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AbstractWe present particleMDI, a Julia package for performing integrative cluster
analysis on multiple heterogeneous data sets, built within the framework of multiple
data integration (MDI). particleMDI updates cluster allocations using a particle
Gibbs approach which offers better mixing of the MCMC chain—but at greater
computational cost—than the original MDI algorithm. We outline approaches for
improving computational performance, finding the potential for greater than an
order-of-magnitude improvement. We demonstrate the capability of particleMDI to
uncovering the ground truth in simulated and real datasets. All files are available at
https://github.com/nathancunn/particleMDI.jl
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1 Introduction

Cluster analysis is the task of inferring a latent group structure in data, such that
observations within groups are, in some sense, ‘closer’ to one another than to ob-
servations in other groups. Standard methods, such as k-means, are not equipped
for cases where the units of observation have data arising from multiple sources.
Integrating multiple data sources into a composite analysis is a key challenge in the
analysis of genomic data where multiple heterogeneous datasets can give different—
but complementary—views of the same underlying process. In this context, one
may perform cluster analysis to infer risk cohorts among groups of patients for
whom we have multiple biological data sets recorded. We introduce particleMDI, a
package developed in the statistical programming language Julia[2] for performing
integrative cluster analysis in this context.While many such approaches exist[see e.g.
13, 17, 12, 7], particleMDI is built within the framework of multiple data integration
(MDI)[11].

MDI facilitates integrative cluster analysis by allowing for the borrowing of
information between datasets of potentially different types. Observations arise from
a Dirichlet-multinomial allocation mixture model[9]—a finite approximation to the
Dirichlet process mixture model. To infer dependence between the cluster structure
of different datasets, Kirk et al. introduce a parameter, Φ, measuring the similarity
between pairs of datasets at the level of the cluster allocations. The inferred value
of, e.g., φk ,l is used to inflate the probability of assigning observations in dataset k
to the clusters they are assigned to in dataset l.
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Fig. 1 A graphical model
representation of MDI and
particleMDI in a three dataset
case (K = 3). xi ,k denotes
observation i in dataset k
arising from cluster ci ,k with
parameters θci ,k , which are
given a priorG(0)
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dataset k has prior allocation
weight πa ,k which is given
a Dirichlet(α/N ) prior.
The φi , j values allow the
allocations in data set i to
inform those in data set j.
(Figure recreated from [11])

Inference in MDI is performed via a Gibbs sampler, alternating between updat-
ing cluster allocations and hyperparameters; full details are available in [11]. As
conjugate priors are used in MDI, the cluster parameters can be analytically inte-
grated over and individual cluster allocations are updated while holding all other
allocations fixed[14]. A result of this one-at-a-time approach is that once MDI infers
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an allocation which is ‘good enough’, in some sense, it can be difficult to consider
alternatives unless they are similar to this current allocation.

2 particleMDI

particleMDI extends the original MDI algorithm, replacing the one-at-a-time ap-
proach to clustering with a conditional particle filter, which has demonstrated good
mixing properties even when the number of particles is relatively low[8]. This ap-
proach to cluster analysis [see 4, 5, 8] infers a latent cluster allocation, ci,k , for an
observation, xi,k , given observations x1:i,k and allocations c1:(i−1),k , using a weighted
cloud of approximations, termed particles. The particle approximation of the Gibbs
sampler[1] uses a conditional sequential Monte Carlo (SMC) update, which uses a
single particle, sampled appropriately from the particle filter, to update the hyperpa-
rameters. The trajectory of this ‘reference particle’ is held fixed through a subsequent
pass of the conditional SMC update, thus guiding other particles towards relevant
regions of the state space.

We use the parameter Φ to share information across datasets by inflating the
weights of particles in which allocations agree across datasets, as detailed in Alg. 1.

