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Towards a data-integrated cell
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Robin Ketteler 7 & Nataša Pržulj1,2,8

We are increasingly accumulating molecular data about a cell. The challenge is how to

integrate them within a unified conceptual and computational framework enabling new dis-

coveries. Hence, we propose a novel, data-driven concept of an integrated cell, iCell. Also, we

introduce a computational prototype of an iCell, which integrates three omics, tissue-specific

molecular interaction network types. We construct iCells of four cancers and the corre-

sponding tissue controls and identify the most rewired genes in cancer. Many of them are of

unknown function and cannot be identified as different in cancer in any specific molecular

network. We biologically validate that they have a role in cancer by knockdown experiments

followed by cell viability assays. We find additional support through Kaplan-Meier survival

curves of thousands of patients. Finally, we extend this analysis to uncover pan-cancer genes.

Our methodology is universal and enables integrative comparisons of diverse omics data over

cells and tissues.
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Our current knowledge about functioning of the cell is
partial. Even if key cancer genes can be identified by
differential-expression analyses1 or Genome Wide Asso-

ciation Studies2, the effects of the altered molecular mechanisms
on the cell’s functioning are not well understood. Due to the
advances in capturing technologies, large-scale complex mole-
cular data have been collected, including genomic, epigenomic,
transcriptomic, proteomic, and metabolomic data3. These data
are often modeled as networks in which nodes represent biolo-
gical entities and edges represent interactions between the entities
(e.g., in protein–protein interaction networks, nodes represent
proteins and edges connect nodes representing proteins that can
physically bind). These networked data are a new and rich source
of biological information, but they need to be untangled by new
algorithms to expose the hidden information.

Individual analyses of molecular networks revealed that genes
with similar biological functions tend to group together and to
have similar wiring patterns in molecular networks4. This
observation has been used to improve our understanding of gene
functions5 and of the functional organization of the cell6. How-
ever, each type of molecular network data provides only limited
information due to limitations and biases of the underlying bio-
technologies. For instance, cancer is not the consequence of a
single mutated gene, or of a single-broken interaction, but a result
of multiple perturbations within and across cells. Thus, a key
challenge is mining heterogeneous omics data types collectively
for new biological and medical insight that cannot be obtained
from any single-data type in isolation from others7.

To improve our understanding of the functioning of cancer
cells, we propose a novel concept of a bottom-up, data-driven
integrated model of the cell, which we call an iCell (stands for an
integrated Cell). Because the state of the art network data-
integration methods are limited when applied to integrating large
omics network datasets (see Methods, section Integration with the
state-of-the-art methods), we present a prototype of an iCell
based on nonnegative matrix tri-factorization (NMTF)8, a
machine learning technique originally proposed for co-clustering
and dimensionality reduction that was recently used for data
integration9,10. Machine learning approaches can perform early
(full), late (decision), or intermediate (partial) data integration.
Early integration approaches first combine all datasets into a
single dataset from which the model is built. Combining the
datasets often requires representing all data in a common feature
space, which may lead to information loss11,12. On the other
hand, late integration approaches first build models for each
dataset in isolation from others, and then combine these models
into an integrated model. As building models for each dataset in
isolation from others disregards their complementary informa-
tion, late data integration may result in reduced performance of
the integrated model11,12. NMTF is an intermediate integration
method that directly integrates all datasets through the inference
of a single-joint model, which overcomes the above mentioned
issues of early and late integration methods, resulting in higher
prediction accuracy12,13.

Our prototype of an iCell, which is illustrated in Fig. 1 and
detailed in Methods section iCell’s methodology, fuses three
tissue-specific molecular interaction networks, protein–protein
interaction (PPI), gene co-expression (COEX), and genetic
interaction (GI) networks, into a single, unified representation of
tissue-specific cells. We show that an iCell better captures the
functional organization of the cell than any of its constituent
molecular networks alone (see section What is an iCell). We
apply it to construct cancer-specific iCells of the four most pre-
valent cancers in human, breast, prostate, lung, and colorectal14,
along with iCells of the corresponding control tissues. Compar-
ison between the iCells of cancer and control tissues reveals genes

that are expressed in both cancer and control, but whose wirings
(patterns of interactions with other genes) in cancer iCells are
altered, while they are not necessarily altered in any of the con-
stituent individual omics data sets. These rewired genes are sta-
tistically significantly enriched in cancer drivers. Hence, we use
the wiring alterations in cancer iCells to prioritize and predict 63
new cancer-related genes.

Our iCell-based methodology differs from traditional differential-
expression (DE) based approaches, such as DEGAS15 and Key-
PathwayMiner16, which rely on a single, generic molecular
interaction network (e.g., a PPI network containing all genes,
independent of them being expressed or not), in which they search
for sets of connected genes that are differentially expressed in cancer
(which they call differentially expressed pathways). In our iCell
approach, for each tissue, we consider tissue-specific PPI, co-
expression, and genetic interaction networks (containing only the
genes that are expressed in the corresponding tissue), from which
we generate an integrated, tissue-specific network (that we call an
iCell). Then, we compare the iCell of a cancer tissue with the iCell
of the corresponding control tissue to uncover genes that are
expressed in both cancer and control, but whose wiring patterns are
changed in cancer (which we call cancer-rewired genes).

We found literature evidence that 47.6% of our predictions are
cancer related. Interestingly, they also contain uncharacterized
genes. Importantly, we validated 57.1% of our predictions by gene
silencing coupled with cell viability experiments. Furthermore,
50.8% of our newly identified genes have a potential clinical
relevance as biomarkers of cancer, which is supported by sig-
nificant associations with patient survival. These results demon-
strate that our iCells can be used to uncover new cancer related
genes. In addition to the four cancer types mentioned above, we
perform a pan-cancer comparison of iCells corresponding to
twenty different cancer types and identify a new pan-cancer gene.

Results
What is an iCell?. We collected the protein–protein interaction
network17, gene co-expression network18, and genetic interaction
network19,20 of human, which we made tissue- and cancer-
specific by using the tissue expression data from the Human
Protein Atlas21 (see Methods, section Creating tissue-specific
molecular interaction networks). We used these tissues-specific
networks to construct tissue-specific iCells for breast, prostate,
lung, and colorectal cancer tissues, as well as for the corre-
sponding control (healthy) tissues of origins.

To characterize the wiring patterns of iCells, we compare the
iCells of breast, prostate, lung, and colorectal cancers and of the
four corresponding control tissues to synthetic networks
generated according to seven models from the literature22–28, as
described in Methods, section Analyzing the wiring patterns of
iCells. The comparison is done using the graphlet correlation
distance (GCD), because it is the most sensitive network distance
measure29. As presented in Fig. 2c, d, the wiring patterns of iCells
are not random, as they do not correspond to the wiring patterns
of Erdös Rènyi random networks22, and are not captured well by
any of the tested models. In the same way, we observe that the
wiring patterns of iCells are different from those of the
constituting PPI, COEX, and GI networks. These new patterns
of iCells emerged from data integration (Supplementary Fig. 1).

