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We and others have previously described signatures of
tolerance in kidney transplantation showing the differ-
ential expression of B cell–related genes and the relative
expansions of B cell subsets. However, in all of these
studies, the index group—namely, the tolerant recipi-
ents—were not receiving immunosuppression (IS)
treatment, unlike the rest of the comparator groups.
We aimed to assess the confounding effect of these reg-
imens and develop a novel IS-independent signature of
tolerance. Analyzing gene expression in three indepen-
dent kidney transplant patient cohorts (232 recipients
and 14 tolerant patients), we have established that the
expression of the previously reported signature was
biased by IS regimens, which also influenced transi-
tional B cells. We have defined and validated a new
gene expression signature that is independent of drug
effects and also differentiates tolerant patients from
healthy controls (cross-validated area under the recei-
ver operating characteristic curve [AUC] = 0.81). In a
prospective cohort, we have demonstrated that the
new signature remained stable before and after steroid
withdrawal. In addition, we report on a validated and
highly accurate gene expression signature that can be
reliably used to identify patients suitable for IS reduc-
tion (approximately 12% of stable patients), irrespective
of the IS drugs they are receiving. Only a similar
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approach will make the conduct of pilot clinical trials
for IS minimization safe and hence allow critical
improvements in kidney posttransplant management.

Abbreviations: AUC, area under the receiver operating
characteristic curve; Aza, azathioprine; CNI, calcineurin
inhibitor; Cyc, ciclosporin A; DMSO, dimethyl sulfosx-
ide; GMCSF, granulocyte–macrophage colony-stimu-
lating factor; IS-IE, IS-independent expression, the
new signature of tolerance; IS, immunosuppression;
KTR, kidney transplant recipient; MMF, mycopheno-
late mofetil; NFjB, nuclear factor kappa B; PBMC, pe-
ripheral blood mononuclear cell; Pred, prednisone;
REGGR, glucocorticoid receptor regulatory network;
Tac, tacrolimus; TNF, tumor necrosis factor
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Introduction

Despite improvements in the stratification of therapy in

kidney transplant recipients (KTRs), grafts do not display

the desired longevity. The immunosuppression (IS) needs

of individual patients are poorly defined, and the current

approaches are far from an ideal personalized manage-

ment program. Standard KTRs are maintained with

calcineurin inhibitors (CNIs) or sirolimus on doses defined

by blood levels and azathioprine (Aza) is adjusted on

weight, whereas mycophenolate mofetil (MMF) or

prednisone doses are given as population-based results

dictate (1,2). As a result, overimmunosuppression is

responsible for a high number of patients with a function-

ing graft dying or suffering from cancer, infections or

cardiovascular events (3). For example, prolonged intake

of azathioprine has long been associated with increased

incidence of tumors, particularly skin cancers in KTRs (4).

At the same time, underimmunosuppression remains a

clinical problem in that acute rejection is still frequent (5),

albeit decreasing in magnitude, and chronic rejection is

definitively significant and has a poor outcome (6). This

means that there is an important clinical need to charac-

terize biomarker signatures that could reliably identify

patients who have developed a tolerant response to their

graft. We and others have been trying to address this

need (7–11).

The index patient group that is central to identifying toler-

ance is formed by those kidney transplant recipients

(KTRs) who have challenged conventional clinical practice

and have discontinued immunosuppressive medication

while maintaining good graft function for years (12);

these recipients are thus labeled as “tolerant.” In the

process of biomarker discovery, these tolerant KTRs—
free from IS for years—have always been compared with

KTRs receiving various IS regimens, who are representa-

tives of nontolerant patients. These differences in ther-

apy between the groups imply that any previous

signatures suffer from a systematic analysis flaw if the

effects of the drugs have not been accounted for.

The final proof that any biomarker signature is indeed a

signature of tolerance would only arise through a clinical

trial whereby patients displaying the chosen signature

would be weaned off IS and their graft would maintain

good function. This definitive evidence for any signature

tolerance is still missing in the literature. Consequently,

the selection of possible signatures of tolerance need to

abide by the most stringent quality requirements because

testing them in prospective trials would put some patients

at risk of late rejection or even at risk of irreversible graft

damage if a misdiagnosis is made. To our knowledge,

none of the referenced studies have yet attempted to

directly address the fact that IS drugs affect gene expres-

sion despite available evidence (13,14). Notably, a noninva-

sive signature of tolerance could also be used to evaluate

the effectiveness of tolerance induction therapies that are

currently under investigation in clinical trials (15–17).

Gene expression patterns found in the peripheral blood of

KTRs can reflect at least two mechanisms: the response

of the recipient’s immune system to the presence of a

highly immunogenic tissue (the transplanted graft) and the

effect of IS treatment used to counteract the rejection pro-

cess. Edemir et al (18) used a rodent model to describe

gene expression patterns that support the spontaneous

simultaneous activation of immune effector–related path-

ways and protective and immune counter-regulatory

mechanisms as a response to the allogeneic transplant. In

humans, we and others have previously described a dys-

regulation of B cell–related genes in tolerant recipients—
associated with the maintenance or expansion of transi-

tional B cells in peripheral blood (8,9)—that elicited new

avenues toward understanding the role of transitional B

cells in tolerance (19–21). Differential expression profiles

associated with IS treatment have been demonstrated by

Erickson et al (22) in the context of transplantation in rats.

