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Abstract 

 

Parameter estimation algorithms integrated in automated platforms for kinetic model identification are 

required to solve two optimization problems: i) a parameter estimation problem given the available samples; 

ii) a model-based design of experiments problem to select the conditions for collecting future samples. These 

problems may be ill-posed, leading to numerical failures when optimization routines are applied. In this work, 

an approach of online reparametrization is introduced to enhance the robustness of model identification 

algorithms towards ill-posed parameter estimation problems. 

 

keywords: design of experiments, identification, model, online, robust parametrization 

 

1. Introduction 
 

Automated model identification platforms were recently employed to perform unmanned experimental 

campaigns with the aim of collecting data for estimating the parameters of kinetic models [1–3]. These devices 

have the potential to dramatically speed up the study of kinetic phenomena and reduce the cost of the 

experimental activity. The model identification algorithms implemented in these platforms integrate two 

computational tools: 1) a tool for model-based design of experiments (MBDoE) to select the optimal 

conditions for the collection of future samples with the aim of improving the statistical quality of the 

parameter estimates [4] and 2) a tool for computing parameter estimates given the samples collected by the 

automated system [5]. Both these tools need to solve optimization problems, for which numerical optimization 

routines are required. The effectiveness of model identification algorithms requires the objective functions of 

the aforementioned optimization problems to be well-posed [6].  

 

The problem of estimating the parameters of kinetic models is frequently ill-conditioned [7]. Identifiability 

problems occur whenever the fitted model responses are poorly sensitive to a change of some parameters 

and/or extreme correlation among parameter pairs is present. Under these circumstances, the model is called 

sloppy (also called poorly constrained model) [7]. In the presence of a sloppy model, the objective functions of 

both parameter estimation and MBDoE problems may be ill-conditioned, resulting in significant numerical 

failures in the process of model identification and a misuse of experimental resources. Enhancing the 

robustness of automated model identification platforms towards model sloppiness is necessary to promote 

their further diffusion into research laboratories. The ill-posedness of an optimization problem is quantified by 

its condition number, which is defined as the ratio between the largest and the smallest eigenvalues of the 

Hessian. The condition number summarizes in a scalar quantity the discrepancy in the sensitivities of the 

model responses towards a change in the model parameters and parameter correlations. Model identification 

algorithms are prone to numerical failures whenever the condition number is high [8].  

 

A number of regularization techniques were proposed to solve ill-conditioned parameter estimation and 

experimental design problems [9–13]. Regularization involves the introduction of a bias in the parameter 

estimates with the aim of reducing their variance and, concomitantly, reducing the condition number of the 
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problem [10]. Popular regularization techniques are i) the Tikhonov regularization [12, 13], ii) the truncated 

singular value decomposition [9, 12] and iii) the parameter subset selection [9, 11, 12]. Other studies 

recommend the use of reparametrization (RP) to address the practical identifiability problem of sloppy models 

[14–19]. Conversely to regularization, RP-based methods do not require the introduction of a bias in the 

parameter estimates. Instead, the aim of RP-based approaches is the transformation of the original parameter 

space into a more robust space, where the condition number is smaller and optimization algorithms can be 

applied more effectively. Tailored transformations have been suggested to reparametrize specific kinetic 

model structures, e.g. Arrhenius-type reaction rates [16–19]. However, only few systematic RP-based 

approaches are available in the literature [15]. A weakness of current RP-based approaches is that whenever a 

robust, i.e. non-sloppy, structure is identified for a given kinetic model, the parametrization is fixed until the 

end of the model identification process. However, sloppiness is associated with both the mathematical 

structure of the model equations and the dataset available to identify the model. It is not possible to 

guarantee that a robust model will not become sloppy after the collection and fitting of new samples [6]. 

 

In this manuscript, an online RP-based approach is introduced with the aim of enhancing the robustness of 

model identification algorithms towards model sloppiness. It is shown that the approach is particularly suited 

for the integration in automated platforms for online model identification. In the proposed framework, the 

online RP method automatically modifies the model parametrization after the collection of each sample with 

the aim of maintaining a small condition number throughout the whole experimental campaign. Online RP is 

demonstrated on a simulated case study where the aim is to estimate the kinetic parameters of an 

esterification reaction of benzoic acid with ethanol.   