Then, we examine the iCells to assess how well they capture the
functional organization of cells, as described by reactome
pathway (RP) annotations30. We do this by clustering genes in
different networks and by computing the enrichment of the
clusters in biological annotations (see details in Methods, section
Enrichment-based measures). As presented in Fig. 2a, the clusters
of genes revealed by iCells are statistically significantly enriched
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in biological pathways, having on average 31.8% of enriched
genes in the clusters. Also, they are more enriched than the
clusters of genes obtained from any individual molecular network
alone. The same is observed when we consider two other sets of
annotations describing the functioning of a cell, namely KP
annotations31 and GO biological process (GO-BP) annotations32

(see Fig. 2b and Supplementary Figs. 2 and 3). Hence, iCells
capture additional functional information, which emerges from
the NMTF-based fusion of the molecular networks, despite the
three molecular networks having almost no overlap (Supplemen-
tary Fig. 4). We also use the same clustering and enrichment
analysis methodology to assess the utility of integrating all of the
data networks, PPI, COEX, and GI. As presented in Supplemen-
tary Fig. 5, using all datasets together results in the clustering of
genes having the highest enrichment in both RP annotations and
GO-BP annotations, compared with any other combination of
input networks. Altogether, our results demonstrate the utility of
our new data-fusion approach and of the iCell paradigm.

iCells reveal new cancer-specific genes. In the Human Protein
Atlas, a gene is either expressed or not in a tissue according to
antibody staining experiments. We use these simple binary gene-
expression data to define, between a given cancer tissue and
control tissue, four gene sets of interest: always-silenced
genes, which are not expressed in either control or cancer;

always-expressed genes, which are expressed in both (although
they may be expressed at different levels); cancer-silenced genes,
which are expressed in the control, but not in the cancer; and
cancer-activated genes, which are not expressed in the control,
but are expressed in the cancer. We use the cancer driver genes
from intOgen33 and compute the enrichments in drivers within
each of the four gene sets and for each of the four cancers
(detailed in Methods, section Enrichment-based measures). We
observe the following patterns (illustrated in Supplementary
Fig. 6a). Always-silenced gene sets are all statistically significantly
depleted in drivers, which is expected. Interestingly, cancer-
silenced and cancer-activated gene sets are mainly depleted in
drivers. The only gene set that is consistently and statistically
significantly enriched in drivers is the one consisting of always-
activated genes, suggesting that it is not only the differentially
expressed genes that are key to cancer progression, as was
believed thus far, but also the genes that are expressed in both
cancer and control tissues. This yields a crucial novel hypothesis:
certain genes are silenced or activated by cancer (compared to
control) to alter the functioning of other genes, those that are
expressed in both control and cancer (i.e., always-expressed
genes); it is these always-expressed genes that are key to cancer
progression rather than the cancer-silenced or activated ones.

To investigate if the amount of rewiring around an always-
expressed gene relates to its oncogenicity, we quantify the

iCell prototype

Tissue-specific networks: PPI (A1), COEX (A2) & GI (A3)

Non-negative matrix tri-factorization based data fusion

* *

iCell : integrated network with functionally coherent domains

RP KP
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Fig. 1 Illustration of iCell. Each iCell is based on three tissue-specific molecular networks: protein–protein interaction network (PPI, in red), gene co-
expression network (COEX, in blue), and genetic interaction network (GI, in green). These networks, represented by their adjacency matrices, Ai, are
simultaneously decomposed as the product of three factors, G, Si, and GT, as detailed in Methods (illustrated in the middle panel). From these matrix
factors, we extract an integrated network, which we call an iCell. For illustration purposes, we used spatial analysis of functional enrichment (SAFE)53 on
the iCell of breast control tissue to highlight regions of iCells that are enriched in reactome pathway (RP), KEGG pathway (KP), or gene ontology biological
process (GO-BP) annotations (bottom). In these plots, genes from the same functional domain have the same color (see Methods)
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molecular rewiring in cancer around an always-expressed gene by
using the dissimilarity between its graphlet degree vectors
(GDVs)34 in cancer and control iCells (see Methods, section
Analyzing the wiring patterns of iCells) and by measuring the
enrichment in cancer drivers among the most rewired always-
expressed genes (as detailed in Methods, section Enrichment-
based measures). Also, we perform the same measurement in
each of the PPI, COEX, and GI networks. We observe that only
the rewiring around genes in iCells is indicative of their
oncogenicity: in iCells, the top-500 most rewired always-
expressed genes are significantly enriched in cancer drivers for
all of the four cancers, while the top-500 most rewired always-
expressed genes in the individual molecular networks are not
(Supplementary Fig. 6b). Furthermore, the top-500 most rewired
always-expressed genes in iCells are also significantly enriched in
cancer-related pathways (the enriched pathways according to
Reactome30 and KEGG31 pathway annotations are listed in
Supplementary Tables 1 and 2). For instance, the top-500 most
rewired always-expressed genes in the breast cancer iCell are
significantly enriched in estrogen signaling pathway annotation

(with enrichment p value= 5.08 × 10−3), which is consistent with
the important role that estrogen signaling plays in cancer subtype
classification and treatment of breast cancer35. Given that almost
80% of breast cancers are estrogen receptor-positive, this further
highlights the importance of estrogen signaling in breast cancer
and potential novel roles for the newly identified rewired genes in
novel drug target definitions.

We prioritize genes according to the above-described cancer-
specific rewiring in iCells. That is, for a given cancer, our
prioritized genes are the always-expressed genes that are the most
rewired in the cancer iCell compared to the control iCell
(most rewired first). Table 1 shows the top-20 prioritized genes in
each of the four cancers. They correspond to 63 unique genes, as
some genes are prioritized in different cancers (e.g., ECT2L and
HLA-DQA2 are prioritized in all four cancers), highlighting that
different cancers share some rewired genes. We find evidence in
the literature that at least 30 of these genes (47.6%) are indeed
involved in cancer (Table 1). Importantly, some of the most
rewired genes in iCells have never been associated with cancer
before, e.g., CD300LD (an immune receptor protein) for breast
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Fig. 2 Functional relevance of iCells. a For each of the four cancers and four control tissues, we created clusters of genes either by integrating all
datasets (iCell, in pink), or by considering each dataset in isolation (PPI in red, COEX in blue, and GI in green), as detailed in Methods. For each
clustering, the bars show the percentage of the reactome pathway (RP) annotated genes having at least one annotation that is enriched in the clusters.
b The same as a, but averaged over all tissues and according to each of reactome pathway (RP), KEGG pathway (KP), and gene ontology biological
process (GO-BP) annotations. Error bars show the standard deviations across different tissues. c Each line shows the fitting of a network model (color
coded, Erdös–Rènyi (ER), generalized random (ER-DD), geometric (GEO), geometric with gene duplication (GEO-GD), scale-free (SF), scale-free with
gene duplication and divergence (SF-GD), and stickiness-index based model (STICKY)) for the different types of real-world networks (x-axis), the
error-bars show the averages and standard deviations of the pairwise GCD distances between real and 840 randomly generated networks of the size
as the real networks. All data, apart from GI networks (which are the most sparse) are structured, in the sense that their GCD distances from ER
networks are larger than from other network models. d The distribution of distances between iCell and ER networks (in pink) and the distribution of
distances between ER networks (in blue) are significantly non-overlapping (MWU p value ≤ 5%), indicating that the ER model does not fit the iCell,
i.e., that the structure (topology) of iCell is not random
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cancer, NPIPA8 (a nuclear pore complex interacting protein) for
prostate cancer, H6PD (a glucose-6-phosphate dehydrogenase)
for lung cancer and PNMA6A (an antigen protein) for colorectal
cancer. Furthermore, 39 of our prioritized genes (61.9%) are of
unknown biological functions, having no experimentally vali-
dated GO-BP annotation32.

