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Abstract: A novel high numerical aperture (NA) focusing system with a fractal 

conical lens (FCL) is proposed, and tight focusing of radially polarized beams through 

the proposed optical system is investigated theoretically and numerically. The 

influence of several relevant factors, including the FCL's stage S, objective lens' NA, 

and truncation parameter 0, on the targeted beam's focusing characteristics in the 

focal region is discussed in detail. It is found that, when a FCL with S≥0 is employed, 

position of the major focal point would shift from the geometric focal point, and the 

focused intensity distributions cannot maintain symmetrical about the focus any more, 

although they present different profiles for various truncation parameters 0. When S

≥2, multiple focal points can be generated, i.e., a single major focus and a series of 

subsidiary foci surrounding it along the optical axis, which form a focal region. These 

unique focusing characteristics with a FCL are remarkably different from that of 

without a FCL. The fascinating findings here may be taken advantage of when using 

radially polarized beams in exploiting new-type optical tweezers and making use of a 

FCL. 
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1. Introduction 

In recent years, tight focusing of radially and azimuthally polarized light beams 

through a high numerical aperture (NA) objective lens has attracted intensive 
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attention and extensive investigation, because of their fascinating features and wide 

potential applications [1–10]. It is found that, when radial polarizations are highly 

focused, a very strong longitudinal electric field component will emerge in the focal 

region, which forms an extremely tight focal spot. It is known that a tight focal spot is 

of great help to improve the resolution of microscopy [11, 12], enhance laser cutting 

ability in material processing [13], and can also be applied to improve the 

performance of optical tweezers due to the reduction of scattering [10, 14, 15]. Tight 

focusing of the electromagnetic field with various polarizations have been 

investigated, such as the linearly polarized, circularly polarized, radially polarized, 

azimuthally polarized, and hybridly polarized beams, as well as vortex beams [1–7]. It 

is also revealed in the vicinity of the focus that, for linear incident polarization, the 

generated longitudinal polarized component is not rotationally symmetric, which 

causes an asymmetric deformation of the focal spot [16, 17]; for radial polarization 

input, it generates a strong longitudinal electric field component in the focal zone [11, 

18]; In contrast, the azimuthal incident polarization produces a strong magnetic field 

on the optical axis [19], meanwhile the electric field is purely transverse and null at 

the center [2]. When the hybrid polarized vector beams are highly focused, the focal 

shape may change from an elliptical spot to a ring focus with increasing the radial 

index, and meanwhile, the radial-variant spin angular momentum (SAM) of hybrid 

polarized vector beams is shown to be converted into radial-variant orbital angular 

momentum (OAM) [20]. One most recent report indicates that by dressing spatially 

variant polarization optical beams (e.g., azimuthally or radially polarized ones) with a 

vortex, one can generate at the focal plane subwavelength structures rotating with the 

optical frequency [21]. 

As a more general optical device than a conical lens (CL), the fractal conical lens 

(FCL) has its radial phase distribution following the Cantor function [22, 23]. Since 

its first demonstration by Monsoriu in 2006, research and applications on a FCL has 

attracted considerable interest due to the particular self-similarity characteristics under 

monochromatic illumination [22–25]. In the present work, we propose a novel high 

numerical aperture (NA) focusing system, in which a fractal conical lens (FCL) is 
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employed, and investigate the tight focusing of radially polarized beams through the 

proposed optical system. This paper is structured as follows. In section 2, the theory 

model about the tight focusing of radially polarized beams modulated by a FCL is 

presented, and the main focusing formula are derived. In section 3, in terms of the 

formula obtained above, the influence of several relevant factors, including the FCL's 

stage S, objective lens' NA, and truncation parameter 0, on the targeted beam's 

focusing characteristics in the focal region is numerically simulated and analyzed in 

detail. Finally, the main findings obtained are summarized in section 4. 