 

2. Methods 

2.1. Proposed methodology 
 

An automated platform for online model identification is available for studying the kinetics of a physical 

system of interest. A set � of ��  physical quantities can be sampled online by a measurement system. The 

measurement error for � is Gaussian with zero mean and known covariance matrix �. The kinetic model in Eq. 

(1) is available to the scientist to describe the behavior of the physical system. 

 

���� , �, 
, �, �
 = � 
�� = ���
 (1) 

 

In Eq. (1), �� is a �� × 1 array of predictions for the measurable system states, � and � are respectively a �� × 1 

and a �� × 1 set of functions, � is a �� × 1 set of state variables, 
 is a �� × 1 array of controllable system 

inputs, � is time and � ∈ Θ is a �� × 1 array of parameters ��, … , ���. The objective of the scientist is 

estimating the set of parameters � with the highest possible precision by performing an experimental 

campaign on the automated platform. It is assumed that, in principle, the model parameters can be uniquely 

retrieved by fitting measurements of �, i.e. the model satisfies the requirements for structural identifiability 

[20]. In other words, it is assumed that given sufficient measurements of �, the fitting cost function admits a 

unique global optimum. In practice, the global optimizer of the cost function has to be identified employing 

numerical optimization routines and the convergence towards the optimal parameter values may be 

impractical if the model is sloppy [8]. 

 

A framework for parameter estimation implementing a step of online model reparametrization is now 

introduced with the aim of improving the robustness of online model identification algorithms towards model 

sloppiness. A diagram showing the proposed procedure is given in Fig. 1. The procedure starts from a 

preliminary set of � samples of �, i.e. � = [��, … , ��] and the kinetic model in Eq. (1). The set of equations in 

Eq. (1) is initially extended including the linear system of equations in Eq. (2). 

 

� = "# (2) 
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In Eq. (2), # ∈ Ω is the �� × 1 array of parameters in a transformed parameter space Ω, " is a linear 

transformation from the transformed space Ω to the original parameter space Θ. At the beginning of the 

model identification process, the transformation matrix " is the identity matrix %. In other words, the 

transformed and the original parameter spaces Ω and Θ are initially coincident. The available dataset is 

provided as input to the model identification algorithm. The fundamental steps in the algorithm are:  

 

1. A reparametrization step. At this stage, model sloppiness is diagnosed by analyzing the Hessian of 

the log-likelihood function of the model. An update for the transformation " is then computed 

with the aim of eliminating the sloppiness (i.e. minimizing the condition number to unity) given 

the available dataset. 

2. A parameter estimation step.  The parameters # ∈ Ω are estimated after the reparametrization 

step and their covariance matrix &'  is computed to quantify the statistical quality of the 

estimate. Estimates and covariance computed in Ω are then transformed to the original space Θ 

by applying the transformation " and returned to the user as output. 

3. An optimal MBDoE step.  If parameter statistics are not satisfactory and the experimental budget 

allows for the collection of additional samples, the experimental activity may continue. Optimal 

MBDoE methods are used at this stage to select optimal experimental conditions with the aim of 

minimizing the uncertainty on the parameter estimates [4]. Optimal conditions are then 

transmitted to the automated system for the collection of the following sample. In the proposed 

procedure the optimal MBDoE problem is solved in Ω with the aim of reducing the uncertainty on 

the estimates in the original space Θ. 

 

In the proposed procedure, parameter estimation and the optimal MBDoE problems are solved calling 

optimization routines in a conveniently transformed parameter space Ω. Estimates are then transformed to 

the original parameter space Θ by applying algebraic transformations. The three steps of the procedure are 

further detailed in the following subsections. 

 

 

((Figure 1)) 

 

INSERT FIGURE 1 {methodology.tif} 

 

 

 

2.1.1. Reparametrization 

 

Let "( be the primary transformation matrix before the reparametrization stage in the procedure. "( is 

initially the identity matrix %. Let )|"+", be the negative Hessian of the log-likelihood function Φ�#|�
|"+", 

computed with " = "(. The negative Hessian of the log-likelihood function is also called the observed Fisher 

information matrix and its inverse provides a quantification of the covariance matrix of the parameter 

estimates [21].  

