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ABSTRACT

The accurate measurement of human activity with high spatial and temporal gran-
ularity is crucial for understanding the structure and function of the built environ-
ment. With increasing mobile ownership, the Wi-Fi ‘probe requests’ generated by
mobile devices can act as a cheap, scalable and real-time source of data for establish-
ing such measures. The two major challenges we face in using these probe requests
for estimating human activity are: filtering the noise generated by the uncertain
field of measurement, and clustering anonymised probe requests generated by the
same devices together without compromising the privacy of the users. In this paper
we demonstrate that we can overcome these challenges by using class intervals and
a novel graph based technique for filtering and clustering the probe requests which
in turn, enables us to reliably measure real-time pedestrian footfall at retail high
streets.
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1. Introduction

New and developing ‘smart’ technologies today provide the infrastructure over which
movements and interactions of people can be measured and monitored in the ‘sentient
city’ (Amin and Thrift 2017). This is making it possible to reinvigorate conceptuali-
sations of city as the locus of human activities supplementing night time geographies
of residence (Martin et al. 2015) with geographies of shopping behaviour (Lloyd and
Cheshire 2018), workzone geographies (Singleton and Longley 2015) and studies of
movement trajectories (Campbell et al. 2008). This is rendering activity-based con-
ceptions of human behaviour central to the analysis of hardship and opportunity in,
and around, the smart city (Venerandi et al. 2015).

Sentient technologies include mobile phone networks, which can triangulate user
locations relative to networks of masts, the use of GPS to locate users of social media
services, and Wi-Fi access points providing internet access. These technologies offer
differing levels of spatial precision, where mobile telephony and Wi-Fi are generally
less reliable and offer lower precision than GPS to the end users, whilst simultaneously
being more advantageous for broader mobility studies (Pinelli et al. 2015). There has
been considerable research into the utility of these technologies to understand patterns
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of movement in cities in near real time (Candia et al. 2008, Gonzalez et al. 2008,
Calabrese et al. 2013). Most of this research has focused upon technical specification
of accuracy or precision (Song et al. 2010, Lane et al. 2010), with somewhat less
attention devoted to the ways that the characteristics of the technologies and of their
human users, conspire to create possible bias in representing usage patterns across the
entire smart city. Analysis of mobile phone data, usually derived from industry players
that have significant market share and user bases representative of local populations,
may also exclude groups such as tourists from distant origins or subscribers to third
party services that share distinctive characteristics (Di Luzio et al. 2016).

These examples illustrate the issues that underpin the assembly and analysis of
consumer data. Consumer data can be considered as a distinctive class of Big Data
which arise from the interactions between humans and customer-facing organisations
such as retailers, domestic energy suppliers, transport providers and suppliers of so-
cial media and communications (Longley et al. 2018). Consumer data account for an
ever-increasing real share of all of the data that are collected about citizens, but a
fundamental characteristic of consumer-led markets is that no single provider has a
monopoly in market provision; therefore issues of market share and segment generate
bias in the analysis. The source and operation of this bias is unknown in the absence
of extensive and context sensitive attempts to triangulate consumer data with data of
known provenance relating to clearly defined populations (Lansley and Longley 2016).
In similar ways to other classes of Big Data, consumer data are best thought of as
digital ‘exhaust’, or a by-product created by, or harvested from, consumer transactions.

In this paper, through a set of experiments, we evaluate the value of data collected
a network of 800 devices (CDRC 2016) installed across Great Britain in order to
characterize the footfall patterns of a scientifically balanced sample of retail centres.
These devices are located in shop windows, and record the probes emitted by mobile
phones and other Wi-Fi enabled devices. The data collected from these devices are
deemed to be consumer data because devices carried by consumers routinely probe
for Wi-Fi connection which is a consumer service. Monitoring the probes from such
devices provides an indication of the presence of their users, regardless of whether
or not internet connectivity is established. Our core motivation is to appraise the
usefulness of Wi-Fi probe requests harvested from our network of sensors as a method
of indicating levels of pedestrian activity. More broadly still, in our future research we
intend to classify the nationwide network of footfall profiles as part of a programme of
research to understand the form and function of retail areas at a time of far-reaching
structural change for the retail industry.