We experimentally validate that 36 of our 63 prioritized genes
(57.1%) significantly alter the growth of cancer cell lines, which we
measure using esiRNA-mediated knockdown36 of our prioritized
genes in cancer cell lines followed by Presto Blue cell viability assays
(detailed in Methods, section Experimental validation of iCell
rewired genes). The resulting cell growth changes are detailed in
Fig. 3 and summarized in Table 1. We find that sixteen of our
twenty prioritized genes in breast cancer (80%) induced significant

cell growth change after esiRNA knockdown in MCF7 breast cancer
cells; 11 of our 20 prioritized genes in prostate cancer (55%)
induced significant cell growth change in PC3 prostate cancer cells;
10 of our 20 prioritized genes in lung cancer (50%) induced
significant cell growth change in A549 lung cancer cells and finally,
8 of our 20 prioritized genes in colorectal cancer (40%) induced
significant cell growth change in HCT-116 colorectal cancer cells.
The high-validation rates that we obtained further demonstrate that
our iCells can be used to uncover new cancer-related genes.

Next, tabfigwe find that 32 of our 63 prioritized genes (50.8%)
have potential clinical relevance as biomarkers of cancer, by
assessing if the expression value of a prioritized gene (from
TCGA projects; The Cancer Genome Atlas, http://cancergenome.
nih.gov/abouttcga) can be used to stratify cancer patients into two

Table 1 Validation of the iCell rewired genes

Gene, breast
cancer

Literature
support

Patient survival
curve diff. (p-val)

Cell viability
change (p-val)

Gene,
prostate
cancer

Literature
support

Patient survival
curve diff. (p-val)

Cell viability
change (p-val)

XKR3 PMID: 19592507 4.57E-01 4.04E-02 NPIPA8 1.91E-01
TOPAZ1 PMID: 23478628 4.04E-02 CBWD5 6.43E-03 3.31E-01
HLA-DQA2 PMID: 27539887 4.06E-03 XKR3 PMID: 19592507 4.04E-02
ECT2L intOgen 2.88E-02 5.00E-01 TOPAZ1 PMID: 23478628 4.04E-02
CD300LD 4.04E-02 HLA-DQA2 PMID: 27539887 7.67E-02
GDF6 PMID: 17616940 1.13E-01 4.04E-02 ECT2L intOgen 2.32E-01 5.00E-01
PNMA6A 2.14E-02 4.04E-02 RNF222 PMID: 24974835 1.70E-01 1.91E-01
MAGEB16 PMID: 11454705 4.04E-02 SIGLEC14 1.02E-01 1.91E-01
ERICH6B PMID: 26828653 6.77E-03 4.04E-02 PNMA6A 5.75E-03 4.04E-02
NAE1 PMID: 22874562 3.22E-02 4.04E-02 MAGEB16 PMID: 11454705 4.04E-02
NTRK1 intOgen 5.89E-03 4.04E-02 PLEKHN1 PMID: 24004954 2.08E-02 4.04E-02
CCNB1 PMID: 27903976 4.12E-02 4.04E-02 CACTIN PMID: 20829348 7.22E-03 4.04E-02
MRPL3 1.75E-02 4.04E-02 KANK2 PMID: 26739330 1.17E-01 4.04E-02
PSMC3 2.01E-02 4.04E-02 HPS6 4.23E-01 5.00E-01
MRPL50 6.17E-02 4.04E-02 ANAPC16 2.11E-01 1.91E-01
CD300LG 2.38E-02 4.04E-02 TNXB PMID: 26090390 2.17E-01 4.04E-02
C9orf163 4.04E-02 ARHGAP23 PMID: 23535730 3.67E-02 4.04E-02
MRPL4 3.33E-01 4.04E-02 DGCR14 1.05E-01 4.04E-02
COPS5 intOgen 1.90E-03 5.00E-01 UBE2H 1.13E-01 1.91E-01
MRPL42 9.32E-02 1.91E-01 MAZ PMID: 25449683 6.39E-03 4.04E-02

Gene, lung
cancer

Literature
support

Patient survival
curve diff. (p-val)

Cell viability
change (p-val)

Gene,
colorectal
cancer

Literature
support

Patient survival
curve diff. (p-val)

Cell viability
change (p-val)

TOPAZ1 PMID:23478628 4.04E-02 HLA-DQA2 PMID: 27539887 1.21E-01
HLA-DQA2 PMID:27539887 2.57E-02 ECT2L intOgen 2.52E-02 9.52E-02
ECT2L intOgen 2.44E-02 1.91E-01 PNMA6A 2.32E-02 4.04E-02
VCP PMID: 18798739 1.13E-02 4.04E-02 MAGEB16 PMID: 11454705 4.04E-02
ARID3A PMID: 22469780 1.38E-01 4.04E-02 ERICH6B PMID: 26828653 3.80E-02 3.31E-01
H6PD 5.18E-02 4.04E-02 ARHGEF33 1.95E-01 3.31E-01
RIC8A 2.13E-03 9.52E-02 SARDH PMID:23824605 2.31E-02 4.04E-02
ALG13 6.55E-03 3.31E-01 PLEKHN1 PMID:24004954 9.03E-02 4.04E-02
FEM1B PMID: 19908242 3.27E-01 5.00E-01 ZNF777 PMID:25560148 1.17E-02 3.31E-01
RPL6 PMID: 22043320 3.74E-01 4.04E-02 C9orf163 4.04E-02
ACBD3 PMID: 20043945 1.25E-01 9.52E-02 UBE2H 5.67E-03 1.91E-01
PELI3 1.94E-01 4.04E-02 KLC3 3.07E-04 9.52E-02
ATP6V1H PMID: 25659576 2.01E-01 3.31E-01 CLDN4 2.25E-01 4.04E-02
RIF1 PMID: 19483192 1.86E-01 3.31E-01 CDH22 PMID: 19546606 3.10E-01 4.04E-02
RBM25 4.22E-02 4.04E-02 CAB39 2.17E-02 9.52E-02
ANKZF1 3.87E-02 4.04E-02 CNR1 4.61E-02 9.52E-02
ATRX intOgen 1.15E-02 5.00E-01 HTR4 7.74E-02 9.52E-02
ABCA2 1.13E-02 4.04E-02 EXOC5 1.82E-02 5.00E-01
PTK2 PMID: 27175819 1.27E-01 4.04E-02 TMPRSS4 1.19E-02 4.04E-02
MMAA 3.98E-01 3.31E-01 ADARB1 8.16E-05 1.91E-01

For each of breast, prostate, lung, and colorectal cancer, the table ranks the always-expressed genes according to their rewiring between cancer and control iCells (most rewired first). Genes in bold
either have literature support of their role in cancer (publication IDs are given in column Literature support), show statistically significantly different patient survival curves (log-rank p values≤ 5% in
column Patient survival curve diff.), or their knockdown in cancer cell lines induces statistically significant change in cell viability (MWU p values≤ 5% in column Cell viability change)
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subgroups having different survivals (Kaplan–Meier survival
curve analysis, detailed in Methods, section Gene expression
based analysis). As presented in Table 1 and illustrated in Fig. 4,
eleven of the twenty prioritized genes for breast cancer relate to
breast cancer survival, six of the twenty prioritized genes for
prostate cancer relate to prostate cancer survival, nine of the
twenty prioritized genes of lung cancer relate to lung cancer
survival, and twelve of the twenty prioritized genes for colorectal
cancer relate to colorectal cancer survival. For instance, breast
cancer patients with high expression of MRPL3, a mitochondrial
ribosomal protein that is not related to cancer in the literature,
have reduced survival (log-rank p value ≈ 1.75 × 10−2). These
results demonstrate that our iCells may be used to uncover new
biomarker genes which may be relevant in the stratification and
prediction of survival in cancer patients.

