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Abstract

We test a method to reduce unwanted sample variance when predicting Lyα forest power spectra from
cosmological hydrodynamical simulations. Sample variance arises due to sparse sampling of modes on large scales
and propagates to small scales through nonlinear gravitational evolution. To tackle this, we generate initial
conditions in which the density perturbation amplitudes are fixed to the ensemble average power spectrum—and
are generated in pairs with exactly opposite phases. We run 50 such simulations (25 pairs) and compare their
performance against 50 standard simulations by measuring the Lyα 1D and 3D power spectra at redshifts z=2, 3,
and 4. Both ensembles use periodic boxes of -h40 Mpc1 containing 5123 particles each of dark matter and gas. As
a typical example of improvement, for wavenumbers = -k h0.25 Mpc 1 at z=3, we find estimates of the 1D and
3D power spectra converge 34 and 12 times faster in a paired–fixed ensemble compared with a standard ensemble.
We conclude that, by reducing the computational time required to achieve fixed accuracy on predicted power
spectra, the method frees up resources for exploration of varying thermal and cosmological parameters—ultimately
allowing the improved precision and accuracy of statistical inference.
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1. Introduction

Precision cosmology with the Lyα forest is an area of
increasing interest, both for its ability to constrain the evolution
of the universe (McDonald & Eisenstein 2007; Busca et al.
2013; Slosar et al. 2013; Font-Ribera et al. 2014; Bautista et al.
2017; du Mas des Bourboux et al. 2017) and for its unique
insight into the small-scale power spectrum that is a potential
diagnostic of warm dark matter, neutrinos, and other particle
physics phenomena (Seljak et al. 2005, 2006a, 2006b; Viel
et al. 2006, 2013; Palanque-Delabrouille et al. 2015; Iršič et al.
2017). For the latter studies it is essential to explore the effect
of both particle physics and astrophysical parameters on the
measured power spectrum, since there are important degen-
eracies with the thermal and ionization history of the
intergalactic medium that need to be considered (McDonald
et al. 2005b; McQuinn 2016; Walther et al. 2018).

Ideally one runs a series of cosmological simulations to
forward model the parameters into mock observables that can
be compared with data (McDonald et al. 2005a; Viel &
Haehnelt 2006; Borde et al. 2014). However, the mock
observations suffer from intrinsic sample variance due to the
finite simulation box size; sparse sampling of random phases
and amplitudes of large-scale modes in the initial conditions
(ICs) propagate to an uncertainty in the final mock power
spectrum. This uncertainty can affect even small-scale modes
through nonlinear gravitational coupling. In practice, model
uncertainty is the limiting factor on large scales where it
exceeds the observational uncertainty (Palanque-Delabrouille
et al. 2015). Suppressing the uncertainties can be achieved
either by expanding the box size, or by averaging many
simulated realizations of the same volume size; either way a
more precise mean power spectrum (or other observable) can
be achieved. But each simulation is expensive, especially as the

box size is increased. To extract the best possible constraints,
one has to tension this need for large sample sizes or volumes
for a single point in parameter space against the requirement to
adequately sample the parameter space itself.
This paper examines an approach to lessen the tension, by

initializing simulations with carefully chosen amplitudes and
phases for each mode, thus reducing the total volume or
number of simulations required to achieve a given statistical
accuracy on the mean mock power spectrum. This approach
will free up computing time per parameter instantiation to
increase the density of samples in parameter space. Methods,
such as emulators (S. Bird et al. 2018, in preparation; K. Rogers
et al. 2018, in preparation), which interpolate between hydro-
dynamic simulation predictions, can then be more accurate.
Interpolation is necessary because only a limited number of
simulations can feasibly be run.
We minimize the number of simulation realizations by

running paired–fixed simulations (Angulo & Pontzen 2016;
Pontzen et al. 2016). The difference between the standard
simulations and the paired–fixed simulations is in the input
density field. For a Gaussian random field, the amplitude of
each mode is drawn from a Rayleigh distribution with zero
mean and variance equal to the power spectrum at that scale,
and the phase drawn with uniform probability between 0 and
2π. Instead, for paired–fixed simulations, we fix the amplitudes
of the Fourier modes to the square root of the power spectrum,
and invert the phase of one simulation in a pair relative to the
other. The fixing reduces the variance of the power spectrum on
the largest scales, which remain in or near the linear regime,
while the pairing cancels leading-order errors due to nonlinear
evolution of chance correlations between large-scale modes.
On its own, pairing is a benign manipulation in the sense that