To this end, it was important to first undertake a thorough conceptual and technical
appraisal of our consumer data source. In technical terms, screening the information
present in the ‘probe requests’ and clustering them based on their characteristics was
essential in order to remove those emitted by devices which do not indicate pedestrian
activity, such as network enabled printers and other fixed devices. Related to this,
a method to fingerprint Wi-Fi probes was necessary in order to remove probes from
individuals’ devices that in conceptual terms should not be considered part of foot-
fall; for instance when, an employee is seated in an office within range of the sensor
device. A calibration of sensor measurement was also essential on two grounds: first
individuals may carry multiple devices, or no device at all; and second, the position-
ing and orientation of the sensor in the retail unit may lead to systematic over- or
under-enumeration. These sources of bias in measurement must be accommodated by
manual recording of footfall at each location and the generalization of these sample
survey results to all locations and time periods. As we describe in detail below, manual



validation of the data needed to be undertaken in parallel with the technical profiling
of the mix of consumer mobile devices that probed our sensors, since the effectiveness
of data cleaning procedures discussed in this paper differ between individual locations
and configurations.

2. Background

In the past decade, Wi-Fi has emerged as one of the most commonly used technologies
in providing high speed internet access to mobile devices such as smartphones, tablets
and laptops in public and private spaces (Torrens 2008). This has resulted in multiple
Wi-Fi networks being available at almost every location in dense urban environments.
Traversing through this overlapping mesh of Wi-Fi networks, modern mobile devices
with Wi-Fi network interfaces regularly broadcast a special type of signal known as
‘Probe Requests’ in order to discover the Wi-Fi networks available to them. This helps
these devices to connect and switch between the Wi-Fi networks seamlessly.

Probe requests are low level signals standardised by IEEE 802.11 specification (IEEE
2016) for service discovery, and are implemented in any Wi-Fi capable device irrespec-
tive of the manufacturer or the model. This ubiquity and standardisation makes them
an excellent source of open, passive, continuous, and wireless data generated by Wi-Fi
capable devices present at any given time and location. Considering the unprecen-
dented levels of mobile device ownership in recent years, we can, in turn use this data
to understand the population distribution in highly dynamic urban environments with
high spatial and temporal granularity (Freudiger 2015, Kontokosta and Johnson 2017).
While a Wi-Fi based method to collect data offers us various advantages such as, easy
scalability and efficiency in terms of cost and time, it also introduces few systematic
biases and uncertainities in the collected data along with the serious risk of infringing
on the privacy of the mobile users. In this paper, using a set of probe requests and
manual counts collected at various high street locations across London, we demon-
strate that pedestrian footfall at these locations can be estimated with considerable
precision and accuracy while protecting the privacy of the pedestrians.

Unlike GPS, the location of the Wi-Fi enabled mobile device cannot be directly
inferred from Wi-Fi, however there are reliable methods to triangulate the location of
mobile devices from the locations of known access points (AP) and the signal strength
reported by them (He et al. 2003, Moore et al. 2004, LaMarca et al. 2005). This can
overcome the usual shortcoming of GPS, which struggles for precision and accuracy
in indoor and densely built environments (Zarimpas et al. 2006, Kawaguchi 2009,
Xi et al. 2010). Utilising this, we can easily and quickly estimate trajectories of the
mobile devices (Musa and Eriksson 2012) which can be used similary to the GPS
trajectories to understand individual travel patterns (Rekimoto et al. 2007, Sapiezynski
et al. 2015), crowd behaviour (Abedi et al. 2013, Mowafi et al. 2013), vehicular (Lu
et al. 2010) and pedestrian movement (Xu et al. 2013, Fukuzaki et al. 2014, Wang
et al. 2016). Such data can also be used in transportation planning and management
to estimate travel time (Musa and Eriksson 2011) and real time traffic monitoring
(Abbott-Jard et al. 2013). Using techniques demonstrated by Franklin et al. (2006)
and Pang et al. (2007), along with information present in the probe requests, one can
even model interactions between the users (Cheng et al. 2012, Barbera et al. 2013,
Cunche 2014, Cunche et al. 2014) such as predicting which of them are most likely
to meet again (Cunche et al. 2012). Using the semantic information present in these
probe requests it even is possible to understand the nature of population at a large



scale (Di Luzio et al. 2016).

