dipping method for efficient and stable pure-blue
456		electroluminescence. Adv. Mater. 19, 2574–2579 (2007).

457 47 Zacharias, P., Gather, M. C., Köhnen, A., Rehmann, N. & Meerholz, K. Photoprogrammable
458 organic light-emitting diodes. *Angew. Chem. Int. Ed.* 48, 4038–4041 (2009).

48 Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. *Adv.*460 *Mater.* 19, 1452–1463 (2007).

461

462 Acknowledgement

463 We acknowledge funding from the European Commission through the Marie Sklodowska-Curie ITN project iSwitch (GA-642196), the Marie Sklodowska-Curie 464 465 ITN project SYNCHRONICS (GA-643238), the ERC projects SUPRAFUNCTION 466 (GA-257305) and LIGHT4FUNCTION (GA-308117), the Agence Nationale de la Recherche through the Labex project CSC (ANR-10-LABX-0026 CSC) within the 467 468 Investissement d'Avenir program (ANR-10-120 IDEX-0002-02), and the 469 International Center for Frontier Research in Chemistry (icFRC) as well as the German Research Foundation (via SFB 765 and SFB 951). FC is a Royal Society 470 471 Wolfson Research Merit Award holder.

472

473 Author contributions

474

475 L.H., X.Z., and P.S. conceived the experiments. M.H., B.M.S., M.P., and S.H. 476 synthesized the DAEs. L.H. did UV/visible absorption and PL measurements, and 477 X.Z. performed AFM (the F8/DAE tBu sample by G.C.) and CV measurements. L.H. and X.Z. designed the devices, performed the electrical experiments and carried out 478 emitting patterns writings. G.F.C., G.C., and F.C designed and built the device 479 characterization setup. G.F.C., G.C., and L.H. performed the quantitative OLET 480 481 device characterization. All authors discussed the results and contributed to the 482 interpretation of data. L.H., X.Z., and P.S. co-wrote the paper with inputs from all 483 co-authors.

484

485 **Competing interests**

486 The authors declare no competing financial interests

487

488 Additional information

- 489 Supplementary information is available in the online version of the paper. Reprints
- 490 and permissions information is available online at <u>www.nature.com/reprints</u>.
- 491 Correspondence and requests for materials should be addressed to P.S.

Supplementary Information

- 1
- 2

3

Optically switchable organic light-emitting transistors

	Lili Hou ¹ , Xiaoyan Zhang ¹⁴ , Giovanni F. Cotella ² , Giuseppe Carnicella ² , Marti		
	Herder ³ , Bernd M. Schmidt ³ , Michael Pätzel ³ , Stefan Hecht ^{3,*} , Franco Cacialli ^{2,*} ,		
	Paolo Samorì ^{1,*}		
/	1 Université de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France. Email: samori@unistra.fr		
8	2 Department of Physics and Astronomy (CMMP Group) and London Centre for Nanotechnology, University College Londo	n,	
9	Gower Street, London WC1E 6BT, United Kingdom. Email: f.cacialli@ucl.ac.uk		
10	3 Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, German	y.	
11	Email: sh@chemie.hu-berlin.de		
	4 Present address: Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenbur	g,	
13	Sweden.		
14			
15			
16	Table of Contents		
17	1. Materials and characterization		
18	2. Device fabrication		
19	3. Device characterization		
20	4. UV/visible absorption and photoluminescence spectra of light-emitting polymers		
21	5. Cyclic voltammetry (CV) measurement of light-emitting polymers		
22	6. Atomic force microscopy (AFM) images of light-emitting polymers and light-emittin	g	
23	polymer/DAE films		
24	7. UV/visible absorption spectra and photochemical switching of neat DAE films		
25	8. UV/visible absorption spectra of light-emitting polymer/DAE films		
26	9. LUMO levels of light-emitting polymers and DAEs		
27	10. Optical micrographs of F8T2 OLET		
28	11. Transfer curve and EL of neat light-emitting polymers based OLETs	0	
29	12. Reversibility of neat light-emitting polymers based OLETs	1	
30	13. PL spectra of light-emitting polymer/DAE films under light irradiation	2	
31	14. References	3	
32			