2. Theory Model 

As a new type of cylindrically symmetric diffractive lens, a fractal conical lens (FCL) 

has its radial phase profile designed from any given Cantor set (CS). As an example, 

figure 1(a) illustrates the construction of a regular triadic CS. The first step consists in 

defining a straight-line segment of unit length called the initiator (stage S=0). Next, at 

stage S=1, the generator of the set is constructed by dividing the segment into three 

equal parts of 1/3 and removing the central one. Then the procedure is continued at 

the subsequent stages S=2, 3 …. It is easy to find that, in general, at stage S there are 

2S segments of length 3-S and 2S-1 disjoint gaps located at intervals [pS,l, qS,l], with 

l=1, …, 2S-1. For instance, S=3, the triadic CS presents seven gaps at [1/27, 2/27], 

[3/27, 6/27], [7/27, 8/27], [9/27, 18/27], [19/27, 20/27], [21/27, 24/27], and [25/27, 

26/7]. For clarity, the three first stages CS are depicted in figure 1(a). It should be 

noted that, a similar procedure could be followed for CS other than triadic. 

Based on the fractal structure, the Cantor function FS(x) is defined in the domain 

[0, 1] as [22, 23] 
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where S is the stage of the Cantor function, and l is the number of disjoint gaps 

intervals [pS,l, qS,l] that the function has. Here q and p denote the start and end points 

for each segment of the Cantor function, respectively, and FS(0)=0 and FS(1)=1. For 

example, when S=3, on the intervals, the constant values of F3(x) are 1/8, 2/8, 3/8, 4/8, 
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5/8, 6/8, and 7/8, respectively (see figures 1(a) and 1(b)). In between these intervals 

the continuous function increases linearly, as plotted in figure 1(b). 

The FCL is a rotational symmetric pupil whose phase profile is designed from 

the Cantor function of a given stage S. Then, the phase of a FCL of stage S is given by 

( )  ,)(2iexp),( 1  S

S

FCL FSqq +−==                          (2) 

where 

Rr /=                                              (3) 

is the radial variable r normalized by the pupil radius R. Then, the surface-relief 

profile of the FCL can be expressed from the relation [26] 
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where )]([mod 2 r
 denotes the phase function )(r  modulo 2, n  represents the 

refractive index of the optical material used for constructing the lens, and  is the 

wavelength of the light. 

Figure 1(c) illustrates the profile of a triadic FCL generated by equation (4) in 

the case S=3. One can find that there exist eight phase peaks in the domain [0, 1] 

along the radial direction, and the phase profile changes linearly versus the 

normalized radial coordinate r/R. 

When illuminated by a monochromic light beam, the FCL's phase transmittance 

can be expressed as 
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where ( )1

1 /sin nNA−=  denotes the maximum convergence angle determined by NA 

and n1. Here NA is the objective lens' numerical aperture, and n1 is the refractive 

index in image space. 

In this work, we investigate the intensity distribution of highly focused radially 

polarized beams modulated by a FCL. In order to visualize the focusing procession, 

figure 2 illustrates the geometry of the tight focusing system. According to the 

vectorial Debye theory, when a radial polarized beam is focused by a high NA 

focusing system combined with a FCL, the radial and longitudinal components of the 
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electric field in the focal region, respectively, have the following form [2, 27] 
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where  1nfA =  denotes a constant with f , 
1n  and  being the optical focal 

length, refractive index of the medium, and optical length in vacuum, respectively. 

)(0 l  represents the relative amplitude of the field in the pupil of the lens assumed to 

be a function of  only.  12 nk =  denotes the wave number in image space, J0 and J1 

represent the first kind of Bessel functions of orders 0 and 1, respectively. In addition, 

T() denotes transmittance function of the FCL shown in figure 1(c), which will be 

used to modulate the radially-polarized incident beam. 