both realizations in the pair are legitimate, equally likely draws
from a Gaussian random field (Pontzen et al. 2016). Fixing, on
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the other hand, generates an ensemble that is quantitatively
different from Gaussian; Angulo & Pontzen (2016) argued that,
to any order in perturbation theory, the differences affect only
the variance on the power spectrum and cannot propagate to
other observables such as the power spectrum or observable
measures of non-Gaussianity. Combined, pairing, and fixing
thus formally removes the leading order and next-to-leading
order uncertainties that generate scatter in predicted mock
observations from simulations. In Villaescusa-Navarro et al.
(2018), we thoroughly explored the statistics of paired–fixed
simulations for both dark matter evolution and galaxy
formation, finding that there are no statistically significant
biases in the approach, and in many settings it does yield
significantly enhanced statistical accuracy.

In this paper, we apply these techniques for the first time to
the study of the power spectrum of fluctuations in the Lyα
forest, as measured from hydrodynamical simulations. The Lyα
forest is the collection of absorption features present in distant
quasar spectra due to intervening neutral hydrogen absorbing
Lyα photons as the quasar light redshifts. Physically, the forest
comprises a relatively smooth, low-density environment of
hydrogen that traces the underlying matter density of the
universe well in the redshift range 2<z<5 (Hernquist et al.
1996; Croft et al. 1998). At higher redshifts z>5 and
especially beyond reionization the neutral hydrogen is too
optically thick (Gunn & Peterson 1965); at lower redshift z<2
the forest cannot be observed with optical instruments.
Although use of the Lyα forest as a tracer of the matter
density is limited to a finite redshift interval, it is a unique
probe of a wide range of otherwise inaccessible redshifts and
scales. It has the unique advantage of tracing the matter density
at small scales, down to 10 s of kiloparsecs, in regions where
the evolution is still close to linear.

This paper is structured as follows. In Section 2 we describe
the simulations used in this analysis, before presenting results
in Section 3. We conclude in Section 4 with a brief summary
and discussion.

2. Simulations

In this section we describe the simulations used in this study.
We start by describing the different sets of ICs (Gaussian, fixed
and paired–fixed); we will then discuss the hydrodynamical
simulations and the method to simulate Lyα forest sightlines
from the simulations.

2.1. Gaussian, Fixed, and Paired–Fixed Random Fields

In this paper we will follow the naming convention of
Villaescusa-Navarro et al. (2018), which contains more detailed
definitions including power spectrum conventions. Here we
present a brief summary of the required definitions to interpret
our results.

Given a density field r ( )x , the density contrast is defined as

d
r r

r
=

-( ) ( ) ¯
¯

( )x
x

, 1

where r r= á ñ¯ ( )x . In a simulation we take discretized values of
these quantities at the center of a cell xi, d d= ( )xi i , and define

discrete Fourier modes d̃n as
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where kn identifies the wavenumber, An is the amplitude of the
discrete Fourier mode, and θn is the phase.
For a Gaussian density field, each θn is a random variable

distributed uniformly between 0 and 2πand each An follows a
Rayleigh distribution

s
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where sá ñ = pAn n2
, and sn

2 is proportional to the power

spectrum (∣ ∣)kP n (with the constant of proportionality depend-
ing on the particular conventions adopted; see Villaescusa-
Navarro et al. 2018).
For generating ICs representing a discretized Gaussian

density field for a simulation of the universe, the mode
amplitudes (An) and phases (θn) are chosen randomly from their
distributions above. This randomness generates a source of
variance in the final mock power spectrum from the simulation;
the amplitudes An propagate directly, while the phases θn
become significant during nonlinear evolution because their
values determine how modes of different scales interact with
each other.
In this paper, we explore alternative approaches to generat-

ing ICs such that these variance effects are minimized. Similar
to Villaescusa-Navarro et al., we define Gaussian, paired
Gaussian, fixed, and paired–fixed fields as follows:

1. Gaussian field: A field with d = q˜ A en n
i n, where An

follows the Rayleigh distribution of Equation (3) and θn is
a random variable distributed uniformly between 0
and 2π.

