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Raúl Sánchez Galán

Abstract

The aim of this thesis is to investigate the moduli space of framed
monopoles with structure group SU(N) over the radial compactification of
R3. The moduli space of monopoles is provided with the differential struc-
ture of a smooth manifold in a similar way as it is done for instantons, that
is, via a slice theorem. Later, the dimension of this manifold is computed
using an index formula developed by C. Kottke. This result agrees with the
one coming from the bijection with rational maps obtained by S. Jarvis.

This thesis was completed under the supervision of Professor Michael Singer.
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Impact Statement

This thesis might be useful to researchers, as well as other people interested
in widening their knowledge of Gauge Theory and Mathematical Physics. In
particular, it explores magnetic monopoles in R3 with arbitrary symmetry
breaking at infinity. It shows some applications from the analysis on mani-
folds with boundary, b-Pseudodifferential operators, and index formulas.
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Chapter 1

Introduction.

Monopoles are solitons in R3 that generalise the concept of magnetic U(1)-
monopoles introduced by Dirac in 1931. This generalisation comes from
considering a principal SU(N)-bundle over R3 and looking for solutions
(A,Φ) to the Bogomolny equations

∗ FA = dAΦ. (1.1)

Here FA is the curvature of a connection A, and Φ is the Higgs field, i.e. a
section of the adjoint bundle adP . These equations are supplemented with
some boundary conditions and solutions are taken modulo gauge transfor-
mations that tend to the identity at infinity.

The purpose of this thesis is to provide the space of monopoles with a
manifold structure and to compute the dimension of this manifold.

The manifold structure is proved following the lines of irreducible anti-
self-dual Yang-Mills connections over a compact four-manifold. In particu-
lar, a Coulomb gauge fixing condition is shown to exist. This provides slices
on which the pre-image of 0 by the Bogomolny map gives a local model for
the moduli space of these framed monopoles. The dimension of this manifold
is then computed via a Callias-type index formula developed by C. Kottke.

Chapter outline

In Chapter 2 we give some background on the theory of monopoles. We
revise some concepts of particle physics, recall the well-known monopoles
with structure group SU(2) and define the mass and charge of a monopole.

In Chapter 3 we formulate the definition of a monopole in terms of the
radial compactification of R3. Then using weighted b and sc Sobolev spaces
introduced by R. Melrose, hybrid Sobolev spaces, similar to those defined
in [32], are presented. With the aid of these spaces, a configuration space
is introduced and a Coulomb gauge fixing condition is shown to exist. This
allows us to have local models on the space of solutions to the Bogomolny
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10 CHAPTER 1. INTRODUCTION.

equations in the slices produced by the Coulomb gauge fixing condition.
Then it is shown that these hybrid Sobolev spaces are just an artefact and
that in fact, these monopoles are gauge equivalent to the usual ones. Finally,
it is shown that there is a natural hyperkähler metric on these moduli spaces.

In Chapter 4 we compute the dimension of the moduli space of framed
monopoles, obtaining four times the sum of the topological and holomorphic
charges. This is done using an index formula for asymptotically conic three-
manifolds by C. Kottke.



Chapter 2

Review on Monopole theory.

2.1 Electromagnetism, motivation for monopoles.

Before delving into the development and theory of monopoles, some features
of classical electromagnetism need to be discussed. Then we will see why
monopoles were introduced by Dirac and how in some sense it is natural to
consider the generalisation to non-abelian gauge groups.

The magnetic field ~B, unlike the electric field ~E (we use the over arrow to
distinguish it from a vector bundle and to make more apparent the relation
with the physical theory of electromagnetism) belongs to what tradition-
ally was called ‘axial vectors’. The components of these types of vectors do
not change sign in the same way as the canonical basis in R3 does under
a parity transformation, i.e. under a transformation of O(3) \ SO(3) the
magnetic field changes the sign with respect to the transformed basis. To
make this more intuitive think about a loop in the {z = 0}-plane carrying
some electric current, with an associated magnetic field pointing in the pos-
itive z-direction. We now consider the reflection of this system by a plane
mirror outside the loop intersecting orthogonally the plane {z = 0}. With
a suitable choice of axis, this would be just the change x 7→ −x. In the
new system the magnetic field will point in the negative z-direction instead
of its mirror image (the positive z-direction) as a ‘true’ vector would have
done. After this behaviour with orientations, it seems natural then to con-
sider ~B as a 2-form and ~E as a 1-form over R3. This corresponds to the
traditional point of view where both are considered vector fields on R3 after
the application of the Hodge star operator on the magnetic field.

Maxwell’s equations for the magneto-static field are div ~B = 0 (d ~B = 0)
and curl ~B = 0 (δ ~B = 0), that is, the magnetic field is a harmonic 2-form.
If we add a time dimension to our space, and consider then R × R3 as our
space-time, we can combine both fields into the electromagnetic field :

F = ~B + ~E ∧ dt. (2.1)

11



12 CHAPTER 2. REVIEW ON MONOPOLE THEORY.

To be more precise, if we choose a space-time decomposition M = R × R3,
a 2-form F in M corresponds to a pair of vector fields ( ~E, ~B) in R3 via,

∧2
(
R⊕ R3

)
=
(
∧1R⊗ ∧1R3

)
⊕
(
∧2R3

) ∼= R3 ⊕ R3. (2.2)

Using equation (2.1), Maxwell’s equations can now be rewritten as

dF = 0, (2.3)

d∗F = ∗d ∗ F = J. (2.4)

Where the Hodge star is with respect to the Lorentzian metric, i.e. signature
(−,+,+,+), and volume element dt ∧ dx1 ∧ dx2 ∧ dx3.

It can be observed that we recover Maxwell’s equation for vacuum when
the electric four-current J = (ρ,~j) vanishes, and in this case the electromag-
netic field is a harmonic 2-form.

Using the first equation and the fact that H2(M,Z) = 0, we can consider
F being the curvature of an Hermitian connection A on a trivial complex
line bundle over M . Dealing with complex bundles is not a problem to
obtain reasonable physical solutions, since due to the linearity of Maxwell’s
equations the real part and complex part of a solution are still solutions.
It can be observed that for a fixed time t0, the pull-back of the curvature
under the inclusion ι(p) = (t0, p) of R3 into M is just the magnetic field.
However after performing a Lorentzian isometry in M the pullback of the
curvature will also have an electric term, showing that these two fields are
intrinsically intertwined, and depend on how we chose the splitting of space
and time in our manifold.

A crucial difference between the electric field and the magnetic, is that
the source for the latter has never been isolated in contrast to the case of
an electron. The fundamental objects found to produce a magnetic field (in
particular a magnetic dipole) are elementary charged particles with non-zero
spin. Nevertheless, the existence of magnetic monopoles is predicted by all
Grand Unified Theories [52].

By analogy with electrostatics, if a point-source of magnetic field existed,
then assuming it is situated at the origin of R3, it would have a magnetic
charge density ρm = kδ0, where k is a real number representing the magnetic
charge. This would produce a harmonic potential of the form:

ΦD = −i k
2r

+ φ, (2.5)

where φ is a constant. The factor i is introduced so that we can think of
ΦD as a section of a u(1)-vector bundle over R3 \ {0}.

The force due to such a potential is ik dr
2r2 , whose Hodge dual is the

magnetic field,

~B = i
k

2
sin θdθ ∧ dϕ. (2.6)
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This is a multiple of the volume form in S2, which is homotopic to R3 \
{0}, and in particular, if the magnetic charge k is an integer, i

2π
~B is an

integral closed 2-form in S2. Therefore the magnetic charge parametrises
H2(S2,Z) and by the isomorphism with H1(S2, C∗) (the sheaf cohomology
with coefficients in non-vanishing C∞ functions) given by the Chern class,
it parametrizes complex line bundles over the sphere.

It can be observed, that in the present case the magnetic potential de-
termines the magnetic field uniquely. More precisely, by Kostant’s theorem,
up to gauge transformations, there exists a unique U(1)-bundle over S2 with
connection A, such that its curvature is ~B = ∗dΦD. 1

From the expression of the curvature, we see that the inclusion of the fac-
tor 1

2 in the magnetic potential is so that the magnetic field is the curvature
of a U(1)-bundle isomorphic to O(−k).

The change in phase in the wave function of an electron travelling around
a closed loop surounding an infinitely long solenoid, which represents the
magnetix flux of a monopole along a line, is proportional to the electric
charge of the electron e, times the integral along the path of the magnetic
potential, i.e. the connection. In order to have a well-defined wave func-
tion, this phase should be a multiple of 2πn, leading to Dirac’s quantisation
condition [6],

ek = 2πn, wheren ∈ Z. (2.7)

Moreover, it is believed that any physical theory explaining the quantisation
of electric charge would predict the existence of monopoles [46].

We have seen that geometrically it is natural for the magnetic charge k to
take values in a discrete set, such as the integers, therefore the quantisation
condition explains the existence of the smallest electric charge.

Another relation between the magnetic and electric charges can be seen
by first studying a symmetry that appears in Maxwell’s equations when the
electric four-current vanishes. This symmetry is given by the interchange
of F and ∗F . It is called a duality transformation and in terms of the
three-dimensional fields is just:

~E 7→ − ~B, (2.8)

~B 7→ ~E. (2.9)

In the case of existence of monopoles in space-time, there would be
a magnetic four-current Jm = (ρm,~jm) that would have to be added to
Maxwell’s equations, the extension to this case of the duality transforma-
tion would be, {

~E 7→ − ~B, ~B 7→ ~E,

q ↔ k.
(2.10)

1for non-abelian structure groups this is not the case and a monopole will consist of a
pair given by a connection and Higgs field.
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This would lead to the very desirable condition that there is a symmetry
interchanging the electric and magnetic charge. An immediate consequence
of this symmetry together with Dirac’s quantisation condition is that in
perturbative expansions the coupling constant can be exchanged with its
inverse.

More concretely, this symmetry in terms of the U(1)-curvature tensor
would imply to modify Maxwell’s first equation dF = 0 by changing the
curvature by its Hodge dual and adding the magnetic four-current:

∗ dF = Jm. (2.11)

Unfortunately, Bianchi identity prevents this equation from holding unless
the magnetic current is zero. We will see how this is can be fixed by up-
grading the structure group of the bundle, but first it is desirable to revise
some more physics from a geometric point of view.

2.2 Physics of Monopoles.

2.2.1 Particle Physics.

General references for the material in this section include [16], [37], Chapter
11 of [45] and [27].

To describe a physical system, in general it is preferable to work with the
action S (or Lagrangian L, whose integral over time gives the action) instead
of the equations of motion. One of the reasons is that the action for a com-
posite system is obtained by adding the initial actions and the interaction
terms, where for the equations of motion the procedure is not that trivial.
Moreover, the equations of motion can be obtained by the critical points of
the action, i.e. the Euler-Lagrange equations. In particular forces between
particles will emerge from these equations and there is no need of adding by
hand extra equations like the Coulomb force in Electromagnetism.

In classical mechanics the Lagrangian is given by L = K − P (kinetic
energy − potential energy). For a free particle the potential is 0 and the
Lagrangian has only the free term: L = 1

2mṙ
2 which gives, via the Euler-

Lagrange equations, Newton’s law mr̈ = 0.
For a relativistic field theory, we can start with the well known relation

of the 4-momentum pµ = (E, ~p) in special relativity,

pµpµ = m2. (2.12)

Using the quantum correspondence ~p 7→ −∇ and E 7→ ∂
∂t , and substituting

in the last equation we obtain the Klein-Gordon equation for a scalar field
of mass m (by this we mean that once it is quantised, it corresponds to a
particle with mass m in natural units where ~ = 1 = c),

∂µ∂µφ−m2φ = 0. (2.13)
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This is the Euler-Lagrange equation for the Lagrangian (spatial)-density

L = −1

2

(
∂µφ∂

µφ+m2φ2
)
. (2.14)

It can be observed that the quadratic term in the field has a coefficient of
the form −α2, with α a positive constant representing the mass. The sign
here is important, since there might happen to exist a potential term in the
Lagrangian density with a coefficient of the form +α2, and in this case it
does not represent the mass, we shall give a more general definition of the
mass term in the Lagrangian density in the next subsection.

Until now a field was just a function on Rn, but in a general space-time
manifold M , a field is a section of a complex vector bundle P×ρV associated
with a principal G-bundle π : P →M and a representation ρ of its structure
group. We will see that in the case of monopoles for example, the Higgs field
is a section of adP .

The Standard Model deals with a vector bundle over Minkowski space
which is the tensor product of two vector bundles. The first one is associated
to a principal bundle whose structure group is the universal cover of the
identity component of the Poincaré group, R4oSpin(3, 1), and the second to
a principal bundle with the structure group (known as the internal symmetry
group),

GSM = [SU(3)× SU(2)× U(1)]/Z6, (2.15)

where Z6 is certain subgroup of the centre of SU(3)× SU(2)× U(1) which
acts trivially on all known particles in the Standard Model [4].

As we are not going to deal with dynamics of particles, such as cross-
sections, scattering, decays... (these topics can be found in [51] and [12]) we
will not need Quantum Field Theory and the infinite dimensional unitary
representations of the Poincaré group (Spin(3, 1) is isomorphic to the non-
compact group SL(2,C)). Instead, we will consider elementary fermions to
be sections of the bundle

S ⊗ E, (2.16)

over Minkowski space, where S is either SL, the complex linear representa-
tion (1/2, 0) of SL(2,C), i.e. its natural action on C2, or is its complex linear
conjugate (0, 1/2) = SR, (see Chapter 2 of [31]) and E is a tensor product of
vector bundles associated with irreducible representations of the factors in
GSM . Table 1 in [4] shows the precise correspondence between elementary
fermions and some of the irreducible representations of the structure group
Spin(3, 1)×GSM .

The usual derivatives make no sense in the Lagrangian now, and the
rule for constructing a valid Lagrangian is to substitute these derivatives by
covariant derivatives (so we actually need a connection ω ∈ Ω1(P, g)G in our
original principal bundle). The connection on the principal bundle gives a
covariant derivative via the operator d + ρ∗(ω) acting on C∞(P,V)G, that



16 CHAPTER 2. REVIEW ON MONOPOLE THEORY.

in a local trivialisation of P given by a local section s, corresponds to the
covariant derivative d+A acting on sections of the associated bundle (here
A = s∗(ω)). The connection is a new field introduced in the theory called a
gauge field and it is responsible for the transmission of an interaction. For
example, the Dirac equation

iγµ∂µψ −mψ = 0, (2.17)

where ψ is a Dirac spinor (a section of the spin bundle S = SL ⊕ SR),
comes from the Lagrangian L = iψγµ∂ψ − mψψ, with the γµ matrices
representing the Clifford action of the standard basis of Minkowski space.
After twisting this bundle with a vector bundle E, with structure group G,
the spinor is promoted to a section of the twisted bundle S⊗E, where there
is a tensor product connection coming from the Levi-Civita connection on
S and a connection A on E. In this way, substituting the usual derivatives
by covariant derivatives dA = ∂µ+ iqAµ (it is standard in physics to write it
in this way, so in the case of G = SU(n), the matrix A is self-adjoint, so it
corresponds to an observable, and the real number q represents the ‘charge’
of the particle to which the gauge field is coupled to) and expanding out the
expression we obtain the Dirac Lagrangian density,

LD = iψγµ∂µψ −mψψ − qψγµAµψ. (2.18)

The quantisation of the gauge fields gives vector particles, which are rep-
resented by Aµ, which are also called gauge bosons. They are the force
carriers that mediate a fundamental interaction. Mathematically speaking,
they come from the complexified adjoint representation of G, so their num-
ber equals the dimension of G. For example, for G = U(1) there is only one
gauge boson and corresponds to the photon.

Having introduced a new physical variable in the Lagrangian we should
also add to it the free term, which by extension of the electromagnetic theory
it will be just |FA|2. The Euler-Lagrange equations of the new Lagrangian
with respect to the gauge field yields the generalised Maxwell’s equations

d∗AF = ∗dA ∗ FA = J, (2.19)

where J is the current produced by the Dirac particles and it is given by

Jµ = qψγµψ. (2.20)

Bianchi identity implies d∗AJ = 0. In the case of electromagnetism, Stoke’s
theorem gives the well-known conservation of charge

∫
J0 over time as long

as J i decays sufficiently fast as |x| 7→ ∞.
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2.2.2 Mass in the Standard Model.

To determine the masses of particles appearing in a Lagrangian density, the
first step is to identify the potential term P(φ1, ..., φn) and find its minima.
The ground state or vacuum is a section that achieves a minimum of this
potential. This is a solution to the Euler-Lagrange equations when the
kinetic term of the Lagrangian vanishes, i.e. it is a static solution. Then
the Lagrangian density is re-written in terms of the fields arising from the
Taylor expansion around the ground state.

The second step is to compute the Hessian of the Lagrangian density
with respect to non-derivative fields in this expansion (the field derivatives
are treated as an independent dynamical entity but we do not differentiate
with respect to them) and evaluate at the ground state. In this way we
obtain the mass matrix,

mab = −
(

∂L
∂ϕa∂ϕb

)
φ=φ0

, (2.21)

where the ϕ are the fields in the expanded Lagrangian and φ0 is the ground
state. The physical fields are the ones that diagonalise this matrix (see
chapter 11 of [16]), and the eigenvalues of the mass matrix are the masses of
the corresponding particles. It can be observed that what has been denoted
as m in the Klein-Gordon Lagrangian corresponds to this mass matrix.

In conclusion, the quadratic terms in the Lagrangian carries the infor-
mation for the masses of the particles.

This procedure is problematic when the gauge fields introduced are ex-
perimentally known to be massive, as the Lagrangian with covariant deriva-
tives incorporated together with the term introduced |FA|2, lack the nec-
essary quadratic terms to provide these bosons with mass. In fact, in the
standard model, the weak interaction is modelled by a SU(2)-principal bun-
dle and the three particles carrying the interaction (Z and W±) are experi-
mentally known to have mass. The naive idea of introducing a term of the
form −α2A2 in the Lagrangian will not work since this term is not invariant
under SU(2) transformations.2 The solution for generating these masses
while preserving the symmetry was given in 1964 in the series papers [9],
[18], [21], and lead to a Nobel Prize in Physics in 2013, this procedure is
called the Higgs mechanism.

We will explain how this mechanism works to provide masses to the
gauge bosons in the electroweak model of Glashow-Weinberg-Salam, where

2also the mass term for fermions cannot be introduced by hand in the Lagrangian, e.g,
the combination of Weyl spinors ψRψL is not invariant under SU(2)L (the meaning of
the subscript is that it only acts on the left spinors, i.e. sections of SL). On the other
hand for a scalar field φ in the fundamental representation of the structure group, the
term φφ is invariant, i.e. the Lagrangian in the Standard Model can have terms like the
Klein-Gordon Lagrangian but not like Dirac’s Lagrangian where the mass term is included
by hand.
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the internal structure group is SU(2)× U(1), and later we will see how the
theory of monopoles uses the same ideas.

Given a Lagrangian describing the dynamics of Hermitian scalar fields
and without gauge bosons, Goldstone’s Theorem [14] states that if the La-
grangian is invariant under the internal structure group G ⊂ O(N) but
the stabiliser of the vacuum is a proper subgroup H ⊂ G then there are
dimG− dimH zero eigenstates of the mass matrix, which are massless and
spinless bosons known as Goldstone bosons.

In the above scenario, i.e. when the Lagrangian restricted to the fluctu-
ations around a ground state is invariant only under the Lie algebra of H
instead of the full Lie algebra of G, it is said that symmetry breaking occurs.

If gauge fields are now introduced in the Lagrangian, then the Higgs
mechanism is the process by which a Goldstone boson combines with a
gauge boson to give rise to a massive vector particle. In physics jargon ‘the
gauge boson eats the Goldstone boson and becomes heavy’.

To be more precise, in the original Lagrangian the gauge bosons do
not have mass but expanding around a ground state (φ0, A0), some of the
fluctuations of the gauge field obtain mass, that is, evaluating at the ground
state the expansion of |dAφ|2, there is a quadratic term in the expansion of
the connection A = A0 + a proportional to

〈ρ∗(a)φ0, ρ∗(a)φ0〉. (2.22)

It should be recalled that a constant term in the Lagrangian does not affect
the equation of motion and therefore it can be omitted. In particular, this
applies to the term 〈ρ∗(A0)φ0, ρ∗(A0)φ0〉. There will be dimG gauge bosons,
and if we denote by {ei} a basis of the Lie algebra g, the mass matrix for
the gauge bosons is

mij = 〈ρ∗(ei)φ0, ρ∗(ej)φ0〉. (2.23)

This matrix has precisely dim H zero eigenvalues because StabGφ0 = H.
The acquisition of mass for each of these dimG−dimH bosons implies that
there will be one (longitudinal) degree of freedom extra for each of these
bosons, as there are two degrees of freedom for massless bosons and three
for massive bosons. This extra degree of freedom comes precisely from the
disappearance of a massless Goldstone boson.

We are ready to see how the gauge bosons intermediating the electroweak
interaction obtain their masses via the Higgs mechanism. The process for
which the elementary fermions obtain their mass is analogous and can be
found in chapter 6 of [24].

A term of the form

LH = ‖dAφ‖2 − V (φ), (2.24)

needs to be added to the Lagrangian of the electroweak model. This term
corresponds to a new particle called the Higgs boson that together with the
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gauge bosons form the elementary bosons of the Standard Model. The Higgs
boson for the electroweak theory is a section of the vector bundle of complex
rank 2, associated with the standard representation of U(2) and the trivial
representation (0, 0) of SL(2,C). This is coherent with the observation that
in the electroweak theory, as in the full Standard Model, there are three
massed gauge bosons, and therefore the Higgs boson must be a section of a
vector bundle of rank at least four (to provide these three bosons with mass
and to leave the photon massless). The connection A is the tensor product
connection W ⊗B where the first factor is a connection in a SU(2)-bundle
and the second of a U(1)-bundle.

The potential term in the Higgs Lagrangian LH , has the form

V (φ) = −µ1‖φ‖2 + µ2‖φ‖4, (2.25)

with µ1, µ2 positive constants that physicists determine from experiments.
For obvious reasons this type of potential is known as a ‘Mexican-hat type
potential’. The electroweak Lagrangian together with the added Higgs La-
grangian, are invariant under the structure group SU(2) × U(1) and the
subgroup H preserving the ground state φ0 with ‖φ0‖2 = µ1/2µ2 is isomor-
phic to U(1). Its embedding on SU(2)×U(1) depends on the precise choice
of vacuum but it is not the copy {1}×U(1) in SU(2)×U(1) (see chapter 8
in [19] for the explicit form of the action).

The Lie algebra of H, the stabiliser of the Higgs boson at vacuum, is
the one dimensional Lie algebra generated by the electric charge Q, which
is given by the Gell-Mann–Nishijima formula,

Q = I3 + Y/2, (2.26)

where Y –the (weak) hypercharge– is a complex number corresponding to
the generator of the complexified Lie algebra of the U(1) factor and I3 –
the (weak) isospin– is the generator in the Cartan subalgebra of sl(2,C)
corresponding to the SU(2) factor.