 

The eigendecomposition of )|"+", is performed to diagnose the geometry of the parameter space and 

quantify the sloppiness of the model given the available dataset �. Let .�, … , .�� be the eigenvalues of )|"+", 

and let / be the diagonal matrix whose 00-th element is .1 . The ratio between the maximum and the minimum 

eigenvalue represents the condition number 2. 

 

2 = max .1
min .1

 (3) 
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Let matrix 8 be the orthonormal basis of right eigenvectors of )|"+",. Matrices / and 8 respectively quantify 

the extent of the sloppiness and the directions of the parameter space that are associated to the sloppiness 

[9]. A family of secondary transformation updates "9  is built from "(, 8 and / as in Eq. (4) for minimizing the 

condition number of the problem (i.e. making 2 = 1.0). 

 

"9 = <"(8/=�
>? (4) 

 

The family of transformations in Eq. (4) includes a scaling factor < ≠ 0 and a rotation matrix in the parameter 

space ?. The condition number 2 is not influenced by the choice of < and ?. However, < and ? can be 

regarded as scaling factors for the parameters. Model identification algorithms may be influenced by the 

relative scale of parameter estimates, e.g. in the computation of gradients and parameter sensitivities [22]. In 

this work,  < and ? are computed to scale the transformed model parameters to the same order of magnitude 

(more information on the computation of < and ? can be found in the supporting information). The primary 

transformation  "( is then updated, i.e. "( is replaced with "9, for the following call of the model 

identification algorithm. 

 

 

2.1.2. Parameter estimation 
 

Parameter estimation is performed by solving an optimization problem in the transformed parameter space Ω. 

The transformation matrix " is set equal to "9. The log-likelihood function Φ�#|�
|"+"A  is then computed and 

optimized as in Eq. (5) to obtain the maximum likelihood estimate #B . 

 

#B = arg max
#∈E

Φ�#|�
|"+"A (5) 

 

The covariance &'  for the estimates #B  is then computed as in Eq. (6) by inverting the observed Fisher 

information matrix )|"+"A  [5]. 

 

&' = F)|"+"AG
=�
 (6) 

 

The parameter estimates #B  and related covariance &'  computed in the transformed space Ω are then 

transformed to the original parameter space Θ by applying the transformation "9. The operation leads to the 

computation of the maximum likelihood estimate � ∈ Θ and its associated covariance matrix &�. 

 

�H = "9#B (7) 

 

&� = "9&I"9
J
 (8) 

 

Confidence intervals for the estimates �H and correlation coefficients K1L  between any parameter pair �� and �> 

can be directly computed from &�  [5]. The expression used to compute the correlation coefficients K1L  is given 

in Eq. (9), where quantity M�,1L represents the 0N-th element of &�. 

 

K1L = M�,1L

OM�,11M�,LL
				∀	0, N (9) 
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2.1.3. Optimal MBDoE for parameter precision 
 

The inversion of an ill-conditioned matrix may be required to solve the MBDoE problem if the model is sloppy 

[7, 9]. Hence, it is proposed to solve the MBDoE problem in the robust space Ω with the aim of minimizing 

parameter uncertainty in the original space Θ. A class of popular design criteria is represented by the so-called 

alphabetic criteria, namely A-optimal, D-optimal and E-optimal [4, 21, 23]. In general, optimal MBDoE 

conditions are sensitive to the model parametrization and to the choice of the design criterion. In this study, 

only the D-optimal criterion is used as it is invariant under linear transformations of the parameter space [24, 

25]. 

 

A prediction for the parameter covariance &H' (i.e. the posterior covariance in Ω) after the collection of the 

sample to be designed is computed as in Eq. (10).  

 

&H' = F&'
=� + ∇���#B
�=�∇���#B
J|"+"AG

=�
 (10) 

 

In Eq. (10), ∇ is the gradient operator in the parameter space; the inverse of the prior covariance &'
=� is 

included to quantify the information associated to previously fitted samples; the second addend in the bracket 

quantifies the expected information of the sample to be designed as a function of the design vector 

T = [
, �U], where 
 ∈ V is the array of model inputs and �U ∈ [�WXY, �WZ[] is the sampling time. The D-

optimal conditions T∗ = [
∗, �U∗] are computed by minimizing the determinant of the predicted covariance. 

