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Abstract 
Energy policy and investment are commonly informed by a small number of scenarios, 
modelled with proprietary models and closed data-sets. It limits what levels of insight that 
can be derived from it. This paper overcomes these critical concerns by exploring a large 
number of scenarios with an open-data and open-source model to address regional mitigation 
policy. Focusing on South America, we translate an ensemble of long-term electricity supply 
scenarios into policy insights and use post-processing methods to present a systematic 
mapping of solution outputs to model inputs. We find demand levels, the cost of capital and 
the level of CO2-limits to be significant determinants of total investment cost. Low-carbon 
pathways are associated with low demand and low cost of capital. When cost of capital 
increases a shift away from wind and hydropower to natural gas and solar PV is seen. We 
further show that appropriate concessionary finance together with energy efficiency measures 
are critical – at a continental level – to unlock economic, low-carbon investment. 

 

Introduction 
Investment in low-carbon energy is a central topic to low- and middle-income countries’ 
development policy. This is recognised by the United Nations’ 2030 Agenda for Sustainable 
Development that highlights that two of its 17 Sustainable Development Goals (SDG) should 
be dedicated to, respectively, the provision of affordable and clean energy for all (SDG7) and 
the imperative of climate action (SDG13) (UN General assembly, 2015). SDG 7 was the 
focus of the High Level Political Forum (HLPF) held in New York in 2018. Further, the 2015 
Paris agreement targets a global development path that keeps temperature rise to well below 2 
degrees Celsius above pre-industrial levels (UNFCCC, 2015). Within this framework, most 
countries have submitted nationally determined contributions (NDCs), all of which include 
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mitigation measures in the energy sector. Most countries, however, still need to understand 
the implications that their plans carry in terms of technology choice, timing of investment, 
and total system cost. 

Overcoming the lack of scrutiny that can be associated with the analysis that underpins 
energy infrastructure development is crucial to unpacking future energy investment decisions. 
As Pfenninger (2017) points out, key analysis that informs energy strategy in the United 
States is obscure. In Europe, similar analysis has simply been called “closed” (Clark, 2011). 
In this paper, we propose a transparent method to inform South American electricity 
investments by 2050 that relies on generating several hundred scenarios and applying a 
scenario discovery method. 

South America has almost closed its energy access gap with 90% of the population having 
electricity connections in Bolivia and Peru and almost 100% having access elsewhere (World 
Bank, WDI, 2016). The carbon intensity of the electricity sector in South America is the 
lowest in the World. Paraguay produces 100% of its electricity from hydropower. This share 
is above than 60% in Brazil, Venezuela, Colombia and Uruguay (World Bank, WDI, 2016). 

Notwithstanding, the energy sector in South America could be at a turning point (Elizondo 
Azuela, et al., 2017). Demand is increasing due to rapid urbanization and a growing middle 
class. Though it remains high, the share of electricity produced from hydropower has 
declined in recent years through drought and poor water resource management. Further, 
hydropower expansion in the region may be difficult due to mounting opposition to new 
large-scale projects (Fay, et al., 2017).  

Future energy supply system configurations are uncertain. Selected climate scenarios have 
implied that lower rainfall could lead to reduced water flow, decreasing the ability of existing 
and any new hydro investments to generate power. For new hydro (and other capital intensive 
power plants), the cost of capital will influence the optimal energy investment mix. A high 
cost of capital makes capital-intensive power plants harder to finance (Schmidt, 2014) and 
therefore relatively less attractive. In parallel other renewable energy technologies (RET) are 
experiencing high learning rates and have correspondingly falling costs, reducing the appeal 
of conventional RET such as hydro. All RET technologies stand to benefit from GHG 
mitigation policies such as carbon taxes and emission caps. It is however unclear how such 
policies would be configured and whether they would endure.  

These considerations, together with institutional, behavioural and social uncertainties, all 
influence the penetration of low-carbon technologies (Iyer, et al., 2015a). This in turn impacts 
the competitiveness of other technologies and affects investment decisions in energy supply. 
Nevertheless, investment decisions must be made. To understand the influence of one or 
more of these uncertainties on decision making this paper develops and models scenarios that 
reflect uncertainty through changes in key input parameters. Recognising that uncertainties 
are diverse and often non-exclusive, scenarios with different changes need to be combined. 
This can lead to increased numbers of scenarios, making tractable insight difficult to 
internalise and communicate. Though easier to digest, a limited number of scenarios makes it 
difficult to assess whether the most important parts of the solution space are accounted for 
(McJeon, et al., 2011). 



 
 

To address this, we move away from traditional scenario development and use a “scenario 
discovery” approach (Bryant & Lempert, 2010) (Rozenberg, et al., 2014a). A large set of 
scenarios is designed using ranges of selected input parameters, or determinants. These 
scenarios are assessed using key metrics, or attributes. The relations between important 
attributes and their determinants are then post-processed with data-mining tools that help to 
decipher the multidimensional solution space. Further, the data, model and methods are all 
transparent and open source1. This ultimately allows for complete repetition of the 
experiment and for policy transparency. To our knowledge, it is the first time that open-
source approaches and the scenario discovery methodology have been combined for South 
America. Extending this work outlines a future where complexity can be deciphered and 
policy support can be scrutinised. 

Method 
Model description 
The energy system is both strategic and capital intensive. Policies and development support 
therefore need to be easy to audit and review. Because energy infrastructure outlast any 
electoral or administrative cycle, such transparent information is critical for stakeholders 
including the public, that is, taxpayers and voters, and support organisations, like 
development banks. To this end, the analysis uses the Open Source Energy MOdelling 
SYStem (OSeMOSYS) which is an open source energy model generator that uses linear 
optimization techniques, and has global application (Fattori, et al., 2016) (UN DESA, 2016) 
(Löffler, et al., 2017) (Niet, et al., 2017) (Pfenninger, et al., 2018) (Taliotis, et al., 2016). It 
determines the cost-optimal long-term investment and operation required to satisfy an 
exogenously defined energy demand (Howells, et al., 2011). It overcomes recent criticism 
levelled at similar energy systems models that are not open. Pfenninger (2017) argues that 
lack of transparency, stemming from lack of open source methods leads to lack of trust in 
analysis. Yet trust and transparency will be needed to address future long-term low-carbon 
investment trajectories. 

For the same reasons, this paper uses the OSeMOSYS-generated South AMerica Model 
BAse (SAMBA): an open-source, open-access, long-term, integrated electricity sector model. 
It explicitly represents eleven South American countries: Argentina, Brazil, Bolivia, Chile, 
Colombia, Ecuador, Guyana, Paraguay, Peru, Uruguay and Venezuela. Each country is 
included as an individual region except for Brazil, which is represented using four sub-
systems (ONS, 2015). The final model has fourteen regions and a time horizon spanning 
2013-2063 in one-year time-steps. 