The gauge boson arising from fluctuations around the vacuum in the di-
rection of the electric charge is the photon, and the above formula shows how
it is a linear combination of the gauge bosons coming from the connection
on the SU(2) × U(1)-bundle. Intuitively, the reason for being a massless
particle is due to the fact that the potential energy is not changing in the
direction of Q and thus the photon corresponds to a 0-eigenvector of the
Hessian of the Lagrangian, i.e., a massless particle.

The other 3 generators of u(2) acquire mass by the Higgs mechanism and
become the Z and W± gauge bosons. In the above picture they correspond
to fluctuations in the orthogonal direction to Q and they must have mass
since they are subject to a quadratic potential, in other words, they have
non-zero eigenvalues for the Hessian of the Lagrangian.
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The physical reason why the electric charge is this linear combination and
cannot simply be the generator of {1}×U(1), is that particles whose electric
charge is zero –like a neutrino– would have an electromagnetic coupling
coming from the B factor of the connection appearing in their covariant
derivative in the Lagrangian.

The spontaneous symmetry breaking SU(2) × U(1) → U(1) is mostly
manifest at low energies; at high energies the kinetic term in the Lagrangian
dominates the potential energy and the vacuum has less effect.

2.3 Yang-Mills-Higgs Lagrangian.

From now on, G will be a compact, simple and simply connected Lie group.
Given a principal bundle over Minkowski space-time with structure group
G, let A be a smooth connection and Φ a Higgs field, that is, a smooth
section of the associated adjoint bundle. The Yang-Mills-Higgs Lagrangian
density is given by,

LYMH =
1

2
|FA|2 +

1

2
|dAΦ|2 + V (Φ), (2.27)

with the field strength components Fµν = ∂µAν−∂νAµ+[Aµ, Aν ], and where
we have set the coupling constant equal to 1.

As mentioned previously, the potential should be a Mexican hat type
potential (so that around the minima only a subgroup of the symmetry
group of the Lagrangian is preserved, and hence spontaneous symmetry
breaking occurs), which will be taken to be:

V (Φ) =
λ

2
(|Φ|2 −m2)2. (2.28)

The critical points for the functional (2.27) together with the Bianchi
identity are:

dAFA = 0, (2.29)

dA ∗ FA = − ∗ [Φ, dAΦ], (2.30)

∗dA ∗ dAΦ = 2λΦ(|Φ|2 −m2). (2.31)

The right hand side of the second equation is ∗J with

J = −[Φ, dAΦ], (2.32)

the Yang-Mills-Higgs current. These extend Maxwell’s equations together
with the Coulomb force, encoded in a harmonic electric potential. Precisely
in this simplest case where λ = 0, Prasad and Sommerfield [47] were the
first ones to find a solution by giving an explicit solution to the Bogomolny
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equations (which we will be introduce later). This is why the case where
λ = 0 is known as the BPS limit.

The non-abelian magnetic field is B = ∗3F 3
A –we will use the label 3 refer-

ring to the restriction to Euclidean R3, i.e. {t = constant}, only when there
is danger of confusion with the four dimensional object– and the non-abelian
electric field the temporal components of the curvature, in coordinates:

Bi =
1

2
εijkFjk i, j, k = 1, 2, 3. (2.33)

Ei = F0i. (2.34)

The Lagrangian comes from the difference of the kinetic energy K and
the potential energy P. Using that 〈FA, FA〉 = −EiEi + 〈Bi, Bi〉3, they can
be written as

K =
1

2

∫
R3

[
− ~E2 − (∇0Φ,∇0Φ)

]
d3x, (2.35)

P =
1

2

∫
R3

[
− ~B2 − (∇iΦ,∇iΦ)− V (Φ)

]
d3x. (2.36)

From here one sees that LYMH generalises the classical electromagnetic
Lagrangian by adding the Higgs field terms.

The kinetic energy at a point (A,Φ) comes from considering the L2-
norm of the change in the connection and Higgs field due to a small change
in time in the direction orthogonal to the gauge orbit through (A,Φ), that
is, discarding the perturbations due to gauge transformations. These pro-
jected velocities on the slice determined by the Coulomb gauge condition
are (E,∇0Φ).

In the static case the kinetic energy is zero, and the Lagrangian is just
minus the potential energy. That is, the energy density of the static config-
uration is given by:

1

2

(
|F 3
A|2 + |∇iΦ|2 + V (Φ)

)
, (2.37)

where the induced metric from R3 is being used on forms and the multiple
−1

2 Tr(AB) of the killing form 〈A,B〉 used for the g-valued part. We will
restrict attention to the static case and therefore consider our connection
and Higgs field relative to a bundle over R3.

This energy density in the BPS limit, is the Lagrangian density that will
be considered, that is,

E(A,Φ) =
1

2
|FA|2 +

1

2
|dAΦ|2. (2.38)

3〈FA, FA〉 = 1
2

∑
µ,ν FµνF

µν = −F0iF0i+
1
2

∑
i,j FijFij = −EiEi+〈F 3

A, F
3
A〉 = −EiEi+

〈Bi, Bi〉 where in the last equality we used that the Hodge star is an isomorphism, or
equivalently, the component expression (2.33) together with εijkεimn = δjmδkn − δjnδkm.
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It can be observed that an equipartition theorem (or a scaling argument
known as Derrick’s theorem [37]) shows that a pure Yang-Mills gauge theory
in dimension less than 4 has no non-trivial smooth, with finite energy critical
points, and that in dimension 4, solutions to Yang-Mills-Higgs are gauge
equivalent to pure Yang-Mills (Corollary 2.3 in [27]). It is then natural to
include a Higgs field when studying gauge theories over a based manifold of
dimension 3.

In fact, the critical points of this Langrangian density are formally the
same as those of (2.27) in the BPS limit, where now the curvature is the
restriction of the full curvature to a 3-dimensional Euclidean space (as men-
tioned above we have suppressed the index ‘3’ in the curvature). The restric-
tion to the 3-hypersurface is implemented by considering fields independent
of time together with connections with vanishing time-component.

2.4 Bogomolny equations.

Following the discussion from the last section, in order to study the static
case of the Yang-Mills-Higgs theory in the BPS limit, we should consider a
principal G-bundle P over R3 and the Lagrangian (2.38).

A solution to the Bogomolny equations

∗ FA = ±dAΦ, (2.39)

consists of a pair (A,Φ), where A is a smooth connection on P and Φ, the
Higgs field, is a smooth section of the associated adjoint bundle

adP = P ×Ad g. (2.40)

We will see in section 2.5.1 that solutions to the Bogomolny equations
are critical points of (2.38).

Solutions to the Bogomolny equations with the + (−) sign can be ob-
tained by dimensional reduction of the self-dual (anti self-dual) Yang-Mills
equations in Euclidean space R4 [22]. This basically consists of assuming
that the connection does not depend on one of the variables and renaming
one of its components as the Higgs field. To be more precise, let π : E → R4

be a vector bundle which is invariant under translations on the last coordi-
nate of R4, that is, if p is the projection (x1, x2, x3, x4) 7→ (x1, x2, x3, 0), the
bundle p∗(E |R3×{0}) is isomorphism to E via(

(x1, x2, x3, x4), e
)
7→
(
(x1, x2, x3, x4), v

)
, (2.41)

where e in E |R3×{0} is given by ((x1, x2, x3, 0), v). Let ∇ be an invariant
connection under these translations satisfying the selfdual equations F∇ =
∗F∇. Fix a trivialisation so that ∇ = d+A with,

A =

4∑
i=1

Ai(x
1, x2, x3)dxi. (2.42)
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Then on the bundle p∗(E |R3×{0}) there are two natural connections: the

pull-back connection p∗∇(3), where ∇(3) is the connection induced by ∇ over
E |R3×{0}, and the connection ∇(4) coming from the isomorphism with E.

The pull-back connection has (p∗A)4 = 0 and the other three components
do not depend on x4, therefore the connection ∇(4) differs from the pull-back
connection in a term of the form ψdx4, where ψ = ψ(x1, x2, x3) takes values
on the Lie algebra g and as it does not depend on the fourth coordinate we
can write it as the pull-back of a Higgs field. Therefore on the pull-back
bundle p∗(E |R3×{0}) this connection has the form,

∇(4) = p∗(∇(3)) + p∗(Φ)dx4, (2.43)

and its curvature is,

F∇(4) = Fp∗∇(3) + p∗(∇(3)Φ) ∧ dx4. (2.44)

With the usual orientations, we see that this curvature on the pull-back
bundle4 is self-dual if and only if the Bogomolny equations hold,

F∇(4) = ∗F∇(4) ⇔ ∗(3)F∇(3) = ∇(3)Φ. (2.45)

Conversely, the Bogomolny equations provide a solution to the self-dual
Yang-Mills equations with translational invariance. Given a connection on
a principal bundle over R3, consider the associated vector bundle E and
associated connection ∇(3). In the pull-back bundle p∗E we consider the
connection (2.43) which is clearly invariant under x4-translations, and again
its curvature is self-dual if and only if the Bogomolny equations hold.

It can be observed that because of the translational invariance, the in-
stantons coming from these self-dual equations will not have finite energy
and according to our next definition cannot be considered as monopoles.

2.5 Definition of monopoles in R3.

In order to talk about monopoles we need to introduce the gauge group G
of a G-bundle P → M . This is the group of bundle automorphisms that
lift the identity on M , in other words, G-equivariant 5 diffeomorphisms of
P lifting the identity map on M .

It should be recalled (see section 2 in [1]) that there is a one-to-one
correspondence between gauge transformations and smooth sections of the
bundle of groups AdP = P ×Ad G over M (which can be identified with
smooth maps f : P → G satisfying the equivariant condition f(p · h) =
h−1f(p)h with h ∈ G).

4we can consider the self-dual equations in this pull-back bundle instead of E since the
equations are invariant under gauge transformations, i.e. bundle isomorphisms.

5F (p · h) = F (p) · h for every p ∈ P and h ∈ G.
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Since the Lie group G is 2-connected, that is, its first two homotopy
groups vanish identically, then its classifying space BG is 3-connected. The
isomorphism classes of G-bundles over M are classified by [M : BG], the
homotopy classes of maps from M to BG, but if M is a n-dimensional
CW-complex and Y is n-connected then [M : Y ] = 0.

Therefore we conclude that if G is a simply connected Lie group (hence 2-
connected), a G-bundle over a three dimensional manifold X is trivialisable,
see Theorem 13.1 in [25]. In this case, the gauge group is just

G = C∞ (X,G) . (2.46)

Gauge transformations act naturally on connections and sections of as-
sociated bundles. In particular on sections of adP it acts via the adjoint
representation that for matrix groups is given by,

g · Φ = gΦg−1. (2.47)

Similarly, the connection induces a covariant derivative in an associated
bundle E and the action of the gauge group seen as an automorphism of E
is given by,

g · dA = dg·A = g ◦ dA ◦ g−1 = dA − (dAg)g−1, (2.48)

where the last ‘dA’ is the covariant derivative induced in the bundle EndE.
It is easy to check that the Bogomolny equations are gauge invariant and

therefore the gauge group acts on the space of solutions.
On the other hand, the transformation (A,Φ) ↔ (A,−Φ), or a change

of orientation on the base manifold, transforms a solution to the Bogomolny
equations using the ‘+’ sign to other using the ‘−’ sign and vice-versa. Thus
it is enough to consider only one of the signs in the equations.

Definition 2.5.1. Given an SU(N)-bundle over R3, a monopole in R3 is
an equivalence class of solutions to the Bogomolny equations

∗ FA = dAΦ (2.49)

under gauge transformations, subject to the following conditions:
As it is required for solitons, we assume that they have finite energy:∫

R3

E(A,Φ)d3x <∞, (2.50)

where E(A,Φ) is the energy density from equation (2.38). We also require
that in the limit where r, the distance from the origin, tends to infinity both
the Higgs field and the connection have limits depending smoothly on the
angular variables. These limits will be denoted as φ and A0 respectively,

Φ→ φ, A→ A0 as r →∞. (2.51)
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Moreover, there is a trivialisation such that the Higgs field has a uniform
asymptotic expansion given by

Φ = φ− 1

2r
γm +O(r−(1+ε)), (2.52)

for some positive real number ε. It is required that the mass section φ is
nowhere-vanishing and that it commutes pointwise with the magnetic charge
section γm.

It is also required that in the same trivialisation where the Higgs field
has the above asymptotic expansion, for large enough r:

dAΦ =
1

2r2
γmdr +O(r−(2+ε)). (2.53)

Some comments about these conditions are in order:

1. Similar conditions are imposed in [29] and [42], where the finite energy
condition is supplemented with the following conditions: along each
ray out of the origin, there is a gauge and an ε > 0 such that for
sufficiently large r:

Φ = µ− 1

2r
k +O(r−(1+ε)), (2.54)

dAΦ =
1

2r2
kdr +O(r−(2+ε)), (2.55)

where µ 6= 0 and [µ, k] = 0. In Section III of [42] it is shown that
the smooth pair (φ, γm) is determined by (µ, k) and therefore these
conditions are equivalent to ours.

2. The commutativity

[φ, γm] = 0, (2.56)

is necessary as it is implied when the Bogomolny equations hold. Other
implications that the fulfilment of the Bogomolny equations impose are

dA0φ = 0, (2.57)

dA0γm = 0, (2.58)

−1

2
γm = ∗S2

∞
FA0 . (2.59)

The notation S2
∞ comes from performing the radial compactification of

R3 and will be explicitly defined in the next chapter. These equations
imply a reduction of the bundle at infinity to a principal bundle with
structure group the stabiliser of the mass section.
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3. It is clear that the above conditions are independent of the choice of
origin. The origin could have been substituted by any other point
~r0 in R3, as the well-known asymptotic expansion of the ‘Newtonian
potential’ (in terms of the Legendre polynomials) shows:

1

|~r − ~r0|
=
∞∑
l=0

rl0
rl+1

Pl(cos θ) =
1

r
+O(r−2). (2.60)

4. In [53] Taubes showed via a gluing construction that if all of the topo-
logical charges (see Definition 2.7.2 below) are non-negative and at
least one of them is positive, then there are an infinite number of dis-
tinct gauge inequivalent solutions. Later, in [42] it was shown that for
the asymptotic conditions in the first remark, there is always a con-
jugate element to k by the centraliser of µ such that the topological
charges are non-negative. In the case of maximal symmetry breaking,
as we will see in Section 2.7.1, the topological charges –if we assume
for simplicity that the purely imaginary eigenvalues {−iφj}N−1

j=1 of φ
are ordered in such a way that φi < φi+1– are given by na :=

∑a
j=1 γj

where a = 1, ..., N − 1 and {iγj}j=1 are the eigenvalues of γm.

5. In the case of SU(2)-monopoles, Jaffe and Taubes showed [27] that the
finite action condition together with the Bogomolny equations, imply
the above asymptotic expansions.

The following notation will be used frequently in this thesis: by condition
(2.52) there exists an R such that for |x| > R the Higgs field does not have
any zeroes. In general, U will denote the complement of the closed ball
of radius R. The dependence of U on R will not be written explicitly as
they are all homotopic equivalent (to S2

∞) and these sets will be mainly
considered when dealing with topological characterisations of monopoles at
infinity.

In the simpler case of a U(1)-bundle, the Bogomolny equations become:

dΦ = ∗FA. (2.61)

In this way one recovers Dirac’s monopole on R3 \ {0} if Φ and FA are
defined as in equations (2.5) and (2.6) respectively. It can be observed that
U(1)-monopoles over the whole base manifold R3, are not interesting since
the above equation together with Bianchi identity imply that Φ is harmonic
over R3. Therefore if Φ is bounded then it must be constant by Liouville’s
theorem (see page 30 in [10]).

Definition 2.5.2. A framing is a choice of a smooth mass section φ and
limiting connection A0. The space of framed monopoles are the solutions to
the Bogomolny equations satisfying the above boundary conditions with a
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fixed framing, determining the asymptotic mass and magnetic charge sec-
tion, modulo the reduced gauge transformations,

G0 := {g ∈ G : lim
r→∞

g = 1}. (2.62)

These framed monopoles are equivalent to those defined fixing the values
of the mass section and connection in certain direction from the origin,
modulo the gauge transformations that tend to the identity along the chosen
direction in R3 (see Section III.A in [42]). The space of framed monopoles
is not empty, it is shown in [28] that there are large families of framed
monopoles.

Remark 2.5.3. When the group acting among solutions to the Bogomolny
equations is the reduced gauge group, the framing is not equivalent to a
choice of mass and magnetic sections at S2

∞. This can be understood by
splitting the the trivial bundle over U into line bundles, where the curvature
FA0 induces a curvature on each one of them. From the fibration

JY → A/G → cL, (2.63)

where JY = H1(Y ;R)
H1(Y ;Z)

is the Jacobian torus of Y and cL is the set of closed

2-forms representing the Chern class of a line bundle L over Y (which in
our case Y = S2

∞), one can deduce that the curvature in each line bundle
determines a unique connection up to gauge equivalence over S2

∞, but the
gauge transformations here are set to be the identity.

When the value of the mass section φ at a point in the sphere at infinity
is a regular element, i.e. its centraliser is a maximal torus in G, it is said
to be the case of maximal symmetry breaking. This definition is indepen-
dent of the point at the sphere at infinity chosen: seeing the mass section
as an equivariant function P |S2

∞
→ g, the condition of being covariant con-

stant (2.57), implies that its value along horizontal paths is constant, since
elements in a fibre over a point are conjugated the statement follows.

The space of framed monopoles comes in topological families indexed by
integer numbers. Before explaining how this works, we need to have a closer
look at the boundary conditions.

Equation (2.57) implies that |φ| is a constant m, that for reasons that
will be explained later, it is known as the mass of the monopole. This mass
can be set to 1 at the expense of a dilation of the metric on R3. Specifically,
for m a positive real number, consider the new metric

g̃ = m2g, (2.64)

then the new volume form is d̃vol = m3dvol and the product of two p-forms
with respect to the new metric is m−2p times the original Euclidean metric.
In summary,

∗̃ = m3−2p∗ (2.65)
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and therefore (A,Φ) is a monopole using the metric g̃ if and only if (A,mΦ)
is a monopole with the metric g.

The positiveness of the mass is guaranteed by our assumption of nowhere-
vanishing mass section, and this requirement is justified by the following
well-known lemma.

Lemma 2.5.4. A solution to the Bogomolny equations cannot have zero
mass unless it is a trivial solution.

Proof. Taking the Laplacian6 δd of the function |Φ|2 = −1
2 Tr(Φ2), and

making use of the Bogomolny equations and the Bianchi identity we obtain,

4|Φ|2 = −δTr(dAΦΦ) = ∗dTr(∗dAΦΦ) = ∗(Tr(dAFAΦ) + Tr(FA ∧ dAΦ))

= ∗Tr(FA ∧ ∗FA) = −2|FA|2 ≤ 0, (2.66)

therefore |Φ|2 is a subharmonic function, and by the maximum principle,
|Φ|2 cannot have interior maxima unless it is constant (intuitively it is clear
as its Hessian cannot be negative definite). So if Φ → 0 when r → ∞, we
must have a null Higgs field everywhere. This together with a flat connection
in R3 constitutes the trivial monopole.

Because of the above bijection, monopoles with mass 1 can be considered
without any loss of generality.

2.5.1 Bogomolny Energy Bound.

In this subsection we show how the second order PDEs coming from the
critical points of the Yang-Mills-Higgs functional, can be reduced to a first
order equation when one considers only minimisers of the energy density
functional. Interestingly, Taubes [55] showed, using Morse theory, that there
are smooth critical points with finite action of the SU(2) Yang-Mills-Higgs
equations in the BPS limit which does not satisfy the first-order Bogomolny
equations. More generally, for structure group SU(n), Ioannidou and Sut-
cliffe in [26], using harmonic maps into CPn−1, showed that there are spher-
ically symmetric critical points which are not solutions to the Bogomolny
equations.

We start with the observation that solutions to the Bogomolny equations
are critical points of the energy density (2.38) in the BPS limit:

FA = ± ∗ dAΦ =⇒


dA ∗ FA = ±dAdAΦ = [FA,±Φ] = [± ∗ dAΦ,±Φ]

= − ∗ [Φ, dAΦ]

d∗AdAΦ = 0 (from Bianchi identity).

6the sign convention for the Laplacian is such that it is non-negative definite, so in Rn
is given by −

∑
∂2
i .
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In fact the following proposition shows that solutions to the Bogomolny
equations are actually minimisers among the pairs (A,Φ) having the same
limiting projection of the curvature into the Higgs field:

lim
r→∞

∫
S2
r

〈Φ, FA〉d2x, (2.67)

where S2
r stands for the two-sphere of radius r. Later we will see that this

term has a topological nature.

Proposition 2.5.5. If the domain of the energy functional E(A,Φ) in the
BPS limit is the smooth pairs (A,Φ) with finite energy and that satisfy the
boundary conditions (2.52) and (2.53), (the same conditions imposed on
monopoles except for being solutions to the Bogomolny equations) with a
fixed value of the integral (2.67), then solutions to the Bogomolny equations
are minimisers.

Proof. It can be observed that∫
R3

(
E(A,Φ)− 1

2
|FA ∓ ∗dAΦ|2

)
d3x = ±

∫
R3

d〈Φ, FA〉. (2.68)

This result comes from expanding

(FA ∓ ∗dAΦ, FA ∓ ∗dAΦ) = (FA, FA) + (dAΦ, dAΦ)∓ 2(FA, ∗dAΦ), (2.69)

and using the Bianchi identity to write∫
R3

〈FA, ∗dAΦ〉d3x =

∫
R3

FA∧dAΦ =

∫
R3

dA〈FA,Φ〉 =

∫
R3

d〈FA,Φ〉, (2.70)

where in the last equality it was used that 〈FA,Φ〉 is a 2-form (using the
Killing form, the product on the adP part is merely being evaluated). By
Stokes’ theorem this last integral coincides with the value of the integral
that has been fixed.

In summary, the energy for monopoles in the domain of the previous
proposition is precisely the fixed value of the above integral,

E(A,Φ) =

∫
R3

E(A,Φ) = lim
r→∞

∫
S2
r

〈Φ, FA〉d2x. (2.71)

This energy, which is the rest mass of the monopole, for the case of SU(2)-
monopoles is a multiple of |φ| and the charge, while for SU(N)-monopoles
the value of this integral intertwines the eigenvalues of the Higgs field and
curvature at ‘infinity’ (2.113).

We will discuss a bit further the concept of charge of a monopole but
first it is convenient to start with the simplest case of structure group SU(2)
and then later discuss the analogue for SU(N)-monopoles.
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2.6 SU(2)-Monopoles.

The singularity of the Dirac monopole can be overcome if we consider ’tHooft
and Polyakov type monopoles with structure group SU(N). The first non-
abelian monopoles studied used the structure group SU(2). These behave
like Dirac monopoles at large distances from the origin, where they are
centred, and contrary to Dirac’s monopole, they are smooth in the whole
R3 having finite energy.

Before we explore a particular solution we expose some general principles
of these monopoles.

As mentioned above, the charge k ∈ N0 of an SU(2)-monopole can be
defined via the integral (2.67):

lim
r→∞

∫
S2
r

〈Φ, FA〉d2x = 2πmk. (2.72)

In fact, it can be assumed that the charge is non-zero, as otherwise the
monopole would be trivial, i.e. consisting of a flat connection and a covari-
antly constant Higgs field. We will next give a geometrical meaning of the
charge and see why it must be a natural number.