Thus, when investigating gene expression markers of

operational tolerance in humans, we need to ensure that

we are isolating the natural counter-regulatory immune

mechanisms from those that reflect the IS drug intake,

which could disappear after discontinuation of the drug.

We therefore undertook the current study to explore the

effects of IS regimens on gene expression in peripheral

blood and on our previously described signature of tolerance

Sagoo et al (8) and hypothesized that adjusting for the con-

founding effects of IS drugs would provide more reliable

biomarkers. We also hypothesized that by targeting

immune responses via different mechanisms, IS drugs

would have a differential effect on lymphocyte populations,

particularly that of transitional B cells, which could bias the

probability of tolerance estimates if differences in IS drug

regimens are not accounted for. As a proof of concept of

the effect of IS on lymphocyte subsets and gene expres-

sion, we have prospectively collected samples from
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patients who underwent steroid withdrawal owing to clini-

cal reasons.

Concise Materials and Methods

Patients and samples

To collect the necessary evidence described in this article, we used sam-

ples from three patient cohorts:

� Cohort 1: We performed a reanalysis of the data from 71 European

KTRs from the previously published Indices of Tolerance (IoT) study.

This patient cohort had been used to discover the original biomarker

signature and comprised 11 tolerant recipients, 51 stable patients (30

on standard triple therapy, 10 who had never received a CNI and 11

on low doses of prednisone), 9 patients with biopsy-proven chronic

rejection and 19 healthy controls; these patients are all thoroughly

described in reference (8).

� Cohort 2: Cohort 2 is a novel observational case-control cohort from

the Genetic Analysis of Molecular Biomarkers of Immunological Toler-

ance (GAMBIT) study (Research Ethics Reference: 09/H0713/12). The

cohort comprised tolerant (n = 14; detailed description in Table S3),

stable (n = 190) and chronic rejection (n = 36) patients and healthy

controls (n = 12). At least two blood samples—6 months apart on

average—were obtained from each individual; these are identified in

the text as time point 1 and time point 2.

� Cohort 3: Cohort 3 is a prospective cohort from the same GAMBIT

study (Research Ethics Reference: 09/H0713/12) that included stable

patients who, early posttransplant, were undergoing steroid withdrawal

owing to clinical reasons. These patients were selected exclusively

based on clinical criteria and were recruited from the London and

Portsmouth hospitals. Patient selection and steroid withdrawal were

conducted according to local clinical practice. Samples were collected

before and 2 to 6 months after complete steroid withdrawal.

Patient characteristics from cohorts 2 and 3 are described in Table 1, and

further clinical details are given in Data S1.

The characteristics of the patients in the prospective steroid withdrawal

cohort 3 were largely comparable to the observational cohort 2 (Table 1),

except that their time posttransplantation was significantly shorter

(p < 0.001), none had Donor Specific Antibodies (DSA) and none were

receiving azathioprine, whereas all but one were treated with mycophe-

nolate mofetil (Table 1).

RNA isolation, complementary DNA (cDNA) synthesis and

reverse transcription quantitative real-time polymerase chain

reaction (RT-qPCR)

Peripheral vein blood was drawn directly into Tempus Blood RNA Tubes

(Life Technologies, Paisley, UK) and stored at �20°C. RNA isolation,

cDNA synthesis, RT-qPCR conditions and primers are described in Data

S1.

Fluidigm platform

The expression levels of a set of target genes and three endogenous ref-

erence genes were measured in 470 RNA samples on the Fluidigm Bio-

Mark quantitative real-time PCR (qPCR) platform (South San Francisco,

CA) with a preamplification step to validate the signature rederived from

the IoT cohort. Further details are given in Data S1.

Flow cytometry

Peripheral blood mononuclear cells (PBMCs) were isolated and frozen

immediately at �80°C. After 24 h, cells were transferred into liquid

nitrogen �170°C and kept until use. Antibody panels and acquisition

details are described in Data S1.

Statistical analyses

The analysis strategy is depicted in Figure 1. All statistical analyses (pre-

processing of RT-qPCR, Fluidigm and array data) were carried out in R

software (http://www. R-project. org/) (23–25). For individual gene expres-

sion, Ct values were normalized using DCt with respect to HPRT (hypox-

anthine phosphoribosyltransferase) and were used as log2(2�DCt) values.

Associations of gene expression or of predicted probability of tolerance

with IS drug intake were examined in linear regression models adjusting

simultaneously for confounding by IS drugs other than the drug of inter-

est. Bonferroni correction was applied for multiple comparisons between

patients on and off different drugs.

Elucidating the confounding effect of IS on gene expression

Details of the RISET 2.0 array and the preprocessing method have been

published elsewhere (8). The array-wide analysis of drug effects was car-

ried out using empirical Bayes moderated linear models implemented in

the Limma package (26). The Benjamini–Hochberg (BH) method was

used for multiple testing correction. Genes for which expression was not

significantly above background were filtered out prior to analysis to

increase statistical power (27).

Defining IS-independent expression

The residuals of a linear regression model relating gene expression data

from stable and chronic rejector patients to drug intake (binary yes/no)

represent the IS-independent expression (IS-IE). The gene expression of

tolerant patients and healthy controls was rescaled to IS-IE by subtracting

the intercept of that model from the raw expression.