SAMBA includes a wide range of technologies, which are represented on a national level. 
These comprise renewable, nuclear and fossil-fuelled technologies. Hydropower storage is 
included in the four sub-regions of Brazil and in Venezuela; a detailed list is included in 
Appendix A – Table A1. An early application of SAMBA can be found in (de Moura, et al., 
2017) and (de Moura, et al., 2018). Changes as implemented for this project can be found in 
Appendix A – Table A2. 

                                                 
1 All data is available on zenodo.org: https://doi.org/10.5281/zenodo.2238771. 
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Electricity trade between countries relies on the 21 existing international interconnection 
lines (CIER, 2013). It also accounts for a 700 MW connection between Argentina and Bolivia 
that will come online in 2019 (Power Engineering International, 2016). Further trade 
expansions are not considered in this formulation of the model. 

Recent and announced power plant projects are ‘hard-wired’ into the model as ‘committed’. 
On the one hand, these include large hydropower additions of 48.8 GW expected between 
2013 and 2022. This represents a capacity increase of 21% from 234 GW installed capacity in 
the region. Major projects such as e.g. Belo Monte, Madeira or Teles Pires dams in Brazil as 
well as large hydropower expansions in Argentina, Chile, Colombia, Ecuador, Peru and 
Venezuela are represented. On the other hand, they cover 2.4 GW of planned wind and solar 
capacity (Brazil, Argentina, Chile, Ecuador, Peru, Uruguay and Venezuela) as well as smaller 
installations of thermal power plants including 1.4 GW of nuclear power in Brazil. 

This capacity data is kept constant between model runs. New investment beyond 2022 may 
change flexibly in the model. All other scenario data is described below. 

Scenario database 
This work goes beyond the selection of a limited number of cases and instead explores 
different uncertainty combinations by developing 324 scenarios. These explore changes in six 
key model inputs: (1) electricity demand, (2) fossil fuel price, (3) renewable technology 
learning curves, (4) discount rate (cost of capital), (5) CO2-emission cap and (6) the effects of 
climate change on hydropower (see Table 1). Each of these a discrete number of settings are 
considered. Each setting in the range is termed a lever2. This parameterisation is described 
below. 

- Electricity demand is modelled using three levers (low, medium and high). Each level 
is linked to assumptions of GDP, population, urbanization rates and the penetration of 
electric vehicles (see next section “Demand and climate change”) that are loosely 
based on views of the future described by the Shared Socio Economic Pathways 
(SSPs) commonly employed in global modelling efforts (O’Neill, et al., 2017).  

- Fossil fuel prices are defined using two levers (low and high). Values are based on the 
World Bank Commodities Price forecast (World Bank, 2016, July), for the short term, 
and the World Energy Outlook (IEA, 2015) low oil price scenario and current policies 
scenario, for the long term.  

- RET cost and performance outlooks are defined using three levers (low, medium and 
high). These are based on the projected learning rates from (NREL, 2016).  

- The discount rate is represented using three levers at 3%, 6% and 12% and is a proxy 
for the cost of capital (as referred to hereafter).  

- CO2 levers were set as targets for 2050. They include zero emissions, 50% reduction 
compared to 2013, and no target.  

- Finally, climate change impacts are modelled using changes in hydro-generation. Two 
levers cover ‘reference’ – no change in anticipated output – and ‘low’ water 
availabilities. The latter rely on downscaled precipitation, and resulting river runoff 
analysis, from (Alfieri, et al., 2017) calibrated using outputs from a climate model of 

                                                 
2 The lever represents the different levels that the input parameters are set to. 



 
 

Representative Concentration Pathway 8.5 (RCP 8.5, see section “Demand and 
climate change”). 

Appendix B contains full details for each input parameter along with the documentation of 
corresponding model adjustments. 

TABLE 1. INPUT LEVERS (AND ‘DETERMINANTS’ OF THE OUTPUT)  

 

Demand and climate change 
The purpose of this analysis is to generate country-level electricity demand projections that 
represent a range of plausible future pathways. For narrative consistency across countries, 
these projections are, where possible, linked to the five SSPs (O’Neill, et al., 2017). Note 
however that this does not necessarily imply that demand projections for the region are 
identical to those found in the SSPs. 

Future GDP, population and urbanization rates are calculated at the country level for each of 
the SSPs. These form the basis for the projected demand to which electric vehicle electricity 
consumption projections is then added. The latter are not based on SSP narratives. (See 
Appendix B, Figure B2). The resulting maximum, medium and minimum demand trends for 
the region are then chosen. 

Effects of climate change on hydropower in South America are projected following an 
econometric Vector auto regression (VAR) modelling approach. VAR models are widely 
used for multi-variate analysis and use predictors for projecting data series (Lütkepohl, 2005). 
This work calculates the potential for hydropower electricity generation using projected 
discharge for RCP 8.5 from Alfieri et al. (2017) as a predictor. Details of this projected 
change in hydro-power generation can be found in Appendix B. 

Scenario Discovery 
Crossing all levers for the chosen determinants results in a total of 324 scenarios. These are 
analysed across two cost dimensions (capital and variable3 costs) and clustered into groups 
using a Gaussian mixture model (GMM) (Sugiyama, 2016). Clustering highlights common 

                                                 
3 Note that in this formulation, ‘variable cost’ is assumed to include both variable maintenance and fuel costs. 

Demand Low Medium High

Fuel prices (Oil and Gas, and Coal)
WEO low 
oil price

WEO 
Current 
policies

Capital cost and performance outlooks for 
renewable tech. (non-hydro) NREL low NREL medium NREL high
Discount rate (cost of capital) 3% 6% 12%
CO2 target 0% 50% no target
Water availability profile (Climate change 
impact) RCP 8.5 No change

LOW REF HIGH



 
 

determinants to groups of results in the solution space. A data-mining algorithm then 
‘discovers’ what key determinants best explain the cost parameters of each groups. The 
Patient Rule Induction Method (PRIM) (Friedman & Fisher, 1999) algorithm for ‘scenario 
discovery’ through statistical data-mining searches for combinations of input parameters 
(determinants) that best explain the group of interest. The best combination of parameters is 
chosen through a trade-off between interpretability, ‘density’ and ‘coverage’ of different 
combinations of determinants. Coverage measures the share of scenarios as described by the 
combination of input conditions relative to all scenarios in the group of interest. Density 
measures the share of the scenarios in the group of interest relative to all scenarios that meet 
the combination of conditions. The quasi-p-value test (qp-value) estimates the likelihood that 
PRIM constrains some parameter purely by chance (Friedman & Fisher, 1999) (Bryant & 
Lempert, 2010).4 

Results 
This work assesses each scenario in terms of CO2-emissions, cost as a percentage of GDP, 
capital investment requirements, stranded assets, as well as fixed- & variable- cost 
expenditures. These are relevant as they highlight scenarios and interventions with interesting 
characteristics. Examples include: high capital and low variable cost configurations that may 
require special financing schemes; low CO2-emission futures where emission caps are not 
needed thus simplifying national climate policy requirements over those requiring taxation; 
etc. These questions are addressed below by using our methodology to drill into different 
system qualities and decompose their key determinants. 