The asymptotic condition (2.57) implies that the eigenvalues of φ are
constant, and with the invariant norm on the Lie algebra

|φ|2 = −1

2
Trφ2, (2.73)

the eigenvalues {im,−im} are determined by the value of the mass. More-
over, the eigenvectors of φ are covariant constant and the eigenvectors of the
Higgs field in the region U consisting of those points whose distance to the
origin is greater than a certain fixed r0, split the associated vector bundle
E = P ×Id C2, i.e.,

E|U = L⊕ L−1, (2.74)

where L is the line bundle corresponding to the im-eigenvector of Φ along
U . The covariant derivative dA induced in this associated bundle, splits as
the direct sum of the covariant derivatives induced in these line bundles,
plus terms of order O(r−(2+ε) (see (3.33) where a similar argument is done).
Writing dA = d+A, this translates to

A =

(
AL 0
0 −AL

)
+O(r−(2+ε)), (2.75)

where AL is the u(1)-valued 1-form representing the connection on L. Hence,
the limiting curvature has the form diag(FAL ,−FAL), where FAL is the
curvature of L. Then we see that the integral (2.67) is just a multiple of the
first Chern number of L:

lim
r→∞

∫
|x|=r
〈Φ, FA〉 =:

∫
S2
∞

〈Φ, FA〉 = −im
∫
S2
∞

FAL = −2πmc1(L). (2.76)
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Along the set U we will denote the normalised Higgs field as

Φ̂ :=
Φ

|Φ|
. (2.77)

Since the mass does not take the value 0 for large enough distances from
the origin, we have a map

Φ̂ : S2
∞ → su(2) \ {0} ≈ S2, (2.78)

given by lim|x|→∞
Φ
|Φ|(x). The homotopy type of this map is called the

topological charge of the monopole, and by the Poincaré-Hopf theorem, is
the number of zeroes counted with multiplicity of the Higgs field on R3 (see
Figure 2.3 for an explicit example).

On the other hand, when the Lie algebra of the structure group is su(2),
the commutation relation (2.56) implies that

γm = k̂φ, (2.79)

in principle k̂ is a function depending on the angular variables, but condition
(2.58) implies that it must be constant. Using (2.59) to evaluate (2.67) we
deduce,

k̂ = − k
m
. (2.80)

The following result shows that the function k is minus the degree of the
map Φ̂ and therefore an integer.

Proposition 2.6.1. The topological charge N of the monopole is the Chern
number of the line bundle of the im-eigenspace of Φ over U , i.e.,

N = − 1

2π
lim
r→∞

∫
|x|=r
〈Φ̂, FA〉. (2.81)

Proof. The Hurewicz homomorphism H : πk(X,x) → Hk(X), is given by
associating to the homotopy class {f : Sk → X} the push-forward, by any
of the representatives in this class, of the fundamental class of the sphere:
f∗[S

k]. When the space X is (k−1)-connected the Hurewicz homomorphism
is in fact an isomorphism (see Theorem 4.32 in [20]). Since the two-sphere is
1-connected there is an isomorphism π2(S2) ∼= H2(S2). The homotopy class
{Φ̂} corresponds to Φ̂∗[S

2
∞] ∈ H2(su(2) \ {0}). We will see that 〈Φ̂∗[S2

∞], ω〉,
where ω is the volume form of the unit 2-sphere in su(2)\{0} coincides with
the integral of the Lie algebra projection of the curvature into the Higgs
field.

In a global trivialisation of the bundle, where the monopole asymptotic
conditions hold, the relation γm = k̂φ yields,

|Φ|2 = m2

(
1− k̂

2r

)2

+O(r−1−ε). (2.82)
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Using this equation and the isomorphism of Lie algebras (su(2), [·, ·]) ∼=
(R3,×),7

[Φ, [dΦ,Φ]] = dΦ|Φ|2 − Φ〈Φ, dΦ〉 = dΦ|Φ|2 − Φ
m2k̂

2r2
dr +O(r−2−ε). (2.83)

With this observation we deduce that any connection such that the boundary
condition (2.53) holds, for large distances from the origin where |Φ| does not
vanish must be of the form:

A =
1

|Φ|2
[dΦ,Φ] + a⊗ Φ +O(r−2−ε), (2.84)

where a is an arbitrary 1-form. We should compute now the curvature of
this connection FA = dA+ 1

2 [A,A], the second term is:

1

2
[A,A] =

1

|Φ|2
[[dΦ,Φ], aΦ] = a ∧ dΦ− 1

|Φ|2
a ∧ Φ〈Φ, dΦ〉, (2.85)

and the first

dA = − 1

|Φ|2
[dΦ, dΦ] + Φda+ dΦ ∧ a+ d(

1

|Φ|2
)[dΦ,Φ]. (2.86)

The product of the normalised Higgs field Φ̂ with the curvature of this
connection and in particular with that of a monopole is therefore

〈 Φ

|Φ|
, FA〉 = − 1

|Φ|3
〈Φ, [dΦ, dΦ]〉+ |Φ|da− 1

|Φ|
a ∧ 〈Φ, dΦ〉

+ d(
1

|Φ|2
)〈 Φ

|Φ|
, [dΦ,Φ]〉+O(r−2−ε)

= − 1

|Φ|3
〈Φ, [dΦ, dΦ]〉+ d(|Φ|a) +O(r−2−ε), (2.87)

where we have used that Φ ⊥ [dΦ,Φ] and that d(|Φ|a) = |Φ|da+〈 Φ
|Φ| , dΦ〉∧a.

2πk = lim
r→∞

∫
S2
r

〈 Φ

|Φ|
, FA〉 = lim

r→∞

∫
S2
r

− 1

|Φ|3
〈Φ, [dΦ, dΦ]〉 (2.88)

= lim
r→∞

∫
S2
r

−〈Φ̂, [dΦ̂, dΦ̂]〉, (2.89)

where again the perpendicularity property Φ ⊥ [Φ, ·] has been used.
On the other hand,8

N := 〈Φ̂∗[S2
∞], ω〉 =

1

2π

∫
S2
∞

〈Φ̂, [dΦ̂, dΦ̂]〉, (2.90)

Combining both equations we obtain that N = −k.

7that is, in coordinates: [dΦ,Φ] = ∂µΦaΦb[τa, τb]⊗ dxµ = ∂µΦaΦbεabcτc ⊗ dxµ.
8cf. equation (5.7) on page 44 in [27], where de ∧ de = 1

2
[de, de] and the inner product

on the Lie algebra is 4 times our inner product.
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Over the region U , this proposition allows us to interpret the Lie algebra
projection of the curvature into the Higgs field as the electromagnetic tensor,
and in this way generalises the abelian case of Maxwell’s curvature tensor.

The general principles that have been stated can be checked with a con-
crete example of a monopole. The first explicit monopole solution was found
by Prasad and Sommerfield [47] and corresponds to the case where the struc-
ture group is SU(2). The Prasad-Sommerfield solution is spherically sym-
metric and has charge one. It was found using the Ansatz of a ‘spherically
symmetric’ monopole, that is, after the action of the group SO(3) the so-
lution to the Bogomolny equations changes by a gauge transformation and
hence the monopole is invariant under this action. They realised that this
can be accomplished if when the fields are written in terms of the basis
T = {τa} of the Lie algebra, Φ is a radial function times r̂ · T and A is a
radial function times r̂ × T . In this way, a rotation of r̂ should have the
same effect as the conjugation on T due to the infinitesimal gauge action.
Specifically, they looked at:

Φa = r̂ah(r)/r, (2.91)

Aai = εaij
r̂j

r
(1− α(r)). (2.92)

Finiteness of energy implies h(r)/r → 1 and α(r)→ 0 as r →∞. Moreover,
writing down the Bogomolny equations for these fields shows that in order
to avoid singularities at the origin it is necessary to have h(0) = 0 and
α(0) = 1. With these conditions, the explicit solution found by Prasad-
Sommerfield [47] is

h(r) = Cr coth(Cr)− 1, (2.93)

α(r) =
Cr

sinh(Cr)
, (2.94)

where C a physical constant that by a re-scaling of units we can take it to
be 1.

This solution is important because it exemplifies the properties of a
monopole, and it was used in the gluing constructions by Taubes which
allowed him to show that the moduli space of framed monopoles of charge
k is a hyperkähler manifold of dimension 4k where k is the charge.

Some pictures of this spherically symmetric solution can be drawn, see
the figures below.

2.7 Topological and Holomorphic charges.

In this section we will generalise the charge concept seen in the previous sec-
tion for SU(2)-monopoles, to the case where the structure group is SU(N).
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Figure 2.1: Energy density of the k = 1 Prasad and Sommerfield monopole.

Figure 2.2: Hedgehog shape of the
Higgs field.

Figure 2.3: Higgs field’s norm.

The main difference here is that we are not necessarily in a case of maximal
symmetry breaking.

We will use the notation of g for the Lie algebra of G = SU(N) and of s
for the Lie algebra of S := Stab(h), the stabiliser of the value of Higgs field
at a point in the sphere at infinity, which up to conjugation is independent
of the chosen point. The rank N − 1 of G will be denoted by r.

If |Φ| is uniformly bounded and for some ε > 0, |dAΦ| decays faster than
1

|x|1+ε , then for each monopole there is a well-defined element in π2 (G/S)

given by the homotopy class of φ. More precisely, in Theorem 3.1, Chapter
II of [27] it is proved:

Theorem 2.7.1. If A is a continuous connection in P = R3 × G, and the
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Higgs field is continuously differentiable and such that,

lim
R→∞

sup
|x|=R

|1− |Φ(x)|| = 0, (2.95)

for some ε > 0, |x|1+ε|dAΦ| ≤ constant. (2.96)

Then there is a gauge such that the limiting value of the Higgs field at infinity
φ, is continuous and the configuration (A,Φ) defines a homotopy class in
π2 (G/S). This class is invariant under gauge transformations and under
C1 perturbations (a, ϕ) of (A,Φ) satisfying limR→∞ sup|x|=R |ϕ(x)| = 0 =
limR→∞ sup|x|=R |x||a(x)|.

The class of (A,Φ) in π2 (G/S) is represented by φ mapping S2
∞ into its

orbit space in g which by (2.57) is diffeomorphic to G/S. For the reasons
mentioned in the paragraph above equation (2.46) a principal G-bundle
over S2

∞ is trivialisable and since π2(G) = 0 the gauge transformations are
homotopic to the identity. This makes the homotopy class of φ : S2

∞ → g
well-defined, independent of gauge transformations.

By the exact homotopy sequence

· · · → π2(G)→ π2(G/S)→ π1(S)→ π1(G)→ · · · (2.97)

this theorem allows us to classify monopoles according to their homotopy
class in

π2 (G/S) ∼= π1(S). (2.98)

The Lie algebra of the stabiliser of φ at a point in S2
∞ is a direct sum of

an abelian Lie algebra of rank l and a semisimple Lie algebra whose rank is
r− l. By the exact homotopy sequence for the corresponding Lie groups we
deduce that

π1(S) = Zl. (2.99)

Definition 2.7.2. The topological charge of a monopole (A,Φ) is the string
of integers (n1, ..., nl) that by the group isomorphism (2.98) give the homo-
topy class of φ.

To explore the relation of the topological charges with the magnetic
charge section γm we need to recall some definitions from Lie algebras.

Let g be a finite dimensional complex Lie algebra, the idealiser of a
subalgebra h is the largest subalgebra of g such that h is an ideal:

I(h) = {x ∈ g : [x, y] ∈ h ∀y ∈ h}. (2.100)

A subalgebra h of g is called a Cartan subalgebra (CSA) if it equals its
idealiser and it is nilpotent, that is, in the sequence defined recursively as
h1 = h, hn+1 = [hn, h], there is an m such that hm = 0.
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Every complex finite dimensional Lie algebra has a CSA and any two
CSA are conjugated.

The generalised λ-eigenspace of adx is

Lλx := {y ∈ g : (adx− λ1)jy = 0 for some j ∈ N}. (2.101)

An element x ∈ g is regular if the dimension of L0
x is as small as possible,

i.e. the function x 7→ dimL0
x takes its minimal value on x (in terms of

Lie groups, this coincides with our previous definition of a regular element
as one whose stabiliser is a maximal torus, see Chapter VIII in [50]). In
particular, a diagonalisable matrix x ∈ sl(n,C) is regular if and only if its
eigenvalues are pairwise different, and a non-diagonalisable matrix cannot
be regular.

When x is regular L0
x is a CSA, and (as any two CSA are conjugated)

every CSA is the generalised 0-eigenspace of adx for some x.
When the Lie algebra g is semisimple, a CSA turns out to be a maximal

abelian subalgebra consisting of semisimple elements (those y such that ad y
is diagonalisable).

A CSA determines a set of roots Λ (generalised eigenvalues of the ad
action of the CSA on g). In the semisimple case, Λ spans the dual of the
CSA, and the Killing form 〈·, ·〉, which by Cartan’s second criterion is non-
degenerate, when restricted to the CSA is still non-degenerate. In this way,
if µ is an element in the CSA, its metric dual [µ can be defined as the
element in the dual of the CSA that satisfies,

[µ(h) = 〈µ, h〉 ∀h ∈ CSA. (2.102)

If we denote by gα the CSA-invariant vector subspaces of g associated with
the root α ∈ Λ, then

slα := [gα, g−α]⊕ gα ⊕ g−α (2.103)

is a subalgebra isomorphic to sl(2,C). Moreover, if we define the co-root Hα

associated with α as

Hα := 2
α]

〈α], α]〉
∈ [gα, g−α], (2.104)

with α] the metric dual to α, and take Xα ∈ gα, X−α ∈ g−α such that
[Xα, X−α] = Hα, then Hα, Xα, X−α can be associated with the natural
basis of sl(2,C).

The span over the real numbers of the co-roots is a real vector space
CSAR where the killing form restricts to an inner Euclidean product, that
we denote by (·, ·). As a consequence of this, CSAR is a real form of the
CSA. From the definition of co-root we see that 〈α], α]〉 = 4/〈Hα, Hα〉 hence
it is real and by the same equation we conclude that α] ∈CSAR. The roots
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form a basis for the CSA and this implies that the metric duals with respect
to (·, ·) and 〈·, ·〉 coincide.

A regular element µ in CSAR allows us to define in a natural way a set
of simple roots: the positive roots Λ+ are the roots in the half-space where
[µ belongs i.e. α is in Λ+ if ([µ, α) > 0. Then the simple roots {α1, ..., αr}
are the set

{α ∈ Λ+ : α is not the sum of two elements in Λ+}. (2.105)

The simple roots are a basis for CSA∗R and every other root can be written
as an integer linear combination of the simple roots where all the non-zero
coefficients are either all positive or all negative.9

The Weyl chambers are the connected components of CSA∗R \ ∪α∈ΛPα
where Pα is the hyperplane orthogonal to α. If two vectors in CSAR belong
to the same Weyl chamber then they are in the same side of every hyperplane
Pα and therefore define the same set of simple roots. As the next proposition
shows, the metric dual of a regular element belongs to the closure of exactly
one Weyl chamber and therefore there is a 1-1 correspondence between Weyl
chambers and bases of simple roots.

Proposition 2.7.3. Let t denote a Cartan subalgebra containing µ. Then
µ is non-regular if and only if its metric dual [µ is orthogonal to a root in
t∗.

Proof. Assume [µ is orthogonal to the root α ∈ t∗, then µ commutes with
slα, the sl(2,C)-algebra generated by α. This is a simply consequence of the
fact that if Eα ∈ gα then

[µ,Eα] = α(µ)Eα = 〈α], µ〉Eα = 〈α,[ µ〉Eα = 0. (2.106)

Similarly it commutes with E−α and obviously with the element Hα in the
Cartan subalgebra. This implies that L0

µ strictly contains t and therefore µ
is not regular.

Conversely, if µ is non-regular, then there is an element e ∈ g which is
not in the CSA and such that [µ, e] = 0. If in the decomposition of the Lie
algebra into root spaces we have that e ∈ gγ , then k([µ, γ) = 0 since

〈µ, γ]〉e = γ(µ)e = [µ, e] = 0. (2.107)

9The proof of this fact is not hard: assume this property does not hold. Among the
roots for which it does not hold, take the root α ∈ Λ+ with the smallest inner product with
[µ. As α cannot be a simple root, then there exists α1, α2 ∈ Λ+ such that α = α1 + α2,
and the product of one of them with [µ must be strictly smaller than (α,[ µ) contradicting
the assumption of minimality. This shows that the simple roots are the ‘closest’ the roots
can be to the hyperplane orthogonal to [µ.
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The boundary conditions for the Higgs field imply that its asymptotic
value in a fixed direction µ ∈ su(n) belongs to a real form of a CSA of
sl(n,C). Given this CSA, that will be denoted by t, if we denote by β the
value of γ in the chosen direction, then in the case of maximal symmetry
breaking, i.e. µ is a regular element, because of the commutation relation
(2.56), β ∈ L0

µ and therefore it is in t. The same reasoning applies when β
is regular: both µ and β are in the same CSA.

So the only case where it is not necessarily true that a CSA contains
both µ and β is when they are both non-regular elements. In this case
we can only guarantee that a conjugate of β belongs to a CSA containing
µ. More precisely, given a CSA containing µ, and a set of simple roots
{α1, ..., αl, αl+1, ..., αr} such that {αi}li=1 are positive i.e.

〈αi,[ µ〉 > 0 i = 1, ..., l (2.108)

and {αi}ri=l+1 orthogonal to [µ, it is shown in Proposition 4.1 in [42] that
the magnetic orbit of β under the stabiliser of µ intersects this CSA in a full
orbit of the subgroup of the Weyl group that fixes µ. Moreover there exists
a unique point β̃ in this intersection that satisfies α(β̃) ≤ 0 for every root α
orthogonal to [µ, and when β̃ is expressed as

β̃ =

r∑
a=1

naHa, (2.109)

where Ha are the co-roots associated with the simple roots αa, then the coef-
ficients na are non-negative integers. These integers are called the magnetic
weights and are divided into holomorphic charges which are the ones asso-
ciated with the simple roots orthogonal to [µ and the topological charges,
associated with the positive simple roots determined by µ. Taubes showed
that this definition of topological charges is the same as the one in Definition
2.7.2. Specifically, if we let the generalised magnetic charges be,

qk := lim
R→∞

∫
SR

〈Φk, FA〉 k = 1, ..., l. (2.110)

The invariance of the Killing form under the adjoint action implies that
they are gauge invariant, and moreover the following theorem shows that
the topological charges are given in terms of these generalised magnetic
charges, promoting in this way Proposition 2.6.1.

Theorem 2.7.4. [54] Assume (A,Φ) satisfy the conditions on the previous
theorem and that FA and dAΦ are sections in L2(R3). There are constants
bka, a, k = 1, ..., l, depending only on the conjugacy class of AdGµ, such that,

na =

l∑
k=1

bkaqk (2.111)
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are integers. Moreover the set {na}la=1 are the topological charges, i.e. they
determine the homotopy class of the monopole in π1(S).

Dirac’s quantisation condition has also an analogue here, the fact that
the magnetic weights are integers implies that the magnetic charge β lies
in the co-root lattice generated by the co-roots. The set {2πHa} spans the
kernel of the group homomorphism given by the exponential map from the
CSA containing µ, to a maximal torus in SU(N).

Therefore we have the ‘quantisation condition’:

e2πiβ = 1. (2.112)

The Bogomolny energy bound for a monopole (A,Φ) takes the form
E(A,Φ) ≥ |q| with

q = lim
R→∞

∫
SR

〈Φ, FA〉 = 4π(µ, β) = 4π
r∑

a=1

naµb(Ha, Hb), (2.113)

where µb are the coordinates of µ with respect to the co-root basis and we
have used that because of (2.57) and (2.58), 〈φ, γm〉 is constant along S2

∞.
When a root αa is orthogonal to [µ then the corresponding summand

with na in the above expression does not contribute. If r − l denotes the
number of simple roots orthogonal to µ, only l of the magnetic charges
contribute to the above sum bounding the energy. Therefore we can think
of the energy bound as coming from l fundamental monopoles. These are
SU(N)-monopoles coming from embedding via slαi , the PS solution for
every simple root {αi}li=1. These also define a class in Zl corresponding to
the topological charge of the monopole.

Some examples will clarify the previous situations.

2.7.1 Examples.

Let λ be a diagonal matrix in sl(n,C) with entries {λi}. The roots {αij}
are defined by αkl(λ) = −i(λk − λl).

Let the structure group be SU(3) and suppose that µ = 1√
3
diag(i, i,−2i)

then,
([µ, α12) = α12(µ) = 0. (2.114)

In the Euclidean plane spanned by the roots, see Figures 2.4 and 2.5, if we
move [µ a small amount in a clockwise direction the simple roots defined
by [µ (the closest positive roots to the hyperplane orthogonal to [µ) are
{α12, α23} but if instead, we move a bit [µ in an anti-clockwise direction,
the simple roots are {α13,−α12}.

In the first case the co-roots are

H12 = i

1 0 0
0 −1 0
0 0 0

 , H23 = i

0 0 0
0 1 0
0 0 −1

 , (2.115)



40 CHAPTER 2. REVIEW ON MONOPOLE THEORY.

Figure 2.4: Clockwise rotation.
Figure 2.5: Anti-Clockwise rota-
tion.

and corresponding fundamental weights {ω12, ω23}, with ω12(λ) = −iλ1,
ω23(λ) = −i(λ1 + λ2). In the second case the co-roots are

H13 = i

1 0 0
0 0 0
0 0 −1

 , H21 = i

−1 0 0
0 1 0
0 0 0

 , (2.116)

with corresponding fundamental weights {ω13, ω21}, where ω13(λ) = −i(λ1+
λ2), ω21(λ) = −iλ2.

If the magnetic charge is β = idiag(k1, k2, k3), with ki ∈ R, we see that
with the first choice of simple roots, the magnetic weights are k1 and k1 +k2,
and with the second choice of simple roots the magnetic weights are k1 + k2

and k2. From this we deduce that what is invariant is k1 + k2 = −k3, that
is, the topological charge is given by k3.

The conjugated element µ′ = 1√
3
diag(−2i, i, i) satisfies [µ′ ⊥ α23 and the

corresponding natural choices of simple roots are {α12, α23} or {α13,−α23}.
In this case, if β is not conjugated, k2 + k3 is invariant and the topological
charge is now k1.

In the case where µ is a regular element, hence in the maximal symmetry
scenario, we can write

µ = −i diag(φ1, φ2, ..., φN ), (2.117)

with the components φi being real and in increasing order φi < φi+1. In
this case the simple roots defined by µ are {αi,i+1}N−1

i=1 since they satisfy,

([µ, αi,i+1) = αi,i+1(µ) > 0. (2.118)

The fundamental weights are given by ωj,j+1(λ) = −i(λ1 + · · · + λj) so if
β = idiag(k1, k2, ..., kN ) then the magnetic weights, which in this maximal
symmetry case are the same as the topological charges, are given by

np =

p∑
j=1

kj , (2.119)
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for 1 ≤ p ≤ N − 1, this is in agrement with the convention on page 340 in
[37].