2.1 Improving Computational Performance

particleMDI is much more computationally costly than the original MDI algorithm.
Fearnhead[5] discusses the inherent inefficiencies in particleMonte Carlo algorithms
as applied to clustering algorithms: resampling and the discrete nature of the state-
space mean it is likely some particles will be duplicates of others. Calculation of
mutationweights—theweights for assigning an observation to each cluster—involves
evaluating the posterior predictive of assigning an observation to each cluster. This
step is wholly deterministic meaning identical particles will have identical mutation
weights and, thus, there is no value in evaluating them more than once. To tackle
this, we identify duplicated particles via the following ID assignments

ID(m)
i+1 = ID(m)i × (M × N) + c(m)

i+1

where particle m assigns observation i + 1 to cluster c(m)
i+1 , M is the total number of

particles, and N the maximum number of clusters.
It is also likely that where particles differ, they may share commonality, be

it a shared subset of clusters, or even a shared partition up to a permutation of
cluster labels. Again, this will involve redundant calculations evaluating posterior
predictives multiple times for the same clusters. We adapt our algorithm so that each
particle indexes into a global environment of clusters containing only a single copy
of each unique cluster. We now need only evaluate posterior predictives once for
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Algorithm 1 particleMDI
Inputs:

π, Φ, cluster allocations c∗1:n ,1:K , a random permutation over observation
indices, σ(·), and thresholds α and ρ to control resampling and the portion
of data conditioned-on, respectively

Initialize:
Set particle weights ξ (1), . . . , ξ (M ) = 1
Set σ(c)(1)1:n ,1:K = σ(c)

∗
1:n ,1:k , σ(c)

(2:M )
1:bnρc ,1:K = σ(c)

∗
1:bnρc ,1:K

for i = dnρe, . . . , n do . (iterate over remaining observations)
for m = 1, . . . ,M do . (iterate over particles)

for k = 1, . . . , K do . (iterate over datasets)
if m , 1 then . (particle 1 is the reference)

Sample σ(c)(m)
i ,k

. (assign observation σ(x)i ,k to a cluster)
q(σ(c)

(m)
i ,k
= a) ∝ f (σ(x)i ,k |σ(c)

(m)
i ,k
= a) × πa ,k

end if
end for

ξ (m) = ξ (m) ×

K∏
k=1

N∑
a=1

πa ,k f (σ(x)i ,k |σ(c)
(m)
i ,k
= a) ×

K−1∏
k=1

K∏
l=k+1

(1 + φk ,l1(σ(c)
(m)
i ,k
=

σ(c)
(m)
i ,l
)) . (Update particle weights accounting for agreement across datasets)

end for
Calculate effective sample size (ESS) =

(
∑M

m=1 ξ
(m))2∑M

m=1 ξ
(m)2 .

if ESS < αM then
resample particles according to ξ (m)∑M

m=1 ξ
(m)

and reset particle weights ξ (1), . . . , ξ (M ) = 1
end if

end for
Select a final cluster allocation according to ξ (m)∑M

m=1 ξ
(m)

and use to update π,Φ and use as c∗1:n ,1:K
and return to start.

each unique cluster and then combine these at the level of the particle to form the
mutation weights.

A separate layer of inefficiency arises in the sequential nature of SMC methods.
Evaluation of the posterior predictive of observation i conditional on the cluster
allocations of observations 1 : (i − 1) is uninformative for very small values of i.
To address this, we augment the particle Gibbs sampler such that we only update a
predetermined number of cluster labels, holding bnρc labels fixed for 0 < ρ < 1. As
the observations are exchangeable, we permute the observation indices according to
a uniform permutation function σ and hold the first bnρc cluster labels fixed from
a previous pass of the conditional particle filter. The idea of updating blocks of se-
quential observations in the particle Gibbs sampler has previously been discussed[1]
and a similar idea has been explored in the context of cluster analysis[3]. The per-
mutation function, σ(·), is updated at every Gibbs iteration, ordering observation
such that σ(c)i,k is the allocation for observation σ(x)i,k and σ(x)i,l corresponds
to the same observational unit in a different data set. Therefore, where the standard
particle Gibbs algorithm samples alternately from p(θ |x1:n, c1:n) and pθ (c1:n |x1:n),
our approach samples from p(θ |x1:n, c1:n) and pθ (σ(c) dnρe:n |σ(x)1:n, σ(c)1: bnρc). (θ
here refers to the hyperparameters of the model, not the cluster parameters indicated
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in Fig. 1—as we use conjugate priors, the cluster parameters can be integrated out.)
As well as giving the algorithm a ‘warm start’, this also avoids introducing a de-
pendency between the inferred allocations and the order data are observed. Other
approaches, such as that in [8], resolve this issue by instead updating all previous
allocations during the resampling step. In a worst-case scenario—where resampling
is performed at every step—this would increase the complexity of the algorithm from
O(n) to O(n2), assuming the mutation weights can be computed in constant time.
The choice of ρ warrants careful consideration as it imposes a trade-off between
computation time and the mixing of the algorithm. However, where computation
time is not a concern, lower values of ρ are not strictly to be preferred; setting ρ too
low can result in too few conditioned-on observations to overcome the dependency
in the observation order. We explore the impact of this in Sec. 4.