Cost based scenario analysis 
Cumulative total system cost (2013-2050, discounted at 6%5) across the 324 scenarios is 
spread between 900 billion USD and 1.7 trillion USD. To unpack the full scenario ensemble, 
we use the clustering and PRIM analysis for capital vs. fixed and variable cost (including fuel 
cost). Four scenario clusters with different characteristics are identified (Figure 1). 

                                                 
4 The scenario discovery analysis uses the open source tool Patient Rule Induction Method for Python (Kwakkel 
& Hadka, 2016) as well as Scikit-learn for the cluster analysis (Pedregosa, et al., 2011). 

5 This is a social discount rate, to be distinguished from the ‘cost of capital’ used as an input parameter to the 
model results. 



 
 

 
FIGURE 1. PRIM CLUSTER ANALYSIS OF CAPITAL COST VS. VARIABLE AND FIXED COST FOR ALL 

SCENARIOS 

TABLE 2 RESULTS OF THE PRIM ANALYSIS FOR CAPITAL COST AND VARIABLE COST 
 Determinant 1 Determinant 2 Determinant 3 Coverage/Density 
Cluster 1: low 
capital cost and low 
variable cost 

Low to medium 
demand (220 to 230 
EJ) 
qp value: 10-9 

Low to medium cost 
of capital (3% to 6%) 
 
qp value: 10-9 

Absent or medium 
CO2 constraint 
 
qp value: 10-4 

83%/83% 

Cluster 2: low 
capital cost, high 
variable cost 

High cost of capital 
(12%) 
 
qp value: 10-12 

Absent or medium 
CO2 constraint 
 
qp value: 10-7 

 65%/83% 

Cluster 3: high 
capital cost, low 
variable cost 

CO2 constraint 
(strong) 
 
qp value: 10-27 

  82%/85% 

Cluster 4: high 
capital cost and 
high variable cost 

High demand (250 
EJ) 
 
qp value: 10-12 

CO2 constraint 
(medium) 
 
qp value: 10-12 

Medium to high cost 
of capital (6% to 12%) 
qp value: 10-5 

100%/100% 

 

All the clusters in Figure 1 are driven by a combination of cost of capital, demand and CO2 
constraint. A high cost of capital promotes technologies that have low upfront capital costs, 
which most often leads to investment in fossil-fuelled power plants. These tend to have a high 
variable cost associate with fuel purchases. However, these investment strategies are only 
adopted by the model, if there is no constraint on CO2 emissions. This is the case of cluster 2 
(orange crosses in Figure 1) in which the high cost of capital and absence, or medium level, 
of CO2 constraint leads to investments in fossil fuel technologies, and thus low capital costs 
but relatively high variable costs. 



 
 

Cluster 3 (blue triangles in Figure 1) is on the opposite side of the spectrum compared to 
Cluster 2: its outcome characteristics are only driven by a strong CO2 constraint. Cluster 
investments are characterised by RET deployment at a high cost (Table 2). 

Cluster 4 (pink squares) is characterised by high capital and high variable costs. These 
scenarios are driven by high demand levels; combined with medium to high cost of capital; in 
futures with a medium CO2 constraint. The high demand leads to higher costs, but this is 
exacerbated by the combination of a high cost of capital (which favours fossil fuel 
technologies) and a medium CO2 constraint (which favours renewables). The result is a 
trajectory in which there are high investments in fossil-fuel generation at the beginning of the 
period (by 2030), followed by stranded fossil fuel capacity and high renewable penetration 
towards the end of the period (by 2050). Note that the CO2 cap peaks in 2040. 

At the opposite end of the spectrum, the first cluster (green circles) has limited capital and 
variable costs. It is characterized by low to medium levels of both demand and cost of capital 
combined with either an absence, or a medium level, of CO2 constraint (Table 2).  

Cost results as a percent of GDP 
To better compare scenario results with past investments, we report total investment cost as 
percentage value of projected GDP (Figure 2). Most scenarios have a total discounted system 
cost below 1.4% of the projected GDP associated with its respective scenario. (For context, 
the region spent 1.4% of GDP on energy investments before investments declined in the 
years 2000s (Fay, et al., 2017).) 

 
FIGURE 2. TOTAL DISCOUNTED COST OF GDP (2013-2050) FOR SOUTH AMERICA FOR ALL 324 

SCENARIOS 

A PRIM analysis is carried out on the 20% most expensive scenarios (these spend 1.34% of 
GDP on electricity investments). The analysis shows that they are characterized by a high 
demand and a medium or strong CO2-emission cap. Additionally, 60% represent a future 
characterised by a high cost of renewables. This combination of factors causes initial 



 
 

investment to focus on low capital intensity technologies (fossil fuels) which are then 
stranded by a switch to renewables occurring toward the end of the period. This is when the 
CO2 constraint becomes more stringent. While cost-optimal given the range of determinants, 
the strategy is expensive. This suggests that policies should be prepared to either recover the 
value of stranded assets, or invest in adequate retrofit schemes with e.g. carbon capture 
storage (CCS). 

Emission based analysis of scenarios with no cap 
Given that a continent wide-CO2 scheme may be difficult to impose, we focus here on 
scenarios without any emission caps (108 futures). Looking at determinants that lead to 
low/high carbon emission reveals three scenario clusters (Figure 3). Cases with low-carbon 
emission futures are in Cluster 2 (orange crosses). They are characterised by low to medium 
demand and low to medium cost of capital. Conversely, the cluster with high emissions 
(green circles) is characterized by high demand and high cost of capital (12%). These are the 
futures in which fossil fuel power plants are optimal investments. Interestingly there is little 
impact on costs and emission levels when fuel prices change. This reflects the critical role 
that financial incentives (e.g. low interest loans) and demand reduction can have, highlighting 
that – for CO2 emissions reduction – both can be more important than the use of an emission 
cap. 

 
FIGURE 3. PRIM CLUSTER ANALYSIS OF EMISSIONS VS. COST FOR THE 108 SCENARIOS WITH NO 

CO2 –CAP 

 

  



 
 

TABLE 3. RESULTS OF THE PRIM CLUSTER ANALYSIS FOR CO2-EMISSIONS 
 Determinant 1 Determinant 2 Coverage/Density 
Cluster 1: high 
emissions, high 
cost 

High demand (251 
EJ) 
 
qp value: 10-6 

High cost of capital 
(12%) 
 
qp value: 10-6 

100%/100% 

Cluster 2: low 
emissions, low cost 

Low to medium 
demand (220 to 230 
EJ) 
qp value: 10-9 

Low to medium cost of 
capital (3%,6%) 
 
qp value: 10-7 

92%/100% 

Cluster 3: medium 
emissions medium 
cost 

High demand (251 
EJ) 
qp value: 10-3 

 54%/66% 

 

Changes in capacity and cost for the six determinants 
Demand is identified as a determinant for overall system cost, both in absolute and relative 
terms (percent of GDP). That is because additional electricity demand leads to additional 
capacity and/or additional fuel consumption. Both result in increased average total cost of 
electricity6 with values ranging from 123 USD/MWh in low demand cases to 154 USD/MWh 
in high demand futures.  None of the low demand scenarios exceeds a total cost of 1.12 
trillion USD, whereas the high demand scenarios consistently stay above 1.11 trillion USD. 
There is also a strong correlation between demand, overall system cost and emission levels. 