Although extensive research has been carried out on this subject with feasible and
favorable results, in recent years, one of the major challenges faced in such attempts
has been the increasing attempt by mobile phone manufacturers to protect their users’
privacy by anonymising the globally identifiable portion of the probe requests (Green-
stein et al. 2008). Various methods have been devised to overcome this anonymisation
process such as estimating the device model information from a known dataset of man-
ufacturers and device behaviours (Martin et al. 2016); Scrambler attack using a small
part of the physical layer specification for Wi-Fi (Vo-Huu et al. 2016, Bloessl et al.
2015); and timing attack where the packet sequence information along with informa-
tion elements present in the probe request frame is used (Matte et al. 2016, Cheng
and Wang 2016). A combination of these methodologies has been proven to produce
de-anonymised globally unique device information (Vanhoef et al. 2016, Martin et al.
2017). These approaches usually result in serious risk of breach of privacy of the users
of the mobile devices by revealing their identifiable personal information.

There is a clear gap in the research for exploring methodologies for estimating the
number of unique mobile devices from a set of anonymised probe requests, without
the need to reveal their original device information. Such a technique has various ap-
plications such as uncovering the urban wireless landscape (Rose and Welsh 2010),
revealing human activity at large scales (Qin et al. 2013), estimating pedestrian num-
bers in crowds (Schauer et al. 2014, Fukuzaki et al. 2015), and even counting people
in hyper local scales such as queues (Wang et al. 2013). With enough infrastructure
to collect such information we can even aim to generate a real-time census of the city
(Kontokosta and Johnson 2017). With this background, we set out to devise and im-
plement a methodology to reliably estimate human activity such as pedestrian footfall
from Wi-Fi probe requests without risking a breach of privacy of the users involved.

3. Methodology

The primary aim of this research was to enable us to collect a series of probe requests
and process them into a usable pedestrian footfall count. We did this by using a Wi-Fi
receiver to collect probe requests broadcast by mobile devices, filtering out the back-
ground noise, and aggregating them based on the device that generated them. In this
section, we examine the characteristics of probe requests in detail, devise a method-
ology to collect these probe requests in public areas, examine the systemic biases and
uncertainties in the data collection method, and devise data processing methods to
overcome these challenges. Finally, we compare the processed footfall counts to the
ground truth recorded by primary surveys.

Probe requests are a special type of management packet broadcast by Wi-Fi enabled
devices as part of their various functions such as scanning for available APs and
quick geolocation by triangulation based known APs, etc. These are broadcast by all
Wi-Fi enabled devices regardless of the manufacturer, type or model of the devices,
although there is some variation in the frequency and the content of the information
transmitted through them. In some cases, such as Android devices, these are broadcast
even when the Wi-Fi functionality has been turned off by the user so that the device
can immediately connect to networks when the functionality is switched back on. Since
some devices even use the probe requests as a less accurate form of localisation, they
continuously send probe requests when Wi-Fi has been switched off. Thus, these signals
can be used to reliably identify the presence of Wi-Fi enabled mobile devices. Being a



first step of connection initiated by the mobile device, these packets have information
regarding the characteristics of the mobile device itself. Some of the key information
we can infer from these requests are,

(1) Media Access Control (MAC) address which is a name identifying the
wireless hardware of the mobile device,

(2) Sequence number of the request for the mobile device to keep track of the
responses,

(3) Time stamp at which the request was received by the AP,

(4) Total length of the request in number of bits, and

(5) The strength of the signal received by the mobile device.

The MAC address is the primary identifier for the mobile device and has two parts.
The first part is the Organisationally Unique Identifier (OUI) which provides infor-
mation about the manufacturer of the device and the second part is the identifier for
the device. In modern devices, to protect users’ privacy, the second part of the MAC
address can also be randomised and hence may not be unique to devices. When the
MAC address is randomised, it is marked as such by setting a specific bit in the probe
request packet as 1. Although sequence number of the packet is strictly unique to a
mobile device, we hypothesize that we can use them to estimate the number of unique
devices as demonstrated by (Vanhoef et al. 2016); where optional information present
in the probe requests - Information Elements (IE) along with the sequence numbers,
have been used to fingerprint the devices. This approach has become increasingly diffi-
cult as mobile phone manufacturers have severely limited the IEs present in the probe
requests thus leading us to explore methods which use only the sequence numbers.
This also affects the established commercial solutions using Wi-Fi probe requests such
as Blix, Walkbase, Euclid Analytics, RetailNext etc. There has been another solution
proposed by (Hong et al. 2018) where the authors tried to solve the similar problem
using a hidden markov models based trajectory inference algorithm but the scope of
this research was limited to enclosed, exit controlled public spaces such as shopping
malls, railway stations, etc.