2. Paired Gaussian field: A pair of Gaussian fields δ and d¢,
where d = q˜ A en n

i n and d d¢ = = -q p+˜ ˜( )A e ;n n
i

n
n the

values of An and θn are the same for the two fields and
An is drawn from the Rayleigh distribution of
Equation (3). Because the leading-order uncertainties
are typically from the amplitudes rather than the phases,
we do not use paired fields without fixing the amplitudes
in this work.

3. Fixed field: A field with d = q˜ A en n
i n, where we fix

s=A 2n n. The phase θn remains a uniform random
variable between 0 and 2π.

4. Paired–fixed field: A pair of fields, d = q˜ A en n
i n and

d d¢ = = -q p+˜ ˜( )A en n
i

n
n , where the values of An are the

same for the two fields and fixed to s=A 2n n, and the
values of θn are also the same for the two fields, as
defined, rendering d̃n and d ¢˜

n exactly out of phase with
respect to each other. Here θn remains a uniform random
variable between 0 and 2π.

The purpose of this paper is to compare the statistical
accuracy of paired–fixed simulations with standard simulations
(based on Gaussian fields), in the context of Lyα forest power
spectrum analyses.
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2.2. Hydrodynamical Simulations

We perform hydrodynamical simulations with the GADGET-3
code, a modified version of the publicly available code GADGET-
2 (Springel 2005). The code incorporates radiative cooling by
primordial hydrogen and helium, alongside heating by the UV
background following the model of Viel et al. (2013). The
quick-lya flag is enabled, so gas particles with overdensities
larger than 1000 and temperatures below 105 K are converted
into collisionless particles (Viel et al. 2004). This approach
focuses the computational effort on low-density gas associated
with the Lyα forest, and is much more efficient than either
allowing dense gas to accumulate or adopting a realistic galaxy
formation and feedback model, to which the forest is largely
insensitive. Thus, this computational efficiency has no signifi-
cant effect on the accuracy of estimated Lyα forest observables.

The ICs are generated at z=99 by displacing cold dark
matter (CDM) and gas particles from their initial positions in a
regular grid, according to the Zel’dovich approximation. We
account for the different power spectra and growth factors of
CDM and baryons by rescaling the z=0 linear results
according to the procedure described in Zennaro et al. (2017).

Our simulations evolve 5123 CDM and 5123 gas particles
from z=99 down to z=2 within a periodic box of

-h40 Mpc1 , storing snapshots at redshifts 4, 3, and 2. We run
a total of 100 simulations (25 fixed pairs, and 50 standard
simulations). In order to study the dependence of our results on
volume we also run an identical set of simulations as those
described above but with 2563 CDM and 2563 gas particles in a
box of size -h20 Mpc1 .

The values of the cosmological parameters, the same for all
simulations, are in good agreement with results from Planck
Collaboration et al. (2016): Ωm=0.3175, Ωb=0.049, Ων=
0, ΩΛ=0.6825, h=0.67, ns=0.9624, and σ8=0.834.

2.3. Modeling Lyα Absorption

In order to study Lyα forest flux statistics we generate a set
of mock spectra containing only the Lyα absorption line from
neutral hydrogen for each snapshot in our simulation suite. The
spectra are calculated on a square grid of 160,000 spectra for
the 40Mpc box. Each spectrum extends the full length of the
box, and maintains the periodic boundary conditions of the
underlying simulation, with sizes in velocity space of [3793,
4267, 4698] km s−1 respectively at z=[2, 3, 4]. In each
spectrum, the optical depth τ is calculated by taking the product
of the column density of neutral hydrogen and the atomic
absorption coefficient for the Lyα line (Humlicek 1979)
appropriately redshifted for both its cosmological and peculiar
velocities. Measurements are made in bins of velocity width
10 km s−1 using the code fake_spectra (Bird 2017).