The cost of capital is a determinant of whole system cost and CO2-emissions. The technology 
changes under different costs of capital have similar characteristics. High cost of capital will 
favour technologies with low upfront investment costs to minimize depreciation or interest 
during construction. These technologies include Gas, Biogas, Coal, and Photovoltaic (Figure 
4). A higher cost of capital will favour biogas over biomass. This is due to the seasonality of 
the biomass compared to the year round availability of biogas. 

                                                 
6 Total Cost of Electricity = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹∙Σ (Capital Costs + Variable and Fixed cost)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑟𝑟(1+𝑟𝑟)𝑁𝑁

(1+𝑟𝑟)𝑁𝑁−1
,  where N is the lifetime in years (here assumed the modelling period, 38 

years) 



 
 

 
FIGURE 4. AVERAGE CHANGE IN CAPACITY FROM LOW COST OF CAPITAL TO HIGH 

RET learning rates – or rather the lack thereof – have a lower impact than might be expected. 
They are found to be the third most significant factor for explaining high total system costs, 
when combined with a high demand and a CO2 target. There is however a noticeable shift 
away from wind and PV panels in scenarios with higher RET costs (Figure 5). The capital 
cost for PV (in 2050) varies between 422 USD/kW and 1897 USD/kW across RET learning 
rate futures. These are modest values when compared to hydropower, coal and nuclear per 
unit capacity costs, yet the latter however favoured under low RET learning rates. Nuclear 
has both higher per kW carbon free power output than either PV or wind. Further, the 
variability of wind and solar input requires intermittency contingency capacity either in the 
form or storage or of production capacity for wind-still or cloudy days and nights. 

 



 
 

 
FIGURE 5. AVERAGE CAPACITY CHANGES OF TECHNOLOGIES FROM LOW RET COST TO HIGH 

The CO2-emission cap is a significant determinant for both capital and operational system 
costs. The ‘no emission limit’ scenarios never exceed 1.3 trillion USD. Conversely, the zero 
emissions scenarios can have costs of up to 1.7 trillion USD. Importantly, there are 
trajectories that can meet zero emission scenarios at a low cost (below 1 trillion USD). The 
common characteristics for such trajectories are low demand and a low cost of capital. 

Looking at stranded assets, Figure 6 illustrates fossil-fuel power plant capacity under zero 
emissions scenarios. These still have operating life after 2050 with a range of installed 
capacity of between 50-85 GW for the whole region. Similar to the PRIM analysis for capital 
and operational cost, demand and discount rate are main determinants of stranded asset levels 
in the zero emissions scenarios. Further, looking at Cluster 4 (pink squares) shows that low to 
medium renewable technology capital costs decrease total system cost without necessarily 
decreasing overall stranded asset capacity. 



 
 

 
FIGURE 6. PRIM CLUSTER ANALYSIS OF STRANDED ASSETS IN ZERO EMISSIONS SCENARIOS 

(GW) (108 SCENARIOS)  

TABLE 4. RESULTS OF THE PRIM ANALYSIS FOR STRANDED ASSETS 
 Determinant 1 Determinant 2 Determinant 3 Coverage/Density 
Cluster 1: high 
capacity, high cost 

High demand (251 
EJ) 
 
qp value: 10-6 

High cost of capital 
(12%) 
 
qp value: 10-6 

 100%/100% 

Cluster 2: low 
capacity medium 
cost 

Medium to high 
demand (230 to 251 
EJ) 
qp value: 10-3 

Low to medium cost 
of capital (3%,6%) 
 
qp value: 10-2 

 80%/66% 

Cluster 3: low 
capacity, low cost 

Low to medium 
demand (220 to 230 
EJ) 
qp value: 10-5 

Low to medium cost 
of capital (3%,6%) 
 
qp value: 10-5 

 100%/83% 

Cluster 4: high 
capacity, medium 
cost 

High cost of capital 
(12%) 
 
 
qp value: 10-8 

Low to medium 
demand (220 to 230 
EJ) 
 
qp value: 10-3 

Low to medium 
learning rates of 
renewable 
technologies 
qp value: 10-3 

100%/100% 

 

Removing the CO2-emission limit has distinct impacts in terms of installed capacity with 
mixes shifting from low-carbon technologies such as Nuclear, Biogas and Wind to e.g. Gas 
and Coal. Some technologies prove to be competitive regardless of the CO2-emission cap: PV 
is also favoured in the high emissions scenarios. This implies that nuclear energy ambitions 
are likely to be a function of government support. 

Fossil fuel price and climate change impact scenarios were not identified as significant 
determinants in the PRIM analysis. The first is linked the changes in fossil fuel price 
impacting mainly the price of oil, which is not widespread for electricity generation in South 



 
 

America (for details see Appendix B, Figure B5). Natural gas, much more widely used in the 
region, has a variation in price of 0.39 USD/GJ (IEA, 2015). Similarly, climate change 
impacts across the continent are reflected by changes in hydropower capacity factor changes 
for South America of -0.5% from 2013-2050. Additionally, planned hydropower projects 
(48.8 GW) are included in the base model which and are therefore installed across all 
possible futures. The change of -0.5% in the capacity factor will not be a determining factor 
for further investments for hydropower. 

Discussion 
Cost of capital and fossil fuel price 
Low-carbon pathways are generally correlated with perceptions of low investment risk. As 
results show, fossil fuel prices are not a significant driver of either whole system cost or low-
carbon futures for South America and would not, at modelled levels, have enough impact to 
turn the system towards a low-carbon future. The cost of capital however is found to be a key 
determinant throughout our analyses with low cost of capital favouring more capital-
intensive, often low-carbon, technologies. Higher levels of perceived risk, conversely, 
increase the cost of capital and hamper the introduction of these same technologies (Iyer, et 
al., 2015b) (Schmidt, 2014). 

Both financial and political measures can be introduced to help de-risk these investments. 
Examples of ‘financial’ interventions might include subsidizing the interest rate or offering 
tax breaks for low-carbon technologies. Political ‘interventions’ could include the removal of 
barriers in the associated investment environment - such as streamlining the construction 
process (Carbon Pricing Leadership Coalition, 2017). 

Curbing the demand 
Demand reduction has an important effect on both emissions and relative scenario costs. 
Contingent on them being cost effective, energy efficiency measures could  decrease 
electricity demand without affecting major economic processes or decreasing living 
standards. As they would lower supply-side investment requirements, such measures would 
not need to mobilise higher levels of funding. By mapping the cost of energy efficiency 
measures under a U.S. utility’s efficiency program, Hoffman et al. (2017) found the “savings-
weighted average cost” of efficiency measure to be 46 USD/MWh7 across all sectors. The 
residential sector cost averaged at 30 USD/MWh whereas for the non-residential sectors cost 
savings averaged at 53 USD/MWh. Residential sector measures included the deployment of 
energy efficient lighting and appliances. Non-residential sector measures were mainly 
prescriptive and custom rebate program based.  

