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ABSTRACT 
This work proposes a method for predicting the internal 
mechanisms of individual agents using observed collective 
behaviours by multi-agent reinforcement learning (MARL). 
Since the emergence of group behaviour among many agents 
can undergo phase transitions, and the action space will not in 
general be smooth, natural evolution strategies were adopted for 
updating a policy function. We tested the approach using a well-
known flocking algorithm as a target model for our system to 
learn. With the data obtained from this rule-based model, the 
MARL model was trained, and its acquired behaviour was 
compared to the original. In the process, we discovered that 
agents trained by MARL can self-organize flow patterns using 
only local information. The expressed pattern is robust to 
changes in the initial positions of agents, whilst being sensitive 
to the training conditions used. 
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1 INTRODUCTION 
While agent-based models aid in understanding the nature of 
biological systems, they require the modelling of each individual 
agent precisely [1]. However, in many cases what we can easily 
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observe is the behaviour of the group, and the behaviour of each 
individual is hard to model. Therefore, a top-down approach 
where the behaviour of the individual agents is predicted from 
the behaviour of the collective group would be useful. 

Taking advantage of multi-agent reinforcement learning 
(MARL), this paper proposes a method to acquire a behavioural 
policy that will produce an intended collective behaviour as a 
result of interactions between agents. A reward function is 
designed that measures the difference between the behaviour of 
the target system, and the behaviour of the MARL system. 
Natural evolution strategies (NES) [2] are used to search for 
optimum parameters of the policy function. 

Reinforcement learning has been applied to multi-agent 
systems previously [3-6]. In these studies, however, 
reinforcement learning is performed on at most 10 agents. 
Furthermore, no attempts were made to learn how emergent 
phenomena arise from interactions between multiple agents. 

2 SYSTEM 
Reynolds’ flocking model was adopted as the target system for 
this work. Reynolds showed that it is possible to simulate the 
collective movement of a flock of birds by applying only three 
forces (collision avoidance, velocity matching and flock centering) 
to each agent [7]. By interacting with each other using only 
these simple rules, agents perform naturalistic swarming 
behaviour as a collective. 

To allow our target rule-based model to be learned by the 
MARL model, we developed three metrics to be used in training: 
1) entropy of positions and angles 𝑒", 2) entropy of positions 𝑒#, 
3) entropy of angles 𝑒$. These were chosen in order to provide 
some measure of the overall behaviour of the target flock, 
without directly providing information relating to the 
underlying forces of collision avoidance, centring, and velocity 
matching. Such measurements might be taken by someone 
unfamiliar with the individual behaviour of the system, who can 
only observe the collective behaviour. 
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The environment is a two-dimensional space; agents are 
randomly placed in that space and move around with a fixed 
velocity. Each agent has a field of vision which allows them to 
recognize other neighbouring agents. For each agent, with 
positional information 𝒔& , in the field of view, the policy 
function, 𝜋 𝑎&, 𝑤&; 	𝒔&  outputs an angle and a weighting. The 𝒔& 
consist of three values: the observed agent’s heading, the 
distance to the observed agent and its bearing relative to 
observer’s own heading. After calculating angles and weightings 
for all objects within the field of view, the weighted average of 
those angles becomes the direction 𝑎-."  in which the agent 
proceeds in the next time step. This policy function is shared by 
all agents, but they each make different observations and 
interpret them as different situations, so the behaviour of each 
agent can vary. 

The MARL model seeks to adapt its own deterministic 
policy function, 𝜋/, to approximate the entropy values acquired 
from the rule-based model, thus imitating its collective 
behaviour. Since this policy function can be nonlinear and is in 
general of unknown form, a neural network was chosen. Neural 
networks are model-free, can approximate nonlinear functions 
and quantitatively adjust the number of degrees of freedom. The 
neural network is parameterized by 𝜃, which returns an angle 
and a weighting for each 𝒔& . 

The policy function is updated so as to minimise the 
entropy difference between the rule-based model and the MARL 
model by using NES. Salimans et al. showed NES can train in a 
much shorter period than for a recent successful learning 
method known as A3C [8]. Letting 𝜃- be a real-valued vector to 
be optimized at training epoch 𝑡  and letting the search 
distribution be Gaussian, the fitness of individual 𝑖 is: 

𝐹& = 𝐹 𝜃- + 𝜎𝜖&  (1) 

where 𝜖&~𝑁 0, 𝐼  is a noise sampled from the distribution,	𝜎	
is the standard deviation of the distribution and the fitness 
function 𝐹  is the sum of the rewards obtained during the 
simulation period. As we want to update so as to improve the 
average value of the fitness of all individuals, the parameters are 
updated as follows: 

𝜃-." = 𝜃- + 𝛼
1
𝑛𝜎

𝐹&𝜖&

?

&

 (2) 

where 𝑛 is the size of the population and 𝛼 is the learning rate. 

3 RESULTS 
We have done two experiments to investigate the trainability of 
the MARL model. While the MARL model achieves improved 
metric scores over time, the overall behaviour does not 
sufficiently resemble the target system. As Fig. 1 (left) shows, the 
degree of dispersion of the positions of all agents of the trained 
model differs from that of the rule-based model.  It was 
frequently observed in MARL model simulations that agents 
self-organised into a cluster instead of flowing like a flock. 

Fig. 1 (right) illustrates how a typical pattern is self-
organized: at t = 136, a prototype dog-leg pattern is constructed, 

and after t = 273 a stable flow of agents from right to left can be 
recognized.  Since pattern formations are bottom-up expressions 
of local interactions between agents, some initial value 
sensitivity is expected. However, almost the same pattern 
appears regardless of starting positions provided the same 
training model is used. Different robust patterns develop for 
different training models, which is true even if the reward 
function is unchanged. 

 

Figure 1: Standard deviation of positions for each reward 
function (left). The emergence of self-organised flow 
pattern (right). 

4 CONCLUSIONS 
In this study, using MARL and NES, we have shown it is possible 
to train individual agents to maximise a reward function defined 
by group-level phenomena.   The chosen metrics, though 
appearing to describe intended collective behaviours 
appropriately, led to different learned behaviours.  However, the 
systems converge to the same patterns regardless of initial 
values, depending only on the training model used. Thus, a 
robust behavioural policy with no sensitivity to initial 
conditions can be designed using MARL. 
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