Once we have computed the Lyα optical depth, we derive
the transmitted flux fraction (or flux for short):

= t- ( )F e . 4

We then calculate F̄ , the mean flux over all pixels in our box.
Next, we adopt the common practice of rescaling the optical
depth of each simulation, t at where α is chosen to fix F̄ to
a target value. This is normally adopted when making
comparisons to data because it reduces the impact of
uncertainties in the UV background. In our case, we set α in
each simulation such that F̄ is fixed to the mean over all
simulations. We verified that, if we do not renormalize τ, the

benefits of paired and fixed simulations remain (in fact they
even increase further on small scales). After renormalization,
we calculate the fluctuations around the mean, dF :

d = -¯ ( )F

F
1. 5F

Finally, we calculate flux power spectra using the code
lyman_alpha (Rogers et al. 2018a, 2018b). Studies of the
Lyα forest either adopt 1D or 3D power spectra depending on
the density of available observational skewers; the former
approach is computationally simpler and captures small-scale
line-of-sight information, while the latter approach is required
to capture larger-scale correlations that do not fit within a single
quasar spectrum. In this work we will study the effects of
paired–fixed simulations in both settings.
To create a mock power spectrum, the first step is to generate

the Fourier transform (d̃F) of the fluctuation field δF. For 1D
power spectra, the transformation is taken separately for each
skewer along the line-of-sight direction; otherwise, we apply
the 3D transformation to the entire box. In both cases we are
able to exploit fast Fourier transforms since all velocity bins are
of equal width and spectra are evenly sampled in the transverse
direction. We then estimate power spectra by averaging d∣˜ ∣F

2

over all skewers for the 1D power spectrum, or in ∣ ∣k shells for
the 3D power spectrum.
When working with paired simulations, we average the

power spectra to form a single estimate from each pair. This
leaves us with 25 independent estimates from our ensemble of
50 paired–fixed simulations, a point that will be discussed
further below.

3. Results

In this section we will present the statistical performance of
our different simulations in predicting Lyα power spectra. To
quantify the performance of any given ensemble, we calculate
the mean of the measured power across all realizations, ¯ ( )P k

å=
=

¯ ( ) ( ) ( )P k
N

P k
1

, 6
i

N

i
est 1

est

where Nest is the number of independent estimates of ¯ ( )P k and
Pi(k) are the individual estimates. We also calculate the single-
estimate variance in P(k):

ås =
-

-
=

( ( )) ( ( ) ¯ ( )) ( )P k
N

P k P k
1

1
, 7

i

N

i
2

est 1

2
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As noted above, in the case of paired (or paired–fixed)
simulations Nest=Nsim/2, while in the case of a standard
ensemble, Nest=Nsim where in both cases Nsim=50, the
number of simulations. This difference arises because paired
power spectrum estimates are not independent and instead the
average of each pair is regarded as providing a single sample
Pi(k).
We are actually interested in the expected uncertainty on the

mean power spectrum, D( ¯)P 2, estimated as

s
D º( ¯) ( ( )) ( )P

P k

N
. 82

2

est

The ratio of the standard to the paired–fixed uncertainties
gives the most useful performance metric; in our case where
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Nsim is the same between the two ensembles, this reduces to

s
s

D
D

=
( ¯ )
( ¯ )

( ( ))
( ( ))

( )P

P

P k

P k2
, 9S

2

PF
2

S
2

PF
2

where S and PF subscripts refer to the standard (Gaussian) and
paired–fixed ensembles respectively. This ratio can also be
thought of as the computational speed-up for achieving a fixed
target accuracy (assuming the uncertainty on the mean power
spectrum scales proportional to Nsim ). It limits to unity when
the paired–fixed approach is not providing any improvement.

From our paired–fixed simulations we can also form a fixed
ensemble simply by discarding one of each pair. Thus we will
also show results for a fixed ensemble with Nest=Nsim=25.
Once again the estimated accuracy of the mean power is given
by Equation (9), including the factor 2 renormalization for the
relative number of estimates.

To ensure that the manipulations of the ICs do not introduce
any bias, we also calculate -¯ ¯P PS PF. For finite Nsim this
difference contains a residual statistical uncertainty; one should
expect

á - ñ = D + D( ¯ ¯ ) ( ¯ ) ( ¯ ) ( )P P P P , 10S PF
2

S
2

PF
2

given the independence of the two ensembles. Therefore, we
check that -¯ ¯P PS PF remains comparable in magnitude to this
expected residual.