34 1. Materials and characterization

Butyl acetate (Sigma-Aldrich, \geq 99%, anhydrous), *p*-xylene (Sigma-Aldrich, \geq 99%, 35 anhydrous), and ethyl acetate (Sigma-Aldrich, 99.8%, anhydrous) were used without any 36 further 37 purification. Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] 38 (MDMO-PPV, Sigma-Aldrich), poly(9,9-di-n-octylfluorenyl-2,7-diyl) (F8, Sigma-Aldrich), 39 and poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2, Ossila) were used as received. The detailed synthesis, photochemistry in solution and energy level determination of DAE_tBu 40 and DAE F was previously reported¹⁻³. UV/visible absorption spectra were recorded on a 41 JASCO 650 spectrometer under ambient conditions. Photoluminescence spectra were 42 43 measured on a Cary Eclipse fluorescence spectrophotometer under ambient conditions. AFM 44 images were recorded using a Nanoscope (Veeco Multimode V) in tapping mode at ambient conditions. 45

46

Cyclic voltammetry (CV) was carried out on a PGSTAT204 instrument (Autolab). A 47 48 three-electrode configuration was used, consisting of a platinum disc as the working electrode 49 (2 mm diameter), a platinum wire as the counter electrode and a silver/silver chloride electrode as the reference electrode. Samples for CV measurement were prepared by 50 51 drop-casting the respective polymer solution in chloroform onto the working electrode. The 52 measurement was performed in 0.1 M Bu₄NPF₆ dissolved in acetonitrile. Ferrocene was used as an external standard. Onset oxidation potential is used to calculate the HOMO level of 53 polymers, based on the equation $E^{HOMO} = -e \cdot E_{oxvsFc/Fc+} - 4.8 \text{ eV}$ used by Pommerehne et al⁴. 54

55

The irradiation on the OLETs was carried out inside the glove-box, a UV LED (Thorlabs 56 57 LED315W, 0.6 mW, 315 nm, FWHM = 10 nm) and a green LED (Thorlabs LED528EHP, 58 7 mW, 528 nm, FWHM = 35 nm) were used. In general, the PSS was reached under UV 59 irradiation for 10 mins and recovery within 90 s under visible light. For UV/visible absorption 60 and PL spectroscopies, UV light irradiation was carried out using an analysis lamp (312 nm, 61 6 W, Herolab) for 20 s, and visible light irradiation was performed using a white lamp (Dolan-Jenner MI-150 Illuminator) coupled with a long pass filter (> 520 nm) for 30 s. The 62 patterned images of the OLETs were created by using a focused laser (focus ca. $2 \mu m^2$, 63 532 nm, 60 mW cm⁻²), and the writing process was controlled under a microscope with a $50 \times$ 64 objective on a Renishaw 1000 Raman setup. 65

66

67 **2. Device fabrication**

Devices were fabricated on the substrates of n^{++} Si as bottom gate and 230 nm of thermally 68 grown SiO₂ as the gate dielectric (IPMS Fraunhofer Institute). Interdigitated gold source and 69 70 drain electrodes are prepatterned with a channel width of 1 cm and a length of $2.5 \,\mu$ m. The 71 substrates were cleaned by ultrasonication in acetone and isopropanol for 20 min, blow dried 72 with a nitrogen flow, and then treated by ozone for 5 min (Novascan, Digital UV Ozone 73 system) followed by 25 min incubation in dark before transferring the device into a glove box. 74 A self-assembled monolayer of OTS (Sigma-Aldrich, $\geq 90\%$) was chemisorbed on SiO₂/Si substrates by immersion of the substrates in a 10 mM OTS in toluene at 60 °C for 2 h before 75 76 they were left at room temperature overnight in the glove box, and washed with toluene and 77 isopropanol.