These results indicate that efficiency measures are cheaper to implement compared to 
expanding power capacity. While U.S and South American conditions are different, the 
energy efficiency costs from Hoffman et al. of 46 USD/MWh compare to the cost of 

                                                 
7 Total Cost of Saved Electricity = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (Program Administrator Costs + Net Participant Costs)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑟𝑟(1+𝑟𝑟)𝑁𝑁

(1+𝑟𝑟)𝑁𝑁−1
,  where N is the lifetime of measure in years 

 



 
 

increasing the demand in South America which ranges from 123 USD/MWh to 154 
USD/MWh. In addition to energy efficiency measures, demand-side management systems 
(DSM) also offers peak shaving and can thus reduce the need for peaking or backup power 
plants. DSM (including demand response) systems also provide opportunities to utilize the 
energy from intermittent capacity such as wind and solar (IRENA, 2015).  

These findings suggest that energy efficiency and DSM should be the focus of future 
refinements of the OSeMOSYS based scenario discovery approach presented in this paper. 

Trade in the region 
South America has significant natural resources along with large inter-connection and trade 
capacity. Together, these can protect the region from expensive generation options that are 
higher up the supply curve. Note however that this may change under cases with limited trade 
where countries with lower hydropower resources, unable to rely on their neighbours, may 
need to resort to more expensive options that drive up the cost to consumers. Further analysis 
may include the “degree of inter-connectedness” as an additional scenario matrix dimension. 

The CO2 cap is set to the same target over all the countries, which provides information about 
the implications of the CO2 cap in the region. As the countries are interconnected and have 
different NDC targets, analysis into the possible carbon leakages would also represent 
interesting future work. 

CO2-emission cap can lead to higher costs 
With a high cost of capital, it is optimal to keep investing in gas generation ahead of the net 
zero-emissions cap in 2050 after which phasing out of fossil-fuelled power leaves idle 
capacity which remains unused (between 50 -85 GW). In order for the system to have zero 
emissions, the reserve margin for the zero-emission scenarios has to be supplied by low-
carbon technologies. These scenarios therefore lead to additional low-carbon capacity 
installation. This is consistent with other work (Lecuyer & Vogt-Schilb, 2014), that notes that 
stranded assets increase the cost of the transition, and might be politically unacceptable 
(Rozenberg, et al., 2014b).  There are several ways of mitigating this issue. One would be to 
use the idle fossil capacity to supply the reserve margin while investing in negative emissions 
options including e.g. CCS of the forestry sector. Another way is to lower capital costs by 
offering financial incentives for stakeholders to invest today in larger renewable capacity (see 
for instance the chapter on Finance in (Fay, et al., 2015)). Appropriate concessionary finance, 
with low interest rates on borrowing, may be an important key to unlocking clean growth. 

Conclusions 
In this paper we apply a simple approach to ‘discover’ both scenarios of interest, and 
determinants of their attributes. This was undertaken on a case study of the South American 
electricity system, in its most detailed regional model. We find that it is easy to relate 
scenario attributes to their inputs for a larger ensemble of model runs that might ordinarily be 
attempted. The relationships and thereafter the insight gained are valuable. Two general 
lessons are learned. First, there is little to limit the exploration of a much larger set of inputs 
(we identify degree of interconnectedness as being one). Second, rather than trying to design, 
or understand, the role of some input ‘within’ a scenario, we can explore the determinants of 



 
 

many inputs and scenarios on an attribute of choice. This holds important insight for policy 
and investment outlooks that need to be formulated in anticipation of differing futures. 

Results show that future investment needs in the energy sector in South America range from 
1 to 2% of GDP per year depending on the scenario considered. Most of the uncertainty is 
driven by future demand, by the cost of capital, and by the climate mitigation constraints. In 
scenarios with high demand and high cost of capital – which favour fossil fuel power plants – 
climate mitigation constraints exacerbate tensions and significantly increase the costs.  

It is however possible to completely decarbonize the electricity sector by 2050 at a low cost 
(below 1 trillion USD) if demand and cost of capital is low. Increases in demand could be 
more cost efficiently mitigated through energy efficiency measure than by increasing supply8. 
Furthermore, the ‘cost of capital’ drives the system’s structure and cost. This suggests 
concessionary finance products, as well as engineering-construction support, might 
effectively lower construction interest rates and risks. Such measures would make capital-
intensive technologies like hydropower and wind more competitive. They would also prevent 
stranded fossil fuel capacities over the next decade should more stringent climate targets be 
implemented. One way of modelling concessionary financing is to have technology specific 
cost of capital, favouring renewable technologies. 

Finally, all aspects of this work are open source (https://doi.org/10.5281/zenodo.2238771). 
Together with the method applied it is hoped that adoption will be eased, transparency 
improved (Pfenninger, et al., 2018) and the tool kit needed to address increasing complexity 
in models more easily managed. 
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8 As such, further analysis on efficiency measures would be the next step to see the impact in the electricity system. 
Furthermore, as Welsch et al. (2012) developed a module for Smart Grid modelling in OSeMOSYS, peak shaving 
of demand in the South American system would also be an important future task. 

https://doi.org/10.5281/zenodo.2238771
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 Appendix A 
TABLE A1. REPRESENTED TECHNOLOGIES IN SAMBA 

Technologies represented in SAMBA 

Renewable technologies Fossil Fuelled technologies Storage options 

Wind off-shore Nuclear Hydro power reservoir Brazil 

Wind on-shore Natural Gas Combined Cycle Hydro power reservoir Venezuela 

Solar Photovoltaics Natural Gas Open Cycle 
 

Concentrated Solar Power Pulverized Coal 
 

Clean coal (carbon capture and storage) Oil Products 
 

Biomass Incineration 
  

Biogas 
  

Geothermal 
  

Large Hydro 
  

Small Hydro 
  

 

TABLE A2. CHANGES FROM SAMBA 2015 (MOURA, 2017) TO SAMBA 2017 
  Main Model changes from SAMBA 2015 to SAMBA 2017 

1 Guyana was added to the reference scenario. 

2 Minimum generation equation is removed from the model file and replaced with a lower limit for the residual 
capacity with same percentage except for where there are too little resources in the country to meet the lower 
limit (valid for Ecuador, Hydropower Itaipu and Yacireta). 

3 Reserve margin was implemented from 2020 with a linear increase to 15% by 2030.  

4 Demand was updated according to new country projections based on Vector auto regression based on GDP, 
population, urbanization rate and electric vehicles penetration. 

5 Renewable energy technologies: PV, Concentrated solar power, Wind on shore, Wind off-shore and Geothermal 
were updated to National Renewable Technology Laboratories (NREL). 

6 Fuel cost is updated to international price from World Bank Commodities Price Forecast (June, 2016) and World 
Energy Outlook (2015) for: Natural gas, Heavy fuel oil and Coal. Off shore Natural gas price was not updated. 