3.1. Matter Power Spectrum

We start by discussing the matter power spectrum (i.e., the
3D power spectrum of the overdensity field without any
transformation to Lyα flux); Villaescusa-Navarro et al. (2018)
also discussed this quantity, but not at the redshifts in which we
are interested in this work. Our simulations also have different
baryonic physics implementations.

In Figure 1 we show the matter power spectrum measured at
z=2, 3, and 4. In the top panel we show the average power
spectrum in the two ensembles: the set of 50 standard
simulations P̄S and the set of 25 paired–fixed simulations P̄PF.
Error bars show the uncertainties DP̄S in the mean of the
standard simulations, computed using Equation (8). The
uncertainties are small due to the large number of simulations.
The uncertainties in the paired–fixed simulation are too small to
be plotted in the top panel, as we will shortly discuss.

The middle panel shows the difference between the mean
power measured in the two sets of simulations, as a fraction of
the total power in the standard simulations. Additionally, we
show, as a gray band, the ±1σ uncertainty at z=34 defined by
Equation (10). The two approaches to estimating the nonlinear
power spectrum thus agree well, consistent with Angulo &
Pontzen (2016) and Villaescusa-Navarro et al. (2018). In the
bottom panel we quantify the statistical improvement achieved
by the paired–fixed simulations with respect to the standard
simulations. We show the ratios of the uncertainty on the
means, comparing the standard and paired–fixed simulations,
D D( ¯ ) ( ¯ )P PS

2
PF

2, Equation (9).5 This ratio represents how
quickly the paired–fixed simulations converge on the true mean
relative to the standard simulations. We also show the ratio of

the uncertainty on the means of the standard simulations and
fixed (but not paired) simulations, shown as the dashed lines.
The dotted horizontal line shows a value of 1, indicating the
level where fixed and paired–fixed simulations do not bring any
statistical improvement over standard simulations. Comparing
the solid and dashed lines shows that both fixing and pairing
the simulations contributes to reducing uncertainty on the mean
power spectrum at low k. As a typical example of improve-
ment, for wavenumbers = -k h0.25 Mpc 1 and -h2 Mpc 1 at
z=3, we find estimates of the matter power spectra converge
390 and 2 times faster in paired–fixed simulations compared
with standard simulations.
Broadly this agrees with results from Villaescusa-Navarro

et al. (2018) but, unlike in the earlier work, we find that the
factor of ;2 improvement in a paired–fixed simulation
continues to = -k h10 Mpc 1. To isolate the cause of this
difference, we first considered the effect of box size. Our
simulations are of boxes with side length -h40 Mpc 1, which is
intermediate between boxes considered by Villaescusa-Navarro
et al. (2018). We therefore ran a suite of smaller -h20 Mpc 1

simulations for direct comparison to the smallest boxes of that
earlier work. However, we found similar results at large k in
this additional suite, and conclude that box size is not the driver
for the different behavior. The only remaining difference
between our present simulations and the hydrodynamic

Figure 1. Matter power spectrum measured at z=2, 3, and 4. The top panel
shows the mean power spectrum in the two sets of simulations, the standard
simulations, P̄S, with the 1σ uncertainty on the mean, and the paired–fixed
simulations, P̄ ;PF the means are indistinguishable. The middle panel shows the
fractional difference between the mean power measured in the two sets of
simulations, with a shaded region showing the expected 1σ uncertainty on that
difference which is given by Equation (10). Across all scales, there is no
evidence for bias in the estimate of the paired–fixed simulations relative to the
traditional simulations. The bottom panel shows the ratio between the
uncertainty on the mean of the standard and paired–fixed simulations,
D D( ¯ ) ( ¯ )P PS

2
PF

2, with dashed lines showing instead the effect of fixing
without pairs D D( ¯ ) ( ¯ )P PS

2
F

2. These ratios summarize how fast the paired–
fixed (or fixed) simulations converge on the mean power spectrum relative to
the standard simulations. As a typical example of improvement, for
wavenumbers = -k h0.25 Mpc 1 and -h2 Mpc 1 at z=3, we find estimates of
the matter power spectra converge 390 and 2.0 times faster in the paired–fixed
simulations compared with the standard simulations.