The green emitting layer was spun from a 10 mg/mL solution of F8T2 in anhydrous *p*-xylene, and the thickness was ≈ 80 nm. The device was annealed at 170 for 20 min. DAE_tBu was dissolved in anhydrous *n*-butyl acetate at a concentration of 1 mg/mL, and spun on top of the F8T2 film. Subsequent annealing at 80 for 1 h was applied to allow the diffusion of DAE molecules into F8T2 matrix.

84

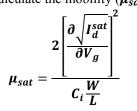
The red emitting layer was spun from an 8 mg/ml solution of MDMO-PPV in anhydrous *p*-xylene, and the thickness was ≈ 80 nm. The device was annealed at 170 for 20 min. DAE_tBu was dissolved in anhydrous *n*-butyl acetate at a concentration of 1 mg/mL, and spun on top of the MDMO-PPV film. Subsequent annealing was applied at 80 for 1 h to allow the diffusion of DAE molecules into MDMO-PPV matrix.

90

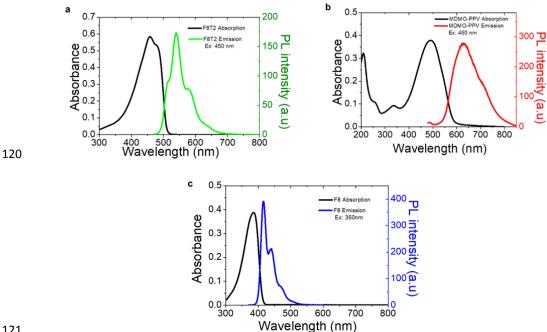
The blue emitting layer was spun from a 20 mg/mL solution of F8 in anhydrous *p*-xylene, and the thickness was ≈ 100 nm. The device was briefly annealed at 170 for 2 min. DAE_F was dissolved in anhydrous ethyl acetate with the concentration of 2 mg/mL, and spun on top of the F8 film. Subsequent annealing at 40 for 1.5 h was applied to allow the diffusion of DAE molecules into F8 matrix.

96

The neat light-emitting polymers based OLETs were prepared using the same method asdescribed above without deposition of DAEs.


99

100 **3. Device characterization**


101 Devices were characterized in a dry and nitrogen-filled Mbraun glove-box. Electrical 102 characteristics of OLETs were collected through the PM5 Cascade Microtech probe station 103 connected with a Keithley semiconductor analyzer 4200-scs. OSOLETs transfer 104 characteristics was collected by scanning the gate voltage from 0 V to -100 V or 0 V to -120 V, 105 with the drain voltage set at -100 V or -120 V. The light output of devices was calculated from 106 the photocurrent signal of a calibrated silicon photodiode, amplified by the Eg&G Instruments 5182 preamplifier. The area of the photodiode was 15 mm², the distance between device and 107 photodiode amounted to 5.2 mm, and the area of device emission was 0.025 mm². Electrical 108 109 and optical characteristics were collected simultaneously. Device irradiation was performed in 110 glovebox via LEDs connected to a remotely controllable microprocessor. The EL spectra of 111 emitting devices were collected by connecting an optical fibre through a feedthrough in the 112 glove-box to an ANDOR-Shamrock 163 spectrometer coupled to an ANDOR-Newton 113 charge-coupled device (CCD) unit held outside the glove-box. The EL images were recorded 114 on a microscope (Leica S6D) with a charge coupled device (CCD) colour camera.

115

116 The following equation is used to calculate the mobility (μ_{sat}) of our devices.

- Where C_i is the capacitance of the dielectric $(1.5 \times 10^{-8} \text{ F cm}^{-2})$, W is the width of the 117
- channel, L is the length of the channel, V_g is the gate voltage. 118
- 4. UV/visible absorption and photoluminescence (PL) spectra of light-emitting polymers 119

122 Fig. S1. UV/visible absorption and PL spectra of a film of a, F8T2, b, MDMO-PPV, and c, F8.

- The films of neat light-emitting polymers were prepared on quartz substrates using the same 123
- 124 conditions and procedures as OSOLETs but without incorporation of DAEs.
- 125
- 126