Defining the novel signature of tolerance

We used the regularized multivariate logistic regression method ElasticNet

(28,29) to select an optimal set of genes predictive of tolerance (as the

number of genes was high relative to the number of patients), and consid-

ering many genes were correlated, thus invalidating the application of clas-

sical regression models. We compared the estimated IS-IE in tolerant

patients versus patients on IS (stable and with chronic rejection). In order

to test the stability of the signatures, IS-IE from the time point 2 samples

was estimated based on the model trained on time point 1 samples, and

classification accuracy was evaluated with the same cutoff.

For the identification of differentially expressed biological pathways, we

carried out gene set analysis (30) using the curated list of gene sets from

the Broad Institute (www. broadinstitute.org/gsea).

For the evaluation of predictive accuracy, an adjusted area under the recei-

ver operating characteristic curve (AUC) was derived after fitting a linear

regression model of the estimated probability of tolerance on drug regimen

in IS patients and calculating the AUC for the residuals of this model (31).

Further details regarding the laboratory methods and statistical analysis

are provided in Data S1.

Results

Immunosuppressants bias the expression of genes in
peripheral blood
To study the effects of commonly used immunosuppres-

sants on the expression of genes measured in peripheral

blood, we first carried out a previously unattempted
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1. Confounding effect of IS on the expression of genes

RT-qPCR analysis 
of IoT signature 
GAMBIT patients 

(Cohort 2, time point 1)

Array-wide Empirical Bayes moderated 
linear models analysis 

LIMMA [26] + FDR a

IoT patients (Cohort 1)
IoT custom array RISET2.0 Agilent 

(5069 probes, 4607 genes)

Gene Set    
Analysis

GSA [30] c

Flow cytometry
GAMBIT patients (Cohort 2)

Multiple Linear Regression residual estimates b
IoT patients (Cohort 1)

RISET2.0 array gene expression
(1989 probes post QC)

Feature selection using IS-IE 
Regularized Multivariate 

Logistic Regression 
Elastic Net 

GLMNET [25] d

(28-gene selection)

Multiple Linear Regression 
residual estimates (IS-IE)

GAMBIT patients (Cohort 2)
Fluidigm RT-qPCR

(26 validated array-selection genes)

Feature selection using IS-IE 
Regularized Multivariate Logistic 

Regression – Elastic Net 

GLMNET [25] e

(9-gene signature)
GAMBIT patients (Cohort 2, time point 1)

2.  Effects of Drugs on Lymphocyte subset distribution

3.  Immunosuppression-Independent Expression (IS-IE)

Validation

Validation
Proof of 
Concept

RT-qPCR analysis 
of IoT signature 
GAMBIT patients 

(Cohort 3)

Proof of Concept Flow cytometry
GAMBIT patients (Cohort 3)

Evaluation of Signature Stability
(9-gene signature)

GAMBIT patients (Cohort 2, time point 2)

Proof of 
Concept

Fluidigm
RT-qPCR

GAMBIT patients 
(Cohort 3)

Figure 1: Analysis strategy to demonstrate confounding effect of IS and how to avoid it. A complete description can be found

in Data S1. In summary: aProbes with nonsignificant expression above background in more than 20% of the samples were filtered

out. The effects of three factors were estimated: CNI: (ciclosporin [Cyc], tacrolimus [Tac], none), MMF/Aza (mycophenolate mofetil,

azathioprine, none) and prednisone-Pred-(Pred; on steroids, off steroids). bThe model for the ith patient and the jth Gene Set Analysis

gene was yij = aj + Cyci *bCycj + Taci *bTacj + Azai *bAzaj + MMFi *bMMFj + Predi *bPredj + eij. This was estimated using data from stable

and chronic rejector patients. The resulting estimated residual eij represents the IS-independent gene expression (IS-IE). The gene

expression of tolerant patients and healthy controls was rescaled to IS-IE by subtracting the intercept aj from the raw expression.
cGSA was used for the identification of differentially expressed biological pathways based on the curated list of gene sets from the

Broad Institute (www.broadinstitute.org/gsea). Gene sets with an associated FDR below 10% were considered differentially

expressed. dIn ElasticNet regression, a penalty is imposed on the regression coefficients, which is a combination of the penalties used

in lasso and ridge regression. ElasticNet enables selection of genes (unlike ridge regression, which would preserve all genes) as well

as gene groups irrespective of correlation (unlike lasso, which would select only one of a group of correlated genes). Model parame-

ters were tuned using leave-group-out cross-validation with a 65% training set and 100 resampling iterations, with the AUC as an

accuracy measure, via the caret package in R (29). Prior to model estimation, missing values were imputed using K-nearest neighbors.

Genes for which the expression was not significantly above background (p > 0.01) in at least 80% of the samples were filtered out

prior to analysis (3081 out of 5070 probes) to increase statistical power (10). eClassification cutoffs were selected to ensure specificity

above 0.85 while retaining sensitivity above 0.70. IS, immunosuppression; CNI, calcineurin inhibitors; Aza, azathioprine; MMF,

mycophenolate mofetil; IS-IE, IS-independent expression; GLMNET, Lasso and Elastic-Net Regularized Generalized Linear Models;

GSA, Gene Set Analysis; FDR, false discovery rate; AUC, area under the receiver operating characteristic curve; GAMBIT, Genetic

Analysis and Monitoring of Biomarkers of Immunological Tolerance; IoT, Indices of Tolerance; RT-qPCR, reverse transcription quantita-

tive real-time polymerase chain reaction; RISET, Reprogramming the Immune System for the Establishment of Tolerance.
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array-wide analysis of drug effects using the expression

measured on the original data from the IoT study (8).