2.7.2 Monopole particle spectrum.

Here the procedure described in Subsection 2.2.2 is used to study the parti-
cles arising from Yang-Mills-Higgs theory. We start with the particles arising
from the linearisation around a static solution in the case of structure group
SU(2). This static solution will be a minimum of minus the potential en-
ergy, and in this case, since there are no boundary/asymptotic conditions,
from (2.36) it is clear that the connection must be flat, and the Higgs field
constant and minimising V (Φ). Therefore, the vacuum must be of the form
v + (d1g)g−1 where g is a gauge transformation, d1 is the linearised gauge
action, (see defining equation (3.15)), and

v = (Φv, Av) = (m
i

2
σ3, 0). (2.120)

The particle spectrum comes from perturbations around the vacuum and
the particles that arise (see section 5.1.2 in [48]) are

Aµ,W±µ , ϕ, (2.121)

which come from the corresponding quanta of the fields:

A3
µ,
A1
µ ± iA2

µ√
2

, Φ3. (2.122)

The first particle is the photon, and corresponds to the Lie algebra of the
stabiliser of v. Specifically, if we write the connection as Aµ =

∑
Aaµτ

a,
with {τa} a basis of sl(2,C) the quadratic term (2.22) coming from the
Lagrangian that determines the mass matrix of the gauge boson near the
ground state is proportional to

tr([Φv, τ
a][τ b,Φv]), (2.123)

from where it can be deduced that A3
µτ

3 is in the null space, and corresponds
to a massless boson. The two charged boson particles W±µ come from per-
turbations in the other two components of the connection and their mass
e · m comes from the Higgs mechanism. These are the ±e-eigenvectors of
the electric charge operator, an element in the Cartan subalgebra of sl(2,C)
corresponding to a generator of the Lie algebra of the stabiliser group of the
vacuum. The last particle is the (monopole) Higgs boson, originating from
a perturbation ϕ of the Higgs field around the vacuum. Its mass is

√
2λm,

which can be seen from the Hessian of the potential (2.28) evaluated at the
vacuum state. It can be observed, that in the BPS limit, where λ = 0, this
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particle becomes massless, and therefore the field is long-ranged decaying
like 1

r .
In the BPS limit, where the Higgs potential vanishes, the approximation

of the dynamics is given by taking a ground state that satisfies boundary
conditions which replace the minima condition of the potential, that is, we
take a Higgs field such that |Φ| → m at spatial infinity and whose covariant
derivative by the induced connection on S2

∞ vanishes, which is called a Higgs
vacuum.

In contrast with the masses of elementary particles which arise from per-
turbations around a ground state, based on Einstein’s equation the rest mass
of a soliton is given by its energy, which is deduced from the Lagrangian.
In our case, the rest mass of a monopole comes from the integration of the
energy density (2.38), and the particle spectrum will then be the particles
(2.121) coming from linearising around this monopole solution.

What we have said above, extrapolates easily to SU(N)-monopoles with
maximal symmetry breaking, i.e. the stabiliser of the Higgs field at infinity
is U(1)N−1. In this case there are N−1 ‘electrodynamics’, meaning there are

(N − 1) photons, (N − 1) Higgs bosons and N(N−1)
2 charged and massive W

bosons. In the case of non-maximal symmetry breaking, there are additional
massless gauge bosons coming from having a larger stabiliser group of φ. In
this case the massless bosons merge together into a ‘monopole cloud’ that
behaves like a massless monopole at large distances, see Chapter 6 in [58].



Chapter 3

Monopole moduli space.

In this chapter we will introduce the analytic set up to show that the space
of framed monopoles is a smooth manifold. We follow the same approach as
with instantons [40], [8] together with the aid of the analytic tools developed
in [38], [32] to provide with charts, via a slice theorem, the moduli space of
framed monopoles.

We start by compactifying R3 and making sense of the sphere at infinity
S2
∞. Then we extend the definition of monopoles in R3 to this compact-

ified setting and introduce the hybrid Sobolev spaces that will be used in
the analysis required to construct charts in the moduli space of framed
monopoles. Then we show that the monopoles which originally are in these
hybrid Sobolev spaces are in fact (gauge equivalent to) monopoles which are
polyhomogeneous conormal to the boundary. Finally we show that as in the
SU(2)-case, these framed moduli spaces have a natural hyperkähler metric.

3.1 Monopoles in the radial compactification of
R3.

Unless otherwise stated, the radial compactification of R3 will be denoted
by X. This space can be defined as

X := R3 tI
(
[0,∞)x × S2

)
, (3.1)

where I : R3 \ {0} → (0,∞)x × S2 is the homeomorphism that inverts
the radial coordinate. In other words, X is the quotient space of R3 t(
[0,∞)x × S2

)
by identifying each p ∈ R3 \ {0} with its image I(p).

Topologically this space is just X = B3, that is, R3 with a two-sphere
S2
∞ attached at infinity. This space clearly has a C∞-structure making it

a smooth manifold with boundary. The radial function 1/r on R3 \ {0}
extends smoothly to a collar neighbourhood of the boundary of X and

x := 1/r, (3.2)

43
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defines the canonical boundary defining function (a non-negative smooth
function on a collar neighbourhood of the boundary such that the boundary
is given by the set of points where x vanishes and dx has no zeroes on ∂X)
for this space.

With this boundary defining function, X has a natural scattering metric,
i.e. a tensor field of type (2,0) with respect to the bundle scTX, which is
symmetric and positive definite at each point of X. This scattering metric
can be written on X \ {0} as

gsc =
dx2

x4
+

h

x2
, (3.3)

with h a smooth symmetric co-tensor on X which restricts to a metric on
the boundary, in this case h is the standard round metric of the two-sphere.
In a general sc-metric of the form (3.3) it is still true that h can be written
as h(x, y, dy) [30], where y are coordinates in ∂X.

On the interior of X, under the isomorphism scTX ∼= TX, the standard
Euclidean metric coincides with (3.3). In this sense the scattering metric
‘extends’ the Euclidean metric to the boundary.

The manifold with boundary X also has a conformally related b-metric

gb := x2gsc =
dx2

x2
+ h. (3.4)

This is a metric for the b-tangent bundle bTX, which contrary to the scat-
tering bundle is defined independently of the chosen boundary defining func-
tion.

These metrics via the volume form, induce trivialisations of the b/sc-
density bundles. The associated b/sc-measures are related by

x3µsc = µb, (3.5)

and in particular we have the following relation of half densities,

Ω1/2
sc (X) ∼= x−3/2Ω

1/2
b (X). (3.6)

Unless otherwise stated we shall be working with the measure induced
by the scattering metric. The results on Fredholm properties for b-operators
are usually stated with the more natural (in that scenario) b-measure, which
is encoded in the b-half-density bundles e.g. as in [38]. The above relation of

half-densities shows that an operator D ∈ Diffk(X;E ⊗ Ω
1/2
sc ) has the same

local expression as the associated b-operator Db ∈ Diffk(X;E ⊗Ω
1/2
b ) given

by conjugation by the factor x3/2,

D = x3/2Dbx
−3/2. (3.7)
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3.1.1 Analytic set-up

Let P be a smooth principal SU(N)-bundle over X, where N ≥ 2 and X is
the radial compactification of R3. As X is contractible, or by the arguments
at the beginning of Section 2.5, the bundle is necessarily trivialisable. Using
the scattering metric, the Bogomolny equations

FA = ∗dAΦ, (3.8)

extend to this setting, and monopoles are defined similarly as in R3, however,
some comments about the regularity of (A,Φ) are in order. It is assumed
that the connection and Higgs field are polyhomogeneous conormal to the
boundary (phgc). The reader is referred to the Appendix for the definition
and some properties of phgc sections. In particular they are smooth over
the boundary S2

∞. The requirement of phgc is the natural extension criteria
to the smoothness property over the interior, since roughly the only extra
assumption is an asymptotic expansion whose existence is in the properties
to be satisfied by a monopole.

In the same way the gauge group consists now of the phgc sections of
the bundle of groups Ad P .

Definition 3.1.1. A monopole on the bundle P is a pair (A,Φ), where A is
a phgc connection and the Higgs field Φ is a phgc section of adP , which are
solutions to the Bogomolny equations modulo G , the phgc group of gauge
transformations. They are also required to satisfy the following conditions:

1. They have finite energy,∫
X

(
|FA|2 + |dAΦ|2

)
µsc <∞. (3.9)

2. There exists a trivialisation over a collar neighbourhood of the bound-
ary U such that for some ε > 0,

Φ = φ− 1

2r
γm +O(x1+ε). (3.10)

3. In the above trivialisation,

dAΦ =
1

2r2
γmdr +O(x2+ε). (3.11)

4. The mass section φ is a nowhere-vanishing smooth section over S2
∞

and commutes with the smooth magnetic charge section γm.

The remarks following our definition of monopoles in R3 still hold here,
see for example Propositions 2.5 and 2.8 in [34] for the second remark.

As mentioned in the previous chapter, it will be assumed without loss of
generality that the mass function |φ| is 1.
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Definition 3.1.2. A framing is a choice of a smooth mass section φ and
connection A0 over S2

∞. The space of framed monopoles are the solutions
to the Bogomolny equations satisfying the above boundary conditions with
a fixed framing modulo the reduced gauge transformations,

G0 := {g ∈ G : g|S2
∞

= 1}C G . (3.12)

Definition 3.1.3. We will fix a pair (A,Φ) consisting of a phgc connection
and Higgs field that satisfy the above boundary conditions, but which is
not necessarily a solution to the Bogomolny equations. The existence of
monopoles [29], guarantees that such a pair exists.

Remark 3.1.4. The following conventions and notation will be used:
As in the previous chapter, U will denote a collar neighbourhood of ∂X

where the above asymptotic expansions hold and π the canonical projection
of U onto ∂X.

The bundle of k-forms in the scattering cotangent bundle ∧k(scT ∗X) will
be denoted as ∧k.

The domain and codomain of the next maps will be clear in context,
here we just give the expression that they have:

• The gauge equivariant Bogomolny map

B(A,Φ) = ∗FA − dAΦ. (3.13)

• If (A,Φ) is a solution to the Bogomolny equations, the differential of
the Bogomolny map at (A,Φ) is

d2(a, ϕ) = ∗dAa− dAϕ+ [Φ, a]. (3.14)

• The linearisation of the gauge action around a pair (A,Φ) will be
denoted as d1. For γ a section of the bundle adP :

d1γ = (−dAγ,−[Φ, γ]) . (3.15)

• The formal L2-adjoint of the infinitesimal gauge transformations when
either the gauge transformation comes from the reduced gauge group
or (a, ϕ) vanish at infinity is,

d∗1(a, ϕ) = −d∗Aa+ [Φ, ϕ]. (3.16)

• The gauge action on a configuration point m = (A,Φ) given by g ·m =
(A−dAgg−1, gΦg−1) can be written concisely abusing the notation for
d1 as

g ·m = m+ (d1g)g−1. (3.17)
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It should be recalled that a function is smooth up to the boundary if it
is smooth on some manifold in which X embeds. They can be characterised
by Seeley’s theorem as those functions having all derivatives bounded on
bounded sets of X̊.

Analogously, a connection is smooth up to the boundary, when it comes
from a smooth connection of a bundle extending P . This implies in partic-
ular that if A is the pulled-back connection on X by a trivialisation of the
SU(N)-bundle, the 1-form component comes from the composite map

C∞(X;T ∗X ⊗ adP )→ C∞(X;b T ∗X ⊗ adP )→ C∞(X;sc T ∗X ⊗ adP )
(3.18)

and therefore in local coordinates near the boundary of X it satisfies

A

(
[x2 ∂

∂x
]

)
= x2Ax, A

(
[x

∂

∂yi
]

)
= xAyi , (3.19)

where Ax, Ayi ∈ C∞(X; adP ) are the local components of the connection
when considered as a smooth section of T ∗X ⊗ adP . Similarly, a lift of a
b-connection comes from the image of the second map in (3.18). In order for
a connection to restrict to the boundary it must be the lift of a b-connection.
In particular, for a scattering vector field V = xVb, with Vb a b vector field,
a connection ∇ which is a lift of a b-connection satisfies,

∇V = x∇Vb . (3.20)

Proposition 3.1.5. There exists a smooth up to the boundary section s
of adP , such that, on the trivialisation over U being used to define the
boundary condition (3.10),

Φ− s = − 1

2r
γm +O(r−(1+ε)). (3.21)

Proof. Let π be the radial projection of U onto ∂X, then as U deformation
retracts onto ∂X, the bundles π∗P |∂X and P |U are isomorphic. Let

ψ : π∗ adP |∂X → adP |U , (3.22)

denote an isomorphism of the associated adjoint bundles, whose restriction
to the fibres over ∂X is the identity, then over U the smooth section

ψ ((m, (φ ◦ π)(m)) , (3.23)

is in fact smooth up to the boundary by Seeley’s extension theorem (see
section 1.14 in [39]).

We shall fix an isomorphism ψ0 so that in the trivialisation where the
boundary conditions (3.10), (3.11), in the definition of a monopole hold, the
section over U defined by

(π∗φ)(m) := ψ0 ((m, (φ ◦ π)(m))) , (3.24)
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satisfies,

Φ− π∗φ = − 1

2r
γm +O(r−(1+ε)). (3.25)

The existence of such an isomorphism follows by considering the bundle
isomorphism:

ψ−1
0 : adP |U → π∗ adP |∂X (3.26)

ξm 7→ (m,PA(ξm)),

where PA denotes the parallel transport with respect to the connection A,
and here we are parallel transporting the fibre over m along the straight
radial path connecting m with the boundary point π(m). The monopole
boundary conditions satisfied by Φ imply that over U (3.25) holds, and
therefore it is enough to take the bundle isomorphism ψ0 : (m, vπ(m)) 7→
P−1
A (vπ(m)).

The dependence on the particular choice of the isomorphism such that
equation (3.25) holds, is removed after quoting out by the reduced gauge
group, as any two such isomorphisms ψ1, ψ2 define a reduced-gauge trans-
formation by extending ψ1ψ

−1
2 smoothly over X.

It is then enough to take a section s extending π∗φ to X. From the
definitions, it is clear that any other section s′ satisfying the same asymptotic
condition, over U differs from s in a term of the form O(r−(1+ε)).

Denote by V = V0 ⊕ V1 the splitting of adP over U , corresponding to
the fibrewise centraliser of π∗φ and its orthogonal complement with respect
to the normalised Killing form (2.73). It can be observed that since the
eigenvalues of φ are constant, the spaces Vi are eigenbundles. The anal-
ysis leading to prove a slice theorem would be simpler if the rank of the
eigenspaces of Φ stayed constant, which is discussed in the appendix.

As mentioned above, we shall be working with the scattering measure
on X. Define in a similar way as in [32] the hybrid Sobolev spaces,

Hα,β,kΦ (X;V ) =

{
xαHk

b (X;V0)⊕ xβHk
sc(X;V1) over U

Hk(X̊;V ) on the interior of X.
(3.27)

More precisely, take χ a smooth cut-off function on X with values in [0, 1],
supported on U and identically 1 in a neighbourhood Ũ of ∂X contained in
U . If we let πi be the orthogonal projection of V onto the sub-bundles Vi
over U , then a distribution s ∈ C−∞(X;V ) is in Hα,β,kΦ (X;V ) if the sum

‖x−απ0(χs)‖Hk
b

+ ‖x−βπ1(χs)‖Hk
sc

+ ‖(1− χ)s‖L2
k

(3.28)

is finite. When s is in Hα,β,kΦ (X;V ), we define ‖s‖Hα,β,kΦ (X;V )
to be the value

of this sum.
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Remark 3.1.6. The definition of the hybrid Sobolev spaces extends in a nat-
ural way to vector bundles of the form W⊗V , where W is a Hermitian vector
bundle with a connection. If E is a vector bundle over X, the Sobolev spaces
Hk
b (X;E) and Hk

sc(X;E) are the completions of C∞c (X̊;E) with respect to
the corresponding b/sc-norms. In particular over the complement of Ũ they
are equivalent to L2

k(X \ Ũ ;E). In this way we obtain a family of Hilbert
spaces, that although they depend on U and χ, the important point is that
for a given Φ, they are defined over the same space of distributions and their
norms are all equivalent.

We shall fix a weight α, so that α > −1/2 (as we shall see later, α −
1 ≥ −3/2 is needed in order to consider the subgroup of reduced gauge
transformations, as this condition guarantees that the gauge transformations
restrict to the identity element at infinity), and such that α − 1 is not an
indicial root of the b-operator x−2d∗AdA −

1
4(ad γm)2 restricted to V0. This

last condition is needed in order to have a slice theorem and can always be
achieved since the set of these indicial roots is a discrete set, and although
not necessary, these indicial roots are calculated in Proposition 5.3.2.

We shall also fix a real number l to be in the interval,

3/2 < l ≤ 3. (3.29)

Definition 3.1.7. The charge [φ] configuration space Cα,l consists of pairs
(A,Φ) with

(A,Φ) = (A,Φ) + (a, ϕ) for some (a, ϕ) ∈ Hα,α+l,l
Φ (X; (∧1 ⊕ ∧0)⊗ adP ),

(3.30)
such that, the boundary conditions imposed to a monopole (3.9), (3.10),
(3.11) are satisfied.

In this way, Cα,l is the Hα,α+l,l
Φ -completion of the affine space (A,Φ) +

C∞c (X̊; (∧1 ⊕∧0)⊗ adP ), such that, the boundary conditions imposed to a
monopole are satisfied. The chosen weight and regularity, will allow us to
provide with charts the moduli space of framed monopoles.

Remark 3.1.8. The choice of the weight β = α + l for the hybrid Sobolev
spaces appearing in the definition of the configuration space, together with
the Sobolev embedding (5.11), imply that Hα−k,α+l,l+k(X;V ) embeds into
xα−kH l+k

b (X;V ).

Remark 3.1.9. For l > 3/2 (by a Sobolev embedding theorem) the space of
sections in xωL2

l (X) embeds into the space of continuous sections, and in
this case, for a weight ω ≥ −3/2, a section in xωL2

l (X) is forced to vanish
at S2

∞. Therefore, each section in Cα,l has a continuous representative,
and the elements in our configuration space will have the same limiting
value (A0, φ) over S2

∞ as (A,Φ). In particular, all the connections in the
configuration space Cα,l define the same covariant derivative at the boundary
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S2
∞. Moreover, as we have fixed α > −1/2 one has (a, ϕ) = O(x1+ε) for some
ε, thus the boundary conditions (3.10) and (3.11), hold automatically.

3.2 Manifold structure.

In this section we prove a slice theorem using the existence of Coulomb
gauge representatives. These slices will provide the moduli space of framed
monopoles with charts, giving it in this way, the structure of a smooth
manifold.

Let (A,Φ) be a point in the configuration space Cα,l. On the associated
vector bundle E obtained from P via the standard representation of SU(n)
on Cn, consider an orthonormal set of smooth sections {e1, ..., en} over U ,
such that, except for a finite number of points in U , where some of the ei
may vanish, they are eigenvectors of the Higgs field. Taking the covariant
derivative in the equation

Φei = λiei, (3.31)

we obtain,
(dAΦ− dλi)ei = −ΦdAei + λidAei. (3.32)

In the trivialisation where we have expressed the asymptotic conditions for
the Higgs field (3.10), (3.11), the coefficient of the left-hand-side is of order
O(r−(2+ε)). Therefore if in the last equation we take the Hermitian-inner
product with ej , using the skew-symmetry of the Higgs field and that there-
fore its eigenvalues are pure imaginary we conclude that

〈dAei, ej〉(λi − λj) = O(r−(2+ε)). (3.33)

From this we deduce that when λi 6= λj the connection matrix has com-
ponents Aij in O(r−(2+ε)). That is, in this gauge and with respect to the
eigenvectors {e1, ..., en} the connection matrix is block-diagonal up to order
O(r−(2+ε)), and the dimension of each of these blocks is given by the dimen-
sion of the eigenspace of the corresponding eigenvalue of the Higgs field. We
can cover U with a finite number of charts in which the above holds, and in
particular

[A0, φ] = 0. (3.34)

To summarise, up to terms in O(r−(2+ε)), the component of the connection
matrix on the associated bundle adP is in CΦ, the centraliser of Φ in adP .
This in turn implies that with respect to the splitting adP = CΦ ⊕ C⊥Φ the
connection has the form(

∇00 ∇01

∇10 ∇11

)
=

(
∇00 0

0 ∇11

)
+

(
0 ∇01

∇10 0

)
. (3.35)

The first term is a direct sum of connections and the second term an element
in x2+εΩ1

sc(adP ). Similarly, for the components of ad Φ: Φ00 and Φ10 vanish
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by definition, while Φ01 vanish since for any v1 ∈ C⊥Φ , v0 ∈ CΦ, the product
([Φ, v1], v0) is 0, and therefore the only non-vanishing component of ad Φ in
this decomposition is Φ11.

Equation (3.33) can be used to give an estimate on the off-diagonal terms
of the matrix connection with respect to the decomposition of adP induced
by the centraliser of π∗φ, proving in this way the following lemma.

Lemma 3.2.1. Let (A,Φ) be a point in the configuration space Cα,l. Over
the open set U , in the trivialisation where the asymptotic conditions (3.10),
(3.11) hold, the off-diagonal components of the connection matrix with re-
spect to the splitting V = V0 ⊕ V1 are of order O(x2+ε).

The next theorem, whose proof is similar to that of Theorem 2.4 in [32],
will be crucial to prove the slice theorem in the next subsection.

Theorem 3.2.2. Let (A,Φ) be a point in the configuration space Cα,l. The
linear map

d∗1d1 : Hα−1,β,l+1
Φ (X; adP )→ Hα+1,β,l−1

Φ (X; adP ) (3.36)

γ 7→ d∗AdAγ − [Φ, [Φ, γ]],

is a continuous Fredholm operator for 3 ≥ β − α ≥ l − 1 and α − 1 not an
indicial root of the b-operator x−2d∗AdA −

1
4(ad γm)2 restricted to V0.

Proof. The same notation as the one used in the definition of the hybrid
Sobolev spaces will be used along this proof. We shall first show that the
operator is bounded.