127 5. Cyclic voltammetry (CV) measurement of light-emitting polymers

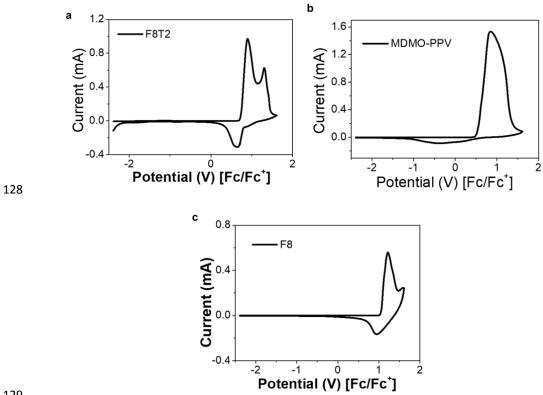
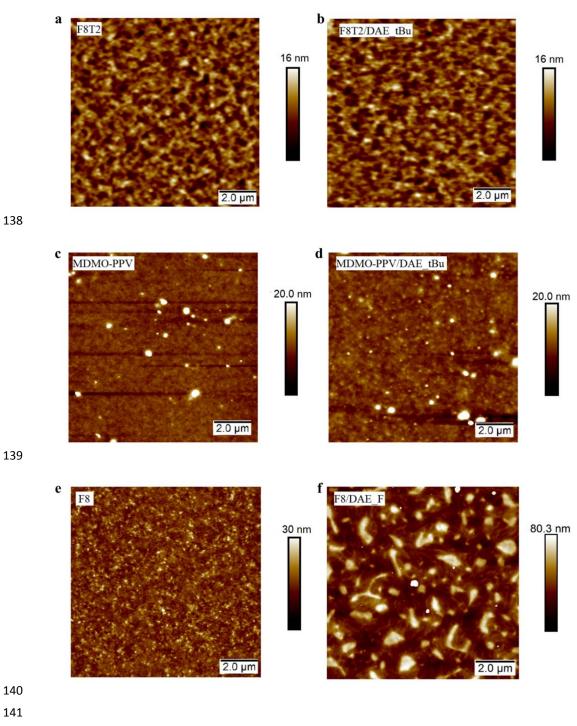
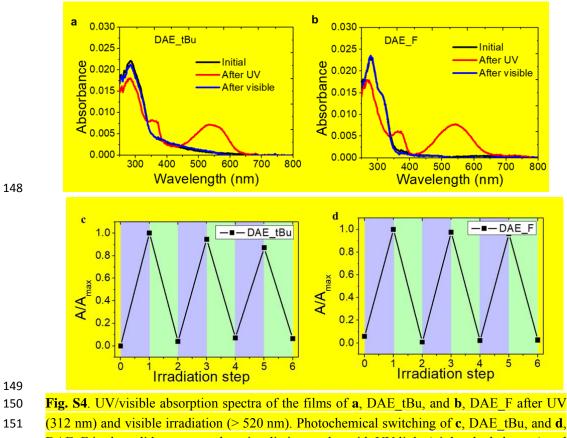



Fig. S2. CV curves of a, F8T2, b, MDMO-PPV, and c, F8 on a platinum disc measured in 130

acetonitrile containing 0.1 M Bu₄NPF₆ at 25 °C at a scan rate of 0.03 V/s, using a 131 132 three-electrode configuration.

133


- 135 6. Atomic force microscopy (AFM) images of neat light-emitting polymers and light
- 136 emitting polymer/DAE films
- 137

- **Fig. S3**. AFM images of the film of **a**, neat F8T2, **b**, F8T2/DAE_tBu, **c**, neat MDMO-PPV, **d**,
- 143 MDMO-PPV/DAE_tBu, e, neat F8, and f, F8/DAE_F.
- 144
- 145