7 Fuel cost for the domestic market is assume to be 5% less due to decreased logistical costs. 

8 The OSeMOSYS model is updated to use the new storage equations (version 2016-08-01). 

9 New output variables are added to the OSeMOSYS model file: Total Non-Discounted Cost and Total Non-
Discounted Cost By Technology. 



 
 

10 Paraguay electricity system is merged into one system instead of two (Itaipu and Yacireta) as the trade in the 
Paraguay system with a reserve margin gives skewed results (BACKSTOP) which is not realistic. 

11 Transmission cost between the countries is decreased to 1USD/GJ to allow more trade between the countries. 

12 Wind capacity factors are modified to a hourly shape per country to avoid wind being installed as baseload using 
data from Renewables Ninja for GDP coordinates with good wind potential based on wind map from dESA KTH. 

13 Capacity credits for all countries were updated for the reserve margin. 

14 CO2 emission cap was updated to 1) no limit 2) 50% reduction by 2050 from 2013 CO2 emissions 3) 0% emission 
by 2050 with peak in 2020. 

15 Hydropower capacity factors is adjusted to climate change based on Representative Concentration Pathway 
8.5W/m2 for all Hydropower technologies. 

16 Renewable technologies are allowed to install more per year later in the model period (2030 -->) as long as there 
are natural resources in the country. 

 

  



 
 

Appendix B 

Demand projection 
Forecasting the electricity consumption using econometric approaches have been widely used 
e.g. (Mohamed & Bodger, 2005), (Bianco, et al., 2009), using economic and demographic 
variables as predictors. The demand projections for SAMBA are divided into three steps. 
First, the electricity consumption is forecasted using econometric forecasting Vector Auto-
Regression (VAR) or Vector Error Correction Model (VECM). The predictors used in the 
analysis are GDP and population forecasts for the 10 countries (except for Guyana as data 
was unavailable, where respective growth rate was applied) as seen in Table B1.  

TABLE B1. DATASET FOR THE VAR AND VECM (UN DESA POPULATION DIVISION, 2015) 
(WORLD BANK, WDI, 2016) (IIASA, 2013) 

Historical data (1971-2015) Forecasting data 2015-2060, Shared 
socioeconomic pathways SSP1-SSP5  

Electricity consumption: World bank WDI 
Electricity consumption/capita * UNDESA 
Population 

GDP: OECD Env-Growth*  

Population: UNDESA Population  POP: OECD Env-Growth* 
GDP (current $): World Bank WDI  

* For both population and GDP the growth rate was applied to the historical data so discrepancies between the data would 
not affect the transition. 

Methodology 

As illustrated in Figure B1, the evaluation process for the VAR and VECM follows three 
steps. 

1. To avoid spurious regression analysis a unit root test is preformed to determine 
whether the variables are stationary or not. For the test, the Augmented Dickey-Fuller 
(ADF) test is used for both intercept and time trend (for results, see Table B2). 

2.a If all variables are stationary at first difference I(1), a Johansen co-integration test 
is performed. If there are co-integrated equations, then Vector error correction model 
(VECM) is performed (for results see Table B3). 

2.b For the mixed integration degrees an unrestricted VAR model is developed where 
the variables are differentiated if non-stationary. 

3. For all residuals a heteroskedasity test, serial correlation test and normality test are 
performed to see if the residuals are white noise (for results see Table B4). 

 



 
 

 
FIGURE B1. EVALUATION PROCESS FOR THE DEMAND PROJECTION FOR GDP AND POPULATION 

 

 

TABLE B2. UNIT ROOT TEST FOR ALL COUNTRIES. 
Unit root test   Augmented Dicker-Fuller (Trend and Intercept)     

    Level 
First 
difference 

Second 
difference     

 

  Variable p-value p-value p-value 
Integration 
order Methodology 

 
Argentina Electricity consumption 1 0 ***   I(1) 

VAR    GDP (current $) 0.9963 0.0001 ***   I(1) 

  Population 0     I(0) 

Brazil Electricity consumption 0.9999 0 ***   I(1) 

VAR    GDP (current $) 0.9998 0.0001 ***   I(1) 

  Population 0.0021 *** 0.2468   I(0) 

Bolivia Electricity consumption 1 0.026 **   I(1) 

VAR    GDP (current $) 1 0.034 **   I(1) 

  Population 0.03 ** 0.2545   I(0) 

Chile Electricity consumption 0.999 0.0258 **   I(1) 

VECM    GDP (current $) 1 0.0041 **   I(1) 

  Population 0.9765 0.003 **   I(1) 

Colombia Electricity consumption 0.9987 0 **   I(1) 

VAR    GDP (current $) 1 0.9954 0 *** I(2) 

  Population 0.1195 * 0.8743 0.5379 I(0)* 

Ecuador (ln) Electricity consumption 1 0.001 ***   I(1) VECM  



 
 

  GDP (current $) 1 0.0027 ***   I(1) 

  Population   0.093 *   I(1)* 

Paraguay (ln) Electricity consumption 0.9999 0.0145 **   I(1) 

VAR    GDP (current $) 0.999 0.0037 ***   I(1) 

  Population 0.0344 **     I(0) 

Peru Electricity consumption 1 0 ***   I(1) 

VECM    GDP (current $) 1 0.0001 ***   I(1) 

  Population 0.5809 0.1144 * 0.1745 I(1)* 

Venezuela, (ln) Electricity consumption 0.01 ***     I(0) 

VAR    GDP (current $) 0.84 0.002 ***   I(1) 

  Population 0.0735 0.0158 **   I(1) 

Uruguay, (ln) Electricity consumption 0.0033 ** 0.0094   I(1) 

VAR    GDP (current $) 0.0484 ** 0.0061   I(1) 

  Population 0.1261 * 0.3482 0.0156 I(0) 

***, ** 1% resp. 5% significance. * denotes variable which has been chosen with lower significance than 10%.   

Vector error correction model (VECM), Vector auto regression (VAR)         

 
      

 

 

TABLE B3. JOHANSEN INTEGRATION TEST RESULTS

  

Johansen Cointegration test
Number of 
Cointegrated variables Eigenvalue Statistic Critical Value Prob.*
None * 0.928606 132.496 42.91525 0
At most 1 0.279301 24.27492 25.87211 0.078
At most 2 0.232439 10.84603 12.51798 0.0936
None * 0.84338 91.82291 42.91525 0
At most 1 0.253687 15.81164 25.87211 0.5077
At most 2 8.88E-02 3.814606 12.51798 0.7688
None * 0.882106 114.9895 42.91525 0
At most 1 ** 0.438365 27.3327 25.87211 0.0327
At most 2 0.085838 3.679643 12.51798 0.7878

 * Trace test indicates 1 cointegrating eqn(s) at the 0.05 level
 ** Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Trace test

Peru

Ecuador

Chile



 
 

TABLE B4. RESIDUALS DIAGNOSTICS OF THE AUTO-REGRESSION 

 Country Heteroskedacity test (ARCH) Histogram test Serial correlation Comment 

Argentina 0.8955 0.02 0.1634 The residuals are not serial correlated nor 
heteroskedastic which is good. The residuals are 
though not normally distributed. 