 

T∗ = argmin
T

det &H' 

s.t. 
 ∈ V, �U ∈ [�WXY, �WZ[] 
(11) 

 

The optimized conditions 
∗, �U∗ are transmitted to the automated setup for the collection of the new sample 

(see Fig. 1). 

 

 

3. Case study 
 

 

The proposed approach to online reparametrization (i.e. online RP) is tested on a simulated case study where 

the objective is the identification of a kinetic model of esterification of benzoic acid and ethanol in flow 

reactor. The kinetic model is presented in Sect. 3.1 and the methods adopted for testing the methodology are 

presented in Sect. 3.2. 

 

3.1. Kinetic model 
 

The kinetic mechanism is modelled as a single reaction where benzoic acid (BA) and ethanol (Et) react 

producing ethyl benzoate (EB) and water (W) [26].  

 

 

BA+Et → EB+W (12) 

 

The reaction is assumed to occur in an ideal plug-flow reactor operated at steady-state, isothermal conditions. 

The reactor length is assumed to be 2m. The reaction kinetics is modelled as a first order in the benzoic acid. 

These assumptions are translated into the set of ordinary differential equations in Eq. (13). 

 

M <a1
<b = c1daeZ				∀	0 = BA, Et, EB, W (13) 
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In Eq. (13), a1  [mol	L=�] represents the concentration of the 0-th species; b [m] is the axial coordinate of the 

flow reactor; M [m	s=�] is the axial velocity of the liquid mixture; c1  is the stoichiometric coefficient of species 

0; d [s=�] is an Arrhenius-type rate constant. The following parametrization with two parameters � = [��, �>] 
is assumed for d: 

 

d = n�o=�p�qr
sJ  

(14) 

 

In Eq. (14), t [K] is the temperature and v [J	mol=�	K=�] is the ideal gas constant. The use of a 

parametrization in the form of Eq. (14) generally reduces the condition number of the problem with respect to 

the original structure of the Arrhenius constant, i.e. d = xn=yz/sJ, where the parameters are a pre-

exponential factor x [s=�] and an activation energy |} [J	mol=�] [16, 19]. 

 

3.2. Objective and methods  

 

The objective in this case study is the estimation of the kinetic parameter set � = [��, �>]. A model 

identification algorithm reflecting the framework presented in Sect. 2.1 was implemented in Python 2.7. An 

option was included in the algorithm to activate or deactivate the reparametrization step in the procedure for 

testing the algorithm both in the absence and in the presence of online RP. It is assumed that the experimental 

budget allows for the collection of 8 samples. A sample is constituted by the two measurements of benzoic 

acid and ethyl benzoate concentration at the outlet of the reactor, i.e. � = FaeZ
~��	, a�e

~��	G. The measurement 

noise associated to the sample is described by the covariance �. 

 

� = �9.0 ⋅ 10=� 0.0
0.0 2.5 ⋅ 10=�� (15) 

 

The design space for the collection of the samples is assumed as three-dimensional. The independent 

experimental conditions are the inlet concentration of benzoic acid aeZ
XY	 in the range 0.9 − 1.55 mol	L=�, the 

flowrate � in the range 7.5 − 30.0 μL	min=�; the temperature t in the range 343.0 − 413.0 K. The conditions 

for the collection of sample 1 and sample 2 are pre-defined. Sample 1 is collected setting aeZ
XY	 = 1.50 mol	L=�, 

� = 20.0 μL	min=� and t = 413.0 �. Sample 2 is collected setting aeZ
XY	 = 1.00 mol	L=�, � = 10.0 μL	min=� 

and t = 393.0 K. Samples 3 to 8 are designed by the model identification algorithm adopting a D-optimal 

criterion (see Sect. 2.1.3). Samples are generated in-silico by integrating the kinetic model in Eq. (13) and 

setting the parameters equal to the value �∗ = [15.27, 7.60] (notice that setting  � = �∗ corresponds to 

setting the pre-exponential factor x = n�o = 4.3 ⋅ 10� s=� and the activation energy |} = �> ⋅ 10� = 7.6 ⋅
10� J	mol=�. Gaussian noise with covariance � is added to the simulation results to simulate the measurement 

error. 