In the following analysis, let us assume that the incident radial-polarization has a 

Laguerre-Gaussian profile [28] 
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is a constant related to the incident beam power P0, and L1
p(·) denotes the generalized 

Laguerre polynomial with p+1 rings. sin0 fw =  is the beam width, and 0 is a 

truncation parameter, which is defined as the ratio of the pupil radius R to the incident 

beam radius w0 in front of the focusing lens. Note that 0 should be greater than 1 

because some intensity distribution of the incident beam would be blocked by the 

pupil if 0<1. 

Therefore, the total intensity distribution of light beams in the focal region can be 

expressed as 

.),(),(),(
22

zEzEzI zr  +=                                (9) 

In terms of Eqs. (5)–(9), evolution of the optical intensity distribution of highly 

focused radially-polarized beams modulated by a FCL can be examined in detail. 
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3. Numerical Results and Analysis 

Figure 3 shows the evolution of the total intensity distributions (2D left column, and 

1D right column, below is the same) of tight focused radially polarized beams without 

a FCL for different truncation parameters 0. It is clearly seen from figure 3 that, in 

the geometric focal region, the focused intensity presents a variety of distributions 

versus 0. When 0=1.26 the focused intensity distribution forms a dark area 

surrounded by the intense light field, which is known as optical cage, and meanwhile 

two symmetrical bright spots are located on the beam axis either side of the dark 

region (see figures 3(a1) and (a2)). When 0=1.64 the intensity distribution emerges a 

transitional profile (see figures 3(b1) and (b2)). While the focused intensity generates 

a sharp peak-centered distribution when 0=2.02 (see figure 3(d1) and (d2)). Here, it 

is also noted that, without a FCL, the evolution of tight focused intensity distribution 

of radially polarized beams in the focal area is approximately symmetrical about the 

focal point, although it may produces a variety of profiles for various 0. 

Figure 4 depicts the evolution of the total intensity distributions of tight focused 

radially polarized beams modulated by a FCL in the case S=0 for different truncation 

parameters 0. Comparing figure 4 with figure 3, it is obviously noted that in this case 

none of the focused intensity distributions produces a dark-centered profile in the 

focal area any more. Clearly, they all form a sharp peak-centered configuration, and 

become asymmetrical about the focal point, even though they may present different 

profiles for various truncation parameters 0. 

When FCL's stage S=1 shown in figure 5, it can be found that the width of 

intensity distribution becomes wider, and evolution of the total intensity distributions 

becomes more complex. It is also noticeable that the position of the major focal point 

shifts from the geometric focus in the presence of a FCL stage S=1. 

Further increase FCL's stage to S=2, one can notice from figure 6 that, besides a 

major focal point, several subsidiary focal points arise along the axis direction, 

producing a focus region with unique fractal envelopes. 

When S=3, as expected, the evolution of the total intensity distributions, shown 

in figure 7, exhibits a single major focus and a series of subsidiary focal points 
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surrounding it, which generate a focus region. Of great interest is that, when 0=1.35, 

in the geometric focal region, it produces a almost dark-hollow distribution. 

Increasing 0 to 1.78, the intensity in the focus is not null, and more subsidiary focal 

points emerge. Further increasing 0 to 2.21, then it forms a main peak profile in the 

geometric focus and a series of subsidiary focal points surrounding the main focus. 

In order to investigate the influence of objective lens' numerical aperture (NA) 

on the focused radially polarized beams' intensity distribution, figure 8 depicts the 

evolution of on-axis intensity distributions for several NA. It is clearly seen from 

figure 8 that the maximum intensity enhances when increases NA, whether modulated 

by a FCL or not. Comparing figures 8(a) and 8(b), one can also note that when NA is 

changed, without a FCL the focused intensity maintains a Gaussian-like distribution 

when 0=2.02 (see figure 7(a)), while with a FCL S=3 the focused intensity 

distributions present a variety of profiles, although still maintain center-peaked 

configuration when 0=2.21 (see figure 8(b)). 