This revealed that 119 genes were differentially

expressed in association with CNI drug intake and that

83 genes were associated with MMF and azathioprine

intake, whereas only one gene was exclusively affected

by steroid intake (Table S1).

To confirm the effect of IS, we then assessed the effect

of IS on the expression of the previously published 10

genes of the signature using samples from stable

patients on IS from cohort 2 (time point 1) of the GAM-

BIT study (8). A summary of the different IS regimens

the patients were under is provided in Table S2. Pred-

nisone and azathioprine showed statistically significant

effects on the expression of 7 out of 10 of the previously

described individual genetic markers of tolerance

(Table 2). The effects of each drug were adjusted for the

intake of other IS drugs.

To measure the magnitude of these effects, we calcu-

lated the percentage of variance in the expression of

each gene explained by drug effects (R2 values from lin-

ear regression models based on data from the GAMBIT

cohorts 2 and 3; Table S4). For 5 genes among the 10 in

the original IoT signature, the percentage of expression

explained by drugs was at or higher than 10% and up to

27% (CD79b, TCL1A, SH2DB1, FCRL1, and MS4A1), fur-

ther strengthening the argument that the expression of

genes included in the IoT signature was influenced by IS

drug regimens.

We then calculated the probability of tolerance for each

patient based on the RT-qPCR expression in peripheral

blood samples. We used the gene expression from the

previously published IoT signature, as described (8) for

patients from cohort 2, time point 1, of the GAMBIT

study. We observed that this probability was undeniably

and significantly associated with the drug exposure of

the patients (Figure 2). The probability was significantly

lower in stable patients treated with azathioprine com-

pared to patients off antiproliferative (p < 0.0001) and

patients on MMF (p < 0.0001) (Figure 2A). This probabil-

ity was not influenced by the intake of CNIs once the

effects of prednisone and azathioprine were accounted

for (Figure 2B). Similar to azathioprine, the administration

of prednisone was associated with a significantly lower

estimated probability of tolerance (p < 0.0001) in stable

patients in GAMBIT cohort 2 (Figure 2C; note that the

patients shown in this plot are all off azathioprine).

To further confirm this observation, we used the gene

expression from samples in the prospective GAMBIT

cohort 3 (p = 0.008). Indeed, the estimated probability of

tolerance significantly increased after steroid withdrawal

(Figure 2D; please note that no patient in this group was

receiving azathioprine).

The AUC for the probability of tolerance estimates from

the comparison between tolerant and IS-treated patients

from GAMBIT cohort 2, based on the IoT signature, was

0.89 (95% confidence interval [CI]: 0.83–0.94). When the

AUC was adjusted for the effects of IS drugs, it became

significantly lower: 0.77 (95% CI 0.67–0.86; p = 0.032).

This provided further evidence for a confounding effect

of IS regimens in the expression of these genes.

Therefore, we have demonstrated, in three completely

independent cohorts (1, 2 and 3), evidence of drug con-

founding or bias in the gene expression of our previously

identified tolerance signature.

Immunosuppressants affect the transitional B cell
subset
Whole blood gene expression data are greatly influenced

by the repertoire of circulating lymphocyte subsets. To

Table 2: Effects of IS drugs on the published signature in stable patients from the GAMBIT study

Gene Symbols Pred Cyc Tac Aza MMF

PNOC 0.11 0.10 0.04 0.76 1.00

CD79b 2.1 9 10�04 1.00 0.12 8.1 9 10�04 0.94

TCL1A 1.9 9 10�06 0.17 0.02 6.7 9 10�16 1.00

H3ST1 1.3 9 10�04 0.30 0.14 3.6 9 10�05 0.20

SH2DB1 0.42 1.00 1.00 <2.0 9 10�16 0.11

TLR5 4.0 9 10�03 1.00 0.09 1.00 1.00

MS4A1 3.0 9 10�03 0.73 0.18 1.1 9 10�04 1.00

FCRL1 1.7 9 10�04 1.00 0.73 1.1 9 10�10 1.00

FCRL2 5.7 9 10�04 1.00 0.15 1.6 9 10�05 1.00

FoxP3/AMann 0.69 0.16 9.0 9 10�03 1.00 1.00

p-values for comparisons of stable patients on and off each drug are derived after adjustment in a linear regression model for all other

drugs/drug groups. The p-values for the Cyc/Tac group (subgroups No-Cyc/Tac, Cyc, and Tac) and for the Aza/MMF group (subgroups

No-Aza/MMF, Aza, and MMF) were adjusted for multiple comparisons with Bonferroni correction.