 

Two campaigns are simulated to test the proposed online reparametrization approach: 

 

1. Non-RP campaign. In the non-RP campaign the online RP in not active. 

 

2. RP campaign. In the RP campaign the online RP is active. 

 

 

The two campaigns are performed to assess the influence of the online RP on the model identification while all 

the other components of the model identification algorithm are fixed. The benefit of the online RP is 

quantified performing a statistical test to compare the estimates �H obtained in the RP and in the non-RP 

campaigns with the target parameter values �∗ = [15.27, 7.60]. This involves testing the null hypothesis that 

the following statistic ��
> is distributed as a �> distribution with degree of freedom �� = 2. 
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��H − �∗�J 	&�
=���H − �∗� = ��

>~�>
 (16) 

 

A small �-value of the statistic ��
> (e.g. smaller than 1.0	%) is interpreted as an index of failure of the model 

identification algorithm in estimating the target parameter values.  

 

4. Results and discussion 

 

((Table 1)) 

 

((Table 2)) 

 

 

((Figure 2)) 

INSERT FIGURE 2 {condition_number.tif} 

 

 

((Figure 3a)) ((Figure 3b)) 

INSERT FIGURE 3a {estimates.tif} AND FIGURE 3b {confidence_intervals.tif} 

 

 

((Figure 4)) 

INSERT FIGURE 4 {final_parameter_statistics.tif} 

 

 

 

Parameter estimates for �� and �> in the non-RP campaign are reported in Tab. 1 together with their 

respective 95% confidence intervals and coefficient of correlation K�>. Parameter correlation in Θ is above 

99.97%  throughout the non-RP campaign. In the non-RP campaign, optimization routines for parameter 

estimation and MBDoE are applied on the original parameter space Θ. The condition number 2 in Θ remains 

above 7.2 ⋅ 10� throughout the campaign. The condition number 2 is finite, suggesting that there exists a 

unique optimum for the log-likelihood function in the proximity of the estimates, i.e. the kinetic model is 

structurally identifiable [20]. However, a �-value of 0.0% after the collection of 8 samples suggests that the 

model identification algorithm produced estimates that are statistically inconsistent with the target parameter 

values. The failure of the numerical model identification algorithm in retrieving the target parameters is 

interpreted as a consequence of practical identifiability issues associated with the high condition number 2. 

 

Parameter estimates and related statistics for the RP campaign are reported in Tab. 2. Also in the RP campaign, 

the correlation between �� and �> in Θ remains extremely high, i.e. above 99.85% throughout the whole 

experimental campaign. However, in the RP campaign, parameter estimation and MBDoE problems are solved 

by optimization routines in the transformed parameter space Ω. The condition number in Ω was computed at 

each parameter estimation step (i.e. after the reparametrization step) in the course of the RP campaign and it 

is reported in Tab. 2. As one can see from Tab. 2, the online RP iteratively reduces the condition number from 

the initial value 2 = 7.0 ⋅ 10� to the minimum value 2 = 1.0 after five calls of the algorithm (i.e. after the 

collection of 6 samples). A final �-value of 78.13% is interpreted as an index of success of the RP campaign in 

retrieving the target parameters �∗.  

 

The condition number 2 after the collection of each sample can be appreciated in Fig. 2 for both the non-RP 

and the RP campaign. In the RP case, the condition number is minimized to 2 = 1.0 after the collection of 6 

samples, i.e. 5 updates of the transformation matrix " are required to minimize the condition number. This is 

explained by the computation of an inappropriate update for the transformation matrix " at the first iterations 

of the algorithm. The update for the transformation matrix is computed as a function of the Hessian ) 

computed setting " equal to the primary transformation matrix "( (see Sect. 2.1). The condition number 2 in 

the space associated to "( may be extremely high at the first iteration of the algorithm. An initially high 

condition number may lead to an inaccurate computation of the Hessian and, consequently, lead to the 
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computation of an inappropriate update for the transformation matrix ". However, as one can see from Fig. 2, 

the condition number is reduced to the minimum value 2 = 1.0 in few iterations.  