3 Using the particleMDI package

The pmdi() function provides the primary functionality of the particleMDI algo-
rithm. It takes the following inputs:

• dataFiles a vector of matrices containing the data to be clustered
• dataTypes a vector of types. For convenience, Gaussian and categorical data

types are included and can be specified as particleMDI.GaussianCluster and
particleMDI.CategoricalCluster respectively. However, this can easily be
extended to any other data type for which a posterior predictive can be specified,
as detailed in Sec. 3.1

• N the maximum number of clusters to be inferred in each dataset
• particles an integer indicating the number of particles to use in the analysis
• ρ a value in (0,1) indicating the proportion of the data whose allocations are held

fixed at each iteration of the Gibbs sampler, as outlined in Sec. 2.1.
• iter an integer specifying the number of iterations of the Gibbs sampler
• outputFile a string specifying the path of a .csv file in which to store the output

pmdi() outputs a .csv file, where each row contains the mass parameters, the phi
values, and the allocations c1:n,1:K . A user can assess this output file via some plot-
ting functions built in the Julia library Gadfly[10]. In order to visualise the cluster
allocations from multiple iterations of the Gibbs sampler, as well as across multiple
datasets, generate_psm() and consensus_map(), can be used to visualise the
posterior similarity matrices[13, 16] as heatmaps. That is, for each of K datasets, an
n×n heatmap is constructed where element (i, j) reflects the frequency that observa-
tions i and j are assigned to the same cluster, as seen in Fig. 2. plot_phimatrix(),
plot_phichain(), and plot_nclust() can each be useful tools for monitoring
convergence of the Gibbs sampler, returning a heatmap of mean Φ values, a line
graph of inferred Φ values, and the number of clusters inferred respectively.
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3.1 Extending particleMDI for user-defined data types

One of the strengths of the original MDI method is its ability to cluster a variety of
different data types within a single analysis. While we provide the functionality for
Gaussian and categorical data types, we take advantage of Julia’s multiple dispatch
capabilities to allow users to extend particleMDI to perform cluster analysis on
other data types. As Julia code is just-in-time compiled, these user-specified data
types do not suffer any penalty in terms of computation time. We illustrate this
capability with a trivial example of assigning observations to clusters based on their
sign.

We first create a cluster struct, a structure containing a single cluster and sufficient
statistics for calculating the posterior predictive. In this case, we just need indicators
of whether any observations belong to the cluster, as well as their sign.
mutable struct SignCluster
n::Int64 # No. of observations in cluster
isneg::Bool # Positive/negative flag
SignCluster(dataFile) = new(0, false)

end

We then define calc_logprob, a function which returns the log posterior predictive
of an observation, obs, given the observations assigned to cluster cl. It is important
to specify cl as being of type SignCluster.
function particleMDI.calc_logprob(cl::SignCluster, obs)

if cl.n == 0
return log(0.5)

else
return ((obs[1] <= 0) == cl.isneg) ? 0 : - 10

end
end

Finally, the function cluster_add! updates a cluster, cl, when an observation,
obs, is added to it.
function particleMDI.cluster_add!(cl::SignCluster, obs)

cl.n += 1
cl.isneg = (obs[1] < 0)

end

We can now cluster univariate data into positive and negative clusters by passing
SignCluster as a data type in pmdi().