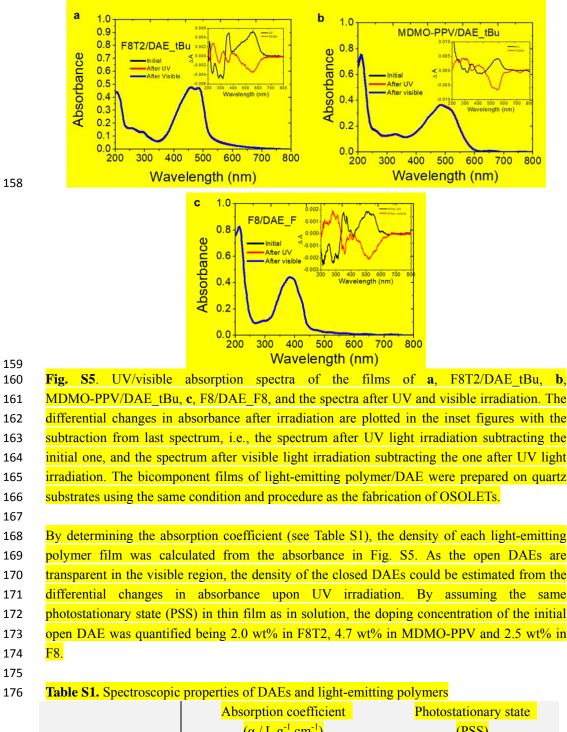
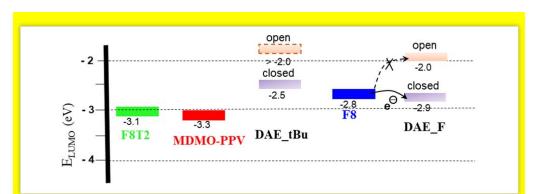
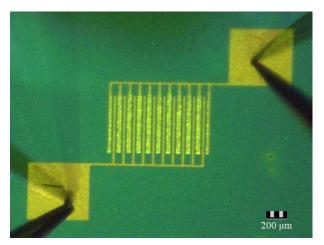

146 **7. UV/visible absorption spectra and photochemical switching of neat DAE films**

Fig. 54. OV/Visible absolption spectra of the finits of **a**, DAE_tBu, and **b**, DAE_F after OV (312 nm) and visible irradiation (> 520 nm). Photochemical switching of **c**, DAE_tBu, and **d**, DAE_F in the solid state over three irradiation cycles with UV light (violet shaded areas) and visible green light (green shaded areas). The absorbance at $\lambda_{abs} = 530$ nm is normalized to the maximum absorbance after the first UV irradiation step. DAEs were spin-coated on quartz substrates by a solution of DAE_tBu (1 mg/mL in anhydrous *n*-butyl acetate) and DAE_F 2 mg/mL in anhydrous ethyl acetate), respectively.


157 **8. UV/visible absorption spectra of light-emitting polymer/DAE films**

	Absorption coefficient	Photostationary state
	$(\alpha / L g^{-1} cm^{-1})$	(PSS)
DAE_tBu closed	<mark>32 (523 nm)</mark>	<mark>90 %</mark>
DAE_F closed	<mark>20 (512 nm)</mark>	<mark>96 %</mark>
F8T2	<mark>93 (485 nm)</mark>	-
MDMO-PPV	<mark>75 (490 nm)</mark>	-
F8	<mark>102 (385 nm)</mark>	-

177
178 9. LUMO levels of light-emitting polymers and DAEs


185

181 **Scheme. S1.** LUMO levels of light-emitting polymers and DAEs in their open (orange) and 182 closed (purple) form³. The values of light-emitting polymers were calculated from $E^{LUMO} = E$ 183 $H^{OMO} + Eg^{Opt}$, where Eg^{Opt} was determined based on the UV absorption spectra of light 184 emitting polymers (Fig. S1), in line with previously reports⁵⁻⁷.