Brazil 0.6785 0.000001 0.6848 The residuals are not serial correlated nor 
heteroskedastic which is good. The residuals are 
though not normally distributed. 

Bolivia 0.7533 0 0.0614 The residuals are not serial correlated nor 
heteroskedastic which is good. The residuals are 
though not normally distributed. 

Chile 0.8996 0.71 0.219 The residuals are not serial correlated nor 
heteroskedastic which is good, and normally 
distributed. 

Ecuador 0.5378 0.44 0.6255 The residuals are not serial correlated nor 
heteroskedastic which is good, and normally 
distributed. 

Paraguay 0.4629 0.35 0.0679 The residuals are not serial correlated nor 
heteroskedastic which is good, and normally 
distributed. 

Peru 0.8573 0.0001 0.3593 The residuals are not serial correlated nor 
heteroskedastic which is good. The residuals are 
though not normally distributed. 

Venezuela 0.1798 0.17 0.74 The residuals are not serial correlated nor 
heteroskedastic which is good, and normally 
distributed. 

Uruguay 0.777 0.69 0.1002 The residuals are not serial correlated nor 
heteroskedastic which is good, and normally 
distributed. 

 

Step 2. 

Urbanization rates are based on SSP1-SSP5 and connected to respectively forecasted SSP. 
The rates stay the same for SSP1, SSP4 and SSP5, thus the change in urbanization is 
accounted for only in SSP2 and SSP3 as seen in Equation B. 

EQUATION B. DEMAND CALCULATION FOR GDP, POP AND URBANISATION RATE 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑝𝑝𝑝𝑝𝑝𝑝,𝐺𝐺𝐺𝐺𝐺𝐺)  +  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
=  𝐹𝐹(𝑝𝑝𝑝𝑝𝑝𝑝,𝐺𝐺𝐺𝐺𝐺𝐺)  + (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢1 –  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2/𝑆𝑆𝑆𝑆𝑆𝑆3)  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2/𝑆𝑆𝑆𝑆𝑆𝑆3 
∗  ( 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ/𝑐𝑐𝑐𝑐𝑐𝑐 –  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ/𝑐𝑐𝑎𝑎𝑎𝑎) 

The delta between urban demand compared to rural demand is estimated for Bolivia in (Peña, 
et al., 2017) at 349 kWh/capita in 2035. Bolivia is a country in the region with a high 
urbanization rate. Its delta is assumed representative for the other South American countries. 
The data was extrapolated to 2060 with a difference between urban and rural consumption of 
510 kWh/capita. 



 
 

Step 3. 

The electric vehicle (EV) electricity consumption from (Guivarch & Fisch, 2016) is defined 
for Latin America based on the EMF-450 scenario from Assessment Report 5 (AR5) 
scenarios. There are 6 scenarios developed for the transport sector, which follow the narrative 
of the AR5 scenarios. The assumed corresponding SSPs with the transport scenarios from 
AR5 scenarios are illustrated in Figure B2. The data were disaggregated in two steps. First, 
the total electricity demand was divided by the projected population for EMF-450 scenario. 
Second, the electricity demand per capita was multiplied by each SSP projected population 
per country. 

The electricity demand from transportation was assumed to be an additional demand which 
was not included in any of the previous steps. Thus the EV demand/capita was added to the 
total demand. 

The results did not reach satisfactory levels in the VAR/VECM analysis for Colombia. 
Colombia and Guyana was therefore assumed to have the average growth rate of South 
America for each SSP scenario. The final results for the region can are illustrated in Figure 
B3. 

 

 

 
FIGURE B2. CONNECTED ELECTRIC VEHICLE PROJECTION TO EACH SSP 



 
 

 
FIGURE B3. DEMAND PROJECTIONS FOR SAMBA 

Renewable technologies learning curve 
Renewable technology learning curves were based on the National Renewable Laboratories 
(NREL) projections (NREL, 2016). The RET technologies with learning potential considered 
in the analysis are: On-shore Wind, Offshore Wind, Solar Utility PV, CSP and Geothermal. 
Two parameters are considered for the learning curves: Efficiency and cost. As shown in 
Figure B4 the highest capital cost reductions are for CSP, Off-shore Wind and PV. 

 
FIGURE B4. RENEWABLE TECHNOLOGIES CAPITAL COST  

Regarding capacity factors, seen in Figure B5, learning curves are related to wind power 
while other technologies are expected to stay the same throughout the modelling period. 
(Therein efficiency and cost improvements are assumed to fully account for the learning). 



 
 

 
FIGURE B4. RENEWABLE TECHNOLOGIES CAPACITY FACTORS 

Discount rate 
The discount rate was set to 3%, 6% and 12% to represent a spread of plausible pathways. 
For all power plant technologies, the discount rate was similarly used to represent interest 
rate during construction (IDC) – thus capturing the cost of borrowing capital and not simply 
the overnight cost. The modelled costs for the three discount rates are illustrated for 2013 and 
2050 in Table  B5 (renewable technologies are based on medium cost). For the renewable 
technologies the capital cost is dynamic, meaning that depending on the combination of 
discount rate and renewable technology (with its respective learning) the capital cost varies 
with both the discount rate and the technology cost profile. 

TABLE B5. CAPITAL COST WITH IDC FOR ALL TECHNOLOGIES, (RENEWABLE TECHNOLOGIES 
MEDIUM COST) 

 
3% 6% 12% 

Technology 2013 2050 2013 2050 2013 2050 
Biogas 2026 2026 2272 2272 2832 2832 
Biomass 1576 1576 1767 1767 2203 2203 
Clean Coal 5402 3801 6060 4263 7553 5314 
Coal 2589 1932 2904 2167 3619 2700 
CSP 8769 3861 9558 4209 11274 4965 
Distribution 1422 1422 1463 1463 1546 1546 
Gas, CC 1093 1093 1191 1191 1405 1405 
Gas, ST 530 530 562 562 627 627 
Geothermal 5140 5140 5766 5766 7186 7186 
Heavy Fuel 
Oil 

1273 1273 1348 1348 1505 1505 

Hydro 2048 2048 2359 2359 3095 3095 
Hydro Small 3183 3183 3371 3371 3763 3763 
Nuclear 5680 5004 6557 5776 8635 7607 



 
 

PV utility 2037 857 2096 882 2215 932 
T&D 608 608 626 626 661 661 
Wind (25%) 1994 1929 2173 2102 2563 2480 
Wind 
Offshore 

5891 4029 6421 4391 7575 5180 

 

The life span, fixed and variable cost of each technology was obtained from the Energy 
Technology Systems Analysis Program (ETSAP) Technology Brief reports (IEA ETSAP, 
2010) (IEA ETSAP, 2010) (IEA ETSAP, 2010) (IEA ETSAP, 2010) (IEA ETSAP, 2010) 
(IEA ETSAP, 2013) (IEA ETSAP, 2013) (IEA ETSAP, 2014). For fossil fuel technologies, 
the thermal efficiency and its corresponding future improvements was obtained from the 
Energy Technologies Perspectives report (IEA ETP, 2012) (IEA ETP, 2014) (IEA ETP, 
2015). 