Aza, azathioprine oral dose; Cyc, cyclosporine A trough levels; GAMBIT, Genetic Analysis of Molecular Biomarkers of Immunological

Tolerance; IS, immunosuppression; MMF, mycophenolate mofetil oral dose; Pred, prednisone oral dose; Tac, tacrolimus trough levels.
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determine whether the previously described association

of tolerance with a relative increase in circulating transi-

tional B cells in tolerant recipients might also be con-

founded by IS, we performed flow cytometry analysis of

peripheral blood cells from the patients included in GAM-

BIT cohort 2 (for gating, see Figure S2). The effect of IS

drugs was clearly evident in the percentage of transi-

tional B cells within the naive B cell population (Figure 3),

and this effect was similarly observed when measuring

absolute numbers of cells in a subset of the recipients

(Figure S3). Notably, the pattern of the changes closely

resembled the effect of IS drugs on the estimated proba-

bility of tolerance based on the IoT signature. Stable

patients on azathioprine (Figure 3A) and those on pred-

nisone (Figure 3C) showed lower percentages of transi-

tional B cells than patients off each of these drugs,

whereas CNI drugs showed no effect (Figure 3B). The

effect of prednisone showed a clear dose–response rela-

tionship (Figure 3D), and this was confirmed in the

prospective steroid withdrawal GAMBIT cohort 3

Figure 2: Effects of immunosuppression (IS) drugs on the estimated probability of tolerance based on the 10-gene algorithm

from IoT (gene expression measured by RT-qPCR in patients from the GAMBIT study, cohorts 2 and 3). (A) Effect of antiprolif-

erative drug intake in the stable patients group (n = 171) (No-MMF/Aza patients not receiving MMF nor Aza n = 31), Aza n = 61,

MMF n = 79. (B) Effect of CNI drug intake in the stable patients group (n = 171) (No-Cyc/Tac patients not receiving Cyc nor Tac

n = 40, Cyc n = 82, Tac n = 49). (C) Effect of prednisone intake on the estimated probability of tolerance in stable patients off azathio-

prine (n = 110) (Pred n = 48, No-Pred n = 62). (D) Comparison of paired samples prewithdrawal and 3 to 6 months postwithdrawal

completion from patients who have undergone clinically driven steroid withdrawal (n = 13 due to missing samples, none receiving aza-

thioprine). The p-values for each drug were derived after adjustment in a linear regression model for effects of all other drugs. The

p-values for CNI drugs and for antiproliferative drugs were adjusted for multiple comparisons with Bonferroni correction. The p-values

for comparisons pre– and post–steroid withdrawal were derived from a Wilcoxon matched pairs test. Cyc, ciclosporin; Tac, tacrolimus;

Pred, prednisone/prednisolone; Aza, azathioprine; IS, immunosuppression; IoT, Indices of Tolerance study; RT-qPCR, reverse transcrip-

tion quantitative real-time polymerase chain reaction; GAMBIT, Genetic Analysis of Molecular Biomarkers of Immunological Tolerance;

MMF, Mycophenolate mofetil. Probability of tolerance cutoff was 0.62.
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(Figure 3E). The percentage of total B cells in periphery

significantly decreased only for those patients taking aza-

thioprine (data not shown). Changes in the opposite

direction were observed in the percentages of T cells

from lymphocytes. These were increased in stable

patients taking azathioprine or prednisone but were unaf-

fected by CNI drugs (Figures S1A, B and D). However,

the evidence for a dose–response effect of prednisone

was very weak, and there were no differences in the

percentages of peripheral blood T cells in the prospective

steroid withdrawal cohort 3 (Figures S1E and F).

Development of a novel immunosuppression-
independent gene expression signature of tolerance
Having demonstrated that the IS drug regimen is a con-

founder for the association between gene expression

levels and the predicted probability of tolerance, we

concluded that for a predictive test of tolerance to be

clinically applicable and unbiased, IS effects on gene

expression must be accounted for in the predictive

algorithm. We used the array data from the IoT study

(cohort 1) as a “discovery” set. We obtained the resi-

duals of a multivariate linear regression model for IS

drugs per each gene in the array. We used this to

estimate the IS-independent gene expression (IS-IE)

per gene.

We used the estimated IS-IE to select an optimal set of

genes predictive of tolerance. To enable applicability of

the signature in a clinical setting, we restricted the selec-

tion to a maximum of 30 genes. The resulting set of 28

IS-independent genes provided excellent predictive

Figure 3: Percentage of CD24hiCD38hi (transitional B cells) within the live CD20 + CD19 + B lymphocytes and CD27-

IgD+IgM+ gate in peripheral blood of patients from the GAMBIT study, cohorts 2 and 3. (A) Effect of antiproliferative drug intake

on transitional B cell subset size in the stable patients group (n = 111) (No-MMF/Aza n = 33, Aza n = 24, MMF n = 54). (B) Effect of

CNI drug intake (n = 111) (No-Cyc/Tac n = 28, Cyc n = 41, Tac n = 42). (C) Effect of prednisone intake on the transitional B cell subset

size in stable patients off azathioprine (n = 87) (Pred n = 53, No-Pred n = 34). (D) Effect of prednisone total daily dose (mg) in stable

patients off azathioprine. (E) Comparison of paired samples prewithdrawal and 3 to 6 months postwithdrawal completion from patients

who have undergone clinically driven steroid withdrawal (n = 16, none receiving azathioprine). The p-values for each drug are derived

after adjustment in a linear regression model for all other drugs/drug groups. The p-values for CNI drugs and for antiproliferative drugs

were adjusted for multiple comparisons with Bonferroni correction. The p-values for comparisons pre– and post–steroid withdrawal

were derived from a Wilcoxon matched pairs test. Cyc, ciclosporin; Tac, tacrolimus; Pred, prednisone/prednisolone; Aza, azathioprine;

IS, immunosuppression; IoT, Indices of Tolerance study; GAMBIT, Genetic Analysis of Molecular Biomarkers of Immunological Toler-

ance; MMF, Mycophenolate Mofetil; CNI, Calceneurin Inhibitors.
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accuracy (Figures 4A and B; AUC, sensitivity and speci-

ficity of 1; cross-validated AUC = 0.98).