186 The LUMO levels of DAE tBu both in its open and closed form are higher in energy than the LUMO levels of F8T2 and MDMO-PPV, and there is no driving force for electron transfer 187 from green and red polymer to either photoisomer of DAE tBu⁸. Because of these reasons, 188 the light irradiation would not result in any photomodulation in electron transport. The 189 difference in the LUMO levels of DAE F in the closed form and F8 amounts to 0.1 eV, which 190 191 could in principle result in shallow trapping for electrons upon UV irradiation. However, 192 since F8 is a very good hole transporting material and exhibits poor electron transport 193 characteristics, we are not able to observe the presence of electron transport and light modulation thereof in our F8 based OLET. 194

- 195
- 196 **10. Optical micrographs of F8T2 OLET**

197

198

Fig. S6. Optical micrographs of F8T2 OLET ($L = 20 \ \mu m$, $W = 1 \ cm$) and its emission zone at $V_g = -100 \ V$ and $V_d = -100 \ V$.

11. Transfer curve and EL of neat light-emitting polymers based OLETs

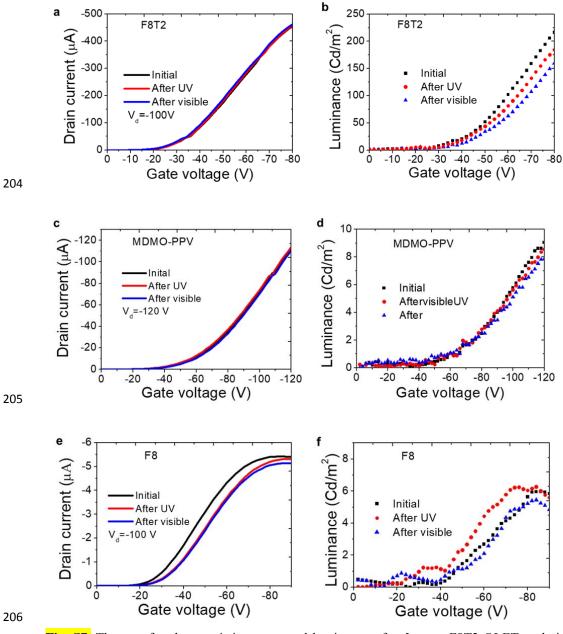
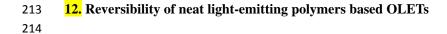
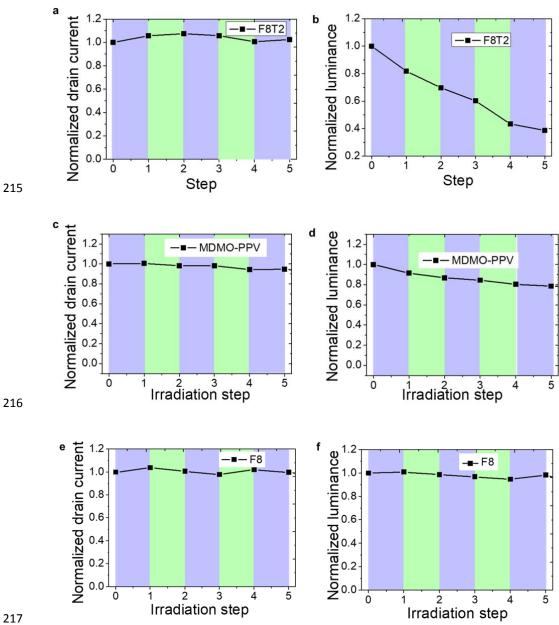
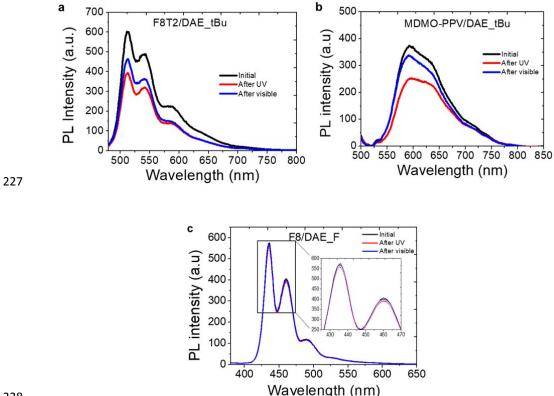




Fig. S7. The transfer characteristic curves and luminance of a, b, neat F8T2 OLET at drain voltage -100 V, c, d, MDMO-PPV OLET at drain voltage -120 V, and e, f, F8 OLET at drain voltage -100 V, and their optical switching upon UV and visible light irradiation.