Data collection was done with the help of custom sensors built from modifying
the hardware used in Smart Street Sensors (CDRC 2016) and updating them with
custom software. The sensor is essentially a Raspberry-Pi device with Wi-Fi and 3G
modules. It keeps the Wi-Fi module in ‘Monitor mode’ and uses the open source
software - Wireshark (Combs and Contributors 2018) to passively collect all packets
sent to ‘broadcast’, marked with type as ‘management’, and subtype ‘probe requests’.
The MAC address in these probe requests is obfuscated at the device level using a
cryptographic hashing algorithm and transmitted through 3G connection to a central
database via web-sockets protocol, where it is stored in a PostgreSQL database for
further analysis. The random salt used in the hashing algorithm was rotated regu-
larly to further mitigate the risk of de-anonymisation of the hash. Though hashing
cannot completely ensure anonymisation as discussed in (Demir et al. 2014), it can
sufficiently obfuscate the data; which along with a secure process of data handling,
gives us reasonable security. An overall schematic of the data collection and storage
process is shown in Figure 1. The ground truth on the number of pedestrian footfall
was recorded using a custom Android application - Clicker (Soundararaj 2018). This
app logs accurate timestamps each time the surveryor records a pedestrian crossing
the designated cordon line at the location. In addition to counting the pedestrians
manually, this procedure results in the device broadcasting probe requests regularly,
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Figure 1. Schematic diagram showing the process of collecting and storing probe requests using the sensor

which in turn, gives us a ‘known device’ to calibrate our methodology against.

After collecting data, we began estimating the footfall or pedestrian activity from
them by identifying the following potential uncertainties arising from our data collec-
tion method:

(1) Background noise - since the extent to which Wi-Fi signals travel differs sub-
ject to various factors such as interference and humidity, it is close to impossible
to restrict our data collection to a finite area of interest. This can lead to a
significant background noise at certain locations. For example, a phone shop or
a bus stop located next to the study area can artificially increase the number of
probe requests received by the sensor. It is important to note that this method
may not work effectively on study locations with complex configurations such
as the source of noise and the area of study being located at the same distance
from the sensor. This aspect is explored in detail in the broader case study in
the following sections.

(2) MAC randomisation - mobile devices in recent years have been using ran-
domised ‘local’ MAC addresses for probe requests to protect the users from
being tracked. This makes it impossible to tell if the probe requests are being
sent by the same mobile device. This along with the previous problem can further
increase the magnitude of error by several fold.

(3) Mobile ownership - since the rate of mobile ownership can vary widely across
geography and demography, we cannot assume that every mobile device trans-
lates to one pedestrian footfall. In addition to this, there is a long term overall
increase in mobile ownership which may affect the number of probe requests
collected overtime.

We propose the following internal and external validation methods to tackle each
of these uncertainties.

3.1. Filtering with Signal Strength

One of the clues that we can use to estimate the distance between the mobile device and
the sensor is the strength of the signal received by the sensor. The obvious approach
was to first try and establish a relationship between the signal strength and distance
and to use this to filter out the unwanted probe requests. However this approach was
found to not be feasible, since the decay of signal strength with respect to distance is
not always constant. For instance, signal strength varies with atmospheric conditions,
the presence of obstructions between the source and the target, the nature of these
obstructions, and the strength (power level) of the source. This severely limits our
ability to establish a simple conversion between reported signal strength and distance.
As such, there was a need for a method which takes in to account all of these variables
across the various locations.

We assumed that, in configurations where a specific source of background noise
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Figure 2. Schematic diagrams explaining the methods for filtering by signal strength and clustering using
sequence numbers

was at a constant distance, there must be a distinct pattern in the number of probe
requests reporting signal strength corresponding to that distance. For example, if there
was a phone shop next to our sensor where hundreds of phones regularly sent probe
requests, there should be a sharp rise in the of number of probe requests with reported
signal strength corresponding to the distance between the sensor and the phone shop,
irrespective of the local conditions as shown in Figure 2. We could identify these breaks
in the data using traditional one dimensional clustering algorithms such as ‘jenks
natural breaks’;, ‘k-means’, ‘quantile’ and ‘hierarchical clustering’, etc. Since we were
only looking for the break in the data and not for absolute values, the methodology
should apply for all the variations due to micro site conditions reducing the overall
noise in the collected data.