4 We find that our calculations of this expected scatter as a fraction of the
mean power is almost independent of redshift, as the fractional uncertainties
depend primarily just on the number of modes in each power spectrum bin.
5 Note that this is the square of the quantity shown in the bottom panels in
Villaescusa-Navarro et al. (2018).
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simulations of Villaescusa-Navarro et al. (2018) lies in the
drastically different baryonic physics implementation. As
discussed in Section 2.2, we do not implement feedback but
instead use an efficient prescription to convert high density gas
into collisionless particles. By contrast, Villaescusa-Navarro
et al. (2018) adopts a state-of-the-art star formation and
feedback prescription that results in significant mass transport
due to galactic outflows. We verified that the -h20 Mpc1 dark-
matter-only runs of Villaescusa-Navarro et al. (2018), like our
Lyα runs, also generate substantial improvements from pairing
and fixing at high k. It therefore seems that potential efficiency
gains at -k h1 Mpc 1 can be erased by stochastic noise from
sufficiently energetic feedback and winds.

Our practical conclusions will be insensitive to this regime.
Uncertainties at high k are dominated by observational rather
than theoretical uncertainty, due to the rapidly shrinking
absolute magnitude of simulation sample variance. Because
the sample variance is intrinsically small, it is only important
that the power spectrum remains unbiased at these scales.

3.2. 3D Lyα Power Spectrum

We next turn our attention to the 3D Lyα power spectrum.
On large, quasi-linear scales, the 3D Lyα power spectrum is
proportional to the matter power spectrum, with an amplitude
set by the scale-independent bias parameter, and an angular
dependence described by the Kaiser (1987) model of linear
redshift-space distortions. In this work, we include these
distortions but consider the angle-averaged (i.e., monopole)
power spectrum rather than divide the power spectrum into
angular bins.

We present the measured 3D Lyα forest power spectrum in
Figure 2. The panels are computed and arranged as in Figure 1,
but starting from the flux δF instead of the overdensity δ. In the
top panel the uncertainties on the mean power spectrum of the

standard simulations are again small due to the large number of
simulations. The middle panel shows the fractional difference
between the paired–fixed and standard simulation power
spectra, with the gray shaded region again indicating the
expected 1σ scatter. Several measured points scatter outside
this envelope (most notably at < -k h0.3 Mpc 1) but this is
consistent with a statistical fluctuation driven by scatter in the
standard ensemble. At high k the difference in the mean is
subpercent. Comparing the central panels of Figures 1 and 2
reveals that the shape of the 1σ contour is different between the
Lyα and matter power cases. At high k, the matter power enters
a highly nonlinear regime where modes are strongly coupled,
whereas the flux arises from low-density clouds that are still
quasi-linear. In the case of flux, modes are near-decoupled and
the uncertainty decays proportionally to the increasing number
of modes per k shell.
The bottom panel of Figure 2 quantifies the statistical

improvement achieved by the paired–fixed simulations with
respect to the standard simulations, shown as the solid line. The
dashed line represents simulations that are just fixed. The
dotted horizontal line shows a value of 1, indicating the level
where fixed and paired–fixed simulations do not bring any
statistical improvement over standard simulations. As a typical
example of improvement, for wavenumbers = -k h0.25 Mpc 1

and -h2 Mpc 1 at z=3, we find estimates of the 3D Lyα flux
power spectra converge 12 and 2 times faster in a paired–fixed
ensemble compared with a standard ensemble.
There is a minimum level of improvement at -k h1 Mpc 1

where the paired–fixed approach does not outperform the
standard ensemble at z=3. The relative performance improve-
ments then increase with increasing k beyond this point, which
is surprising. Previously it has been argued that the improve-
ments generated by the paired–fixed approach can be under-
stood within the framework of standard perturbation theory
(Angulo & Pontzen 2016; Pontzen et al. 2016), which more
obviously applies to intermediate quasi-linear scales than the
> -k h1 Mpc 1 regime.
At present we cannot fully explain why pairing and fixing

improves the Lyα power spectrum accuracy in this regime. It
might be that super-sample covariance terms couple high k to
low k in a unique way given that the forest is dominated by
underdense regions (unlike the matter power spectrum; Takada
& Hu 2013). However, we did not investigate further for this
work because the improvements are not particularly relevant
for observational studies; the absolute magnitude of the model
uncertainties in the > -k h1 Mpc 1 rapidly become smaller than
observational uncertainties (see the top panel of Figure 2 for a
visualization of the magnitude of the model uncertainties).
Thus the improvements in accuracy at low k are of most
practical benefit to future work.