 

The estimated values of model parameters and respective confidence intervals reported in Tab. 1 and Tab. 2 

are shown, respectively, in Fig. 3a and Fig. 3b for both the non-RP case (dotted line) and for the RP case (solid 

line). Results clearly show how the reparametrization affects both the accuracy of the estimates (closeness to 

the reference value) (see Fig. 3a), with the RP-case providing a faster convergence to the true value of model 

parameters in this case, and the precision of the estimates, with confidence intervals which are different (see 

Fig. 3b). In particular, the confidence interval for parameter ��, although very small, is higher in the RP-case 

than in the non-RP case. The 95% confidence ellipsoids associated to the final estimates in the RP and in the 

non-RP campaign are compared in Fig. 4. The target parameter value �∗ is represented in the figure as a star-

shaped symbol. As one can see from Fig. 4, the ellipsoid computed in the non-RP campaign (dotted ellipsoid) 

does not contain the target parameters while the ellipsoid computed in the RP campaign (solid ellipsoid) 

contains the target parameters. The graph shows that the non-RP campaign, performed without online RP, 

would lead to the conclusion that the target parameters are not the kinetic constants of the system. The RP 

campaign led to a more robust estimation of the target kinetic constants.  

 

Monotonic convergence of the estimates to the target parameter values is recognized as an important index to 

assess the effectiveness of regularization methods implemented in parameter estimation algorithms [10]. 

Nonetheless, it is recognized that the robustness of RP-based methods relies on the monotonic decrease of 

the condition number in the course of the experimental campaign. Improving the proposed approach to 

ensure smooth (i.e. monotonic) convergence of the condition number to 1.0 is going to be focus of future 

research activities.   

5. Conclusion 

 

 

A model identification algorithm implementing a novel approach of online reparametrization, i.e. an approach 

of online transformation of the model parameter space, was proposed in this manuscript. The approach was 

designed specifically to deal with the problem of parameter estimation in the presence of sloppy model 

structures. In other words, the method was developed for situations where, in principle, model parameters 

can be uniquely retrieved fitting experimental data (i.e. the model satisfies the requirements for structural 

identifiability), but the small sensitivity of the model responses to a parameter change and/or high parameter 

correlation hinders the numerical estimation of the parameter values.  

 

The proposed algorithm was tested on a simulated case study for estimating the kinetic parameters in a two-

parameters model of benzoic acid and ethanol esterification in a flow reactor. The presented algorithm 

iteratively reduced and eventually eliminated model sloppiness minimizing the condition number of an 

originally ill-conditioned model identification problem. It was possible to statistically demonstrate that the 

sloppy nature of the model was preventing a conventional model identification algorithm from retrieving the 

target value of the kinetic constants. The presented model identification algorithm was instead capable of 

computing estimates that were statistically consistent with the assumed target values of the kinetic 

parameters.  

 

Future research activities will focus on three aspects: 1) integrating of the proposed online RP method in an 

experimental automated model identification platform; 2) improving the efficiency of the proposed method 

reducing the number of iterations required to minimize the condition number; 3) validating the proposed 

approach on more complex model structures, e.g. kinetic models involving more than two parameters and 

more measured responses. 
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7. Symbols used 
 

Symbols – scalars 

 

x [s=�]	pre-exponential factor  

K1L  [−] correlation coefficient for 0-th and N-th parameter in �H  

a1 [mol	L=�] concentration of species 0  
a1

XY [mol	L=�] concentration of species 0 at the inlet  

a1
~�� [mol	L=�] concentration of species 0 at the outlet  

< [−] scaling factor of parameter space (≠ 0)  

|}  [J	mol=�] activation energy  

� [μLmin=�] volumetric flowrate  

d [s=�] kinetic constant  

� [−] number of samples in the available dataset �  

��  [−] number of functions in the given kinetic model  

�� [−] number of independent inputs in a given kinetic model  

��  [−] number of state variables in a given kinetic model  

��  [−] number of output variables in a given kinetic model  

��  [−] number of non-measurable parameters in a given model  

v [J	mol=�	K=�] ideal gas constant  

� [s] time  

�U [s] sampling time  

�U
∗ [s] D-optimal sampling time  

�WXY [s] lower bound for the sampling time  

�WZ[ [s] upper bound for the sampling time  

t [K] temperature  

M [m	s=�] flow velocity along the axial coordinate of flow reactor  

M�,1L  [various units] 0N-th element of covariance matrix &� 

� [�] dataset available for model identification  

b [m] axial coordinate of flow reactor  

  