Finally, we observe that only 17 (27%) of the 63 prioritized
genes are significantly differentially expressed in cancer tissues
with respect to the paired normal tissues (using expression data
from TCGA projects (The Cancer Genome Atlas, http://
cancergenome.nih.gov/abouttcga), as detailed in Methods, section
Gene expression based analysis and Supplementary Table 3). This
confirms that the iCell can uncover novel cancer genes that could
not be identified by traditional differential-expression analysis.

iCells reveal pan-cancer genes. Above, we have shown that genes
that have different wiring patterns in cancer and control iCells
tend to be cancer related. In this section, we ask if genes that are
similarly wired in different cancer iCells also tend to be cancer

related. In addition to the four cancer iCells that we used in the
previous section, we create iCells for 16 other cancer tissues:
carcinoid, cervical, endometrial, glioma, head and neck, liver,
lymphoma, melanoma, ovarian, pancreatic, renal, skin, stomach,
testis, thyroid, and urothelial cancer. We find that 3077 genes are
expressed in all 20 cancer types, which we term pan-cancer
expressed genes (Supplementary Fig. 7). With respect to the
background of genes that are expressed in at least one cancer
type, the pan-cancer expressed genes are significantly enriched in
cancer drivers (with enrichment p value ≈ 4.10 × 10−8).

For pan-cancer expressed genes, we quantify their rewirings
across cancers by the average of their GDV similarities over all
pairs of cancer iCells. With respect to the background of pan-
cancer expressed genes, the top-500 least rewired of the pan-
cancer expressed genes (i.e., that are the most similarly wired
across different cancers) are significantly enriched in cancer-
drivers (with enrichment p value ≈ 1.60 × 10−5). Following this
observation, we prioritize pan-cancer expressed genes according
to the similarity of their wiring across cancer iCells. Out of the
top-20 of these genes, 19 are known to have a role in cancer
(Table 2), which validates our hypothesis. Furthermore, this
makes the remaining one of the prioritized genes, NUDT8
(a mitochondrial Nudix Hydrolase), a good candidate for further
investigation. According to the gene expression data of cancer
patients from TCGA, expression value of NUDT8 allows for
stratifying cancer patients into subgroups having statistically
significantly different survival curves (i.e., having different clinical
outcomes) for eight cancer types: lung (log-rank p value= 4.12 ×
10−2), liver (log-rank p value= 2.69 × 10−2), pancreatic (log-rank
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Fig. 3 Cell viability changes in cancer cell lines after knockdown of iCell rewired genes. For each of MCF7 breast cancer (a), PC-3 prostate cancer (b), A549
lung cancer (c), and HCT116 colon cancer (d) cell lines, cells were seeded in triplicates into 96-well plates and were transfected with indicated esiRNAs
24 h after seeding. The esiRNAs correspond to the 20 top iCell hits minus HLA-DQA2 (because it was not in our library), to which we added esiLuciferase
as control. Seventy-two hours after transfection, Presto Blue cell viability assays were performed. Cell viability is calculated relative to the corresponding
esiLuciferase controls (set to 100%). For each cell type and for each gene, bars represent the average of the relative changes of cell viability over
the triplicate experiments, and the error-bars show the corresponding standard deviations. Bars in blue indicate reduced cell viability in cancer that is
statistically different from the control (MWU p value≤ 5%), bars in red indicate increased cell viability in cancer that is statistically different from the
control, and bars in white indicate cell viability changes in cancer cell lines that were not statistically significant
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p value= 3.11 × 10−2), head and neck (log-rank p value= 2.36 ×
10−3), stomach (log-rank p value= 4.70 × 10−2), renal (log-rank
p value= 3.70 × 10−4), cervical (log-rank p value= 7.26 × 10−3),
and ovarian (log-rank p value= 2.69 × 10−2) cancers. Thus, we
show that NUDT8 is likely to have a role in cancer, whose
experimental validation will be the subject of a future study.

Discussion
We introduce the concept of an iCell, which integrates tissue-
specific heterogeneous molecular datasets into a unified, inte-
grated representation of the tissue-specific cells. We propose a
computational model of an iCell that integrates three types of
tissue-specific, systems-level molecular interaction networks
within our new data integration and analytics framework. Using

cancer and control tissue data, we perform cancer-specific and
pan-cancer studies that uncover genes whose relationship with
cancer was previously unknown. The next research steps include
other groups reproducing these findings and extending them
towards further validations that are necessary to confirm their
specific roles in cancer.

In this study, our iCells are based on the widely available tissue
expression data. The advantage of our methodology is that it is
universal and can accommodate single-cell gene expression and
other single-cell omics data37. These single-cell iCells would
enable finer comparison between cancer and control cells and
tissues and also comparison between cancer cells from the same
patient, which would shed light into the structure, heterogeneity
and dynamics of tumor functioning and progression. Also, our
methodology can easily be adapted to include additional omics
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data types of interest, e.g., the epigenomic, or proteomic data3,38.
The utility of integrating additional datasets could be measured
by how much it improves the functional relevance of iCell’s
clusters of genes (as done in section What is an iCell?).

Finally, while we focus on cancer, our methodology paves a
way toward comparative integrated omics data analyses of all
cells. The applications include studies of other diseases, the study
of a cell’s specialization and differentiation, ageing, and all pro-
cesses that require integrated comparisons of heterogeneous
omics data types capturing different aspects of the functioning of
cells and tissues.

Methods
Creating tissue-specific molecular interaction networks. We collected three
human molecular interaction data-sets: PPIs from IID database v.2016-0317,
COEXs from COXPRESdb v.6.018 and GIs from BioGRID v.3.4.13719 and
from SynLethDB20. We also collected tissue-specific gene expression data
from the Human Protein Atlas (HPA) database v.1521. In the study, we only
consider genes whose expression value is available in HPA and that have at
least one reported PPI in IID (as PPIs are the most direct evidence that genes
interact).

For each tissue and for each molecular interaction dataset, we generated a
tissue-specific molecular interaction network in which nodes represent genes (or
their protein products) that are expressed in the tissue, and in which nodes are
connected by edges if the corresponding genes interact in the molecular interaction
dataset. In this way, we obtained three (PPI, GI, and COEX) tissue-specific
molecular interaction networks for each tissue.

In our cancer-specific study, we use the procedure presented above to create
tissue-specific networks for four cancer tissues (breast, prostate, lung, and
colorectal cancers) and for the four corresponding control tissues (breast glandular
cells, prostate glandular cells, lung pneumocytes, and colon glandular cells). For the
pan-cancer study, we apply the same procedure to generate the tissues-specific
networks of 16 additional cancer tissues: carcinoid, cervical cancer, endometrial
cancer, glioma, head and neck cancer, liver cancer, lymphoma, melanoma, ovarian
cancer, pancreatic cancer, renal cancer, skin cancer, stomach cancer, testis cancer,
thyroid cancer, and urothelial cancer. The sizes of the generated networks are
detailed in Supplementary Table 4.

Biological annotations. In the main document, and as detailed in Methods section
Enrichment-based measures, we use biological annotations to assess if our iCells can
be used to identify functionally coherent sets of genes. To capture the functioning of
a cell, we use the following sets of biological annotations: the pathway annotations

from KEGG (collected on the 14 June 2016)31, the pathway annotations from
REACTOME (collected on the 14 June 2016)30, and the experimentally validated
GO-BP annotations32 from NCBI’s web server (collected on the 14 June 2016).

Integration with the state-of-the-art methods. In a preliminary step, we used the
state of the art data-integration and clustering methods to integrate our human
molecular data:

Similarity network fusion (SNF)39 fuses together networks by using a diffusion
process that enhances the patterns shared by different datasets. However, on our
data, SNF returns empty integrated networks.