Subsequently, using this IS-IE expression, gene set anal-

ysis revealed five differentially expressed biological path-

ways: nuclear factor kappa B (NFjB), CD40, tumor

necrosis factor (TNF), Granulocyte-macrophage colony-

stimulating factor (GMCSF), and Glucocorticoid receptor

regulatory network (REGGR; of which only CD40 and

NFjB could be identified as preferential gene pathways

in B cells). The resulting prediction sets also provided

excellent predictive accuracy to identify tolerant recipi-

ents (Figure 4B).

Validation of the new signature on Fluidigm
platform in samples from the GAMBIT study
We chose to validate and further refine the new IS-IE gene

set using the Fluidigm platform, an RT-qPCR–based assay,

in samples from patients in GAMBIT cohort 2 (time point

1). Quality control criteria were met by 26 genes.

A set of 9 genes out of the 26 was selected by Elas-

ticNet as optimal to predict tolerance (see Data S1).

Table 3 shows the validated IS-IE nine-gene list. Please

note that drugs explained very little of the variance of

their expression (see R2 in Table S5). No gene over-

lapped with the previous IoT signature.

The new IS-IE estimated probability of tolerance was

independent of IS regimen—and therefore unconfounded

—in stable patients (p > 0.05 for all drugs) from GAMBIT

cohort 2 (Figures 5A, B and C). Further, in the prospec-

tive GAMBIT cohort 3, we could demonstrate that ster-

oid withdrawal does not affect the expression of this

new gene signature (Figure 5D).

The predictive accuracy of the new signature, as evaluated

by the AUC, was 0.93 (95% CI: 0.86–1.0) and 0.81 after

optimism correction via cross-validation. A classification

cutoff of 0.54 was selected to maximize specificity for

patient safety (sensitivity of 0.92, specificity of 0.88).

AUC CV-
AUC

Cutoff Sens Spec

GLMNET 1.00 0.98 0.73 1.00 1.00

CD40 1.00 0.93 0.76 1.00 1.00

TNF 0.98 0.94 0.70 1.00 0.96

NF  B 1.00 0.99 0.77 1.00 1.00

GMCSF 0.96 0.95 0.75 0.90 0.98

REGGR 0.97 0.89 0.78 0.80 0.96

A

B

Figure 4: Discovery of a new set of IS-independent markers of tolerance. (A) Heat map showing patterns of residual gene

expression from 28 genes selected using ElasticNet on array data from the IoT cohort, comparing tolerant versus immunosuppressed

recipients. (B) Predictive accuracy of multivariate predictive sets of genes. GLMNET refers to the 28-gene set discovered via Elas-

ticNet analysis. The remaining sets were selected from those molecular pathways shown to be differentially expressed via gene set

analysis. AUC, area under the receiver operating characteristic curve; CV-AUC, cross-validated AUC; IoT, Indices of Tolerance; Sens,

sensitivity; Spec, specificity; GLMNET, Elastic Net Regularized General Linear Model; REGGR, Glucocorticoid receptor regulatory net-

work; TNF, Tumor Necrosis Factor Pathway; CD40, CD40L Signaling Pathway; NFKB, NF-kappaB Signaling Pathway; GMCSF, GMCSF-

mediated signaling events.
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Based on the IS-IE signature, 20 out of 173 patients from

cohort 2 on IS with stable function were identified as

“probably tolerant” (11.6%). These patients were differ-

ent individuals from those identified with the IoT signa-

ture (n = 25) (only two overlapping). Comparison of the

two groups (Tables S6 and S7; Data S1) revealed, impor-

tantly, that the IS-IE selection had significantly longer

time posttransplantation, making them more comparable

to the index group of tolerant patients.

Evaluation of the stability of the signature developed in

cohort 1 (by estimating its predictive accuracy in two

time points in cohort 2) showed satisfactory performance

(AUC time point 2 = 0.83; 95% CI: 0.67–0.99). Addition-
ally, a nonsignificant McNemar’s test indicated that bin-

ary classification is stable across repeated samples

(p = 0.095), meaning that classifications at one time

point are not significantly different from those at a subse-

quent time point. Furthermore, the continuous predicted

probability of tolerance does not change significantly

between time points (Figure S4).

The genes included in the new signature participate in

cellular pathways such as regulation of nucleic acid

metabolism (GEMINI7, NFjB1A, TNFIP3), cell communi-

cation activities (RAB40C) and transcription factor activity

(EEF1A1, NFjB1A, TNFIP3). Still, the protein expression

derived from three of the genes has been observed in B

cells and in other cells (BCL2A1, EEF1A1) or in B cells

exclusively (IGLC1; see Table 3).