3.2. Clustering with sequence numbers

Since our primary unique identifier - MAC addresses are being anonymised by new
devices, we needed to find other information present in the probe requests for use as a
unique identifier. The obvious approach was to establish a factor of randomisation, and
adjust the counts for the probe requests based on this factor. We found this approach
to not be feasible since the proportion of devices which randomise the MAC addresses
increased over time. There was also a wide variation in the frequency at which the
devices randomised the MAC addresses and the method used for the process. This
led us to look for a more generalisable approach which was independent of the device
model.

From our initial look at the data, we found that OUI and the sequence number
of the packet was the most promising information to achieve this. First we divided
our dataset into sets of probe requests with randomised and non-randomised MAC
addresses by looking at the second character of the vendor part of the MAC address;
if it was E, A, 2 or 6, then those addresses were identified to be randomised. We
kept the MAC address as the unique identifier for the non-randomised requests and
further divided the randomised ones in to sub-categories based on their OUI. We then



Table 1. Comparison of clustering algorithms with
a sample of 40000 probe requests

Algorithm Time (s) MAPE (%)
Quantile 0.002 27 %
K-Means 0.007 -23 %
Hierarchical Clustering 172.520 -9 %
Bagged Clustering 0.135 -30 %
Fisher 3.034 -30 %
Jenks Natural Break 556.279 -30 %

identified unique mobile devices from within those sets, and assigned a unique identifier
to each device.

The proposed algorithm created a graph where the probe requests represented the
nodes; links were created between them based on the following rules:

A link could go only forward in time.

A link could go from low to high sequence numbers.

A link could exist between nodes with a maximum time difference of « - time
threshold.

A link could exist between nodes with a maximum sequence number difference
of B - sequence threshold.

A node could have only one incoming link and one outgoing link, which is the
shortest of all such possible links in terms of both time and sequence number.

The nodes were then assigned a unique ID based on the unique connected component
they belonged to as shown in Figure 2. This unique identifier was used in the place
of MAC addresses for aggregation of the anonymised probe requests. Although the
recycling of sequence numbers after 4096 led to multiple unique IDs being reported
from a single device, a sample consisting of all randomised probe requests sent by
”Google” devices showed that only 0.5% of the sample had their sequence number
reset. This led assume this to be inconsequential.

3.3. Calibrating with Ground Truth

Since proportions of mobile device ownership was an external uncertainty to our study
and could arise from variety of spatio - temporal and demographic factors, we aimed
to solve this by using a manual sample count at each location. We then calculated
an adjustment factor, or an ‘offset’ for each location by comparing the sensor-based
counts and ground truth. In turn it was then used to adjust the data reliably to reflect
the ground truth in absolute numbers. This calibration can be carried out periodically
at these locations to improve the quality of the estimation.

4. Pilot Study

To start, we designed a small pilot study to validate the filtering and clustering method-
ology against the scale and complexity of data collected in an open public area such
as a retail high street. We also aimed to find the algorithm which was best suited
for the classification of signal strengths as ’low’ and 'high’ in order to filter out the
background noise. The data was collected at Oxford Street, London on 20 December
2017 from 12:30 to 13:00 hrs, Wi-Fi probe requests were collected using the sensor de-



scribed in Section 3 and pedestrian footfall was manually recorded using the Android
app - Clicker (Soundararaj 2018). Being located at one of the busiest retail locations
in the United Kingdom, the Wi-Fi sensor captured approximately 60,000 probe re-
quests during the half hour period; 3,722 people were manually recorded walking on
the pavement during that time. The surveyor positioned himself at the front of a store
while carrying the sensor in a backpack and counted people walking by the store on
the pavement (3m wide approximately) using a mobile phone. The sensor was kept
as close to the store window as possible, and the manual count was done as a cordon
count in front of the store.