Symbols - vectors and matrices 

  

� F�� × 1G column array of functions  

" [�� × ��] linear transformation of parameter space Ω → Θ  

"( [�� × ��] primary transformation of parameter space Ω → Θ  

"9 [�� × ��] secondary transformation of parameter space Ω → Θ  

� F�� × 1G column array of functions for the model output variables 

) [�� × ��] observed Fisher information matrix  

% [�� × ��] identity matrix  

? [�� × ��] matrix of rotation of parameter space  


 [�� × 1] column array of independent control variables (model inputs)  


∗ [�� × 1] D-optimal values for control variables (model inputs)  

8 [�� × ��] right normalized eigenbasis of )  

&�  [�� × ��] covariance of parameter estimates in Θ  

&' [�� × ��] covariance of parameter estimates in Ω  

&H�  [�� × ��] predicted covariance of parameter estimates in Ω  

� [�� × 1] column array of state variables  

� F�� × 1G sample - column array of measured output variables  

�1 F�� × 1G 0-th sample in dataset �  

�� F�� × 1G column array of predicted output variables  

  

Greek symbols – scalars 

  

�1 [various units] 0-th model parameter  
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Θ [��] original vector space of model parameters  

2 [−] condition number  

.1 [−] 0-th eigenvalue of )  

c1 [−] stoichiometric of the 0-th species  

Φ [−] log-likelihood function  

Ω [��] transformed vector space of model parameters  

�> [−] denotes a chi-squared distribution  

��
> [−] chi-squared statistic of parameter estimate  

∇ [−] gradient operator in parameter space  

  

Greek symbols – vectors and matrices 

  

� [�� × 1] column vector of parameters in parameter space Θ  

�∗ [�� × 1] column vector of target parameters in parameter space Θ  

�H [�� × 1] maximum likelihood estimate for  � ∈ Θ  

/ [�� × ��] diagonal matrix whose 00-th element is .1   
� F�� × ��G covariance of measurement error for sample �  

T [�� + 1 × 1] experiment design vector 

T∗ [�� + 1 × 1] D-optimal experiment design vector 

# [�� × 1] column vector of parameters in parameter space Ω  

#B  [�� × 1] maximum likelihood estimate for  # ∈ Ω  

  

Sub- and Superscript 

  

BA Benzoic Acid 

EB Ethyl Benzoate 

Et Ethanol 

W Water 

  

Abbreviations 

  

MBDoE Model-Based Design of Experiments 

RP Reparametrization 
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9. Tables with headings 

 

 

Tab. 1. Non-RP campaign. Parameter estimates, 95% confidence intervals and correlation coefficient 

in the course of the simulated campaign. Parameter estimation and MBDoE problems are solved in 

the original parameter space Θ. The condition number of the log-likelihood function in Θ is reported 

for each iteration of the algorithm (i.e. after the collection of every sample). 
 

Online RP Inactive 

Samples 

collected 

Estimates �H = [��, �>] with  

95% confidence intervals 

Correlation 

coefficient 

K�> 

�-value of 

target 

parameters 

�∗ 

Condition 

number 2 in 

Θ 

1 [  -  ,  -  ] - - - 

2 [ 14.15 ± 2.11 , 7.23 ± 1.41 ] 0.9998 0.00% 1.2∙10
4
 

3 [ 13.72 ± 1.32 , 7.08 ± 0.85 ] 0.9997 0.00% 8.1∙10
3
 

4 [ 14.44 ± 0.99 , 7.32 ± 0.67 ] 0.9998 0.00% 1.1∙10
4
 

5 [ 14.28 ± 0.78 , 7.26 ± 0.52 ] 0.9997 0.00% 7.2∙10
3
 

6 [ 14.38 ± 0.73 , 7.29 ± 0.49 ] 0.9998 0.00% 9.5∙10
3
 

7 [ 14.85 ± 0.65 , 7.45 ± 0.43 ] 0.9997 0.00% 8.2∙10
3
 

8 [ 15.05 ± 0.61 , 7.52 ± 0.41 ] 0.9998 0.00% 9.5∙10
3
 

 

