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Abstract Many ecological sampling schemes do not allow for unique marking of
individuals. Instead, only counts of individuals detected on each sampling occasion
are available. In this paper, we propose a novel approach for modelling count data
in an open population where individuals can arrive and depart from the site during
the sampling period. A Bayesian nonparametric prior, known as Polya Tree, is used
for modelling the bivariate density of arrival and departure times. Thanks to this
choice, we can easily incorporate prior information on arrival and departure density
while still allowing the model to flexibly adjust the posterior inference according to
the observed data. Moreover, the model provides great scalability as the complexity
does not depend on the population size but just on the number of sampling occa-
sions, making it particularly suitable for data-sets with high numbers of detections.
We apply the new model to count data of newts collected by the Durrell Institute of
Conservation and Ecology, University of Kent.
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1 Introduction

Monitoring wildlife populations presents particular challenges. For example, it is
typically not possible to perform a census of the population of interest by encounter-
ing all of the individuals. One of the most cost and time effective ways to monitor a
wildlife population is to collect counts of the population on repeated sampling occa-
sions (SO). This protocol is considerably easier to perform than a capture-recapture
(CR) scheme as it does not require physical capture or unique identification of the
individuals in the population. The most popular model for analysing count data in
a frequentistic setting is the N-mixture model introduced in [6], which allows the
estimation of population size and capture probability when the population is closed,
that is the same individuals are present throughout the study period. However, when
the data are sparse or detection probability is low, N-mixture models are known to
suffer from parameter identifiability issues and may give rise to infinite estimates
for population size [2]. In a Bayesian setting, the natural way to solve issues of
parameter identifiability is to assume informative prior distributions on detection
probability or on population size in order to obtain sensible posterior distributions.

In this paper we work in a Bayesian framework and we relax the assumption
of population closure, allowing for individuals to enter and leave the site (thus be-
coming available or unavailable for detection) at random times, but still assuming
emigration is permanent. The random arrival and departure times are sampled from
a distribution with unknown parameters. However, the absence of closure makes
it more challenging to separately estimate capture probability, population size and
density of arrival/departure times. Hence, it is of primary importance to assume in-
formative prior distributions to obtain ecologically sensible posterior distributions.

In order to allow for the posterior distribution to correctly adjust to the data with-
out relying on parametric assumptions, we use a Bayesian nonparametric (BNP)
approach for the prior distribution of the bivariate distribution of arrival and depar-
ture times. In particular, we work with Polya Trees, which in the BNP framework are
the main alternative to Dirichlet process mixture models for modelling continuous
distributions. More information on nonparametric priors can be found in [4].

2 The Polya Tree Prior

We model the joint density of arrival and departure times, using the Polya tree (PT)
prior, defined in [5]. A PT has two parameters: the first is a sequence of nested par-
titions Π of the sample space Ω (Ω = R2 in our case), while the second parameter,
α , is a sequence of positive numbers associated with each set of each partition.

The partition at the first level, π1, is obtained by splitting the sample space in two
sets, B0 and B1. Then for the partition at the second level, π2, we split each of the
two sets in two additional sets B00, B01 and B10, B11, respectively.

π2 = {B00,B01,B10,B11}, B00∪B01 = B0, B10∪B11 = B1.
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The same process is repeated to generate the partitions at the remaining level. A
visual representation of the scheme for Ω = [0,1] is given in Fig. 1.

Fig. 1: Scheme of the partitions at the first three levels of the Polya tree.

The PT prior is defined in terms of the (random) mass associated with each set
of each partition. By defining ε1 . . .εm as a generic sequence of 0s and 1s, Bε1...εm

as a generic set of the partition and αε1...εm as the associated parameter, the mass
associated to Bε1...εm by the Polya Tree is

G(Bε1...εm) =
m

∏
i=1

Yε1...εi (1)

where Yε1...εi−10 is a Beta(αε1...εi−10,αε1...εi−11) random variable and Yε1...εi−11 = 1−
Yε1...εi−10. For example, G(B01) = Y0(1−Y00) where Y0 ∼ Beta(α0,α1) and Y00 ∼
Beta(α00,α01).

A conjugate scheme for a PT can be constructed if we assume a PT prior for a
distribution G, and we have observations y1, . . . ,yn ∼ G, since the posterior distri-
bution G | y1, . . . ,yn is still a PT. The parameters α?

ε of the posterior distribution are
computed as α?

ε = αε +nε where nε is the number of observations falling into Bε .
A common choice is to center the PT on a pre-specified distribution G0, which

means that, for every set B of the partition, E[G(B)] = G0(B). In this paper we
will set the αε1...ε j−10 and αε1...ε j−11 associated with the sets Bε1...ε j−10 and Bε1...ε j−11
to be proportional to the mass assigned to these sets from G0, that is αε = cε ×
G0(Bε), where cε is a scale parameter tuning the overall variance around the mean
distribution. Finally, we assume that G0 has random parameter η , which has an
additional prior on it, leading to a Mixtures of Polya Trees (MPT), as defined in [3].