As a first step we aggregated the probe requests by their MAC addresses for every
minute to generate a minute by minute count of the number of people near the sensor.
We assumed that each MAC address corresponded to a mobile device and hence a
pedestrian. We then compared this preliminary ‘footfall’ count to the actual number
of pedestrians recorded manually to check for it’s robustness. We used Mean Absolute
Percentage Error (MAPE) as a measure of robustness of the count, since it provided
a simple and quick measurement and the street conditions ensured that there are no
intervals without any footfall. We found that the MAPE in the raw counts compared
to the ground truth was around 425%. This suggests the presence of large amount
of noise in the data which may have been generated by the sources of uncertainties
discussed in Section 3 thus demonstrating the need for filtering the data.

We then classified the probe requests as ‘high signal strength’ and ‘low signal
strength’ using various one dimensional clustering algorithms such as k-means, quan-
tile, hierarchical clustering, bagged clustering, fisher and jenks natural breaks with the
number of clusters set as 2. The results are shown in Table 1. We found that while
hierarchical clustering and jenks gave us fairly low errors, they were too resource in-
tensive for practical use with a larger dataset. We also found that k-means gave the
quickest results with the lowest MAPE, closely followed by quantile algorithm. The
cut-off point or threshold for the collected data with which we could classify as high
and low was -71 dBm. We then removed all the probe requests which reported ‘low sig-
nal strength’ and repeated the same aggregation process as before to produce footfall
count. This process resulted in a footfall count with a net MAPE of 30%. Although
the results are encouraging we are still not completely confident that our filtering pro-
cess is removing noise or has any correlation the configuration of sensor or position
of the mobile devices. These concerns need to be addressed with a larger survey with
multiple locations of varying orientations.

The next challenge was to identify the probe requests which are generated by the
same device irrespective of the MAC randomisation process. We used the algorithm
defined in Section 3 and assigned a unique identifier or signature to each probe request,
independent of their the MAC addresses. Since we didn’t know the nature or frequency
of the MAC address randomisation process, we used the surveyor’s mobile device as a
reference. As the surveyor’s device was being actively used to count pedestrians and
it’s Wi-Fi module was kept active without establishing connection to any network,
the device was known to be continuously probing for new networks. We also knew
that the OUI of the device was ’Google’ and the device was regularly randomising it’s
MAC address, thus providing us an excellent reference with which we could optimise
the parameters for our clustering algorithm. We then, by increasing the thresholds
in steps of 1, found the minimum possible threshold for time and sequence numbers
at which the algorithm clusters the reference device properly without over clustering
the other probe requests. This process is shown in Figure 3. We observed that the
threshold for time a and the threshold for sequence numbers, 8 are 16 seconds and 60
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Table 2. Locations where sensors were installes, volume and speed of probe requests collected by the sendor
and total pedestrians manually counted. The data occupies around 1.8 GB on disk when encoded in text format.

ID  Location Type Installation notes Probe Requests Footfall
x10% (per min)  No. (per min)

1  Camden High Street Phone Shop Bus stop in front 9.9 (297) 3683 (33)
2 Central St.Giles Restaurant Seating area on both sides 3.9 (169) 0346 (05)
3 Holborn Station Info. Kiosk Overlooks station entrance 4.3 (303) 2956 (46)
4 Brunswick Center Fast Food Has seating area on one side 3.4 (210) 0960 (12)
5  The Strand Tea Shop Has phone shop next door 8.4 (382) 1969 (21)
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Figure 5. Data collection schedule showing the days when sensors were active at their corresponding locations.
The red squares show that manual counting of pedestrians was also done on that day.

respectively This was undertaken on top the filtering done based on signal strength,
and only for the probe requests with randomised MAC addresses. Figure 4 shows the
results of this clustering process on a small set of randomised probe requests. The probe
requests with different randomised MAC address are shown by the coloured points and
the lines joining them show that those probe requests were most likely be generated
by the same device. We finally aggregated the probe requests as we did before but
with the device signature rather than MAC addresses. This results in a footfall count
with a MAPE of -18% compared to the manual count. A comparison of minute by
minute counts resulting from different filtering processes along with the ground truth
is shown in Figure 4 illustrating the promising effectiveness of the methods.