4 Application

We demonstrate particleMDI on three simulated Gaussian datasets, with cluster
means µ·,1 = [−0.5,0,0.75], µ·,2 = [0,0.75,−0.5], µ·,3 = [0.75,−0.5,0], where µi, j
indicates the mean of observations belonging to cluster i in dataset j. We choose
balanced clusters for clarity of illustrating results; analysis on other data suggests this
does not unduly impact the results. All observations are drawn independently with
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standard deviation σ = 1 meaning we expect significant overlap across all clusters.
Each data set has 150 observations with 16 dimensions, with 25% being noise. The
analyses are run for 1000 iterations, with M = 32, and ρ = 0.25. The results, in Fig.
2, show that, by considering all three datasets simultaneously, particleMDI is able
to recover the true underlying structure of the data.

Figure 3 shows the empirical effect on computation time as a function of observa-
tions, dimensions, and the number of particles used. Where the relevant parameters
are not altered, particleMDI is run for n = 1000, M = 32, clustering two Gaussian
and one categorical dataset with n = 150 observations with 16 dimensions. In all
cases 25% of dimensions are drawn as random noise. All analyses were performed
in Julia 0.6.4 on a Windows laptop with a 2.80GHz Intel Core i7-7700HQ CPU and
32.0 GB RAM. We contrast the computation times between two implementations of
the algorithm: one which benefits from the performance improvements obtained by
exploiting the redundancy of the particle filter as outlined in Sec. 2.1; and one with-
out these improvements. As we are only avoiding performing redundant calculations,
these improvements do not come at the cost of any decrease in accuracy. Figure 3
shows we can improve computation time by more than an order of magnitude.

In order to assess the impact of ρ, we examine cluster accuracy from analysis on
Fisher’s iris dataset[6] for varying levels of ρ. We assess cluster accuracy by means
of the adjusted Rand index [15]—a measure of agreement between two partitions
adjusted for agreement by chance, a value of 1 indicating perfect agreement, and
0 indicating agreement no better than chance. As expected, very large ρ values
lead to slow mixing of the Gibbs sampler, leading to many iterations before the
algorithm converges. Interestingly though, very small values of ρ appear to be more
problematic, with values of ρ = 0.05 and ρ = 0.1 struggling to get close to the
ground truth. As discussed in Sec. 2.1 when ρ is very small, the conditional particle
filter has little information onwhich to base allocations for observations it encounters
at the beginning, inducing a strong dependence on the order of the observations.

K1 K2 K3 Overall

Fig. 2 Heatmap representation of the posterior similaritymatrices as output fromgenerate_psm()
and consensus_map for three Gaussian datasets (K1, K2, K3) with different degrees of overlap
in clusters across data sets. The brightness of point (i, j) in each reflects the empirical probability
that observations i and j are clustered together in each dataset, with these values averaged across
datasets to give the value in ‘overall’.
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Fig. 3 Computation time as a function of the number of particles, the number of dimensions, and
the number of observations respectively. The results show that reducing inefficient calculations can
contribute to greater than an order of magnitude improvement in computation time.

Fig. 4 The effect on cluster
accuracy as a function of ρ
from analyses on Fisher’s
iris dataset. Analyses were
performed 10× and adjusted
Rand index values per iter-
ation were averaged across
runs. The results suggest ex-
treme values can negatively
influence the output while
there is little observable dif-
ference between thresholds in
the range 0.25 − 0.5.
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5 Discussion

In this paper, we have presented particleMDI, a Julia package implementing a particle
Monte Carlo approach to the integrative cluster analysis of multiple data sets. We
have demonstrated the capability of the package to uncover the ground truth cluster
structure in a group of synthetic datasets of different data types. In Sec. 3.1 we
showed how this package can perform cluster analysis on any data type for which a
posterior predictive distribution can be specified.We outlinedmethods for improving
computational performance of our algorithm in Sec. 2.1 and demonstrated that these
approaches can achieve performance improvements of an order of magnitude or
more in terms of computation time. While the context of our work is in integrative
cluster analyses, these approaches are also applicable to the single-data context of
cluster analysis using particle Monte Carlo methods.

All files relevant to this package are available on Github. (https://github.
com/nathancunn/particleMDI.jl)
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