The new IS-independent signature is differentially
expressed in healthy controls
An important limitation of the previously described sig-

natures is their inability to differentiate between toler-

ant recipients and healthy controls (as illustrated in

Figure 6A for the IoT signature). Similarly, we have

observed no difference in the transitional B cell per-

centages in peripheral blood between these two

groups (Figure 6B). Importantly, the predicted probabil-

ity of tolerance based on the new signature was

higher in tolerant patients compared to healthy controls

(Figure 6C). This suggests that the method proposed

herein and the resulting novel signature indeed capture

an underlying predisposition to tolerance rather than

the absence of IS drugs. Comparisons of the predicted

probabilities of tolerance in tolerant patients and

healthy controls with the corresponding cutoffs for the

Table 3: Immunosuppression-independent gene signature

Symbol Gene name Molecular function Biological processes Documented protein expression in

ATXN3 ↓ Ataxin 3 Ubiquitin-specific

protease activity

Protein metabolism Caudate nucleus, cerebellum

frontal cortex, pons,

ubiquitous

BCL2A1 ↓ BCL2-related protein A1 Receptor signaling

complex

scaffold activity

Apoptosis B cell (49), bone marrow,

colon, intestine, leucocyte,

lymph node, ovary, spleen,

T cell

EEF1A1 ↓ Eukaryotic translation

elongation factor

1 alpha 1

Transcription

regulator activity

Regulation of cell cycle B cell (50), islets of

Langerhans, lachrymal

gland, leukocyte, monocyte,

neutrophil, plasma, saliva,

semen, skeletal muscle,

tear

GEMIN7 ↑ Gem (nuclear organelle)

associated protein 7

Ribonucleoprotein Regulation of nucleobase,

nucleoside, nucleotide

and nucleic acid

metabolism

Spinal cord tissues

IGLC1 ↑ Immunoglobulin lambda

constant 1 (Mcg marker)

Antigen binding Immune response B lymphocytes (51)

MS4A4A ↑ Membrane-spanning 4-domains,

subfamily A, member 4A

– – Intestine and colon

NFjBIA ↓ Nuclear factor of kappa light

polypeptide gene enhancer in

B cells inhibitor, alpha

Transcription

regulator activity

Regulation of nucleobase,

nucleoside, nucleotide

and nucleic acid

metabolism

Neutrophil, T cell

RAB40C ↑ RAB40C, member of RAS

oncogene family

GTPase activity Cell communication, signal

transduction

Platelets, liver, heart, kidney,

plasma

TNFAIP3 ↓ Tumor necrosis factor,

alpha-induced protein 3

(A20, Zin finger protein A20)

Transcription

regulator activity

Regulation of nucleobase,

nucleoside, nucleotide and

nucleic acid metabolism

Macrophages

↓, IS-free gene expression downregulated in tolerant patients compared to patients on IS; ↑, IS-free gene expression upregulated in

tolerant patients compared to patients on IS.
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IoT and the IS-IE signatures are shown in Table S8

and are discussed in Data S1.

Discussion

A number of studies, including our own, have suggested

gene expression signatures of tolerance in kidney transplan-

tation (7–9,11,32) or have described differential expression

of smaller gene sets (11,33,34). None had assessed the

confounding effect of IS. Baron et al (10) recently completed

a comprehensive review of all public data and concluded

that the expression of a set of 20 genes—mostly expressed

by B cells—may be used as a standardized tool for personal-

ized medicine in KTRs. Four genes from our IoT signature

(TCL1A, MS4A1, FCRL2, and CD79B) were included in this

20-gene set, but we now demonstrate that their expression

is highly affected by azathioprine and prednisone. Similarly,

it has been shown, in an independent cohort, that azathio-

prine affects the three-gene signature proposed by the

Immune Tolerance Network (35). We have shown in our

results, using the published signature of tolerance, that

Figure 5: The estimated probability of tolerance, based on the new nine-gene algorithm, is independent of immunosuppres-

sive (IS) drugs (gene expression measured in Fluidigm platform in patients from the GAMBIT study, cohorts 2 and 3). (A)

Effect of antiproliferative drug intake on estimated probability of tolerance in stable patients (n = 173) (No-MMF/Aza n = 33, Aza

n = 58, MMF n = 82). (B) Effect of CNI drug intake on estimated probability of tolerance in stable patients (n = 173) (No-Cyc/Tac

n = 38, Cyc n = 85, Tac n = 50). (C) Effect of prednisone intake on estimated probability of tolerance in stable patients off azathioprine

(n = 119); (n = 115) (Pred n = 52, No-Pred n = 63). (D) Comparison of estimated probability of tolerance, in paired samples prewith-

drawal and 3 to 6 months postwithdrawal completion from patients who have undergone clinically driven steroid withdrawal (n = 16,

none receiving azathioprine). The p-values for each statistical comparison were derived after adjustment in a linear regression model

for all other drugs/drug groups. The p-values for CNI drugs and for antiproliferative drugs were adjusted for multiple comparisons with

Bonferroni correction. The p-values for comparisons pre– and post–steroid withdrawal were derived from a Wilcoxon matched pairs

test. Cyc, ciclosporin; Tac, tacrolimus; Pred, prednisone/prednisolone; Aza, azathioprine; IS, immunosuppression; IoT, Indices of Toler-

ance study; GAMBIT, Genetic Analysis of Molecular Biomarkers of Immunological Tolerance; MMF, Mycophenolate Mofetil; CNI, Cal-

cineurin Inhibitors. Probability of tolerance cutoff was 0.54.
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KTRs who were maintained off steroids, on MMF and on

tacrolimus were being identified more frequently as possible

tolerant recipients.