To conclude, from the pilot study we found that both the filtering and the clus-
tering methods we devised worked on complex real world data and resulted in final
pedestrian counts within a MAPE of 20%. We also found that ‘k-means’ and ‘quantile’
are best algorithms for clustering signal strengths. Finally, we observed that the best
thresholds for time and sequence numbers in the clustering algorithm is around 16 and
60 respectively.

5. Case Study Implementation

The methodology set out above was implemented in five different Central London loca-
tions at different times. Sensors were installed and data collected for extended periods
of time. We also carried out manual counting at these locations across different times
of the day. We then applied the methodologies discussed earlier to arrive at estimated
pedestrian footfall and compared them with the corresponding manual counts. We
finally evaluated the effectiveness of the processes with the Mean Absolute Percentage
Error (MAPE) at the locations and report our findings below.

The locations at which the data were collected are shown in Table 2. The locations
were chosen for their diverse site conditions and unique sources of noise around the
potential location of the sensors. The position of the sensor at these locations with
respect to the context is shown the Figure 6. We can see that Location 5 is the
‘cleanest’ with one clear stationary source of noise (phone shop) while location 2 is the
most complex due to the proximity of seating areas to the sensor. The sensors were
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operational through out February and March, while manual counts were conducted in
these locations in half hour sessions on at least two different days. For the purposes of
comparing with ground truth, we considered the data from sensors which correspond
to the 12 sets of available manual counts. The schedule of data collection is shown in
Figure 5.

We begin by looking at the distribution of the signal strength reported by the probe
requests across the locations. From the density plot shown in Figure 6, we can observe
that there is clear relation between the distribution of the signal strength and the
distance and complexity of the source of noise. We can see that while location 5 shows
clean difference between low and high signal strengths, location 2 is almost normally
distributed. Intuitively we expected that location 2 and 4 would be harder to classify
than locations 1, 3 and 5. We ran the k-means clustering algorithm and filtered out the
probe requests which were randomised and had signal strengths less than the second
break (threshold). It is important to note that we were dealing with relative thresholds
of signal strengths which can vary with location and time of the analysis. We then
aggregated the probe requests by counting the number of Unique MAC addresses
present in every minute. We also removed devices that dwelled around the sensor by
removing the MAC addresses which reappeared within the previous hour.

The results of the first stage of the filtering process along with the thresholds are
shown in Table 3. Confirming our intuition, we see that the location 2 has the most
MAPE followed by location 4, while the rest of them have highly reduced MAPE.
It is significant that this method alone reduces our margin of error by 50 - 100%
from the raw counts without any cleaning. This makes the signal strength filtering a
quick and ideal method for practical applications, one which doesn’t require absolute
numbers such as creating large aggregated indexes to show long-term trends. We also
found that the success of the signal strength filtering can be improved significantly by
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Table 3. Results of footfall estimation at each location as Mean Absolute Percentage Error (MAPE) after each
step of the filtering process

Sensor  Signal strength ~ Adjustment MAPE MAPE after MAPE after MAPE of
threshold factor without any  filtering signal filtering sequence final adjusted
(-dBm) cleaning (%)  strength (%) numbers (%) counts (%)
1 -70 1.25 259 22 -13 9
2 -74 0.51 928 396 206 55
3 =72 1.60 87 -19 -31 10
4 -70 0.88 498 142 52 33
5 -72 0.80 473 84 38 11

installing sensors so that the pedestrians and source of noise are at different distances
from the sensor. This ensures that the distribution of signal strengths within the field
of measurement is distinct from that of the surroundings.

We then ran the sequence numbers based clustering process on the rest of the probe
requests to reduce the MAPE by almost 50 - 100% on all the sensors except for location
3. Location 3 is an outlier among all the other sensors since it is the only one with large
amount of pedestrians very close to the sensor. This may be the reason behind the over
filtering observed in the previous process. We finally ran the calibration process where
we calculated the adjustment factors from the ratio between the manual counts to the
sensor based counts for the sample period as shown in Table 3. We used them to adjust
the counts to achieve a MAPE ranging from 10 - 50%. We observed that the sensors
with people moving right next to them tend to under-count with our methodology,
while sensors with seating next to them tend to over-count significantly. However,
using the filtering process, we can reduce the error to almost 10% closer to that of the
ground truth.