Figure 9 illustrates the influence of truncation parameters 0 on the tight focused 

radially polarized beams intensity distribution. It is obvious from figure 9 that the 

maximum intensity enhances when increase 0 whether having a FCL or not, although 

the intensity distribution may change form dark-centered to peak-centered 

configurations for some different 0. 

4. Conclusion 

In this work, we have proposed a novel high numerical aperture (NA) system with a 

fractal conical lens (FCL), and have investigated the tight focusing of radially 

polarized beams through the proposed optical system. Also, we have discussed the 

influence of several factors, mainly including the FCL's stage S, objective lens' NA, 

and truncation parameter 0, on the targeted beam's focusing characteristics in the 

focal area. Results show that, when a FCL with S≥0 is employed, the major focal 

point would shift its position from the geometric focal point, and the focused intensity 

distributions can no longer maintain symmetrical about the focus, although they 

present different profiles for various truncation parameters 0. When S≥2, multiple 
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focal points can be generated, i.e., a single major focus and a series of subsidiary foci 

surrounding it, which form a focus region. These unique focusing characteristics with 

a FCL are remarkably different from that without a FCL. Owing to these intriguing 

findings, the novel high numerical aperture system, proposed here, may find 

applications in exploiting new-type optical tweezers and making use of a FCL. 
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FIGURE CAPTIONS 

Figure 1. (Color online) (a) Illustration of the generation of the triadic Cantor set, starting from 

the initiator, S=0, to S=3; (b) the Cantor function )(xFS
 for S=3; (c) the phase of a triadic FCL for 

)(2 1  s

s

s F+=  with S=3 and Rr /= . 

Figure 2. Schematics of highly focused radially polarized beams modulated by a FCL. 

Figure 3. (Color online) Evolution of the total intensity distributions (2D left column, and 1D 

right column) of tight focused radially polarized beams without a FCL for different truncation 

parameters: (a1), (a2) 0=1.26; (b1), (b2) 0=1.64; (c1), (c2) 0=2.02. The beam power in each 

transverse plane is normalized to P0=1W. 

Figure 4. (Color online) Evolution of the total intensity distributions (2D left column, and 1D 

right column) of tight focused radially polarized beams modulated by a FCL in the case S=0 for 

different truncation parameter: (a1), (a2) 0=1.04; (b1), (b2) 0=1.43; (c1), (c2) 0=1.81. The 

beam power in each transverse plane is normalized to P0=1W. 

Figure 5. (Color online) Evolution of the total intensity distributions (2D left column, and 1D 

right column) of tight focusing radially polarized beams modulated by a FCL in the case S=1 for 

different truncation parameter: (a1), (a2) 0=2.04; (b1), (b2) 0=2.59; (c1), (c2) 0=3.14. The 

beam power in each transverse plane is normalized to P0=1W. 

Figure 6. (Color online) Evolution of the total intensity distributions (2D left column, and 1D 

right column) of tight focusing radially polarized beams modulated by a FCL in the case S=2 for 

different truncation parameter: (a1), (a2) 0=1.42; (b1), (b2) 0=1.92; (c1), (c2) 0=2.43. The 

beam power in each transverse plane is normalized to P0=1W. 

Figure 7. (Color online) Evolution of the total intensity distributions (2D left column, and 1D 

right column) of tight focusing radially polarized beams modulated by a FCL in the case S=3 for 

different truncation parameter: (a1), (a2) 0=1.35; (b1), (b2) 0=1.78; (c1), (c2) 0=2.21. The 

beam power in each transverse plane is normalized to P0=1W. 

Figure 8. (Color online) Evolution of on-axis intensity distribution of tight focused radially 

polarized beams without a FCL (a), and with a FCL (b) for several NA. The beam power in each 

transverse plane is normalized to P0=1W. 

Figure 9. (Color online) Evolution of on-axis intensity distribution of tight focused radially 

polarized beams without a FCL (a), and with a FCL (b) for several 0. The beam power in each 

transverse plane is normalized to P0=1W. 
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