Natural Gradient Weighted Simultaneous Symmetric NMTF (NG-
WSSNMTF)40 is similar to our matrix tri-factorization integration framework,
but with the following added properties: (1) it only factorizes the observed
(nonzero) entries in the adjacency matrices Ai, (2) it constrains G to be
orthonormal to ease the identification of gene clusters, and (3) it constrains Si
matrices to be sparse to limit the numbers of cluster-to-cluster relationships. On
our dataset, NG-WSSNMTF’s iterative solver starts diverging after few (≈100)
iterations. This suggests that under NG-WSSNMTF’s constraints there is no
solution to the decomposition problem. If we stop the algorithm before it starts
diverging, then the obtained clusters are not functionally consistent (the clusters
are not enriched in biological annotations).

GraphFuse41 is a tensor factorization approach. It suffers from memory issues
and could not process our data.

Spectral clustering on multi-layer graphs (SC-ML)42 is a spectral method based
on subspace representation of multi-layer networks. Similar to NG-WSSNMTF,
SC-ML cannot achieve convergence on our data-sets and does not produce clusters.

Markov CLustering (MCL)43 is a graph clustering method based on the idea
that random walks on a graph will infrequently go from one cluster to another. To
use MCL, we first merged all the networks by taking their union (a standard simple
way to integrate network data), and then used MCL to cluster the resulting union
graph. On our data, MCL creates very large numbers of very small clusters and
leaves many nodes (genes) isolated.

While memory issues were expected because of the large sizes of our
networks, the inability of data-integration methods to converge toward a
nonempty solution was not expected. For a given species, different omics dataset
should complement each other, as they capture different views of the same
molecular system. We found that these datasets largely disagree with each other,
as the genes that are found to be interacting in one dataset are rarely found to be
interacting in another one (see Supplementary Fig. 4). These low agreements
make the integration process harder, since there are no shared patterns of
interactions across the networks.

iCell’s methodology. In our iCell’s data-fusion framework, all networks, i,
are represented by their adjacency matrices, Ai (a symmetric matrix in
which entry Ai[u][v] equals one if genes u and v interact in network i, and
equals zero otherwise). All adjacency matrices, Ai, are simultaneously decom-
posed as products of three matrix factors G, Si and GT as: Ai � G � Si � GT,
where G is interpreted as cluster indicator matrix of genes (grouping n genes
into k clusters) that is shared across all decompositions and hence allows
learning from all data, and Si is interpreted as the compressed representation
of network i (that indicates how the k clusters of genes relate to each other in
network i).

This decomposition is done by solving the following multiple symmetric NMTF
(MSNMTF):

ðMSNMTFÞminðS;G�0Þ
X

i
Ai � G � Si � GT

�� ��2
F
; ð1Þ

where F denotes the Frobenius norm.
We heuristically minimize (MSNMTF) with a fixed point method that, starting

from an initial solution, iteratively uses multiplicative update rules44 to converge
towards a locally optimal solution (see Methods, section Fixed point method with
multiplicative update rules).

After minimization, we use the obtained matrix factors to create an integrated
network that encompasses all input networks. This integrated network is obtained
by thresholding the matrix G � GT by using row- and column-centric rules to
preserve only the top 1% of the strongest relationships in each row and column
(experimentally derived threshold leading to the most functionally enriched
clusters of genes, as detailed below).

In the co-clustering interpretation of NMTF, each row of G corresponds to a
gene, each column of G corresponds to a cluster, and the value G[u][i] (in row u,
column i) is the closeness of gene u to cluster i. We extract clusters of genes from G
by using the hard clustering procedure45, in which gene u is assigned to cluster C
(u) to which it the closest in G, i.e., C uð Þ ¼ argmaxki¼1G u½ � i½ �.

Fixed point method with multiplicative update rules. First, we derive the
Karush–Kuhn–Tucker (KKT) conditions for MSMNTF (necessary conditions for a

Table 2 Top 20 pan-cancer least rewired genes

Rank Gene Evidence

1 NUDT8
2 HLA-DQA2 PMID: 27539887
3 ECT2L intOgen
4 CUL5 PMID: 24760825
5 ENO1 PMID: 26734996
6 CCDC8 PMID: 26052355
7 CUL2 PMID: 20078552
8 VCP PMID: 18798739
9 TARDBP PMID: 22146597
10 NPM1 PMID: 26894557
11 SHMT2 PMID: 27666119
12 HNRNPU PMID: 20010808
13 FUS PMID: 21169411
14 SRRM2 PMID: 26135620
15 COPS5 (CSN5) intOgen
16 DHX9 PMID: 26973242
17 GRB2 PMID: 25031732
18 ILF3 PMID: 22842455
19 OTUB1 PMID: 25431208
20 EEF1A1 (CCS-3) PMID: 16828757

The table ranks genes expressed across all twenty cancers we considered according to their
rewiring across the twenty integrated cancer iCells (least rewired first). Genes in bold have
literature support of their role in cancer, or are known cancer drivers according to intOgenes
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solution in nonlinear programming to be optimal):X
i

�2 AT
i GSi þ AiGS

T
i

� �þ 2 GSiG
TGSTi þ GSTi G

TGSi
� �� �� β ¼ 0; ð2Þ

GTAiG� GTGAiG
TG ¼ 0; ð3Þ

β;G � 0; ð4Þ

hβ;Gi ¼ 0; ð5Þ

where matrix β is the dual variable for the primal constraint G ≥ 0. Because
adjacency matrices Ai are symmetric, therefore matrices Si are symmetric, too.

For Si, we have a closed formula:

Si ¼ GTG
� ��1

GTAiG
� �

GTG
� ��1 ð6Þ

Similar to Wang et al. (2008)40, we derive the following multiplicative update
rule to solve the KTT conditions ((2)–(5)).

Gij  Gij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i AiGSið Þ�ij þ G SiGTGSið Þþ� �

ij

� �
P

i AiGSið Þþij þ G SiGTGSið Þ�ð Þij
� �

vuuut : ð7Þ

Our fixed point method starts from an initial solution, Ginit, and iteratively uses
Equations (6) and (7) to compute new matrix factors Si and G until convergence.
To avoid numerical instabilities, we add to GTG small diagonal matrix whose
diagonal element epsilon is in order of 10−10 before computing (GTG)−1.

Our multiplicative update rules have the time complexity of O(tmkn2), where t
is the number of iterations of the multiplicative update rules, m is the number of
adjacency matrices that are simultaneously decomposed, k is the number of
clusters, and n is the number of rows or columns in any of the adjacency matrices.
In practice, we computed each of the iCells presented here in about 1 h on a
desktop computer with Intel Xeon E5520 CPU @ 2.27 GHz.

Generating initial solutions. We used two initial solution generators. In the first
step, we started with random solutions, in which values in Ginit are filled by a
random number generator following uniform distribution. This makes the solver
non-deterministic: on the same input data, different runs result in similar, but
nonidentical solutions. We use this property to assess the robustness of the
decompositions and to fix the number of gene clusters, k (see Methods, section
Fixing the number of clusters).

In the main paper, we use initial solutions based on singular value

decomposition of the average adjacency matrix �A ¼ 1
a

Pa
i¼1

Ai , where a is the number

of to be decomposed adjacency matrices, following the idea of Qiao46. In this

approach, Ginit ¼
Pk
i¼1

giσ i, where σi is the square root of the ith largest singular

value of �A, while gi is obtained from the corresponding left-singular vector vi as
follows:

gi ¼
max vi; 0f g if k max vi; 0f g k > k min vi; 0f g k;
�min vi; 0f g otherwise:

�
ð8Þ

This approach makes the solver deterministic, avoiding the need of making
multiple runs to account for randomness, and also reduces the number of iterations
that are needed to achieve convergence (see Supplementary Fig. 8).