The operator d∗1d1 is clearly bounded on the complement of U , where the
Sobolev spaces are the usual ones and the difference in regularity between
its domain and codomain is 2, which is the degree of the operator. The
same reasoning applies to the complement of Ũ since over the interior, the
weighted b/sc-Sobolev spaces with k-weak derivatives are equivalent to the
usual Sobolev spaces with k-weak derivatives. To prove that it is bounded
over U we will see that it is bounded on V0 and V1. It is then convenient
to obtain expressions for d∗1d1|V0 and d∗1d1|V1 . Observe that by definition
Φ− Φ = O(x1+ε̃) for some ε̃ > 0, and this implies that over U ,

Φ− π∗φ = − 1

2r
γm +O(x1+ξ), (3.37)

where ξ = min{ε, ε̃}. Using the Jacobi identity and the commutativity of φ
with γm we obtain,

d∗1d1|V0 =

[
d∗AdA −

x2

4
[γm, [γm, ·]] +O(x2+ξ)

]
V0

. (3.38)

and,
d∗1d1|V1 = [d∗AdA − [φ, [φ, ·]] +O(x)]V1

. (3.39)
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It is clear that the map

D0 := π0 ◦ d∗1d1|V0 : Hα−1,l+1
b (V0)→ Hα+1,l−1

b (V0), (3.40)

is a continuous operator between b-Sobolev spaces, where Hα−1,l+1
b (V0) is

short hand for xα−1H l+1
b (X;V0). Similarly,

D1 := π1 ◦ d∗1d1|V1 : Hβ,l+1
sc (V1)→ Hβ,l−1

sc (V1) (3.41)

is a bounded map between sc-Sobolev spaces.
We will see now that the boundedness — and the more demanding com-

pactness needed for the Fredholmness property — of the other components:
D10 := π1 ◦ d∗1d1|V0 and D01 := π0 ◦ d∗1d1|V1 , imposes a constraint on the
weights. From the above expansion of d∗1d1|V0 , Lemma 3.2.1 and the fact
that the connection is a lift of a b-connection,

D10 : Hα−1,l+1
b (V0)→ Hα+3+ε,l

b (V1) ⊂ Hβ,l−1
sc (V1). (3.42)

where the inclusion is compact if

α+ 3 ≥ β. (3.43)

On the other hand, for any v1 ∈ V1, v0 ∈ V0

([φ, [γm, v1]], v0) = −([γm, v1], [φ, v0]) = 0, (3.44)

thus the order x term of the potential π0 ◦ [Φ, [Φ, ·]]V1 vanishes and using
Lemma 3.2.1 to estimate the off-diagonal components of the connection ma-
trix we obtain,

D01 : Hβ,l+1
sc (V1)→ Hβ+2+ξ,l

sc (V0) ⊂ Hα+1,l−1
b (V0). (3.45)

The inclusion Hβ+2+ξ,l
sc (V0) ⊂ Hα+1+ξ,l

b (V0) holds if β+2+ξ ≥ α+1+ξ+ l,
therefore D01 is compact if

β − α ≥ l − 1. (3.46)

In summary, for these two operators to be compact it is required that

3 ≥ β − α ≥ l − 1. (3.47)

To prove the Fredholmness it can be observed from the above expres-
sion that D1 is a fully elliptic sc-operator, hence Fredholm, and x−2D0 is
an elliptic b-operator, i.e. it is Fredholm for α − 1 not an indicial root of
[x−2d∗AdA −

1
4(ad γm)2]|V0 . This allows us to construct a parametrix, i.e.

a distribution P such that d∗1d1P − 1 and Pd∗1d1 − 1 are compact opera-
tors. P will be a pseudodifferential operator of order −2 on the interior
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of X such that on U it decomposes as a b-pseudodifferential operator P0

on V0 and as a sc-pseudodifferential operator P1 on V1. More precisely,
on the blown-up space X2

b = [X2; ∂X × ∂X] and in terms of Schwartz
kernels, we consider a distribution KP conormal to the lifted diagonal of
degree −2 such that its restriction to U2

b decomposes as Kx2P0
+ KP1 .

Here P0 is a b-pseudodifferential operator in Ψ−2,E
b (U, V0 ⊗Ω

1/2
sc ) with prin-

cipal symbol σb,−2(P0) = (1 − ϕb)σb,2(D0)−1, with ϕb a bump-function
based at 0, and indicial operator the inverse of I(D0) 1. Similarly, P1

is a sc-pseudodifferential operator in Ψ−2,0
sc (U, V1 ⊗ Ω

1/2
sc ) with principal

symbol σsc,−2(P1) = (1 − ϕsc)σsc,2(D1)−1 and normal operator N̂sc(P1) =
[N̂sc(D1 + Φ11)]−1.

Fixing a smooth cut-off function χ with support on U and letting P̊

be a pseudodifferential operator in Ψ−2
cl (X̊, V ⊗Ω

1/2
sc ) with principal symbol

σ−2(P̊ ) = (1− ϕ)[σ2(d∗1d1)]−1 we define

Ps := x2P0(π0χs) + P1(π1χs) + P̊ (1− χ)s, s ∈ Hα+1,β,l−1(X; adP ).
(3.48)

Each summand is implicitly extended by 0 outside its domain of definition
and in order to have a well-defined distribution, the sub-leading terms in
the asymptotic expansion of P̊ are required to agree with that of x2P0 +P1

over Ů .
To show the compactness of d∗1d1P − Id it is enough to see that

R := d∗1d1Pχ− Id (3.49)

is compact, as the operator d∗1d1P (χ − 1) − Id is compact by the classical
theory of pseudodifferential operators. With respect to the splitting of adP ,
the diagonal terms of R are compact by the b/sc theory of pseudodifferential
operators. The off-diagonal terms are compact since they are a composition
of a bounded map with a compact operator, which are given by (3.42) and
(3.45). The compactness of Pd∗1d1−Id follows from an analogous argument.

Finally, as already noted, the indicial roots coming from the connection
A coincide with those from A, as they both restrict to A0 at S2

∞.

It can be observed that the theorem still holds for any other choice of
set-up, i.e. choosing another background pair (A′,Φ′) and a different bundle
automorphism will give an π∗φ′ that differs from π∗φ in a term of order x1+ε.

From now on, we shall drop the lower index Φ from the notation of the
hybrid Sobolev spaces, and on the configuration space Cα,l unless otherwise
stated we shall consider the distance induced by the norm ‖ · ‖Hα,α+l,l .

1the Schwartz kernel of the distribution having indicial operator I(D0)−1, does not have
to vanish to all orders in the boundary faces (lb, rb) (see section 5.13 of [38]). It forces
us to use the full-calculus and yields the index family E , which is given by (0, Elb, Erb)
corresponding to the boundary hypersurfaces (ff, lb, rb) of X2

b and with Elb ∪ (−Erb) =
Specb I(D0).
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Definition 3.2.3. The group of gauge transformations Gα,l+1, consists of
the sections in the space H l+1

b (X; AdP ) which are the exponential of sections
in Hα−1,α+l,l+1(X; adP ).

It can be observed that in order for Theorem 5.1.2 to hold, the mini-
mum regularity that is required is l+1 > 3/2, in this way the charts coming
from the pointwise exponential have smooth inverse, making the space of
gauge transformation a Hilbert Lie group (see Section 4.2 in [8]). Also, as
α > −1/2, these continuous gauge transformations restrict to the identity
element at S2

∞, as it is required for the subgroup of reduced gauge transfor-
mations.

Proposition 3.2.4. The gauge group action on the configuration space is
smooth, i.e., Gα,l+1 × Cα,l → Cα,l is a smooth map on Banach manifolds.

Proof. Writing g = eγ with γ ∈ Hα−1,α+l,l+1(adP ) we see that dAgg
−1

is an element in Hα,α+l,l(adP ). On the other hand, it can be observed
that conjugation by an element in the gauge group preserves the decay
rate. Moreover, using Theorem 5.1.4 in the Appendix, conjugation by g is
a bounded operator on Cα,l. Therefore

(g, (A,Φ))) 7→ (A− dAgg−1, gΦg−1) (3.50)

is a smooth map into Cα,l.

Slice theorem. The idea of a slice theorem is as follows: assume there is a
compact Lie group G (we require compactness in order to have a G-invariant
metric and a manifold structure on the orbits) acting on a manifold M , then
there is an orthogonal decomposition of the tangent space at p ∈M ,

TpM = TpO ⊕ (TpO)⊥, (3.51)

where O is the G-orbit of p, and ⊥ denotes the orthogonal complement with
respect to a G-invariant metric on M . The image of the exponential map
restricted to an d(Stab(p))-stable neighbourhood in (TpO)⊥ will be denoted
by Sp and is called a slice. Under the action h · (y, g) = (y · h, h−1 · g)
of Stab(p) on Sp × G the multiplication map Sp × G → M descends to
(Sp×G)/Stab(p) and gives a diffeomorphism from a small ball around [(p, 1)]
onto a neighbourhood of its image. This construction allows us to define a
manifold structure to the space M/G when G acts freely on M .

The existence of a slice for a compact Lie group acting on a manifold
was shown in [41] extending the paper [13], and was later generalised in [43]
to locally compact Lie groups acting on G-spaces with compact isotropy
groups. In our case the existence of a slice for the gauge group acting on
the configuration space is based on the existence of Coulomb gauge repre-
sentatives. The proof of this existence is similar to Proposition 2.3.4 in [8]
or Theorem 2.5 in [56].
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Theorem 3.2.5. Let m = (A,Φ) be a point in the configuration space Cα,l.
There exists a constant c(m) such that for any other m̃ ∈ Cα,l at distance
less than c(m) from m, there exists a gauge transformation gm̃ ∈ Gα,l+1 such
that gm̃ · m̃ is in Coulomb gauge relative to m, i.e.

m− gm̃ · m̃ ∈ ker d∗1. (3.52)

Proof. This is an application of the implicit function theorem in Banach
spaces. The gauge action on a configuration point (A+a,Φ +ϕ) is given by

g · (A+ a,Φ + ϕ) = (A+ a− (dA+ag)g−1, g(Φ + ϕ)g−1). (3.53)

We need to prove the existence of a gauge transformation g such that

d∗1(m− g · (A+ a,Φ + ϕ)) = d∗1((dAg)g−1 − gag−1, [Φ, g]g−1 − gϕg−1)

= 0. (3.54)

We write g = eγ with γ ∈ Hα−1,α+l,l+1(X; adP ), and express this last
equation via the map G : Hα−1,α+l,l+1(adP )×Hα,α+l,l((∧1⊕∧0)⊗adP )→
Hα+1,α+l,l−1(adP ) as

G(γ, (a, ϕ)) = 0, (3.55)

with (a, ϕ) ∈ Hα,α+l,l(X; (∧1 ⊕ ∧0) ⊗ adP ). Note that the composition
of a smooth map with an element in L2

k with conformal weight w(k, p) =
k − n/p (in this case n = 3 , p = 2) positive is again an element in L2

k. A
corresponding statement for weighted Sobolev spaces holds, the regularity is
preserved but the weights are not. In particular eγ has the same regularity
as γ.

Also note that as w(l+1, 2) is positive, sections in Hα−1,α+l,l+1(X; adP )
are continuous by the Sobolev embedding theorem. This guaranties that
the map G which can be considered an extension from the operator acting
on smooth sections to the above Sobolev spaces, is smooth. This follows
from the fact that once the multiplication is continuous it is automatically
smooth (the image though gains some powers of the weight function x) see
Theorem 5.1.4 of Appendix. The differential of G at (0, (0, 0)) is given by
the composition of the Lie algebra action on Hα,α+l,l(X; (∧1 ⊕ ∧0)⊗ adP )
and d∗1:

G∗ : Hα−1,α+l,l+1(adP )×Hα,α+l,l((∧1 ⊕ ∧0)⊗ adP )→ Hα+1,α+l,l−1(adP )

(ξ, ã, ϕ̃) 7→ d∗1(dAξ − ã, [Φ, ξ]− ϕ̃). (3.56)

The partial derivative with respect to γ is

∂γG(0,(0,0)) = −d∗AdA + [Φ, [Φ, ·]] = −d∗1d1. (3.57)
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The implicit function theorem states that we have γ as a function of (a, ϕ)
and solving equation (3.55) in a small neighbourhood of (a, ϕ) if −d∗1d1 is
an isomorphism, where

d∗1d1 : Hα−1,α+l,l+1(X; adP )→ Hα+1,α+l,l−1(X; adP )

γ 7→ d∗AdAγ − [Φ, [Φ, γ]]. (3.58)

It should be recalled that the gain in weight in the V0 factor is due to
the fact that we can extract a factor of x in the connection A to obtain a
b-connection.

To see that the map is injective, consider γ0 in the kernel of −d∗1d1, then
d∗AdAγ0 = [Φ, [Φ, γ0]], pairing this equation with γ0 we see that the left hand
side is non-negative and the right hand side is non-positive, therefore γ0 is a
continuous section which must be covariantly constant and taking values in
adP0. As we have by hypothesis α − 1 ≥ −3/2, our Sobolev spaces extend
the infinitesimal reduced gauge action where the gauge transformations are
required to be the identity at the boundary and therefore γ0 = 0 at the
boundary. This together with the fact that it is a parallel section implies
γ0 = 0.

To prove the surjectivity we have to show that there is a solution to the
equation d∗1d1ξ = η for any section η in the image of d∗1 (see the definition
of G in equation (3.54)).

The previous Theorem 3.2.2 implies that the image of d∗1d1 is closed,
which allows us to have a Fredholm alternative: the space ker(d∗1d1)∗ is the
L2-orthogonal subspace to Im(d∗1d1), and as this space is closed we have
that,

η is L2-orthogonal to ker(d∗1d1)∗ if and only if η ∈ Im(d∗1d1). (3.59)

Surjectivity now follows immediately from the Fredholm alternative writing
η = d∗1η0 and pairing it with γ̃0 in the kernel of (d∗1d1)∗,

(d∗1η0, γ̃0) = (η0, d1γ̃0) = 0. (3.60)

Let ε be a positive real number, the ε-slice based at m ∈ Cα,l is defined
to be,

Sm,ε := {m+ (a, ϕ) : (a, ϕ) ∈ Hα,α+l,l(X; (∧1 ⊕ ∧0)⊗ adP ),

d∗1(a, ϕ) = 0, ‖(a, ϕ)‖Hα,α+l,l < ε}. (3.61)

By the previous theorem, for sufficiently small enough ε, the ε-slice is not
empty. As in the finite dimensional case the first thing to check is the
following short lemma.
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Lemma 3.2.6. The ε-slice based at m is stable under the action of the
stabiliser of m.

Proof. As the gauge transformations have two weak derivatives in L2, the
multiplication rule for Sobolev spaces (see the Appendix) implies that the
regularity of (a, ϕ) is preserved under gauge transformations, moreover the
weights do not change as the action is given by

g·(m+ (a, ϕ)) = m+(gag−1, gϕg−1) ∈ Hα,α+l,l(X; (∧1⊕∧0)⊗adP ). (3.62)

As the action is an isometry and d∗1g = 0, the other two conditions also hold:

d∗1(g · (a, ϕ)) = 0, ‖g · (a, ϕ)‖Hα,α+l,l < ε. (3.63)

By Proposition 3.2.4, there is a natural smooth multiplication map given
by the action of the gauge group on the ε-slice based at m:

M : Sm,ε × Gα,l+1 → Cα,l (3.64)

(s, g) 7→ g · s.

If again we denote g = eγ , the differential of this map at (m, 1) is given by

M∗ : ker d∗1 ×Hα−1,α+l,l+1(X; adP )→ TmCα,l (3.65)

((a, ϕ), γ) 7→ d1γ + (a, ϕ).

One of the advantages of the completion from the spaces of smooth sections
to the Banach spaces of Sobolev sections is that there is an implicit function
theorem that we can use.

On the other hand, a crucial difference with the finite dimensional case
is that there is no guarantee that TxO is closed and therefore there might
not be a decomposition of the tangent space as above. This is solved by the
following lemma.

Lemma 3.2.7. The operator

d1 : Hα−1,α+l,l+1(X; adP )→ Hα,α+l,l(X; (∧1 ⊕ ∧0)⊗ adP )

γ 7→ (−dAγ,−[Φ, γ]) . (3.66)

has closed range.

Proof. As γ must vanish at infinity, the kernel of d1 is 0. In fact, there is a
Poincaré type inequality i.e. there is constant c > 0 such that,

‖d1γ‖Hα−1,α+l,l+1(X;adP ) ≥ c‖γ‖Hα,α+l,l(X;(∧1⊕∧0)⊗adP ). (3.67)
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This follows from the standard elliptic estimates on the interior and integra-
tion by parts on a collar neighbourhood of the boundary. In particular, as γ
vanishes at the boundary, the norm of the radial derivative of |γ| bounds ‖γ‖.
Then from Kato’s inequality |d|γ|| ≤ |dAγ| it follows that ‖dAγ‖ ≥ c‖γ‖,
which implies the above inequality.

With the Poincaré inequality: if {d1γk} → ξ in Hα,α+l,l(X; (∧1 ⊕ ∧0)⊗
adP ), then {γk} is Cauchy and therefore ξ ∈ Im d1.

As Im d1 is closed in Hα,α+l,l(X; (∧1 ⊕ ∧0) ⊗ adP ), it is also closed in
L2(X; (∧1 ⊕ ∧0) ⊗ adP ). With this fact we arrive at the conclusion that
there is an isomorphism,

TmCα,l ∼= Im d1 ⊕ (Im d1)⊥ = Im d1 ⊕ ker d∗1. (3.68)

This allows us to write the differential of the multiplication operator (3.65)
as d1 ⊕ Id (with the obvious re-ordering of the factors). This maps onto
Im d1 ⊕ ker d∗1, so in order to apply the implicit function theorem we must
show that d1 is injective.

The stabiliser of the configuration point m ∈ Cα,l, will be denoted by
Γm, and is defined as

Γm := {g ∈ Gα,l+1 : g ·m = m}. (3.69)

It consists of the covariant constant gauge transformations (with respect to
the connection of the configuration point m) that commute with the Higgs
field. As the elements in the stabiliser are covariantly constant they are
determined by their value at a fibre and therefore we can think of Γm as
a subset of the structure group. In fact, it is not hard to see that it is a
closed subgroup and therefore Γm is an embedded Lie subgroup of SU(N).
In the case of interest, where the action is given by the reduced gauge group
G0, the stabiliser of any configuration point is the identity, as that is the
value that these gauge transformation must take on the fibres over S2

∞. The
elements in the kernel of d1 are the sections in the Lie algebra of Γm, and
therefore for the action of reduced gauge transformations,

ker d1 = 0. (3.70)

In this way we obtain a generalisation of the finite dimensional case

M : (Sm,ε × Gα,l+1)/Γm → Cα,l (3.71)

[(s, g)] 7→ g · s.

The differential of this map is now an isomorphism of Hilbert spaces and
this proves the following theorem.

Theorem 3.2.8. Given a configuration point m ∈ Cα,l, there exists a pos-
itive real number δ such that, a δ-ball based at (m, 1) ∈ Sm × Gα,l+1 is
diffeomorphic to a small neighbourhood of m in the configuration space Cα,l.
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To have a picture in mind of this theorem it is useful to recall the con-
struction of a fibre bundle F with fibre f out of a principal G-bundle P . The
structure group G acts on f and we have the fibre bundle F = P ×G f over
P/G. With this in mind, the statement that a δ-ball based at [(m, 1)] ∈
(Sm × Gα,l+1)/Γm is diffeomorphic to a small neighbourhood of m in the
configuration space Cα,l (if two configuration points are in the δ-slice based
at m are gauge related by a transformation close to the identity, then in
fact they are gauge equivalent by an element in the stabiliser of m), trans-
lates into having a small ball around m in the configuration space which is
diffeomorphic to a ball in the total space of the fibre bundle

Sm,ε ×Γm G → Sm,ε/Γm. (3.72)

For a more concrete example, assume that the configuration space is
finite dimensional, say R3, and that the gauge group is isomorphic to U(1)×
R. The action of the factor U(1) corresponding to rotations around the z-
axis and the action of the R-factor to translations in the z-direction. Then
with the obvious notations, at a point p ∈ R3 the adjoint of the infinitesimal
gauge action is given by d∗1(y) = −p2y1 + p1y2 + y3. The stabiliser of 0
is U(1) × {0} and therefore S0/U(1) can be taken to be the non-negative
y-axis. In this case the theorem says that a small cylinder centred at 0,
corresponding to the fibration S0,ε ×U(1) G , is diffeomorphic to a small ball
around the origin in the configuration space.

The next thing to do is to generalise the above theorem by removing the
restriction to the elements of the gauge group of being close to the identity.
In the above picture this corresponds to have that the fibre bundle over
Sm,ε/Γm with fibre the whole gauge group, is diffeomorphic to a neighbour-
hood of the orbit of m (in the space of orbits).

A pathological situation that might happen is illustrated by the following
scenario: again consider the configuration space to be R3 with a gauge
group such that the orbit of m = 0 is the z-axis and there is a sequence
of orbits with a ⊂-shape having its vertex approaching a point p in the z-
axis and as they are closer to p they turn in a fixed direction so that they
do not intersect each other and they do not cross the slice that we take to
be the 〈x, y〉-plane. In this case, infinitely many ⊂-shaped orbits will be
in a small neighbourhood of the orbit of m and not in the image of the
generalisation of the local diffeomorphism M . So for example surjectivity
onto a neighbourhood of the orbit of m may fail. The injectivity also needs
to be present, and as in the case of connections, see Proposition 4.2.9 of [8],
the following lemma guarantees that we have a diffeomorphism.

Lemma 3.2.9. Assume that two convergent sequences {c1
n} → c1

∞ and
{c2
n} → c2

∞ of points in the configuration space Cα,l are such that, for each
index i there exists a gauge transformation gi in Gα,22 such that, c1

i = gi · c2
i

2as it is shown along the proof, only the minimum regularity is needed.
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(they are term-by-term gauge equivalent). Then each gauge element gi is
in Gα,l+1, and there exists a subsequence of the sequence of gauge trans-
formations that converges in Gα,l+1 to an element g∞ ∈ Gα,l+1 such that,
c1
∞ = g∞ · c2

∞.

Proof. As in the smooth version, we consider the action of the gauge trans-
formation on the connection in order to see how its regularity is improved.
On a trivialisation of the bundle, A1

i = gi ·A2
i = giA

2
i g
−1
i − dgig

−1
i , which is

equivalent to
dgi = giA

2
i −A1

i gi, (3.73)

where the derivatives are in the weak sense. By the triangle inequality and
the continuity of multiplication in Sobolev spaces, in particular using the
embedding of Remark 3.1.8, for k ≤ l the multiplication Hk

b × xαH l
b → Hk

b

is bounded, and therefore there exist constants Ci > 0 such that,

‖dgi‖k ≤ ‖giA2
i ‖k + ‖A1

i gi‖k ≤ Ci(‖gi‖k‖A2
i ‖l + ‖A1

i ‖l‖gi‖k), (3.74)

where the subscript denotes the norm in the corresponding b-Sobolev space.
From this equation we see that if k ≤ l, the L2-norm of the k-th derivative
of each gi is bounded when gi ∈ Gα,k. Therefore for k ≤ l we can gain
one degree in regularity. Iterating this procedure we obtain that the first
l + 1 weak derivatives of each gi are bounded. As the structure group
is compact, the sequences consisting of the k-th partial derivatives of the
gauge transformations with k ≤ l + 1 are uniformly bounded.

By the Alaoglu-Banach theorem there exists a subsequence {gn} that
converges weakly to g∞ ∈ Gα,l+1, this space embeds compactly into Gα,l, and
therefore the previous subsequence {gn} converges to g∞ ∈ Gα,l. Applying
again the argument above using equation (3.73) to obtain an improvement in
the regularity of this gauge transformation, we see that in fact g∞ ∈ Gα,l+1.

Taking the limit in (3.73) together with the transformation law for the
Higgs fields gives c1

∞ = g∞ · c2
∞.

Theorem 3.2.10. Let m be a point in the configuration space Cα,l, there
exists an ε0 > 0 such that for any positive ε < ε0 the map (3.64) is a
diffeomorphism onto a neighbourhood of the orbit of m.