218 Fig. S8. Photo switching of transistor characteristics and optoelectronic characteristics of a, b, 219 neat F8T2, c, d, MDMO-PPV and e, f, F8 based OLETs over three irradiation cycles. The reduction in luminance of F8T2 with the light irradiation was due to the high drain current of 220 the pure F8T2 OLET⁹⁻¹¹. 221

224 **13.** PL spectra of light-emitting polymer/DAE bicomponent films under light 225 irradiation. 226

229 Fig. S9. PL spectra of the films of a, F8T2/ DAE tBu, b, MDMO-PPV/DAE tBu, c, 230 F8/DAE F, and their response after UV and visible light irradiation. The films of 231 light-emitting polymer/DAE were prepared on quartz substrates using the same condition and 232 procedure as the fabrication of OSOLETs.

Decrease in PL intensity of F8T2/DAE tBu, MDMO-PPV/DAE tBu and F8/DAE F films 233 were observed after UV irradiation. The ratio of PL intensity at the highest emissive peak 234 235 between before and after UV irradiation was ca. 1/0.63, 1/0.68 and 1/0.97, respectively, which 236 is consistent with the area of spectral overlap between absorption spectra of the closed form 237 of DAEs and the PL spectra of the emitting polymers. Further irradiation with visible light, resulting an increase of PL intensity. The non-complete recovery of PL intensity can be 238 239 explained by the degradation of the emitting polymers under ambient conditions, especially in 240 the case of F8T2 and MDMO-PPV.

242	14. References
243	
244	1. Gemayel, M. E. et al. Optically switchable transistors by simple incorporation of
245	photochromic systems into small-molecule semiconducting matrices. Nature Commun. 6,
246	6330 (2015).
247	
248	2. Herder, M. et al. Improving the fatigue resistance of diarylethene switches. J. Am. Chem.
249	Soc. 137, 2738–2747 (2015).
250	
251	3. Herder, M. et al. Light-controlled reversible modulation of frontier molecular orbital
252	energy levels in trifluoromethylated diarylethenes. Chem. Eur. J. 23, 3743-3754 (2017).
253	
254	4. Pommerehne, J. et al. Efficient two layer leds on a polymer blend basis. Adv. Mater. 7,
255	551–554 (1995).
256	
257	5. Sirringhaus H. et al. Mobility enhancement in conjugated polymer field-effect transistors
258	through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406-408 (2000).
259	
260	6. Morgado J. Improved efficiency of light-emitting diodes based on polyfluorene blends upon
261	insertion of a poly(p-phenylene vinylene) electron- confinement layer. Appl. Phys. Lett. 80, 2436
262	(2002)
263	
264	7. Beek W. J. E., Wienk M. M. & Janssen R. A. J. Efficient hybrid solar cells from zinc oxide
265	nanoparticles and a conjugated polymer. Adv. Mater. 16, 1009-1013 (2004)
266	
267	8. Borjesson, K. et al. Optically switchable transistors comprising a hybrid photochromic
268	molecule/n-type organic active layer. J. Mater. Chem. C 3, 4156-4161 (2015)
269	
270	9. Baldo M. A., Holmes R. J. & Forrest S. R. Prospects for electrically pumped organic lasers.
271	Phys. Rev. B 66, 035321 (2002)
272	
273	10. Nakanotani H., Sasabe H. & Adachi C. Singlet-singlet and singlet-heat annihilations in
274	fluorescence-based organic light-emitting diodes under steady-state high current density. Appl.
275	Phys. Lett. 86, 213506 (2005)
276	
277	11. Kasemann D., Brückner R., Fröb H. & Leo K. Organic light-emitting diodes under high
278	currents explored by transient electroluminescence on the nanosecond scale, Phys. Rev. B 84,
279	115208 (2011)
280	