Stopping criteria. We measure the quality of factorization by relative square error
(RSE) between the decomposed adjacency matrices and the corresponding
decompositions:

RSE ¼
P

i k Ai � GSiG
T k2FP

i A
2
iF

: ð9Þ

In our implementation, the iterative solver stops after 1000 iterations, the value
for which the RSE of the decomposition is not decreasing anymore (see
Supplementary Fig. 8).

Fixing the number of clusters. The number of clusters, k, is a key parameter. On
one hand, small values of k allow for integrating the input networks via NMTF’s
dimensionality reduction. On the other hand, large values of k allow for more
accurate decomposition (with lower RSE), with the extreme case being placing each
gene in a different cluster leading to the exact decomposition. Finding a suitable

value of k that properly balances these two is a problem for which there is no gold
standard procedure.

To avoid the circular argument of choosing the value of k that produces the
most enriched clusters of genes and then validating the clusters based on their
enrichments, we follow a completely different approach based on clustering
stability analysis, inspired by Brunet et al.45. For a fixed value of k, when using
random initial solutions, the decomposition process is non-deterministic and
different runs result in similar, but different solutions. For a given run, by applying
the hard clustering procedure to the corresponding matrix factor G, we obtain a
clustering that we encode in an association matrix C, which is a 0–1 matrix in
which C(i, j)= 1 if genes i and j belong to the same cluster, and 0 otherwise. Then,
we compute �C, the average of the association matrices over ten different runs, and
measure the stability of these clusterings according to the following dispersion
coefficients:

ηk ¼
var offdiag �Cð Þð Þ
n=k�1
n�1 � n=k�1

n�1
� �2 ; ð10Þ

νk ¼
P

i≠j
�C i; jð Þ � 1=kð Þ2

n n� 1ð Þ 1=k� 1=k2ð Þ ;
ð11Þ

where n is the number of genes and offdiag (�C) is the vector containing off-
diagonal entries of �C. When clusterings are identical, off-diagonal entries of �C are
either 0 or 1 and both ηk and νk equal 1 (provided that the k clusters have the same
size and that n/k is integer). On the other hand, if the clusterings are random and
independent from each other, off-diagonal entries of �C are expected to be all close
to 1/k and the two scores are expected to be close to 0.

The idea is to choose the value of k such that the obtained clusters are the most
stable (for which ηk and νk are maximum). As presented in Supplementary Fig. 9,
the most stable clusterings are achieved for k= 50, which is the value that we used
in the main document.

Enrichment-based measures. In the main paper, we assess if iCells and their
constituent PPI, GI, and COEX networks capture well the functional organization
of the cell by clustering genes in these networks and then by measuring the
enrichment of those clusters in biological annotations.

For iCells, we directly obtain our clusters of genes by applying the hard
clustering procedure on the corresponding matrix factor G (see Methods, section
iCell’s methodology). We obtain clusters of genes for the constituent (PPI, GI, and
COEX) networks in the same way by applying our iCell framework on each
constituent network separately. When utilized in this way, our iCell framework is
equivalent to a k-means clustering. Matrix SGT can be interpreted as cluster
centroids and matrix factor G can be interpreted as the proximity of the genes to
the centroids. Thus, applying the hard clustering procedure on G is equivalent, as
in k-means, to assigning each gene to the cluster whose centroid is the closest to the
gene.

We measure the agreement between iCells’ clusters of genes and biological
annotations of genes as follows. First, we identify the annotations that are
significantly enriched in each cluster. The probability that an annotation is
enriched in a cluster is computed using sampling without replacement strategy
(also called the hypergeometric test)47:

p ¼ 1�
XX�1
i¼0

K

i

	 

M � K

N � i

	 

=

M

N

	 

; ð12Þ

where N is the size of the cluster (only annotated genes from the cluster are taken
into account), X is the number of genes in the cluster that are annotated with the
annotation in question, M is the number of annotated genes in the network and K
is the number of genes in the network that are annotated with the annotation in
question. An annotation is considered to be statistically significantly enriched if its
enrichment p value, after correction for multiple hypothesis testing48, is lower than
or equal to 5%. Then, we measure the quality of the clustering by the percentage of
genes having at least one of their annotations enriched in their clusters, over all the
annotated genes.

In the main document, we detail the percentages of genes with enriched RP
annotations in the iCells of breast, prostate, lung, and colorectal cancer, as well as
in the iCells of the four corresponding control tissues of origin. For KP and GO-BP
annotations, we only present averages over all eight tissues in the main paper and
give details in Supplementary Figs. 2 and 3.

In the main document, we use enrichment analysis to assess if a specific set of
genes (e.g., always-expressed, always-silenced, cancer-silenced, and cancer-
activated) has significantly more or significantly less cancer driver genes than the
background set of genes. To this aim, we use the list of known cancer driver genes
from intOgen database33.

First we measure fold enrichment to assess if the frequency of driver genes is
higher in the considered subset than in the background: for a subset of N genes out
of which X are cancer drivers, and with respect to the background set of M genes
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out of which K are cancer drivers, the fold enrichment is defined as:

fold ¼ X=N
K=M

: ð13Þ

If the fold enrichment is greater than one, then the subset is enriched in cancer
driver genes (i.e., it has a higher percentage of driver genes than the background),
and the corresponding enrichment p value is computed with Equation (12).
Otherwise, the subset is depleted in cancer driver genes (i.e., it has a lower
percentage of driver genes than the background), and the corresponding depletion
p value is:

p ¼
XX
i¼0

K

i

	 

M � K

N � i

	 

=

M

N

	 

: ð14Þ

In the main paper, we consider that an enrichment or a depletion in cancer
driver genes is statistically significant if the corresponding p value is lower than or
equal to 5%.

We apply the same methodology to measure the cancer driver enrichment in
the top-500 most rewired always-expressed genes, and in the pan-cancer study on
the pan-cancer expressed genes.

To uncover the biological pathways that are the most affected by the top-500
most rewired genes in cancer, we computed the enrichments of those genes in
Reactome and KEGG pathway annotations as follows. For each pathway
annotation, its enrichment p value is computed using Equation (12), in which N=
500 is the number of cancer-rewired genes, out of which X are annotated with the
pathway in question. M is the number of background genes, out of which K are
annotated with the pathway in question. The biological pathways that are enriched
in the top-500 most rewired always-expressed genes in breast, prostate, lung, and
colorectal cancer are listed in Supplementary Tables 1 and 2.

Analyzing the wiring patterns of iCells. We capture the local wiring patterns
around nodes in networks by using graphlets, because they are the most sensitive
measure of network topology to date29,34,49,50. Graphlets are defined as small,
connected, nonisomorphic induced subgraphs of a large network that appear at any
frequency49; an induced subgraph means that once you pick the nodes in the large
network, you must pick all the edges between them to form the subgraph. Within
graphlets, symmetry groups of nodes called automorphism orbits are used to
characterize different topological positions that a node participates in. Orbits are
used to generalize the notion of node degree: the graphlet degrees of a node are the
numbers of times a node is found at each orbit position49. Graphlets and their
orbits have been used for measuring the topological similarities among nodes in
networks34, for designing superior distance measures between networks29, for
guiding network alignment processes in the GRAAL family of network aligners
(e.g., L-GRAAL)51 and for comparing protein structures52. Following the metho-
dology of Yaveroglu et al.29, we use the 11 nonredundant orbits of 2- to 4-node
graphlets (see Supplementary Fig. 10). The nonredundant 2- to 4-node orbits have
been shown to perform better than if we included higher order graphlets29. Thus,
each node in a network is characterized by an 11-dimensional vector called GDV,
which captures the 11 nonredundant 2- to 4-node graphlet degrees of the node.