6. Conclusion

Sentient technologies make measurement of the human activities that are the life blood
of the smart city possible. Yet the data that they harvest are frequently relevant only
to the sub-groups within society that avail themselves of particular goods and services
— such as social media applications, transport modes or retail offers. In each of these
cases, it is necessary to remember that the resulting data are by-products of consumer
transactions, and will as a consequence, only pertain to users of the relevant goods or
services. If the smart city is to be socially inclusive, it therefore follows that sentient
data must represent entire populations, whether by design or by triangulation with
external, population wide, sources. This is a non-trivial task, since the ebbs and flows
of smart device-enabled citizens rarely pertain to any clearly defined population in
either administrative or functional terms (Massam 1975).

Our objective here has been to collect, rather than re-use, data on smart city func-
tioning, by recording Wi-Fi probes and ultimately reconciling them with manual counts
in order to infer ambient populations. The internal validation methodology set out in
the technical sections of this paper, allied to external validation from pedestrian counts,
renders the method inclusive and robust when recording activity levels in retail centres
in real time. We have described the collection and processing of a novel consumer Big
Dataset that enables valid measures of levels of footfall activity which has been scaled
across a wide network of sensors (Longley et al. 2018). In both conceptual and tech-
nical terms, it illustrates the ways in which passively collected consumer data can be
‘hardened’ to render them robust and reliable by using related procedures of internal
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Figure 7. Comparison of the filtering process with the ground truth in all the locations.

300

100

Pedestrian Count

& Mon Tue Wed Thu Fri Sat Sun
19 Feb 20 Feb 21 Feb 22 Feb 23 Feb 24 Feb 25 Feb

Figure 8. A week of pedestrian footfall at the Strand, London collected by the methodology. The counts are
aggregated for 5 minute intervals.
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and external validation.

Internal validation addresses the issues of screening out device probes that do not
indicate footfall, and the further screening of device probes to ‘fingerprint’ the effects
of MAC randomization. It is important to note that the filtering process work based
solely on the information present in the probe requests and their temporal distribution.
This ensures that although the mobile devices were uniquely identified, there was no
further personal data generated by linking the probe requests to the users of the mobile
devices. This method essentially gave us a way to estimate the footfall in real-time
without identifying or tracking the mobile devices themselves. External validation then
entailed reconciling adjusted counts with the footfall observed at sample locations.
This procedure makes it possible to generalise from locations at which manual footfall
surveys are conducted to all others in the system, and to develop a classification of
device locations that are more or less susceptible to noise generation.

This Wi-Fi based footfall counting methodology offers a large number of applications
and benefits for real time spatial analysis. Since Wi-Fi based sensors are inexpensive
and the data model is scalable, it is possible to use this methodology for a large
network of sensors to gather granular data on pedestrian footfall. A snapshot showing
a week’s worth of precise footfall in area around Charring cross, London is shown in
Figure 8 in order to demonstrate the potential for such a dataset. Projects such as
SmartStreetSensors (Longley et al. 2018), may utilise this methodology to overcome
the challenges introduced by the implementation of MAC address randomisation.

The vicissitudes of MAC randomisation, and the provisions of privacy legislation
such as EU General Data Protection Regulations mitigate against tracking individu-
als across the smart city using this approach. This can be modelled using agent-based
methods (Heppenstall et al. 2011), however. In our own research we have also begun
to link store time-lagged till receipts to footfall, and have used such data to better
understand the dwell times that characterise such different retail uses as stores with
window displays and fast food restaurants. Such analysis not only provides a more nu-
anced picture of movement through retail areas, but also enables valorisation of micro
sites within retail centres. In the UK, for example, this is of immediate practical im-
portance in evaluating business rates on properties, and has still wider implications for
the setting of retail unit rental values. There are obvious extensions to understanding
the ebbs and flows of activities in the 24-hour smart city such as understanding urban
mobility (Gariazzo et al. 2019) and conceptualising them with a people dimension
(Nam and Pardo 2011).

More broadly still, extensions to this strand of smart city research are likely to seek
to differentiate the quality of different elements within footfall according to mission
e.g. travel to adjacent workplace zones, leisure, etc., and personal characteristics such
as spending power. In this respect, future research may not only simulate linkage of
harmonised footfall counts between sensor locations, but also link these in turn to dis-
aggregate origin-destination matrices for bikeshare and other public transport modes.
Our own investigations will consider these and other challenges to understanding the
functioning of the sentient city.
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