Proof. We have seen in the previous theorem that the mapping M is a local
diffeomorphism. To show that for small enough ε it is in fact a diffeomor-
phism we need to prove that M is injective. For a contradiction assume
that no such an ε0 exists, then we could find two sequences of configuration
points {c1

n} and {c2
n} which are in Coulomb gauge relative to m, they are

term-by-term gauge equivalent via {gn ∈ G \ Γm} and both converge to m.
By the previous lemma, the sequence of gauge transformations would have
a subsequence converging to 1, therefore by Theorem 3.2.8 the sequences of
configuration points would eventually be related by gauge transformations
in the stabiliser of m, a contradiction.
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Let Qα,l be the quotient space

Qα,l := Cα,l/Gα,l+1. (3.75)

Lemma 3.2.11. Provided with the quotient topology Qα,l is a Hausdorff
space.

Proof. The weighted-L2-metric on configuration points,

‖(A1,Φ1)− (A2,Φ2)‖Hα,α,0 (3.76)

is bounded by ‖(A1,Φ1)−(A2,Φ2)‖Hα,α+l,l and therefore it is finite. It is also
preserved by the action of the gauge group, and consequently it descends to
the quotient Qα,l. Similarly as Lemma 4.2.4 in [8], this operation defines a
metric on Qα,l,

d([c1], [c2]) := inf
g∈Gα,l+1

‖c1 − g · c2‖Hα,α,0 . (3.77)

This provides the quotient with the structure of a metric space. As a result,
Qα,l is a Hausdorff space with the induced topology and as this topology is
coarser than the quotient topology the statement follows.

Theorem 3.2.10 implies that Qα,l is locally modelled on Sm,ε. Moreover,
the transition functions between charts are smooth, providing the space Qα,l
with the structure of a Hilbert manifold. The smoothness of the transition
functions is proved in the same way as the case of the moduli space of
connections, see Section V in [40].

Let Mα,l be the moduli space of monopoles inside Qα,l. By the above
results, we conclude that Mα,l is a manifold locally modelled around a
monopole m = [(A,Φ)] as the preimage of 0 by the Bogomolny map:

B(A,Φ) : S(A,Φ),ε → Hα+1,α+l,l−1(X;∧1 ⊗ adP )

(a, ϕ) 7→ ∗FA+a − dA+a(Φ + ϕ). (3.78)

Remark 3.2.12. If we were allowing gauge transformations which were not
necessarily the identity over S2

∞, but just preserving the fixed mass section
and connection there, then we would have to consider α < −1/2 and the
formal adjoint of d1 would have to be taken with respect to the weighted L2-
inner product instead of the usual L2. In this way, there is a decomposition
of the tangent space of a point in the configuration space as in (3.68),

TmCα,l ∼= Im d1 ⊕ ker d∗,w1 , (3.79)

where d∗,w1 = w2d∗1w
−2 with w the weight. The slice in this case would

be a subspace of ker d∗,w1 . Everything would work as in the framed case,

but one needs to consider the set Cα,l∗ of irreducible configuration points,
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defined as those points whose stabiliser is minimal, that is, ZN (the centre

of SU(N)). This set is open in Cα,l: take a point c = (A,Φ) in Cα,l∗ , if every
neighbourhood of c contains a reducible point, then we can take a sequence of
reducible configuration points {ci} converging to c, but this implies that the
holonomy group of A cannot be the whole space SU(N) hence c is reducible.
The set of irreducible configuration points quotiented by the gauge group
modulo C(SU(N)) (where for continuous sections this coincides with the
centre of the gauge group) gives the space of irreducible configuration points

modulo gauge Qα,l∗ . As Qα,l is given the quotient topology, the projection
map induced by the gauge action, π : Cα,l → Qα,l is open and therefore
Qα,l∗ := π(Cα,l∗ ) is open in Qα,l. Considering the action of this gauge group,
the manifold where solutions to the Bogomolny equations should be sought
is Qα,l∗ . If one wants to calculate the dimension of the moduli space of these
unframed-monopoles via an index theorem as it is done in the next chapter,
the indicial roots of the operatof D̃0 in Proposition 4.3.5, will depend now
on the weight w, cf. Proposition 4.6 in [33], for the case of structure group
SU(2).

The dependency of Mα,l on the regularity l and on the weight α is
removed in the next proposition.

Proposition 3.2.13. Let m be a solution to the Bogomolny equations in the
configuration space Cα,l, then there exists a gauge transformation g = eγ with
γ in Hα−1,α+l,l+1(X; adP ), such that g ·m is polyhomogeneous conormal to
the boundary.

Proof. As the phgc configuration points in Cα,l, are dense in Cα,l (see Remark
5.4.7) there is a ball of radius ε based at m containing a phgc configuration
point c = (A,Φ) which can be gauge transformed by an element g ∈ Gα,l+1

to be in Coulomb gauge relative to m. Therefore the difference (a, ϕ) =
g−1m − c is an element in Hα,α+l,l(X; adP ) that satisfies d∗1(a, ϕ) = 0 and
such that the Bogomolny operator B(A,Φ) based at c evaluated at (a, ϕ)
vanishes:

B(A,Φ)(a, ϕ) = ∗FA+a − dA+a(Φ + ϕ)

= ∗FA − dAΦ + ∗dAa− dAϕ+ [Φ, a] + ∗(a ∧ a)− [a, ϕ] = 0.
(3.80)

The linear terms in the Bogomolny operator together with the Coulomb
gauge condition

d∗1(a, ϕ) = −d∗Aa+ [Φ, ϕ] = 0, (3.81)

form the elliptic linear map D(A,Φ) (explicitly written in (4.10)). So both
conditions can be written as the single equation,

D(A,Φ)

(
a
ϕ

)
=

(
− ∗ (a ∧ a) + [a, ϕ]− ∗FA + dAΦ

0

)
. (3.82)
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Therefore the pair (a, ϕ) is in the kernel of P , an elliptic operator of order 1
with phgc coefficients. The elements in the kernel of P are phgc with leading
order asymptotic determined by α, in fact of order (see Theorem 2.4 (c) in
[32]),

O(x1+λ0 logord(λ0) x), (3.83)

where

λ0 = min{λ : λ ∈ specbD(A,Φ), λ > α+ 1/2}, (3.84)

and the exponent of the log term is the order of the pole of the indicial
family I(P, λ) at the indicial root λ0. In this case, the exponent must be 1,
since P is a first order operator.

The previous proposition shows that a solution to the Bogomolny equa-
tions in Hα,α+l,l(X; (∧1 ⊕ ∧) ⊗ adP ) is in fact gauge equivalent to a phgc
configuration point whose first two leading terms are

φ− 1

2
xγm, (3.85)

as long as α is large enough. This is always the case for our choice α > −1/2,
see Proposition 4.3.5.

Therefore the moduli space of (irreducible) phgc framed monopoles M
surjects onto the space ofMα,l . This map is also easily seen to be injective:
if two phgc monopoles are related by a gauge transformation in Gα,k then as
we saw along the proof of Lemma 3.2.9, the gauge transformation is actually
smooth, that is, the two phgc monopoles are in the same orbit under the
action of the phgc reduced gauge group G0.

3.3 Hyperkähler structure.

The configuration space Cα,l is an infinite dimensional affine space that car-
ries a quaternionic structure. A section (a, ϕ) of the bundle (∧1⊕∧0)⊗adP
over X can be identified with a function on su(n)⊗H via

(a, ϕ) = (axdx+ aydy + azdz, ϕ) 7→ ϕ+ axI + ayJ + azK. (3.86)

The inner product on two quaternions q1 and q2 is given by Re(q1q2), it
combines with the Killing form and the L2-inner product to give the inner
product (·, ·)H on Hα,α+l,l(X; (∧1⊕∧0)⊗adP ) on which the almost complex
structures defined by left multiplication by I, J,K are isometries (as q1q2 =
q2q1). Therefore there are associated 2-forms ωI , ωJ , ωK , defined in the usual
way, that is,

ωI ((a1, ϕ1), (a2, ϕ2)) = (I(a1, ϕ1), (a2, ϕ2))H , (3.87)
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and similarly for ωJ and ωK . These forms are non-degenerate and as they
have constant coefficients they are also closed. The closedness property
implies that the almost complex structures are integrable [2], providing Cα,l
with a hyperkähler structure.

The gauge group acts by isometries and therefore it preserves the above
symplectic forms. The Bogomolny operator constitutes the corresponding
three moment maps and the hyperkähler quotient construction [23],

B−1
(A,Φ)(0)/G0, (3.88)

that in the finite dimensional case provides the quotient with a hyperkähler
metric, can now be complemented by the following proposition.

Proposition 3.3.1. The symplectic forms ωI , ωJ and ωK descend to the
quotient B−1

(A,Φ)(0)/G0.

Proof. We have seen that using the slice theorem, the tangent space to a
point in Qα,l is isomorphic to the kernel of d∗1, and therefore the tangent
space at monopole (A,Φ) can be identified with the sections (a, ϕ) in the
kernel of D(A,Φ). Denoting the complex structures by Ii,

ωIi ((a, ϕ), d1γ)) = (Ii(a, ϕ), d1γ))H =
(
Ii(a, ϕ),D∗(A,Φ)(0, γ)

)
H

=
(
D(A,Φ)(Ii(a, ϕ)), (0, γ)

)
H =

(
Ii(D(A,Φ)(a, ϕ)), (0, γ)

)
H = 0, (3.89)

where in the third equality we have used integration by parts, and in the
last equality that the kernel of D(A,Φ) is a quaternionic vector space.



Chapter 4

Moduli space dimension.

The moduli space of phgc framed monopoles was defined in the previous
chapter and it was shown that it carries the smooth structure of a manifold.
The principal aim of this chapter is to compute the dimension of this moduli
space.

In the first section we follow chapter 4 in [8] to explain the basic the-
ory needed to understand why the dimension of the manifold of framed
monopoles is given by the index of d∗1 ⊕ d2.

In the second part of this chapter, we use the index formula of Kottke
[32] to obtain that the dimension of the framed moduli space is four times
the sum of the topological and holomorphic charges.

4.1 Basic theory.

The framed moduli space of monopoles was defined in the previous chapter,
it was shown that a local model for a monopole m = (A,Φ) represented by
the solution to the Bogomolny equations is (Bm|Sm,ε)−1(0) ⊂ ker d∗1.

Assume that the operator D(A,Φ) defined as

d∗1⊕ d2 : Hα,α+l,l(X; (∧0⊕∧1)⊗ adP )→ Hα+1,α+l,l−1(X; (∧0⊕∧1)⊗ adP )
(4.1)

is a Fredholm operator, then the Bogomolny map

Bm : ker d∗1 ⊂ Hα,α+l,l(X; (∧0 ⊕ ∧1)⊗ adP )→ Hα+1,α+l,l−1(X;∧1 ⊗ adP )
(4.2)

must be Fredholm as well. Using the implicit function theorem for Banach
spaces, one can show that the zero set of Bm can be expressed as the zero set
of a smooth function f acting on finite dimensional spaces. More precisely
(this is Proposition 4.2.19 in [8]),

Proposition 4.1.1. A Fredholm map B from a convex neighbourhood of 0
is locally right equivalent to a map B̃ —that is, there is a diffeomorphism g

65
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between two neighbourhoods of 0 such that B ◦ g = B̃— which has the form

B̃ : U0 × F → V0 ×G, B̃(ξ, η) = (L(ξ), λ(ξ, η)), (4.3)

where L is a linear isomorphism from U0 to V0, F and G are finite di-
mensional with dimF − dimG = indB, and the derivative of λ vanishes at
0.

It should be recalled that the index of a smooth Fredholm map is given
by the index of its differential at any point of its (connected) domain. We can
use this proposition to conclude that the zero set of Bm in a neighbourhood
of 0 is given by the zero set of

f : ker(d∗1 ⊕ d2)→ coker d2, (4.4)

in a neighbourhood of 0, where f(y) = λ(0, y) in the above proposition and
d2 is the differential of Bm at 0.

If 0 is a regular value for f , i.e. df(p) is surjective whenever the image
of p is 0, then f−1(0) is a submanifold of ker(d∗1 ⊕ d2), which locally models
the monopole m, and has dimension

dim ker(d∗1 ⊕ d2)− dim coker d2. (4.5)

From the above proposition it follows that df is surjective if and only if d2 is
surjective, so the dimension of the manifold consisting of framed monopoles
is dim ker(d∗1 ⊕ d2). On the other hand,

indBm = ind(d∗1 ⊕ d2) + dim coker d∗1. (4.6)

As the reduced gauge group acts freely on the moduli space of monopoles it
follows that

coker d∗1
∼= (Im d∗1)⊥ = ker d1 (4.7)

vanishes.
In conclusion, when d∗1 ⊕ d2 is Fredholm, the dimension of the manifold

of (irreducible) regular framed monopoles is given by the index of d∗1 ⊕ d2.

4.2 Deformation complex of monopoles.

The previous theory is usually recast in the form of a deformation com-
plex, in our case we have the following deformation complex extending the
corresponding phgc one,

Hα−1,α+l,l+1(adP )
d1−→ Hα,α+l,l((∧0 ⊕ ∧1)⊗ adP )

d2−→ Hα+1,α+l,l−1(∧1 ⊗ adP )

d1 : γ 7→ (−dAγ,−[Φ, γ]) , d2 : (a, ϕ) 7→ ∗dAa+ [Φ, a]− dAϕ.
(4.8)
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This is an elliptic complex precisely when m = (A,Φ) is a solution to the
Bogomolny equations (see Lemma 5.6.1). As before, the first map d1, is
the infinitesimal gauge action from T1Gα,l+1 extending T1G0 → Γ(X;∧1 ⊗
adP )⊕Γ(X; adP ), where the phgc sections of a bundle E over X are denoted
as Γ(X;E). The second map d2, is the differential of the Bogomolny map
at T(A,Φ)Cα,l.

The first cohomology group of the complex represents the linearisation
of the Bogomolny equations modulo gauge, i.e. the tangent space of the
moduli space of framed monopoles at the monopole [m]:

H1
m =

ker d2

Im d1

∼= ker(d∗1 ⊕ d2). (4.9)

The cohomology group H0
m vanishes as the gauge group action is free. The

second cohomology group vanishes when m is a regular point, i.e. d2 is sur-
jective. In this case, as it shown in the previous section, when the operator
d∗1⊕d2 is Fredholm, its index (which is minus the Euler characteristic of the
complex) gives the dimension of the manifold of framed monopoles.

In conclusion, if d2 is surjective, we are led to study when d∗1 ⊕ d2 is a
Fredholm map and compute its index. This will coincide with the dimension
of T[m]Mα,l ∼= T[m]M and therefore with the dimension of the moduli space
of framed monopoles.

To answer these questions, it is convenient to express D(A,Φ) = d∗1 ⊕ d2

as a twisted Dirac operator plus a potential term. In fact, it is easy to check
that,

D(A,Φ)(a, ϕ) =

(
∗dA −dA
−d∗A 0

)(
a
ϕ

)
+

(
[Φ, a]
[Φ, ϕ]

)
, (4.10)

where (a, ϕ) ∈ Hα,α+l,l(X; (∧1 ⊕ ∧0)⊗ adP ⊗ C).
The Fredholmness and the index of this operator will be analysed in the

next section. First we deal with the surjectivity of d2: it turns out that
monopoles are always regular. This is a well-known result that follows from
an easy application of the Weitzenbock formula:

Proposition 4.2.1. Let (M, g) be a manifold and (A,Φ) a smooth solution
to the Bogomolny equations, if D(A,Φ) denotes the smooth version of (4.1),
then acting on sections of the bundle (Ω0 ⊕ Ω1)⊗ adP we have,

D(A,Φ)D∗(A,Φ) = ∇∗A∇A + ad Φ∗ ad Φ +Ric, (4.11)

where Ric is the Ricci tensor of g acting on the 1-form part.

The same equation holds when the operators act on sections of the hybrid
Sobolev spaces. In our case, the scattering metric is flat so the last term
vanishes. Moreover, DmD∗m acting onHα,α+l,l(X; (∧0⊕∧1)⊗adP ) is positive
definite since the elements in the kernel must be covariant constant and
vanish at the boundary. This implies that d2 is surjective.
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4.3 Index computation.

E. J. Weinberg observed in [57] that the linearisation around a solution
of the Bogomolny equations leads to the operator (4.10), which is almost a
Callias-type operator. The difference is that the potential term is degenerate
at infinity. At that moment there was no theory available to compute its
index, but some years later, C. Kottke in [32] defined hybrid Sobolev spaces
where the operator is extended, and that away from some discrete set of
weights it is Fredholm. He also provided an explicit formula for the index
of these extended Fredholm operators and in [33], he used this theory to
compute the dimension of the moduli space of SU(2)-monopoles over an
asymptotically scattering manifold of dimension 3. We review first and then
apply Kottke’s index formula (4.63) to the case of SU(N)-monopoles.

Using the isomorphism between the 0-forms and the 3-forms given by
the Hodge star operator, and denoting by E the complexification of (∧1 ⊕
∧3)⊗ adP , the map d∗1 ⊕ d2 in (4.10) acts on Hα,α+l,l(X;E) as

D(A,Φ) = ∗τ(dA + d∗A) + ad Φ, (4.12)

with τ a sign operator, being -1 on 0-forms and 1 on 2-forms. The first term
∗τ(dA + d∗A) will be denoted as DA and the subindex (A,Φ) of D(A,Φ) will
be suppressed for easy of notation.

Over a collar neighbourhood U of the boundary, the bundle adP ⊗ C
splits as

adP ⊗ C = adP0 ⊕ adP1, (4.13)

where adP0 denotes the bundle elements that commute with an extension
of φ over U as in (3.24), and adP1 its orthogonal space. In other words, if
we denote by H the stabiliser in SU(N) of φ, i.e.

H = S (U(n1)× · · · × U(nq)) , (4.14)

where S stands for having determinant 1, and the nj are the number of
repetition for the j-th eigenvalue of φ, then the bundle adP0 is obtained
from the principal H-bundle via the adjoint action on its Lie algebra.

In the maximal symmetry case this stabiliser is just the abelian group
U(1)N−1 and as the action is trivial, the associated adP0-bundle is the trivial
bundle of rank N − 1.

The splitting of E associated with that of adP is

E = E0 ⊕ E1. (4.15)

This splitting induces an splitting over U of the operator D as D0 + D1,
where

D0 = D|E0 , (4.16)

D1 = D|E1 = D1 + 1⊗ (ad(Φ)|adP1).
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The operator D1 is a standard Callias-type operator, it is fully elliptic
in the sc-calculus and therefore it is a Fredholm operator. Moreover, the
Fredholmness and the index are independent of the weights because the
elements in the kernel of D1 and of its adjoint are smooth sections that
vanish to an infinite order at the boundary [38].

On the other hand, D0 is not fully elliptic as a scattering operator, so
one cannot immediately conclude as before that it has Fredholm extensions.
As the connection restricts to a smooth connection at the boundary, it must
be a lift of a b-connection and therefore over U one can define an associated
b-operator by factoring out x,

D̃0 := x−2D0x : xαH l
b(U ;E0 ⊗ Ω

1/2
b )→ xαH l−1

b (U ;E0 ⊗ Ω
1/2
b ). (4.17)

The indicial operator I(D̃0) is obtained from D̃0 by evaluating its coefficients
at the boundary {x = 0}, i.e., locally∑

ai,β(x, y)(x∂x)i(∂y)
β maps to

∑
ai,β(0, y)(x∂x)i(∂y)

β, (4.18)

where β is a multi-index.
We have included the b-half-density bundles on the domain to make ex-

plicit that the b-measured is used in the definition of D̃0, while the scattering
measure was used for D0. The way the x was factored out from D0 was so
that, it agrees with the convention adopted in [33]. It has the advantage
that D0 is formally self-adjoint with respect to the scattering metric g if and
only if D̃0 is formally self-adjoint with respect to the b-metric x2g.

The map D̃0 is elliptic as a b-operator, and hence by Theorem 5.2.1 it is
Fredholm as long as α is outside the discrete set of its indicial roots.

We proceed now to recall the definition of the signature operator and to
find the expression for D1 and D̃0.

Signature operator. We recall briefly the construction of the signature
operator on an oriented manifold M of dimension n. The Clifford action on
Ω∗C(T ∗M) is given by,

c(ej)ξ = (ej ∧ ξ − ejyξ), (4.19)

where {ej} is an orthonormal frame for the tangent bundle and ξ a form in
Ω∗C(T ∗M). The associated Dirac operator is∑

c(ej)∇LCej = d+ d∗. (4.20)

The bundle T ∗M⊗C has a canonical grading given by the chirality operator,1

c(Γ) := i[n/2]c(e1) · · · c(en). (4.21)

1if the dimension of the manifold is n = 2k then [n/2] = k and if n = 2k + 1 then
[n/2] = k + 1.
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The Clifford action of the chirality operator can be expressed without mak-
ing use of the Clifford module structure, in particular, it acts as on p-forms
as

i[n/2]+p(p−1)∗, (4.22)

where, as with the chirality operator, the exponent is fixed so that the
operator square is the identity. This is a grading operator and induces the
natural Z2-grading:

Ω∗C(T ∗M) = Ω+(T ∗M)⊕ Ω−(T ∗M) (4.23)

corresponding to the ±1 eigenspaces of c(Γ). The Dirac operator (d + d∗)
anti-commutes with the chirality operator and splits accordingly to this
grading, giving ð+

s + ð−s where

ð+
s : Ω+(T ∗M)→ Ω−(T ∗M), (4.24)

is the signature operator. The index of the signature operator is precisely
the signature of the manifold M , in particular it is zero when the dimension
of M is not a multiple of 4. We will need a twisted version of this oper-
ator with a grading determined by the mass section. More precisely, as φ
is covariantly constant (2.52), its eigenvalues are constant. We adopt the
convention that the eigenvalues of iφ are ordered in non-decreasing value.
In this way the bundle adP+ consisting of the positive eigenspace bundle of
iφ is well-defined.

Definition 4.3.1. The twisted (by adP ) signature operator acting on the
space Hα,α+l,l(∂X;∧+ ⊗ adP+) will be denoted as ð+

+.

Expression for D̃0. It can be observed that on an odd dimensional man-
ifold, if we compose the above Clifford action (4.19) with the Hodge star
we obtain an action on the odd forms. The value of the sign operator ∗τ
in equation (4.12) is precisely the value of the chirality operator acting on
the even forms of X. Therefore, if in our three dimensional manifold we use
the isomorphism between functions and 3-forms given by the Hodge star
operator, the first term in (4.12) can be written as

DA = ∗τ(dA + d∗A) = c(Γ)

(∑
i=0

c(ei)∇ei

)
(4.25)

= c(Γe0)

(
∇e0 +

∑
i=1

c(eie0)∇ei

)
,

where∇ = ∇LC⊗A. In order to re-write the last term of the above equation,
we state a couple of general facts.
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Let (X, g) be an n-dimensional manifold with boundary ∂X and scat-
tering metric g, which near the boundary can be written as in (3.3),

g =
dx2

x4
+

h

x2
, (4.26)

where x is a boundary defining function and h is a metric on ∂X. Let
{ei}n−1

i=0 be an orthonormal sc-frame with e0 = x2∂x.

There is a bundle isomorphism -which is another form of the standard
isomorphism Cl0(Rn+1) ∼= Cl(Rn),

Ψ : (∧oddX)|∂X → ∧∗∂X (4.27)

e0 ∧ eI 7→ −eI , (4.28)

eJ 7→ eJ , (4.29)

where the multi-index I has even cardinality, J has odd cardinality and e0

does not appear in the eI , eJ . With this isomorphism, it is immediate to
check that the action of c(eie0) for i 6= 0 on (∧oddX)|∂X is equivalent to the
action of c(ei) on ∧∗∂X, i.e.,

c(eie0) = Ψ−1c(ei)Ψ. (4.30)

The other fact that we need is the following result (Proposition 4.1 in [33]).