CO2-emission cap 
The CO2-emission cap was set to three levers: 

1) No limit 
2) 50% reduction of 2013 emissions by 2050, with a peak in 2040. 
3) 0% emissions by 2050 with a peak in 2020. 

 

FIGURE B5 CO2-EMISSIONS CAP 

The capacity changes with changes (as a function of demand, but also) in technology 
investment – in particular as variable renewable energies are added. This reflects the power 
system reliability needs – and the requirement to maintain an invoke-able reserve margin. The 
reserve margin is the difference between the effective installed capacity and the system peak 
load, expressed in percentage value. A functional power system usually operates with 15-18% 
reserve margin (Rochlin, 2004). These vary as a function of system specifics, reliability 
requirements, risk perception and other factors. For SAMBA, a 15% reserve margin was set 



 
 

for all countries. To account for variability, and yet maintain a reserve margin, ‘capacity 
credits’ are assigned. These represent the amount of capacity for which can be accounted for 
the reserve margin. For the SAMBA model the chosen capacity credits are shown in Table B6 
where solar and wind power would have a lower capacity credit as the timing of the peak 
demand might not coincide with the availability of solar and wind. 

TABLE B6. CAPACITY CREDITS FOR ALL TECHNOLOGIES IN SAMBA 

Technology Capacity 
credit 

Biogas 100% 
Gas, CC 100% 
Geothermal 100% 
Heavy Fuel 
Oil 

100% 

Hydro 100% 
Nuclear 100% 
Gas, ST 100% 
Wind 
Offshore 

5% 

Wind (25%) 5% 
PV utility 5% 
CSP1 30% 
Clean Coal 100% 
Coal 100% 
Geothermal 100% 
Biomass 66% 

 

Because the energy system in the 0% emissions scenario has no carbon emissions, the reserve 
margin contributions from fossil fuelled technologies are from 2040 gradually phased out. By 
2050 only carbon free technologies are allowed to satisfy the capacity reserve constraint. 
With their associated capacity credit, total investment numbers increase. 

Fossil fuels price development  
The fossil fuel price development is based on two reports: World Bank Commodities Price 
Forecast (constant US dollars) July 2016 and World Energy Outlook (2015) (World Bank, 
2016, July) (IEA, 2017). For the years 2013-2025 all scenarios are based on the same 
forecasted price from World Bank Commodities Price Forecast (Figure B5). From 2025-2040 
the two projected scenarios: Current policies scenario (high) and Low oil price scenario (low) 
is applied. From 2040 and onwards the Compound Annual Growth Rate (CAGR) from 2013-
2040 is applied. 

Many of the South American countries have large reserves of fossil fuels and the domestic 
price of fuels are assumed to be 5% cheaper than the international price due to reduced costs 
for logistics. Trade between the interlinked countries such as Argentina and Bolivia the 
international price is assumed for the consuming country. 



 
 

 
FIGURE B6. FOSSIL FUEL PRICE DEVELOPMENT 

Climate change affecting hydro power 
The climate change scenario has two levers: one with a static future climate and the other 
with a climatic change following the Representative Concentration Pathway (RCP) 8.5. The 
RCP 8.5 is the scenario with the highest emissions and temperature changes for AR5 (IPCC, 
2007, 19–21 September). The data which was used were from two data sets: 

1) Discharge projection (Alfieri, et al., 2017) 2006-2057. The monthly average discharge 
was identified for locations with existing hydro power plants (Geofabrik, 2016) (as seen 
in Figure B6). This was identified based on changes in the geographically closest 
location. Discharge data was aggregated to the level at which generation data is 
available. 



 
 

 
FIGURE B7. MODELLED HYDRO POWER PLANTS IN SOUTH AMERICA DEVELOPED IN ARCGIS 

2) Monthly generation data for all hydro technologies are considered in SAMBA. For 
power plants in Brazil and Venezuela with hydro storage, the Affluent Natural Energy 
(ANE) was modelled instead of generation as this is more closely connected to the 
discharge compared to the generation collected from the national databases: (CNE, 
2015) (SIEL, 2014) (COES, 2013) (Goberno de Bolivariano de Venezuela, 2012) 
(Comisión Nacional de Energía Atómica, 2013) (CONELEC, 2010) (ADME, 2013) 
(Autoridad de Fiscalización y Control Social de Electricidad, 2013) (ONS, 2013). 

Exceptions 

In the case of Guyana and Tele Pires, generation data was not available and were instead 
based on discharge change from 2013 (average of 2006-2013) to 2050 (average 2045-2055). 
Bel Monte Dam, Paraguay Large hydro, Tapajos, Madeira did not have available discharge 
data nor generation data and the closest regional change was assumed for these. 

Methodology 

To be able to use the discharge as a predictor, a vector auto regression (VAR) with seasonal 
adjustment with dummy variables was applied. The following steps for the VAR for each 
hydro technology in SAMBA were executed. 

1) Unit root test (Augmented Dicker Fuller) to assess if the process (both generation and 
discharge) is stationary.  

2) Unrestricted VAR with generation as dependent variable, discharge as endogenous and 
dummy variables as exogenous. 

3) Lag-length criteria is assessed from Akaike Information Criterion (AIC) and Schwarz 
Information Criterion (SC) to find the optimal lag length. 

4) Evaluation of the quality of the forecast is based on R-squared, Durbin-Watson, AIC, 
Root Mean Square Error (RMSE), Covariance Proportion and Thiel Inequality 
coefficient. 



 
 

5) The process is reiterated from step 2 to find the best fit with different seasonal division 
(6 months, 12 months and no season). 

To keep the model from having any changes from the “no climate change” scenario in the 
starting years the percentage change from the VAR was applied to existing capacity factors to 
keep consistency between scenarios. All percentage changes were calculated on a monthly 
basis to capture the seasonal changes of generation with climate change. 

The results are shown in Figure B6 for both the discharge changes (average of 2006-2013 to 
average of 2045-2055) and forecasted generation changes (2013 to average of 2045-2055). In 
general, the discharge changes are higher than the generation changes.  

 
FIGURE B8. CHANGES IN THE ELECTRICITY GENERATION COMPARED TO THE DISCHARGE 

A study by (Schaeffer, et al., 2008) analysed the impact of climate change in hydrology for 
Brazil. Schaeffer et al. based their analysis on the Special Report on Emissions Scenarios 
(SRES) A2 scenario, which in Assessment Report 4 (AR4) was the high emissions scenario. 
They found a hydrology generation impact of -1% for Brazil for the period 2071-2100. The 
results from this study found an overall generation impact for Brazil of -1.5% for the RCP 8.5 
for the period 2045-2055. Comparing the RCP 8.5 to SRES the scenario it is comparable to 
the A1F1 scenario which has higher emissions than A2 (SEI, 2016) (IPCC, 2000). The higher 
impact in this study can be explained by the difference in scenario projections. 
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