Therefore, we asked, “Was this tolerance or response to

immunosuppressive therapy?” We have now demon-

strated that it is highly likely that it was the latter. Conse-

quently, we have developed and validated a new

noninvasive gene expression signature of tolerance that

is independent of IS drug effects and that additionally dif-

ferentiates tolerant patients from healthy controls. This

dictates that further analysis of tolerance signatures

using the correction proposed herein (or a similar

method) needs to be considered.

Additionally, we have demonstrated that the percent-

ages of transitional B cells in peripheral blood, which

had been described as characteristic of tolerant recipients,

were also significantly affected by IS drugs. We have not

addressed the specific mechanism by which each

immunosuppressant affects the intracellular pathways

in individual lymphocyte subsets, as this would

require longer-term studies and is beyond the scope of the

current one. However, commonly used immunosuppres-

sants, such as CNIs, which are fundamentally aimed at

inhibiting T cell activation and have only an indirect effect

on B cell activation, consistently showed little effect on

gene expression, the percentage of transitional B cell sub-

set size or the estimated probability of tolerance in our

study after adjustment for intake of other IS drugs. When

specifically addressed, transitional B cells exhibit the

capacity to decrease anti-inflammatory responses and pro-

duce anti-inflammatory cytokines (21,36). Therefore, we

do not question the important functionality that transitional

B cells may play in transplantation tolerance, but we

believe that the evidence of the role of B cells in tolerance

needs further scrutiny, particularly regarding the immuno-

suppression effects.

While there is no clear major genetic pathway connecting

the genes included in the new IS-independent signature,

literature reports suggest that at least some of these

genes have a mechanistic relevance to tolerance. For

example, a polymorphism in the NFjBIA gene resulting in

upregulation has been associated with higher rates of

acute liver transplant rejection (37), and BCL2A1 has been

shown to be a transcriptional target for NFjB (38). In our

study, both genes were downregulated in tolerant

patients. IGLC1 has been included in the expansion of the

B cell signature of tolerance in KTRs (39). Upregulation of

MS4A4A and RAB40C (upregulated in tolerant patients in

our study) has been associated with macrophage activa-

tion (40,41). TNFAIP3 (A20) is an NFjB regulatory protein

and its expression has been associated with outcome pre-

diction in kidney transplantation (42), but the regulation of

its expression and function in inflammatory responses has

been shown to be complex (43,44). The association found

herein of the downregulation of this gene with operational

tolerance merits further investigation.

External validation of the presented signature in other

independent cohorts would strengthen the confidence in

the generalizability of the results and would allow final

calibration before translation into clinical practice. Such

studies would require the collection of detailed clinical

phenotype data in parallel to the gene expression data

Figure 6: Comparison of gene expression signatures between tolerant recipients and healthy controls in patients from the

GAMBIT study (cohort 2). (A) Estimated probability of tolerance based on the 10-gene algorithm from IoT (gene expression mea-

sured by RT-qPCR, cutoff of 0.62). (B) Percentage of CD24hiCD38hi (transitional B cells) within the live CD20 + CD19 + B lympho-

cytes and CD27-IgD+IgM+ gate in peripheral blood. (C) Estimated probability of tolerance based on the new nine-gene algorithm (gene

expression measured in Fluidigm platform, cutoff of 0.54). Tolerant recipients (n = 14 for A and B, n = 13 for C); healthy controls

(n = 12 for A and B, n = 11 for C). The p-values were derived from a Wilcoxon test for comparison of independent samples. GAMBIT,

Genetic Analysis of Molecular Biomarkers of Immunological Tolerance; RT-qPCR, reverse transcription quantitative real-time polymer-

ase chain reaction; IoT, Indices of Tolerance.

3454 American Journal of Transplantation 2016; 16: 3443–3457

Rebollo-Mesa et al



(best approached in a prospective manner). We are part

of two European consortia that will provide data for this

further validation (15,45,46).

In conclusion, this study emphasizes the importance of

assessing and correcting for the effect of diverse IS regi-

mens on gene expression–based biomarker signatures.

Using this correction, we identify a novel—and, arguably,

a more clinically robust—signature of operational toler-

ance, which we have validated in independent and exten-

sive cohorts of KTRs. Moreover, in our prospective

validation cohort, the estimated probability of tolerance

remained unchanged after steroid withdrawal, supporting

the view that the new signature highlights natural coun-

ter-regulatory mechanisms and excludes transient alter-

ations of the immune effector pathways by IS drugs.

Further evidence that our approach is uncovering toler-

ance-related responses is the fact that the estimated

probability of tolerance in tolerant patients is higher than

that of healthy controls, in agreement with studies

demonstrating the involvement of an active immune

response in tolerance (47).

We are aware that these results do bring into question

previous published evidence, and we have demonstrated

the effect of IS drugs on our own published signature.

Transplant physicians will require confidence in any novel

clinical-grade biomarker set of kidney transplantation tol-

erance, such as the new one described in this article,

prior to embarking on clinical trials of IS weaning or mini-

mization. Such trials are critical if we aim to reduce can-

cer risk and increase long-term survival with improved

quality of life for KTRs. In the current climate of stratified

medicine, these findings may also be relevant to autoim-

mune diseases and other disorders in which IS is a

prevalent drug therapy.
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