 

 

 

 

Tab. 2. RP campaign. Parameter estimates, 95% confidence intervals and correlation coefficient in 

the course of the campaign. Parameter estimation and MBDoE problems are solved in the 

transformed parameter space Ω. The condition number of the log-likelihood function in Ω is 

reported in the table at each iteration of the algorithm (i.e. after the collection of every sample). The 

condition number is computed at the parameter estimation step (i.e. after the reparametrization 

step has occurred) 
 

 

Online RP Active 

Samples 

collected 

Estimates �H = [��, �>] with  

95% confidence intervals 

Correlation 

coefficient 

K�> 

�-value of 

target 

parameters 

�∗ 

Condition 

number 2 in 

Ω 

1 [  -  ,  -  ] - - - 

2 [ 11.57 ± 3.69 , 6.33 ± 1.27 ] 0.9998 13.16% 7.9∙10
5
 

3 [ 14.00 ± 1.35 , 7.16 ± 0.43 ] 0.9985 0.08% 8.8∙10
5
 

4 [ 13.84 ± 1.74 , 7.11 ± 0.59 ] 0.9997 17.30% 4.5∙10
4
 

5 [ 14.96 ± 1.35 , 7.49 ± 0.46 ] 0.9996 76.19% 1.6∙10
1
 

6 [ 15.00 ± 1.28 , 7.50 ± 0.43 ] 0.9997 69.35% 1.0∙10
0
 

7 [ 15.62 ± 1.13 , 7.72 ± 0.38 ] 0.9997 81.78% 1.0∙10
0
 

8 [ 15.62 ± 1.09 , 7.72 ± 0.37 ] 0.9997 78.13% 1.0∙10
0
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10. Figure legends 

 

Fig. 1. Proposed framework for the online identification of models in automated model identification 

platforms. After each sample, the parametrization matrix " is updated with the aim of minimizing the 

condition number of the Hessian associated to the parameter estimation problem. The online update of the 

parametrization is performed to reduce the risk of numerical failures at the parameter estimation and optimal 

MBDoE steps in the procedure. 

 

 

Fig. 2. Condition number 2 after each collected sample in the non-RP campaign (dotted line) and in the RP 

campaign (solid line). The condition number for the RP-campaign is computed at the parameter estimation 

step of the algorithm, i.e. after the update of the transformation matrix ". 

 

Fig. 3. Estimates of parameters �� and �> in the non-RP campaign (dotted line) and in the RP campaign (solid 

line) at each collected sample in the campaigns: a) estimated values; b) ±95% confidence intervals.  

 

Fig. 4. Final parameter estimates and related 95% confidence ellipsoids in non-RP campaign (dotted ellipsoid) 

and RP campaign (solid ellipsoid). The target parameter value is highlighted by a star-shaped symbol. 
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Fig. 1. Proposed framework for the online identification of models in automated model identification 
platforms. After each sample, the parametrization matrix G is updated with the aim of minimizing the 

condition number of the Hessian associated to the parameter estimation problem. The online update of the 
parametrization is performed to reduce the risk of numerical failures at the parameter estimation and 

optimal MBDoE steps in the procedure.  
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Fig. 2. Condition number κ after each collected sample in the non-RP campaign (dotted line) and in the RP 
campaign (solid line). The condition number for the RP-campaign is computed at the parameter estimation 

step of the algorithm, i.e. after the update of the transformation matrix G.  
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Fig. 3. Estimates of parameters θ1 and θ2 in the non-RP campaign (dotted line) and in the RP campaign 
(solid line) at each collected sample in the campaigns: a) estimated values; b) ±95% confidence intervals.  
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Fig. 3. Estimates of parameters θ1 and θ2 in the non-RP campaign (dotted line) and in the RP campaign 
(solid line) at each collected sample in the campaigns: a) estimated values; b) ±95% confidence intervals.  
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Fig. 4. Final parameter estimates and related 95% confidence ellipsoids in non-RP campaign (dotted 
ellipsoid) and RP campaign (solid ellipsoid). The target parameter value is highlighted by a star-shaped 

symbol.  
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