In the main paper, we quantify how much the wiring patterns of a gene (node)
change between healthy and cancer conditions by the dissimilarity between the
nonredundant 2- to 4-node GDVs of the node in the healthy and cancer networks.
We measure this GDV dissimilarity using GDV distance (GDVD)34, which we
compute as follows. Given two GDV vectors, h (in the healthy network) and c (in
the cancer network), the distance between their ith coordinates is defined as:

Di h; cð Þ ¼ wi ´
log hi þ 1ð Þ � log ci þ 1ð Þj j
log max hi; cif g þ 2ð Þ ; ð15Þ

where wi is the weight of orbit i that accounts for dependencies between orbits
(see Milenkovic and Przulj34 for details). Then, GDVD is defined as:

GDVD h; cð Þ ¼
P11

i¼1 Diðh; cÞP11
i¼1 wi

: ð16Þ

GDVD is a distance in [0, 1), such that a distance equal to 0 means that the two
GDVs are identical.

We measure the overall dissimilarity between two networks by using graphlet
corelation distance (GCD), because it is the most sensitive network distance
measure29. First, we characterize the global wiring patterns of a network with its
graphlet correlation matrix (GCM)20, which is an 11 × 11 symmetric matrix
encoding the Spearman’s correlations between nonredundant orbits counts over all
nodes of the network. Then, we measure the distance between two networks with
their GCD-1129, which is the Euclidean distance of the upper triangle values of
their GCMs.

To investigate the organizational principles of our networks, we perform model
fitting experiments in which the wiring patterns of real-world networks are compared,
using the above described GCD-11 distance measure, to the wiring patterns of
randomly generated networks. For our four cancers of interest and the four
corresponding control tissues of origin, we considered all of iCell networks, PPI
networks, COEX networks, and GI networks. We additionally consider the unions of
PPI, COEX, and GI networks to assess if iCells are not simply the union of these
molecular interactions. All these data networks are compared to randomly generated
networks coming from the following seven models that are commonly used in biology:

The Erdös–Rènyi random graph model (ER) represents uniformly distributed
random interactions between a set of nodes22. We generate ER networks by fixing
the number of nodes, n, and by randomly adding edges between uniformly chosen
pairs of nodes (out of the n(n−1)/2 possible pairs of nodes) until a given density is
reached. The number of nodes and edge density are chosen to match those of the
data networks.

The Generalized random graph model (ER-DD) is an extension of ER model,
where the distribution of the degrees of nodes in the generated model network
matches that of an input (data) network23. We generate ER-DD networks by
assigning connection capacities (stubs, corresponding to the degree of a node) to
the nodes of the network, and then adding edges between nodes that have available
stubs uniformly at random while reducing the available stubs of the newly
connected nodes after each edge addition. The number of nodes and the degree
distributions in these model networks match those of the data networks.

The geometric random graph model (GEO) represents proximity relationships
between uniformly distributed points in an k-dimensional space24. We generate GEO
networks by uniformly distributing n points (nodes) in three-dimensional space and
by connecting nodes by edges if the Euclidean distances between the corresponding
points is lower than or equal to threshold r, which is set so that we obtain a given edge
density. The number of nodes and edge density match those of the data networks.

The GEO with gene duplication model (GEO-GD) is a geometric model in
which the dispersion of nodes is no longer uniformly random, but according to
duplication and divergence rules, mimicking the gene duplication and mutation
process in biology25. We generate a GEO-GD network starting from a seed
network (i.e., a single edge) to which the duplication and mutation process is
applied: a randomly chosen parent node is duplicated, and the child node is
randomly placed at a distance smaller than or equal to 2r (where r is the same
distance threshold as in GEO model). This process iterates until the required
number of nodes that matches that of the data network is generated, after which
edges are created following the GEO model rules so that we achieve the requested
edge density that matches the one of the data network.

The Barabàsi–Albert scale-free model (SF). This network model, which is based
on preferential attachment principle, is characterized by a scale-free degree
distribution, i.e., the SF networks have the degree distribution that follows a power
law26. We generate SF networks starting from small seed networks (one edge), to
which nodes are added based on the “rich-get-richer” principle: new nodes are
attached to the existing nodes of the network with the probability proportional to
their degrees.

The scale-free with gene duplication and divergence model (SF-GD). This is a
scale-free model that mimicks the gene duplication and divergence processes in
biology27. We generate an SF-GD network starting from a small seed network (one
edge), which we grow through iterative duplication and divergence events. In each
iteration, a randomly selected existing node v is duplicated into a new node u. This
new node is connected to all of the neighbors of v and may be connected to v with
probability p. Divergence is achieved by considering all of the shared neighbors of u
and v and removing a connection with a probability q (chosen to mimic the edge
density of an input network).

The stickiness-index based model (STICKY). This model assumes that the
higher the degree of two proteins (nodes), the higher is the probability that they
interact28. To generate a STICKY network, we start from n disconnected nodes, to
which we randomly assign stickiness index values (proportional to the node
degrees of an input network). Then, the probability of connecting two nodes is
equal to the product of their stickiness indexes.

To measure the fit between a real network (e.g., iCell) and a given random
model (e.g., ER), we generated for each real network 30 random networks from the
given model that have node sizes and edge densities of the real network.

We assess the quality of the fit between the data and the network model by the
overlap between two distributions: the distribution of GCD-11 distances between
the data and the model networks and the distribution of GCD-11 distances
between model networks. A data network is not fitted by a network model if the
Wilcoxon–Mann–Whitney U-test (MWU) between the two distributions of
distances (real-to-model and model-to-model) is lower than or equal to 5%
(threshold for which the two distributions are statistically significantly different).

Note that none of our data networks are well fitted by any of the tested random
models (all MWU p-values were lower than 5%, as the two distributions do not
overlap, e.g., Fig. 2d in the main document). Thus, we only present the GCD-11
distances between real and model networks (with lower GCD-11 distances relating
to better fits).

Additionally, we used GCD-11 to compare the real-world networks to each
other. The comparison, presented in Supplementary Fig. 1, shows that iCells have
different organizational principles than their constituent molecular networks and
also different from the simple union of PPI, COEX, and GI networks.
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Functional organization of iCells. We uncover functional regions in iCells using
spatial analysis of functional enrichment (SAFE) framework53, a systematic and
quantitative method for annotation of network regions of genes with enriched
functionality. In brief, SAFE embeds a network of interacting genes in two-
dimensional space using spring embedding, so that genes (nodes) that are adjacent
(connected by an edge) in the network are closer in space than genes that are not.
Then, for each node (gene), each biological annotation is assigned a neighborhood
enrichment score, which is based on the annotation’s prevalence in the node and in
its local neighborhood. Annotations that are statistically significantly enriched in
the overlapping network regions are combined into “functional domains”. Applied
to the yeast genetic interaction network, it was shown that SAFE could capture and
predict biological mechanisms53,54. Because of the large sizes of our networks, we
replace SAFE’s spring embedding algorithm with the computationally more effi-
cient scalable force directed placement algorithm55. Apart from this modification,
SAFE is applied as originally demonstrated and adopting the default settings from
Baryshnikova et al.53.

To assess the statistical significance of the numbers of functional domains that
SAFE uncovers in a given iCell, we compare the number of functional domains that
is found in an iCell to the one that is found in a random network. Since no network
model is known as well-fitting for an iCell, we proceed as follows.