3 Model

The data consist of the number of individuals, Dk, detected on SO k, with k =
1, . . . ,K. We denote by Nk the (latent) number of individuals available for detec-
tion at SO k and by p the detection probability, assumed to be constant for each
individual and each SO. Clearly Dk ∼ Binomial(Nk, p).

We do not assume that individuals are present throughout the study period but
we instead assume that their arrival and departure times are random. These times
are assumed to be sampled from a Poisson process, with intensity that can be writ-
ten as ω× ν̃ where ω is the overall mass of the process and ν̃ is a probability density
function. The MPT is employed as a prior for ν̃ and we call P0 the prior distribu-
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tion on the hyparameters of the centring distribution G0, which we define later. As
departure is always greater than arrival, ν̃ is defined on {(x,y) ∈ R2|x < y}.

Although the data depend only on the latent number of individuals Nk, we intro-
duce additional latent variables to make the inference of the PT more efficient. Let
{tk}k=1,...,K be the times when samples are collected and take by convention t0 =−∞

and tK+1 = ∞. Additionally, let ni j be the number of individuals having arrival times
between ti and ti+1 and departure times between t j and t j+1 (with ni j = 0 for i > j).
The Nk can easily be obtained from the ni j as Nk = ∑

K
j=k ∑

k−1
i=0 ni j.

We make the standard choices of a Beta prior distribution for detection proba-
bility and a Gamma prior distribution for the overall intensity of the process. The
hierarchical structure of the model is the following:

Dk ∼ Binomial(Nk, p), Nk =
K

∑
j=k

k−1

∑
i=0

ni j, k = 1, . . . ,K,

ni j ∼ Poisson(ω×ωi j), i = 0, . . . ,K, j = 0, . . . ,K i > j,

ωi j =
∫ ti+1

ti

∫ t j+1

t j

ν̃(x,y) dx dy, i = 0, . . . ,K, j = 0, . . . ,K, i > j,

ω ∼ Gamma(aω ,bω), p∼ Beta(a0,b0),

ν̃ ∼ PT(Π ,αη), η ∼ P0.

In order to center the PT on a pre-specified distribution, we use the approach
explained in Section 2 of using a fixed partition and choosing the α according to the
value η of the parameters of the centring distribution. The dependence on η is thus
only in the α .

The process used to create the partition is explained in Fig. 2. The last level
corresponds to the partition defined by the sampling occasions. Since we use the
latent variables ni j and not the exact, on a continuous scale, individual arrival and
departure times, it is not meaningful to build a finer level of the partitions, as no
information is available about them.

We center the PT on a bivariate distribution with independent double exponential
marginal distributions, with probability density function (pdf)

G0(x1,x2; µ1,µ2,λ1,λ2) =
1

2λ1
exp
(
−|x1−µ1|

λ1

)
1

2λ2
exp
(
−|x2−µ2|

λ2

)
,

with the constraint that G0(x1,x2; µ1,µ2,λ1,λ2) = 0 if x1 > x2.
The sets of the partition are squares and triangles, as shown in Fig. 2. The choice

of the double exponential is motivated by the fact that integrals of this distribution
on squares and triangles can be computed analytically, without resorting to numer-
ical techniques. The hyperparameters (µ1,µ2) are given a bivariate normal prior
distribution and λ1 and λ2 two independent Gamma prior distributions.



A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population 5

Fig. 2: Partitions of the Polya Tree. Observations occur only in the region above the
diagonal. At step k, the set of individuals departing after the k-th sampling occasion
is split into the individuals departing between the k-th and (k+ 1)-th sampling oc-
casion and the individuals departing after the (k+ 1)-th sampling occasion. After
having reached level K, each set is split according to the same procedure but with
respect to the other dimension (arrival times).

4 Computational Notes

Posterior inference is performed using a Gibbs sampler. While this is straightfor-
ward for some parameters, such as the detection probability p and the intensity ω

of the Poisson process thanks to conjugacy, for other parameters posterior inference
is not straightforward given that we are working with a PT.

The conditional distribution of the parameters ({ni j},{ωi j},η) given p and ω

can be written as

p({ni j},{ωi j},η |{Dk}, p,ω)∝ p({Dk}|{Nk}, p) p({ni j},ω,{ωi j} p({ωi j}|αη) p(η)

∝

K

∏
k=1

Binomial(Dk|Nk, p)
K+1

∏
i=1

i

∏
j=1

Poisson(ni j|ω×ωi j) p({ωi j}|Π ,αη) p(η)

where the distribution p({ωi j}|αη) is given from the PT.
When writing the posterior distribution of the parameter η , we can integrate out

the parameter ωi j, by employing a different parametrisation of the PT. First, we
define as nε the number of observations in set Bε and as qε0 the probability of
assigning an observation in set Bε0 given that we are in Bε which, according to the
structure of the PT, has a Beta(αε0,αε1) prior distribution. The marginal likelihood
of the nε can be expressed as
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p({nε}|{αε}) = ∏
ε

∫
Bin(nε0|nε ,qε0)Beta(qε0|αε0,αε1)dqε0.