Proposition 4.3.2. Let (Xn, g) be a scattering manifold with metric as in
(4.26). The Levi-Civita connection ∇LC induced by the scattering metric is
the lift of a b-connection, in particular

∇LCei = x
(
∇g̃ẽi +B(ẽi)

)
, (4.31)

where g̃ = x2g, ∇g̃ is the Levi-Civita connection induced by this b-metric,
{ẽi}m−1

i=0 is an orthonormal b-frame with ei = xẽi and the endomorphism of
the b-tangent space B(ẽi) acting on ẽk, for k = 0, ...,m− 1, is given by

B(ẽi)(ẽk) =

{
δkiẽ0 − δk0ẽi, i > 0.

0, i = 0.
(4.32)

With the aid of this last equation one can check that if ξ ∈ Ωp(∂X),

n−1∑
i=1

c(ẽi)B(ẽi)ξ =

{
−pξ, p odd.

−(n− 1− p)ξ, p even.
(4.33)

These considerations together with the asymptotic expansion of the Higgs
field lead to the explicit form of D̃0.
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Proposition 4.3.3. The operator

I(D̃0) : xαH l
b

(
U ;π∗(∧∗S2

∞ ⊗ adP0)
)
→ xαH l−1

b

(
U ;π∗(∧∗S2

∞ ⊗ adP0)
)

is given by

I(D̃0) = −ic(ΓS2
∞

)
[
x∂x + (dA0 + d∗A0

)S2
∞

+N +W
]
, (4.34)

where N takes the values −1, 0, 1 respectively on 0, 1, 2-forms over S2
∞ with

values in adP0 and W is − i
2c(ΓS2

∞
)⊗ ad(γm).

Proof. The expression is obtained from that of DA in (4.25) and the po-
tential term ad Φ. The definition of the chirality operator (4.21) gives the
isomorphism c(Γe0) ∼= −ic(Γ∂X). The second summand comes from (4.30)
and the previous proposition, it is a twisted signature operator on S2

∞. The
term x∂x comes from considering the connection in radial gauge, so that
∇e0 = x2∂x, this adds 1 to (4.33), specifically x−2(x2∂x)x = 1 + x∂x, giving
the value of N . These terms are common to the SU(2) case [33].

On the other hand, the term W does not appear in the case where
the structure group is SU(2), or more generally in the maximal symmetry
breaking case. It is due to the term of order x in the asymptotic expansion
of the Higgs field (3.10), i.e. it is

W = − i
2
c(ΓS2

∞
)⊗ ad(γm). (4.35)

Computation of the indicial roots of D̃0. We proceed to recall some
definitions and results that will be needed in the computation of the index
of D.

The indicial family of D̃0, denoted I(D̃0, λ), is a family of differential
operators over ∂X depending parametrically on λ ∈ C. More precisely, if
the local expression for I(D̃0) is

∑
ai,β(0, y)(x∂x)i(∂y)

β then

I(D̃0, λ) =
∑

ai,β(0, y)λi(∂y)
β, (4.36)

i.e. it is the Mellin-transformed operator of I(D̃0).
The b-spectrum of D̃0 is the set of its indicial roots, and is defined as:

specb D̃0 = {λ ∈ C : ∃s ∈ C∞(∂X;∧∗S2
∞ ⊗ adP0) \ {0}, I(D̃0, λ)s = 0}.

(4.37)
We shall make use of Grothendieck’s lemma [17]:

Theorem 4.3.4. A holomorphic bundle E over CP 1 is holomorphically iso-
morphic to a direct sum of line bundles:

E ∼= O(d1)⊕ · · · ⊕ O(dn). (4.38)

Moreover, this representation is unique up to a permutation of the factors.
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Let CN be the trivial CN -bundle over S2
∞. As dA0γm = 0, there is a

decomposition of CN in the eigenspaces of −iγm = diag(k1, ..., kN ) as,

CN ∼= O(k1)⊕ · · · ⊕ O(kN ) =: L1 ⊕ · · · ⊕ LN , (4.39)

where the relation of the magnetic charge section with the curvature (2.59)
has been used to stablish the degrees of the constituent line bundles.

The complex bundle adP ⊗C ⊂ End(CN ) can be provided with a holo-
morphic structure via the unitary connection A0. If we apply Grothendieck’s
lemma to write this bundle as a direct sum of holomorphic line bundles, then
by the uniqueness property, the factors must be

O(ki − kj) = Li ⊗ L∗j := Lij . (4.40)

It follows from the definition of b-spectrum, that the indicial roots given
by I(D̃0) are the union over the line bundles Lij of the indicial roots of I(D̃0)
restricted to π∗(∧∗S2

∞ ⊗ Lij), where Lij are the line bundles appearing in
the factorisation of adP0 provided by Grothendieck’s lemma.

Proposition 4.3.5. Let k0 (respectively k1) be the smallest of the absolute
value of the odd (even) degree of the line bundles appearing in the decom-
position of adP0 over U , then the indicial roots of D̃0 are contained in the
set{

±
(
|k0|
2

+ n

)
, n ∈ {1, 2...}

}⋃{
±
(
|k1|
2

+ n

)
, n ∈ {1, 2...}

}
.

(4.41)

Proof. Let ξ := 1
2 ad γm, then the last term in the expression for I(D̃0) in

(4.34) can be written as,

W = c(ΓS2
∞

)⊗−iξ. (4.42)

The chirality operator acts on sections of the bundle ∧∗S2
∞⊗ adP0 over S2

∞
via (4.22) as,

c(ΓS2
∞

) = i

0 0 −∗
0 ∗ 0
∗ 0 0

 . (4.43)

Therefore, by Proposition 4.3.3 and using of the factorisation of adP0 into
line bundles, to obtain the indicial roots of D̃0 we have to find the λ ∈ R
that satisfy, λ− 1 d∗A −ξ∗

dA λ+ ξ∗ d∗A
ξ∗ dA λ+ 1

 a
b
∗c

 =

0
0
0

 , (4.44)
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where a, c are sections of Lij and b ∈ Ω1(Lij), and we have discarded the
first factor −ic(ΓS2

∞
) in (4.34) since it is an isomorphism. This leads to

(λ− 1)a+ δAb− ξc = 0,

dAa+ (λ+ ξ∗)b− ∗dAc = 0,

ξ ∗ a+ dAb+ (λ+ 1) ∗ c = 0.

(4.45)

The middle equation splits in two according to its (1, 0) and (0, 1) parts, the
Hodge star acts as ∗ = −i on Ω1,0 and as ∗ = i on Ω0,1:{

∂A(a+ ic) + (λ− iξ)b1 = 0,

∂A(a− ic) + (λ+ iξ)b2 = 0,
(4.46)

where b = b1 + b2 ∈ Ω1,0 ⊕Ω0,1. Adding and subtracting the first and third
equations from (4.45) gives the two identities,{

2 ∗ ∂Ab2 = −(λ+ 1− iξ)c− i(λ− 1− iξ)a =: g2(a, c),

2 ∗ ∂Ab1 = −(λ+ 1 + iξ)c− i(−λ+ 1− iξ)a =: g1(a, c).
(4.47)

If we take −i∂∗A on the first equation, and i∂A
∗

on the second equation of
(4.46), and use that ∗∂Ab2 = i∂A

∗
b2 and ∗∂Ab1 = −i∂∗Ab1 we can write,{

−i∂∗A∂A(a+ ic) = −1
2(λ− iξ)g1(a, c) =: G1(a, c),

i∂A
∗
∂A(a− ic) = −1

2(λ+ iξ)g2(a, c) =: G2(a, c).
(4.48)

Adding and subtracting these two equations we obtain an equivalent system,{
i4Aa+ (∂A

∗
∂A − ∂∗A∂A)c = G2 −G1,

i(∂A
∗
∂A − ∂∗A∂A)a+4Ac = G2 +G1.

(4.49)

The difference of the two partial Laplacians, ∂∗A∂A − ∂A
∗
∂A acting on a

0-form η is (c.f. Lemma 5.9 in [1]):

(∂∗A∂A − ∂A
∗
∂A)η = i[∗FA, η] = −iξη, (4.50)

where in the last equality it has been used that as the Bogomolny equations
hold, ∗FA = −1

2γm. Therefore the difference of the Laplacians has the same

action as −iξ, which on a line bundle Lij of degree k acts as k
2 . Putting this

together in the previous system of equations (4.49),{
i4Aa+ k

2c = G2 −G1 = −iξc+ ia[λ(λ− 1) + ξ2],

ik2a+4Ac = G2 +G1 = [(λ+ 1)λ+ ξ2]c+ ξa.
(4.51)

Again using that ξ = ik2 , it is immediate to see that this system is the same
as, {

4Aa = [λ(λ− 1)− k2

4 ]a,

4Ac = [λ(λ+ 1)− k2

4 ]c.
(4.52)
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Following Kuwabara [35], the eigenvalues of the covariant Laplacian for
smooth sections of O(k) are {fnk }n∈N0 , where

fnk =
(2n+ 1)|k|

2
+ n2 + n, n ∈ {0, 1, 2...}. (4.53)

So we have the following possibilities:

• If a = 0, we have that the indicial roots must be among the following:

λ =
−1±

√
1 + k2 + 4fnk

2
. (4.54)

• For c = 0, we obtain the opposite roots of the above ones:

λ =
1∓

√
1 + k2 + 4fnk

2
. (4.55)

• The possibility a 6= 0 and c 6= 0 only holds when λ = 0. In this case a
and c have negative eigenvalue contradicting the non-negativity of the
covariant Laplacian 4A unless k = 0. In fact, it is easy to see that for
k = 0, the set of λ’s that satisfy (4.52) is the integer numbers.

In summary, for k the degree of the line bundle Lij , the set of λ’s that
satisfy (4.52) can be written as:

± λ =
−1± (|k|+ 2n+ 1)

2
, n ∈ {0, 1, 2...}. (4.56)

Moreover, we next show that λ = ±k
2 are not indicial roots. By the sym-

metry of the indicial roots with respect to the origin it is enough to show
that λ = k

2 is not an indicial root for k ≥ 0. We assume that k
2 is an indicial

root to obtain a contradiction. If it were an indicial root, a = 0 and (4.46)
implies {

∂Ac = 0,

−i∂Ac = kb1.
(4.57)

By the first and third equation of (4.45) we must have,

4Ab = i
k

2
dAc+

k + 2

2
dA ∗ c = −ik + 1

2
∂Ac =

k(k + 1)

2
b1, (4.58)

where in the last two equalities we have used (4.57). Therefore{
4Ab1 = k(k+1)

2 b1,

4Ab2 = 0.
(4.59)

As b1, b2 are respectively sections (obviously not holomorphic) of O(k − 2)
and O(k+ 2), this last equations cannot hold, since fnk+2 is always positive,
obtaining a contradiction.
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In conclusion, there are no indicial roots in the interval [− |k|2 ,
|k|
2 ] and

the set of indicial roots is contained in the set{
±
(
|k|
2

+ n

)
, n ∈ {1, 2...}

}
. (4.60)

The proposition follows from the observation after the definition of Lij in
equation (4.40).

Remark 4.3.6. It can be observed that the formal nullspace associated with
λ = 0 (and therefore k = 0) could be obtained directly from the system
(4.44). It is the space of Harmonic 1-forms, which by Hodge theory corre-
sponds to H1(S2

∞;R) and that is why λ = 0 is not an indicial root.
Kuwabara showed [35], that the multiplicity of the eigenspace of the

covariant Laplacian with eigenvalue fnk is given by

|k|+ 2n+ 1. (4.61)

With this multiplicity, one can calculate the dimension of the nullspace of D̃0

at an indicial root. For example, when the indicial root λ is 1, then k must
vanish and n = 0 or n = 1 (as shown in the previous proof: k = 2, n = 0 is
not valid). In this case the nullspace in the form component consists of

{(a, 0, 0) : da = 0} ∪ {(0,−d∗ ∗ c, c) : 4c = 2c}, (4.62)

which has multiplicity 1 + 3 = 4. By symmetry, λ = −1 has multiplic-
ity 4m where m is the number of degree 0 line bundles appearing in the
decomposition of adP0.

Remark 4.3.7. It follows from the work of Jarvis [29] that the moduli spaces
of framed monopoles obtained by a smooth deformation of the mass section
φ are diffeomorphic. In particular we can assume that the eigenvalues of φ
are pairwise distinct.

With all the previous notation and results, Theorem 3.1 in [33] which is
valid in the maximal symmetry case, will be now stated and used to compute
the index of D.

Theorem 4.3.8. The extensions D : Hα,α+l,l(X;E)→ Hα+1,α+l,l−1(X;E)
are bounded and Fredholm for α + 1/2 outside the b-spectrum of D̃0. The
index of D is given by

ind(D) = ind(ð+
+) + def(D, α). (4.63)

where def(D, α) is the defect of D̃0 at α+ 1/2 i.e. def(D̃0, α+ 1/2).

The shift in 1/2 comes from the way the x was factored out in (4.17),
that is, with respect to the sc-measure we took D0 = x1/2D̃0x

1/2 instead of
xD̃0.
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The first term is the index of D1, which follows from the homotopy
invariance of the index. This is the only term appearing when the potential
is non-degenerate at infinity (this is Callias index formula [5]).

The second term, the defect of D at α is due to the non-invertibility of
adφ. It is an integer such that for ε > 0 with specb(D̃0)∩ [α0−ε, α0 +ε] = α0

satisfies,

def(D̃0, α0 − ε)− def(D̃0, α0 + ε) = dimF (D̃0, α0), (4.64)

where α0 ∈ specb(D̃0) and F (D̃0, α0) is the formal nullspace of D̃0 at α0.
Moreover, if D̃0 is self-adjoint, then

def(D̃0, β) = −def(D̃0,−β). (4.65)

Theorem 4.3.9. The dimension of the manifold of framed monopoles with
structure group SU(N) is four times the sum of the magnetic weights.

Proof. Due to the self-adjointness of D̃0, one can apply the above equation
and as there are no indicial roots in the interval (−1, 1), if the weight α+1/2
is a small positive number (less than 1), the defect term has no effect in the
index of D.

On the other hand, the index of the twisted signature operator is given
by (Theorem 13.9 in [36]),

ind(ð+
+) = 2{ch(adP+) · L(S2

∞)}[S2
∞] = 2c1(adP+)[S2

∞]. (4.66)

If we write
adP+

∼=
⊕
i<j

Li ⊗ L∗j =
⊕
i<j

Lij . (4.67)

Then if we use that c(E ⊕ F ) = c(E) ^ c(F ), and thus ck(E ⊕ F ) =∑
ci(E) ^ ck−i(F ),

ind(ð+
+) = 2

∑
i<j

(ki − kj). (4.68)

In the case of maximal symmetry breaking the Lij in (4.67) does not appear
in the factorisation of adP0, and using that

∑
ki = 0, the last equation can

be re-written as

ind(ð+
+) = −4

N∑
j=1

jkj = 4
N−1∑
j=1

(k1 + · · ·+ kj) = 4
N−1∑
j=1

nj . (4.69)

where the nj are the magnetic weights i.e. the topological and holomorphic
charges as defined in Section 2.7.

This result agrees with the computation in Murray-Singer’s paper [42],
which was based in the bijection established in [29] between the space of
framed monopoles and the space of based rational maps.



78 CHAPTER 4. MODULI SPACE DIMENSION.

4.4 Further directions

A natural thing one would like to do is to develop an index theorem which
works independently of the type of symmetry breaking at infinity. In this
way one does not have to rely on Jarvis construction to assume the maximal
symmetry case.



Chapter 5

Appendix

5.1 Weighted b/sc-Sobolev spaces

A standard reference for Sobolev spaces of sections is [44]. The proofs in
there can be adapted to show the corresponding results for weighted b/sc-
Sobolev spaces, we follow [38], [32] to list some of the properties that are
being used in the rest of the thesis together with proofs for some of the
statements.

Let X be a compact n-dimensional manifold with x a boundary defining
function taking values in [0, ε) for ε < 1. Let E be a vector bundle over X,
most of the results in this section hold for both sc and b Sobolev spaces, so
in what follows we shall write xαLpk(E) for either the xα-weighted b-Sobolev

space of sections of the vector bundle E ⊗ Ω
1/2
b with k (although for most

of the results it is not necessary, we shall assume that k is a non-negative
integer) weak derivatives in Lp or a corresponding weighted sc-Sobolev space

on E ⊗ Ω
1/2
sc , i.e.

xαLpk(E) :=
{
u ∈ xαLp(X;E ⊗ Ω

1/2
b/sc) : Pu ∈ xαLp(X;E ⊗ Ω

1/2
b/sc),

∀P ∈ Diffkb/sc

}
, (5.1)

where Diffkb/sc is the universal enveloping algebra of the b/sc vector fields

Xb(X)/Xsc(X) over C∞(X; End(E)), and Ω
1/2
b/sc are the half-densities b/sc

bundles that encode if we are working with the b/sc measure; with these
measures related by µb = x3µsc i.e.,

Ω
1/2
b = x3/2Ω1/2

sc . (5.2)

When E is the trivial bundle C we shall denote the weighted Sobolev
space xαLpk(E) simply as xαLpk.

In the particular case p = 2, which is the main case, we shall write the
spaces xαL2

k(E) as xαHk
b/sc(X;E).

79



80 CHAPTER 5. APPENDIX

Similarly as in Theorem 2.21 in [3] we have an embedding theorem,

Theorem 5.1.1. Let 1 ≤ p, p′ < ∞, and let α, α′, k, k′ be real numbers.
If the decaying rate, the regularity and the ‘scaling weight’ improve, i.e. if
α ≥ α′, k ≥ k′ and (k − n/p) ≥ (k′ − n/p′) then the inclusion map,

xαLpk(E) ↪→ xα
′
Lp
′

k′(E). (5.3)

is bounded. There is also an embedding xαLpk ↪→ C l(X) if (k−n/p) > l and
α is non-negative.

We shall use just the case where p = p′ = 2, and in this case, if the
above inequalities are strict then the inclusion is compact (Proposition 1.2
(b) [32]).

Also we need a theorem analogous to the non-weighted case [8]:

Theorem 5.1.2. If H : R → R is a smooth function and f is a function
in L2

k with k − n/2 > 0 then Hf is again a function in L2
k. Moreover this

composition defines a smooth map from L2
k to itself.

When weights are included, the composition with smooth functions pre-
serves the regularity although not the decaying rate.

Theorem 5.1.3. Let 1 < p, q, r <∞. The bilinear map

xαLpk × x
βLqk′ → xγLrm, (5.4)

given by multiplication is continuous if α + β ≥ γ, min(k, k′) ≥ m ≥ 0,
k − n/p < 0, k′ − n/q < 0, and

(k − n/p) + (k′ − n/q) ≥ m− n/r. (5.5)

Proof. The proof, as in the non-weighted case is based on the Sobolev em-
bedding theorem and Hölder inequality. Consider a partial derivative of
order m of the product of two functions f ∈ xαLpk, g ∈ x

βLqk′ ,

∇m(fg) =
m∑
i=0

(
m

i

)
∇if∇m−ig. (5.6)

By Hölder’s inequality we have that each term in the sum is uniformly
bounded:

‖∇if∇m−ig‖r,γ = ‖x−γ∇if∇m−ig‖r ≤ ‖(x−α∇if)(x−β∇m−ig)‖r
≤ ‖x−α∇if‖s‖x−β∇m−ig‖t = ‖∇if‖s,α‖∇m−ig‖t,β, (5.7)

if 1/r ≥ 1/s+1/t which is equivalent to (i−n/s)+(m−i−n/t) ≥ (m−n/r).
Now we use the previous Sobolev embedding theorems to embed for each
i each of the two factor in (5.7) into xαLpk or xβLqk′ . For example, for
the first factor, using the regularity hypothesis we have k ≥ m ≥ i and
k′ ≥ m ≥ m− i there are two possibilities:
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• If k − n/p ≤ i then take s such that k − n/p = i − n/s so there is
an embedding xαLpk ⊂ xαLis and as f ∈ xαLpk the term ‖∇if‖s,α is
bounded. There are two possibilities to bound the second factor:

– If k′ − n/q ≤ m − i we take t such that k′ − n/q = m − i − n/t,
then as before the second term is bounded and Hölder inequality
holds because of the hypothesis.

– The case k′ − n/q > m − i cannot happen, as k′ − n/q < 0 and
m− i ≥ 0.

• If k − n/p > i, this case follows a symmetric pattern as the previous
one.

To show the smoothness of the gauge action on the configuration space,
the following result is needed.

Theorem 5.1.4. Suppose that Lpk(E) ↪→ Lqk′(E) and k−n/p > 0. If E has
a bilinear pointwise multiplication, (e.g. E = adP with the multiplication
given by the Lie bracket) then the multiplication of sections extends to a
continuous map

xαLpk(E)× xβLqk′(E)→ xα+βLqk′(E). (5.8)

In particular, for the radial compactification of R3, the space L2
l (E) is a

L2
l+1(E)-module for l > 3/2.

Once the multiplication is continuous it is automatically smooth. This
follows directly from the definition of derivative, if we assume the multipli-
cation is continuous and denote by m the multiplication operator. Then for
f, g small perturbations of the sections F,G and dm(F,G)(f, g) = Fg + Gf ,
the quantity

‖m(F + f,G+ g)−m(F,G)− dm(F,G)(f, g)‖Lrm , (5.9)

is the second order term ‖fg‖Lrm which by continuity of the multiplication
can be bounded by ‖f‖Lpk‖g‖Lqk′ and therefore it is differentiable. The higher

order derivatives vanish.
Once a measure is fixed, say the sc-measure, from the definitions of the

b/sc-Sobolev spaces and in particular from the relation Xsc(X) = xXb(X)
between sc and b vector fields, there is a natural embedding

H l
b(X,Ω

1/2
sc ) ⊂ H l

sc(X,Ω
1/2
sc ). (5.10)

The embedding can be reversed at the expense of increasing the weight in
the scattering part.
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Proposition 5.1.5. If α ≥ l + β there is an embedding,

xαH l
sc(X,Ω

1/2
sc ) ⊂ xβH l

b(X,Ω
1/2
sc ). (5.11)

Proof. u ∈ xαH l
sc(X,Ω

1/2
sc ) if and only if x−αu ∈ H l

sc(X,Ω
1/2
sc ) i.e.

(xXb)
l(x−αu) ∈ L2

sc ∼ xlXlb(x−αu) ∈ L2
sc ∼ xl−αu+ · · ·+ xl−αXlbu ∈ L2

sc.
(5.12)

For x−βu to be in H l
b(X,Ω

1/2
sc ) it is sufficient that,

Xlb(x
−βu) ∈ L2

sc ∼ x−βu+ · · ·+ x−βXlbu ∈ L2
sc. (5.13)

Therefore the inclusion is satisfied if α ≥ l + β.

As it is shown in [32], if α > α′ and l > l′ then the inclusions

xαH l
sc(X,Ω

1/2
sc ) ⊂ xα′H l′

sc(X,Ω
1/2
sc ) (5.14)

are compact, with a similar result for b-Sobolev spaces.