For each iCell and each set of gene annotations, we generate 100 randomized
iCells in which the genes’ IDs are uniformly randomly shuffled (hence breaking the
links between the network topology and the annotations of the genes). Then, we
run SAFE ten times (to account for the heuristic nature of its embedding step) on
each of the real and randomized iCells. Thus, for each iCell and annotation set, we
have n= 10 × 100= 1000 randomized replicates. The empirical probability of
observing k or more functional domains in an iCell by chance is defined as56:

p ¼ r þ 1
nþ 1

; ð17Þ

where r is the number of randomized replicates which resulted in k or more
functional domains. Because we make ten runs of SAFE on the real (data) iCells,
too, each pair of iCell and annotation sets is characterized by ten numbers of
functional domains and their corresponding p values. As summarized in
Supplementary Table 5, all iCells have statistically significantly larger numbers of
functional domains than expected at random. These procedures are commonly
known as “permutation tests”.

Experimental validation of iCell rewired genes. To experimentally assess if the
genes rewired in our iCells affect cancer, we performed the following siRNA
knockdown and cell viability experiments.

A custom-made esiRNA library was purchased from Sigma/Eupheria Biotech
(MISSION® esiRNA; Supplementary Table 6). Cells were seeded into 96-well plates
(flat-bottom, Costar) at a density of 7000 cells/well. Twenty-four hour after
seeding, esiRNA was transfected in triplicates at a concentration of 25 nM per well.
Twenty-four hour after transfection, 90 µl of fresh media was added and 72 h after
transfection, Presto Blue cell viability assay was performed. Control esiRNAs
included esiKif11 to induce loss of cell viability and esiLuciferase was included as
nontargeting control (Supplementary Fig. 11).

All cell lines were maintained under standard conditions, 37 °C, 5% CO2 and
appropriate media. Briefly, PC-3 prostate cancer cells, HCT116 colon cancer cells,
and A549 lung cancer cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum and 1% antibiotics (penicillin/
streptomycin). MCF7 breast cancer cells were cultured in DMEM media plus 5%
FBS and 10 µg/ml insulin.

The cell lines we used are obtained from ATCC (CRL-1831) or the existing lab
stocks, which originally were purchased from ATCC and further cultivated (not
more than 20 passages). The following cell lines were used in this study:

MCF7 (ATCC® HTB-22) breast cancer cell line (tissue: breast mammary gland,
cell type: epithelial, disease: adenocarcinoma)

HCT116 (ATCC® CCL-247) colon cancer line (tissue: colon, cell type: epithelial,
disease: colorectal carcinoma)

A549 (ATCC® CRM-CCL-185) lung cancer line (tissue: lung, cell type:
epithelial, disease: carcinoma)

PC-3 (PC-3 ATCC ®CRL-1435™) prostate cancer line (tissue: prostate, cell type:
epithelial, disease type: grade IV, adenocarcinoma).

These cell lines are commonly used to study breast, prostate, colorectal, and
lung cancers, and are not part of the commonly misidentified cell lines. Also, as
these cell lines were purchased directly from ATCC, they do not need to be
authenticated and are provided with the assurance that they are negative for
mycoplasma. Furthermore, we regularly check for mycoplasma all cell lines that are
cultured for a long-term period in the lab.

Transfection experiments were performed using JetPrime (supplier: Polyplus
transfection), according to the manufacturer’s protocol. Briefly, for a 96-well plate,
12.5 µl JetPrime buffer and 25 nM esiRNA were mixed and 1.2 µl JetPrime
transfection reagent was added to the tube, vortexed briefly and incubated at room
temperature for 20 min. The siRNA mixture was added dropwise to the cells.
Twenty-four hour later, the transfection mix was replaced with fresh media.

Cell viability assays using the Presto Blue reagent were performed according to
the manual (ThermoFisher, Presto Blue Cell Viability Reagent). Twenty-four hour

after transfection, the media was replaced with 90 µl of fresh media, and 72 h after
initial transfection, 10 µl of Presto Blue reagent was added to each well and
incubated at 37 °C for 3 h and fluorescence was measured on a fluorescence plate
reader with the excitation/emission wavelengths set at 544/590 nm.

For a given cell line, both siRNA knockdown of a gene and esiLuciferase control
are represented by distribution of three cell viability values (triplicate experiments).
Each distribution is first normalized according to the average cell viability of the
esiLuciferase control (which corresponds to 100%). The two normalized
distributions are statistically significantly different if their Mann–Whitney U-test p
value is less than or equal to 5%.

Gene expression-based analysis. In the main document, for each of breast,
prostate, lung, and colorectal cancer, we use the following procedure to assess if the
newly prioritized genes resulting from our study could be biomarkers of cancer
survival. For a given gene and for a given expression threshold, we stratify cancer
patients into two subgroups: the group of patients whose expressions of the con-
sidered gene in the cancer tissues are lower than or equal to the threshold, and the
group of patients whose expressions of the considered gene in the cancer tissues are
higher than the threshold. The clinical outcome of each group is characterized by
its Kaplan–Meier survival curve (that indicates the percentage of patients from the
group that are still alive over time). The two subgroups show statistically sig-
nificantly different clinical outcomes if the log-rank p value of their survival curves
is lower than or equal to 5%. For a given gene and for a given cancer, we report the
most significantly different survival curves that are obtained over all possible values
of the expression threshold. To compute our survival curves and the significance of
their differences, we used the Human Protein Atlas web-server21. Our survival
curve analyses are based on 1075 expression data from TCGA breast cancer project
BRCA, on 494 expression data from TCGA prostate cancer project PRAD, on 994
expression data from TCGA lung cancer projects LUAD and LUSC, and on 597
patient data from TCGA colorectal cancer projects COAD and READ.

To uncover genes that are significantly differentially expressed in a given cancer,
we used the following procedure. In a given tissue, the raw expression of a gene (in
Transcripts Per Kilobase Million, TPM) is first log-transformed using log2(TPM+ 1).
The differential expression of a gene between the cancer and the paired control
tissues, log2FC, is defined as the difference between the median of the log-transformed
expressions in the cancer tissues and the median of the log-transformed expressions
in the paired control tissues. We computed the statistical significance of our
differential expressions by four-way analysis of variance (ANOVA) using sex, age,
ethnicity, and disease state (tumor or control). Over the cancer and control tissues,
ANOVA measures the strength of the relationship between the log-transformed
expression of a gene and all of sex, age, ethnicity, and disease states. A gene is
significantly differentially expressed in cancer if its ANOVA p value, after
Benjamini–Hochberg correction for multiple hypothesis testing48, is lower than or
equal to 5%. To compute our differential-expressions, we used GEPIA web-server57.
Our differential-expression analysis of breast cancer is based on 1085 cancer and 112
paired control tissue expression data from TCGA project BRCA. The analysis of
prostate cancer is based on 492 cancer and 52 paired control tissue expression data
from TCGA project PRAD. The analysis of lung cancer is based on 483 cancer and 59
paired control tissue expression data from TCGA project LUAD. Finally, the analysis
of colorectal cancer is based on 275 cancer and 41 paired control tissue expression
data from TCGA project COAD. In Supplementary Table 3, we report our newly
prioritized genes as a result of this study that are significantly differentially expressed
in cancer.

Code availability. Software used in the paper are publicly available at http://www0.
cs.ucl.ac.uk/staff/natasa/iCell. The data-integration scripts are coded in Matlab.
The scripts used to generate the networks, to perform the experiments, and to
analyze the data are coded in Python (v2.7) and require NumPy, SciPy, SKLearn,
NetworkX, and MatplotLib libraries.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
Data reported in the paper are publicly available at http://www0.cs.ucl.ac.uk/staff/natasa/
iCell.
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