Integrating out the probabilities qε0 gives as a result a beta-binomial distribution.
Since the probability mass function of the beta-binomial is

f (k|n,α,β ) =

(
n
k

)
B(k+α,n− k+β )

B(α,β )
,

the marginal likelihood of the latent variable nε given the hyperparameter η is

p({nε}|η) ∝ ∏
ε

B(αε0 +nε0,αε1 +nε1)

B(αε0,αε1)
.

The posterior distribution for the latent variable ni j can be written as

p(ni j|{Dk}, p,ω,ωi j) ∝ Poisson(ni j|ω×ωi j)
K

∏
k=1

Binomial(Dk|Nk, p).

The parameter is updated with a random walk with uniform proposal over (ni j −
Ki j, . . . ,ni j +Ki j), where Ki j is chosen according to the value of the ni j chosen as a
starting point for the MCMC. In our case, we choose Ki j to be 1/5 of the starting
point of ni j.

The parameters ωi j correspond to the masses assigned by the distribution ν̃ to the
sets in the partition of the last level of the Polya tree. Hence, they can be sampled
as a product of Beta distributions as in (1). The parameters of the PT are updated
at each iteration conditional on the latent variable ni j, using the standard update
explained in Section 2.

5 Application

The data used in our application consist of weekly detections of great crested newts
(GCN) (Triturus cristatus). This species generally start to migrate to ponds in late
winter in order to breed. Subsequently, they leave the breeding site at the end of
the summer and hibernate on land. Sampling took place in ponds located at the
University of Kent with data collected between the end of February 2016 until the
start of September 2016, which covers a large part of the breeding period of the
newts. Samples were collected on weeks 1−22, 24−27 and 29 of the season.

GCN are uniquely identifiable and hence individual capture histories exist. A
total of 69 individuals were captured during the study. However, in this case, the
individual CR data have been collapsed to simple count data, which are obtained by
recording the number of individual newts caught on each of the sampling weeks.
It is believed that the population size is close to the sample size, and we choose a
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prior distribution for ω with mean 76 to represent our belief that around 90% of
the individuals have been detected at least once. The variance has been chosen to
have a relative weakly informative prior, as the 95% prior mass includes up to 135
individuals. Finally, 95% of the prior mass for detection probability is placed on the
(0.05,0.35) interval, based on previous analyses of data on the same population.

Prior knowledge suggests that a considerable number of individuals tend to ar-
rive between the beginning of March and the end of April. Additionally, individuals
depart between the end of May and the end of July. In order to translate this knowl-
edge into prior distributions, we choose hyperpriors for η = (µ,λ ) such that 95% of
the prior mass of the arrival and departure density is in the aforementioned ranges.

Fig. 3: Posterior distributions of population size (a) and detection probability (b),
with red vertical lines showing the posterior means and black lines showing the
prior distribution.

The posterior mean estimate of the population size is 89, while the posterior
mean of the detection probability is 0.33. The two posterior distributions are shown
in Fig. 3. The posterior distribution of the population size is different from the prior
distribution, as more individuals are estimated to be at the site than expected by the
ecologists. Moreover, in Fig. 4 we display the posterior mean of the latent num-
ber of individuals available at each sampling occasion together with the number of
individuals counted. For some sampling occasions, the empirical estimated detec-
tion probability, estimated as the ratio between the estimated number of individuals
available and the counted individuals, is outside the 95% posterior credible inter-
val for detection probability. This suggests that detection probability is not constant
across sampling occasions, as assumed in the model. According to expert knowl-
edge, changes in detection probability might be due to differences in environmental
conditions between sampling occasions, which affect behaviour of newts.

The posterior cumulative distribution functions (cdf) of arrival and departure are
also shown in Fig. 4. As 95% of the individuals are estimated to arrive before any
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individual has departed, the number of individuals is estimated to be fairly constant
between sampling occasions 9 and 14.

Fig. 4: (a) 95% posterior credible interval of the latent number of individuals avail-
able for detection, shown in black, and the number of individuals detected shown in
red. (b) Posterior mean of the cdf of arrival times (red) and departure times (green).

6 Conclusion

In this paper we have presented a BNP model for count data on an open wildlife
population consisting of individuals entering and exiting the site at random times.
By assuming a PT prior, we make no parametric assumptions on the shape of the
arrival and departure distribution. Moreover, the implementation is fast as the com-
putational complexity does not depend on the number of individuals but on the lev-
els of the PT, which depends on the number of sampling occasions. However, given
the small amount of information provided in count data, it is important to assume
meaningful and informative prior distributions in order to have sensible posterior
distributions. In this paper, we assume informative prior distributions for detection
probability and for population size, available thanks to expert knowledge.

As we mentioned in the introduction, another common sampling protocol is CR
which, as opposed to count data, provides individual information that can improve
estimation. Hence, a possible extension is to model count data and CR data jointly.
Another useful extension is to model data collected at different sites, by replacing
the Polya tree prior with a hierarchical Polya tree prior, defined in [1].
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