5.2 Motivation for weighted spaces and the fun-
damental theorem for elliptic operators in the
b-Calculus.

We want to study the Fredholmness of the operator

d

dt
+ L, (5.15)

acting on the tube R×Y where Y is a compact manifold and L is an elliptic
operator acting on sections of a bundle over Y .

When 0 is in the spectrum of L the operator cannot be Fredholm since
the derivative operator,

d

dt
: L2

1(R)→ L2(R) (5.16)

is not Fredholm, as being Fredholm and injective implies that it has a
bounded inverse on its range. This observation follows from the range being
closed hence a Banach space, the inverse existing on the image (because the
injectivity) and being bounded by the inverse mapping theorem. In this
case, the operator is clearly injective (since among the constant functions
only 0 is in L2

1(R)). The problem comes from the inverse being bounded
since we can construct a sequence of functions {fn(t)} whose derivative has
bounded L2 norm but ‖fn‖L2

1
→ ∞ and therefore d

dt : L2
1(R) → L2(R)

cannot be Fredholm.
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A strategy to have a Fredholm operator is to introduce weights (see for
example chapter 3 of [7]) on our function spaces. That is, to a section s over
a bundle over Rt × Y we associate the norm

‖s‖L2,α := ‖eαts‖L2 , (5.17)

with α a real number. Similarly we can define the norms that take into ac-
count k weak derivatives: ‖s‖

L2,α
k

, and as usual define the weighted function

spaces L2,α
k , with multiplication by eαt giving an isometry with L2

k. Our
operator acting on one of these weighted Sobolev spaces is then equivalent
to conjugate the original operator by eαt, that is, to the map,

eαt(
d

dt
+ L)e−αt : L2

1 → L2. (5.18)

The point is that this operator is just our original operator shifted the
constant −α, that is, when we consider our operator acting on weighted
Sobolev spaces what we are doing is considering the operator

d

dt
+ (L− α) : L2

1 → L2, (5.19)

and as long as α is not in the spectrum of L we shall have a Fredholm
operator.

If we make the change of variables x = et then d
dt = x d

dx and we have a

b-operator P = x d
dx + L. Now the following well-known theorem from the

theory of b-calculus (see Theorem 5.60 in [38]) has been motivated.

Theorem 5.2.1. Let X be a compact manifold with boundary, E, F bundles
over X, and P ∈ Diffkb (X;E,F ) a b-elliptic operator of order k, then P
admits Fredholm extensions,

Pα : xαHk+m
b (X;E ⊗ Ω

1/2
b )→ xαHm

b (X;F ⊗ Ω
1/2
b ), (5.20)

for α not an element of the b-spectrum of P. Moreover, the index is inde-
pendent of m.

5.3 The Laplacian on the radial compactification
of R3

In spherical coordinates the Laplace operator 4 acting on smooth functions
in Rn takes the form,

r24 = −r2

(
∂2

∂r2
+
n− 1

r

∂

∂r

)
+4Sn−1 . (5.21)
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If u is a homogeneous function of degree k in Rn, then one can write

u = rkΩ(ω), (5.22)

where ω stands for the angular variables (since u(x) = u(|x| x|x|)) and from
the above expression one obtains,

r24u = −λku+ rk4Sn−1Ω, (5.23)

where

λk = k(k + n− 2). (5.24)

From this we obtain that the degree k spherical harmonics, that is restric-
tions of degree k homogeneous harmonic polynomials in Rn to Sn−1, are
eigenfunctions of the Laplace operator on the unit sphere Sn−1. The corre-
sponding eigenvalue is λk = k(k + n− 2).

The converse statement holds when k is a positive integer [49],

Theorem 5.3.1. An eigenfunction of 4Sn−1 with n > 1, is the restriction
of a function on Rn of the form rkΩ(ω) with k a positive integer and Ω(ω)
an eigenfunction of 4Sn−1 with eigenvalue λk.

Proof. From the definition of the Laplace-Beltrami operator it is clear that
the Laplace operator is non-negative definite. Assume 4Sn−1Ω = λΩ with
λ some non-negative real number, then there exists a unique non-negative
real number k such that λ = k(k + n − 2) (assuming n ≥ 2). Therefore
using equation (5.23), for r 6= 0 (see (5.21)), we have that the function
rkΩ(ω) is harmonic in Rn \ {0}. By the removable singularity theorem for
harmonic functions (as k is non-negative the function stays bounded in a
neighbourhood of 0) it is in fact harmonic in the whole Rn when extended by
continuity. Finally, by Liouville’s theorem we have that k is an integer.

It can be observed that in the proof we used the non-negative solution k
to the quadratic equation λk = k(k+n−2), but it also has a complementary
solution, which we denote by k and satisfies,

k + k = 2− n. (5.25)

From equation (5.23) we deduced that rkΩ was harmonic but also from this

equation we see that rkΩ is also harmonic.

As an example, for each k ∈ Z the function u = rkΩ, with Ω a degree
k spherical harmonic, is harmonic in R3 (R3 \ {0} in case k ∈ Z−). But for
n ≥ 4 we see from the above equation, that there are some negative powers
m such that the function rmg is not harmonic for any g, since they would
give λm < 0.
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The expression (5.21) can be extended to X, the radial compactification
of R3. If ρ = 1/r is a boundary defining function we deduce that away from
0,

ρ−24 = −ρ2 ∂
2

∂ρ2
+4S2 . (5.26)

Therefore the associated indicial operator is

I(ρ−24) = −
(
ρ
∂

∂ρ

)2

+ ρ
∂

∂ρ
+4S2 , (5.27)

and the indicial family of elliptic operators on S2
∞ is given by

I(ρ−24, λ) = −λ(λ− 1) +4S2 . (5.28)

This is holomorphic with respect to λ, and the λ’s for which I(ρ−24, λ) is
not invertible constitute the b-spectrum of ρ−24.

In conclusion, on R3 we have that u = rkΩ is a harmonic function, where
k an integer and Ω is a k spherical harmonic with eigenvalue λk = k(k+ 1).
Therefore we see from equation (5.28) that the b-spectrum of ρ−24 are the
λ’s that satisfy λ(λ − 1) = k(k + 1) with k an integer number. The two
solutions of this equation are λ = k + 1,−k in either case we see that the
indicial roots are the integers.

In the same way the indicial roots of the operator

ρ−2d∗1d1 = ρ−2d∗AdA −
1

4
(ad γm)2 (5.29)

can be calculated. As in the computation of the indicial roots for D we
decompose the bundle adC P into a direct sum of line bundles where ad γm
acts on the line bundle with degree k by multiplication by k. Therefore the
indicial roots will be the λ’s satisfying

λ(λ− 1)− k2

4
= fnk , (5.30)

where fnk are defined in (4.53). Using the equations (4.54) and (4.56), one
immediately obtains the following result.

Proposition 5.3.2. The indicial roots of the operator ρ−2d∗1d1 acting on a
line bundle of degree k over S2 are,{

|k|
2

+ n : n ∈ N0

}
∪
{
−|k|

2
− n− 1 : n ∈ N0

}
. (5.31)

Each one of these indicial roots has multiplicity |k|+ 2n+ 1 [35].

As with the usual Laplace operator, if we take an orthonormal basis
{ei} in L2 of sections of O(k), which are in the kernel of the angular part of
ρ−2d∗1d1, any section over R3 which is in the kernel of d∗1d1 can be written
as
∑
cir

αiei, where the ci are constants and αi are the indicial roots (5.31).
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Invertibility of the Laplace operator.

Proposition 5.61 in [38] states that if P is an elliptic b-differential oper-
ator, then if Pu is polyhomogeneous (for the definition of polyhomogeneity
see Section 5.4 of this appendix) so is u. In particular, elements in the null
space of an elliptic b-operator have a polyhomogeneous asymptotic expan-
sion in powers of the boundary defining function and its logarithm.

The powers appearing in the phg expansion are given by the indicial
roots of the operator, and the logarithmic terms in the case of the Laplacian
are absent1, which can be seen by expanding the Green’s function for the
Laplace operator (the Newton kernel). The leading term in the expansion
must start with a power strictly larger than that of the weight in the domain.

With these results at hand, one can study the invertibility of the Laplace
operator.

The Laplace operator decreases the degree of homogeneity of a homoge-
neous function by 2, so the following maps

r2−λ4rλ : Hs
b (X,µsc)→ Hs−2

b (X,µsc), (5.32)

are b-operators for any λ ∈ R. It is convenient to use the b-measure

µb = ρ3µsc. (5.33)

Taking λ = 0 for simplicity, and adding weights ρα the map ρ−24 can be
extended to the family,

4α : ρ3/2+αHs
b (X,µb)→ ρ3/2+αHs−2

b (X,µb). (5.34)

As these operators are elliptic, by Theorem 5.2.1, each 4α is Fredholm as
long as 3/2 + α is not in the b-spectrum, i.e. it is not an integer.

If u is in the kernel of4α and 3/2+α is positive then u has an asymptotic
expansion with positive integer exponents,

u ∼ c1(y)ρm + c2(y)ρm+1 + · · · . (5.35)

Using this expansion, the boundary term appearing when doing integration
by parts of

∫
X u4αu vanishes, more precisely

0 =

∫
X
u4αu = lim

R→∞

∫
B(0,R)

‖∇u‖2 + lim
R→∞

∫
S(0,R)

u∂ru. (5.36)

By the intermediate value theorem the absolute value of the last integral
is bounded by 4πR2|u(ξR)∂ru(ηR)| for some ξR, ηR in the sphere S(0, R).

1this implies that the elements in the null space of the Laplace operator over X are
smooth up to the boundary, as the phg functions with index set {(n, 0) : n ∈ N0} are the
functions smooth up to the boundary.
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Using the above asymptotic expansion for u we deduce that the boundary
term in (5.36) vanishes, which shows that ∇u = 0, and therefore u is a
constant. Again by the asymptotic expansion we obtain that it is 0, as it
must vanish at S2

∞.
In the case where4α is Fredholm, its cokernel is isomorphic to the kernel

of its adjoint and the same argument as above can be carried out.
We conclude that for 3/2 + α positive and not an integer, the Laplace

operator 4α in (5.34) is invertible.

5.4 Polyhomogeneous conormal functions.

In this section we recall some definitions that are used in the definition of
monopoles. The basic references followed here are [38], [39] and [15].

Definition 5.4.1. A power series
∑∞

i=0 ai(x− x0)i is an asymptotic expan-
sion for the continuous function f : D → R (where D is C or R) around the
point x0 if for each N ∈ Z+,

lim
x→x0

f(x)−
∑N

i=0 ai(x− x0)i

(x− x0)N
= 0,

i.e. f(x)−
∑N

i=0 ai(x− x0)i = O((x− x0)N+1) when x→ x0.

In other words, if we denote the error term εN (x) := f(x)−
∑N

i=0 ai(x−
x0)i, then εN (x) = o

(
(x− x0)N

)
when x → x0. So for each fixed N , the

summation
∑N

i=0 ai(x− x0)i becomes a better and better approximation to
f(x) as x approaches x0. There is no requirement on what happens when we
fix x and N goes to∞, so the series might not converge to f(x) (in contrast,
convergence of a series deals with the behaviour of the partial sums as N
goes to ∞ when x is fixed).

The following properties are easy to check,

• If a function has an asymptotic expansion then the coefficients ai are
unique. There are functions with empty asymptotic expansion, for
example those with exponential decay around a point.

• If a function is smooth around the origin, the coefficients of the asymp-
totic expansion are f (i)(0)/i!, (by Taylor’s theorem the error term goes
like xN+1) and the series converges to the function if f is analytic
around 0.

• Two different functions can have the same asymptotic expansion, for
example f and f + e−x have the same asymptotic expansion around
infinity.

The following well-known theorem shows that there is no restriction on the
coefficients of an asymptotic series,
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Theorem 5.4.2. (Borel-Ritt) Given any sequence of real numbers {ai},
there exists a smooth function f : R → R such that around the origin∑∞

i=0 aix
i is an asymptotic expansion for f .

We can generalise the above definition by considering an asymptotic se-
quence of functions ϕi : R → R, with ϕi+1 = o(ϕi) as x → x0. Some
examples: around 0 we can take ϕi = xi or {log x,

√
x, x, x2, x3, ...}, where

in general xs logk x = o(xs
′
logk

′
) if s > s′ or s = s′ and k < k′. Around

infinity we can take ϕi = x−i.
More generally, we are interested in the behaviour of functions in a mani-

fold with boundary near its boundary. In particular those having an asymp-
totic expansion with respect to an asymptotic complex valued sequence of
the form xz logk x whose coefficients are given by a set that we next define
precisely.

Definition 5.4.3. An index set E is a (countable) discrete subset of C×N0

that satisfies:

1. For each s ∈ R the set

Es := {(z, k) ∈ E : Re z ≤ s} (5.37)

is finite.

2. If (z, k) is in E then for 0 ≤ l < k, (z, l) is also in E.

3. If (z, k) is in E then (z + 1, k) ∈ E.

Definition 5.4.4. Let X = (R+)x × (Rn)y where R+ = [0,∞)x. A (com-
plex or real valued) function f on X, is polyhomogeneous conormal to the
boundary with index set E if f is smooth on the interior of X and there are
az,k ∈ C∞(Rn) with (z, k) ∈ E such that for any j ∈ N0, α ∈ Nn0 and s ∈ R,

(x∂x)j∂αy

f(x, y)−
∑

(z,k)∈Es

az,k(y)xz logk x

 = O(xs). (5.38)

The notation g(x) = O(xs) means that for every compact set K in X
there is a constant CK such that |g(x)| ≤ CKxs for every x ∈ K.

It can be observed (by taking j and α in the above equation to be 0)
that the condition of polyhomogeneity is stronger than the one of asymptotic
expansion.

The above definition generalises to manifolds with corners [39] and in
particular to manifolds with boundary. If x′ is another boundary defining
function, Taylor expanding x′z logk x′ around x = 0 together with the sec-
ond and third item in the definition of index set, shows that although the
coefficients in the expansion of a function in the space of polyhomogeneous
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functions might change with a change of coordinates, being polyhomoge-
neous with index set E is in fact invariant under changes of coordinates.
Furthermore, the non-vanishing of the leading order term (z0, k0) (that with
the smallest first component in E and the largest k with (z0, k) ∈ E) is
invariant under a change of coordinates.

LetX be a compact manifold with boundary, the set of polyhomogeneous
conormal to the boundary functions with index set E is denoted as AEphg(X).
It is a complete locally convex topological vector space (Lemma 4.13.1 in
[39]).

The Borel-Ritt Theorem has its analogue for polyhomogeneous expan-
sions (see Lemma 5.24 in [38]).

Theorem 5.4.5. Let X be a compact manifold with boundary. Suppose that
for each (z, k) ∈ E, an az,k ∈ C∞(X) is given, then there exists f ∈ AEphg(X)

satisfying (5.38). Moreover, if f ′ ∈ AEphg(X) satisfies the same expansion
then f ′ − f decays to all orders at ∂X.

From the definitions it follows that AEphg(X) is a C∞(X)-module, which
allows us to localise the definition to an open set U of X:

AEphg(U) = {f ∈ C∞(U ∩ X̊) : fχ ∈ AEphg(X), ∀χ ∈ C∞c (U)}. (5.39)

One can now define AEphg(X;V ), the space of polyhomogeneous sections of
a smooth vector bundle V over a compact manifold with boundary X with
index set E. This is defined as the space of sections with polyhomogeneous
coefficients, i.e.

AEphg(X;V ) = C∞(X;V )⊗C∞(X) AEphg(X). (5.40)

Polyhomogeneous functions play a fundamental role in the full b-calculus
of Melrose as the following fact hints. The Mellin transform gives an isomor-
phism from the space of polyhomogeneous conormal functions with index set
E over a compact manifold with corners X and the space of meromorphic
functions over ∂X having poles of order k only at the points λ = z, where
(z, k − 1) ∈ E and k = max{l : (z, l − 1) ∈ E}, and having a rapid decay in
the strips |Re(λ)| ≤ a when |Im(λ)| → ∞ (see Proposition 5.27 in [38] for
the precise statement).

Definition 5.4.6. Let X be the radial compactification of R3. The space
of polyhomogeneous conormal sections (phgc) of the bundle V over X is

Aphg(X;V ) :=
⋃

E⊂R×N0

AEphg(X;V ). (5.41)

It can be observed that as the coefficient a(0,0) in (5.38) is smooth, then
the restriction of a phgc section to the boundary is also smooth. In the
case of monopoles, this has the consequence that the mass section φ and the
connection A0 are smooth over S2

∞.
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Remark 5.4.7. It can be proved, using convolutions with an approximate
identity, that the space C∞c (R3) is dense in L2

b(R3) (see Proposition 8.17 in
[11]), and as S2

∞ has b-measure 0, C∞c (R3) is also dense in L2
b(X), and in

particular in any Hk
b (X), and therefore Aphg(X)∩Hk

b (X) is dense in Hk
b (X).

5.5 Alternative definition for the Hybrid Sobolev
spaces.

Another possible set-up in the maximal symmetry case, is to consider the
splitting of adP with respect to Φ, instead of π∗φ. In this case, V0 and
V1 will be well-defined vector bundles if the centraliser of Φ, denoted CΦ,
has constant rank in a small collar neighbourhood of ∂X. This is always
the case for maximal symmetry breaking, but it has to be imposed as an
extra asymptotic condition to be satisfied by a solution. This assumption
seems a bit too strong, as generically, a Higgs field with asymptotic value
a mass section with repeated eigenvalues, will not have the corresponding
eigenvalues repeated and therefore the dimension of its centraliser will jump,
increasing at ∂X.

When CΦ has constant rank, the hybrid Sobolev norms coming from

Hα,β,kΦ (X;V ) and Hα,β,kΦ (X;V ) are equivalent for any Φ in the configuration
space. This simplifies the proof of the Fredholmness of the map d∗1d1, since
the operator can be considered to act between hybrid Sobolev spaces with
respect to Higgs field Φ appearing in the operator. Moreover, the potential
term on the b-operator part disappears, allowing a wider range for the weight
β. In more detail, with respect to the splitting V = CΦ⊕C⊥Φ the connection
has the form (

∇00 0
0 ∇11

)
+

(
0 ∇01

∇10 0

)
. (5.42)

The first term is a direct sum of connections and the second term an ele-
ment in xa+εΩ1

sc(V ) and the only non-vanishing component of ad Φ in this
decomposition is Φ11. The proof for the case a = 2 is explained before
Lemma 3.2.1, but it holds for larger decaying rate following work of Jaffe
and Taubes [27].

Taking this into account together with the fact that the connection is a
lift of a b-connection, the off-diagonal components of d∗1d1 with respect to
this splitting are

∇∗00∇01 +∇∗10∇11 : Hβ,l+1
sc (V1)→ Hβ+a+ε,l

sc (V0) ⊂ Hα+1,l−1
b (V0), (5.43)

∇∗01∇00 +∇∗11∇10 : Hα−1,l+1
b (V0)→ Hα+1+a+ε,l

b (V1) ⊂ Hβ,l−1
sc (V1). (5.44)

For the first map observe that Hβ+a+ε,l
sc (V0) ⊂ Hα+1+ε,l

b (V0) if β + a ≥
α+ 1 + l, and for the second, Hα+1+a+ε,l

b (V1) ⊂ Hβ+ε,l
sc (V1) if α+ 1 + a ≥ β.
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In conclusion, whenever the inequality

1 + a ≥ β − α ≥ l + 1− a (5.45)

holds, the maps (5.43) and (5.44) are compact. The rest of the proof of the
Fredholmness of d∗1d1 is as in Theorem 3.2.2.

5.6 Computations

In this section we show that the deformation complex around a solution to
the Bogomolny equations is an elliptic chain complex.

The form of the linearised gauge action takes the form:

d1γ = (−dAγ,−[Φ, γ]). (5.46)

It can be observed that for γ ∈ T1G and (a, ϕ) ∈ Γ(X;∧1 ⊗ adP ) ⊕
Γ(X; adP ),∫

X
〈d1γ, (a, ϕ)〉 =

∫
X

(〈−dAγ, a〉+ 〈−[Φ, γ], ϕ〉)

=

∫
X

(〈γ,−d∗Aa〉+ d(Tr(γ ∧ ∗a)) + 〈γ, [Φ, ϕ]〉) , (5.47)

where we have used that Tr(dAγ ∧ ∗a+ γ ∧ dA ∗ a) = d(Tr(γ ∧ ∗a)).
From here we deduce that the formal L2-adjoint of d1 with respect

to the infinitesimal gauge transformations that vanish at S2
∞ (in particu-

lar the ones coming from the reduced gauge transformations) or (a, ϕ) ∈
Hα,α+l,l(X; (∧0 ⊕ ∧1)⊗ adP ) (as they also vanish at S2

∞) is

d∗1(a, ϕ) = −d∗Aa+ [Φ, ϕ]. (5.48)

Its kernel represents the nearby pairs (A + a,Φ + ϕ) that are in Coulomb
gauge with respect to (A,Φ). Given another monopole (Ã, Φ̃), the critical
points of the L2 distance between (A,Φ) and the gauge orbit of (Ã, Φ̃) are
precisely the points in the kernel of d∗1.

To see the what form the Bogomolny map in a point of the from (A,Φ)+
(a, ϕ) has, consider

FA+a = FA + dAa+ a ∧ a, (5.49)

dA+a(Φ + ϕ) = dA+aΦ + dA+aϕ

= dΦ + [A,Φ] + [a,Φ] + dϕ+ [A,ϕ] + [a, ϕ]

= dAΦ + dAϕ+ [a,Φ] + [a, ϕ], (5.50)

putting these two equations together,

∗FA+a − dA+a(Φ + ϕ) = ∗FA − dAΦ + ∗dAa− dAϕ+ [Φ, a]

+ ∗ (a ∧ a)− [a, ϕ]. (5.51)
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The linear part of this equation defines the linear map d2 := dB(A,Φ)

with
d2(a, ϕ) = ∗dAa− dAϕ+ [Φ, a]. (5.52)

The composition of this linear map with the linearised gauge action yields,

d2d1γ = − ∗ dAdAγ + dA[Φ, γ]− [Φ, dAγ]

= [− ∗ FA, γ] + [dAΦ, γ] + [Φ, dAγ]− [Φ, dAγ] = [− ∗ FA + dAΦ, γ],
(5.53)

which is zero precisely when (A,Φ) is a solution to the Bogomolny equations.
The principal symbols of d1 and d2 are:

σd1(ξ)(γ) = (−ξ ⊗ γ, 0), (5.54)

σd2(ξ)(a, ϕ) = ∗(ξ ∧ a)− ξ ⊗ ϕ. (5.55)

From where we see that the kernel of the second is precisely the image of
the first one. This proves the next lemma.

Lemma 5.6.1. When (A,Φ) is a solution to the Bogomolny equations,

Hα−1,α+l,l+1(X; adP )
d1−→ Hα,α+l,l(X; (∧0 ⊕ ∧1)⊗ adP )

d2−→ Hα+1,α+l,l−1(X;∧1 ⊗ adP )

d1 : γ 7→ (−dAγ,−[Φ, γ]) , d2 : (a, ϕ) 7→ ∗dAa+ [Φ, a]− dAϕ,

is an elliptic chain complex.
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