3.3. 1D Lyα Power Spectrum

Most hydrodynamical simulations of the Lyα forest have
been used to predict the 1D power spectrum (McDonald et al.
2005a; Viel & Haehnelt 2006; Borde et al. 2014; Lukić et al.
2015; Walther et al. 2018). As described in Section 2.3, the 1D
spectrum captures small-scale information along the line of
sight without the computational complexity of cross-correlating
between different skewers.
We present the measured 1D Lyα power spectrum in

Figure 3, using again the same panel layout as Figure 1. In the
top panel the uncertainties on the mean power spectrum of the

Figure 2. Same as Figure 1, but for the 3D Lyα flux power spectrum. As a
typical example of improvement, for wavenumbers = -k h0.25 Mpc 1 and

-h2 Mpc 1 at z=3, we find estimates of the 3D Lyα flux power spectra
converge 12 and 2.0 times faster in a paired–fixed ensemble compared with a
standard ensemble.
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standard simulations are, as usual, small due to the large
number of simulations. The middle panel shows the fractional
uncertainty in the paired–fixed simulations relative to the
standard simulations, with the gray shaded region indicating
the 1σ uncertainty on this difference. Once again there is
overall good agreement, with the strongest deviation arising at
= -k h0.9 Mpc 1 at a significance of almost 2σ. However, the

difference between our standard and paired–fixed ensemble
remains less than 2%, and (given the large number of
independent k bins) we believe the difference to be consistent
with the expected level of statistical fluctuations.

The bottom panel quantifies the statistical improvement
achieved by the paired–fixed simulations (solid line) with
respect to the standard simulations. The dashed line represents
simulations that are fixed but not paired. As a typical example
of improvement, for wavenumbers = -

k h0.25 Mpc 1 and
-h2 Mpc 1 at z=3, we find estimates of the 1D Lyα flux

power spectra converge 34 and 1.7 times faster in a paired–
fixed ensemble compared with a standard ensemble. As with
the 3D Lyα flux power (Section 3.2) there is a steadily
increasing improvement at high k, forming a local minimum at

-k h1 Mpc ;1 since the 1D power spectrum mixes multiple
modes from the 3D power spectrum, this is consistent with
projecting the improvement discussed in Section 3.2.

4. Discussion and Conclusions

We have shown that using the method of paired–fixed
simulations reduces the uncertainty of the mean mock Lyα
forest power spectrum measured in hydrodynamical simula-
tions, and therefore requires less computing time to estimate the
expected value of the considered quantity, which is needed to
evaluate the likelihood of the data. As a typical example of

improvement, for wavenumbers = -k h0.25 Mpc 1 at z=3, we
find estimates of the 1D and 3D power spectra converge 34 and
12 times faster in a paired–fixed ensemble compared with a
standard ensemble. The largest improvements are at small k,
where model uncertainties are larger than observational
uncertainties. The improvements are minimal at
= -k h1 Mpc 1, but at these scales the observational uncertain-

ties are larger than the model uncertainties, so reduced
uncertainty on the mean mock power spectrum is unnecessary.
This suggests that running a large simulation box size with
paired–fixed ICs will provide the most accurate mock Lyα
forest power spectrum over the largest range of scales.
By reducing the computational time required to achieve a

target accuracy for mock power spectra, the method frees up
resources for a more thorough exploration of astrophysical and
cosmological parameters. It is essential to be able to sample
efficiently over this space, with at least three parameters
describing the shape and amplitude of the input linear power
spectrum and at least two for astrophysical effects to span the
reionization redshift and level of heat injection. In the future,
likelihoods for data sets such as eBOSS and DESI will likely
take advantage of emulators, which interpolate predicted power
spectra within these high-dimensional parameter spaces
(Heitmann et al. 2016; Walther et al. 2018, K. Rogers et al.
2018, in preparation, S. Bird et al. 2018, in preparation). In this
context, freeing up CPU time by using the paired–fixed
approach will allow for a denser sampling of training points for
the emulator. That in turn will beat down interpolation errors
and thus lead to more accurate inferences from forthcom-
ing data.
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1.7 times faster in a paired–fixed ensemble compared with a standard ensemble.
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