From lipid locus to drug target through

human genomics

Sander W. van der Laan, PhD ${ }^{1 *}$, Eric L. Harshfield, MPH ${ }^{2 *}$, Daiane Hemerich, MSc ${ }^{3,4}$, David Stacey, PhD^{2}, Angela M. Wood, $\mathrm{PhD}^{2 *}$, and Folkert W. Asselbergs, MD PhD³,5,6,7*.

* these authors contributed equally

Affiliations

1. Laboratory of Experimental Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands;
2. Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom;
3. Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands;
4. CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil;
5. Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands;
6. Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom;
7. Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, United Kingdom.

Corresponding authors

Prof. Dr. Folkert W. Asselbergs
Department of Cardiology,
University Medical Center Utrecht,
University of Utrecht,
Heidelberglaan 100,
3584 CX, Utrecht, the Netherlands

Telephone: +31 (0) 887556176
E-mail: f.w.asselbergs@umcutrecht.nl

Dr. Angela M. Wood

Department of Public Health and Primary Care,
University of Cambridge,
Strangeways Research Laboratory
2 Worts Causeway,
Cambridge, CB1 8RN
United Kingdom
Telephone: +44 (0) 1223748652
E-mail: amw79@medschl.cam.ac.uk

Manuscript contents

Manuscript of 4,485 words, 3 Figures, and 3 Supplementary Tables.

Journal subject terms

Genomics, Lipidomics, Metabolomics, Cardiovascular disease, Causality

Abstract

In the last decade over 175 genetic loci have robustly been associated to levels of major circulating blood lipids. Most loci are specific to one or two lipids, while some (SUGP1, ZPR1, TRIB1, HERPUD1, and FADS1) are associated to all. While exposing the polygenic architecture of circulating lipids and the underpinnings of dyslipidemia, these genome-wide association studies (GWAS) have provided further evidence of the critical role that lipids play in coronary heart disease (CHD) risk, as indicated by the 2.7-fold enrichment for macrophage gene expression in atherosclerotic plaques and the association of 25 loci (such as PCSK9, APOB, ABCG5-G8, KCNK5, LPL, HMGCR, NPC1L1, CETP, TRIB1, ABO, PMAIP1-MC4R, and LDLR) with CHD. These GWAS also confirmed known and commonly used therapeutic targets, including HMGCR (statins), PCSK9 (antibodies), and NPC1L1 (ezetimibe).

As we head into the post-GWAS era, we offer suggestions for how to move forward beyond genetic risk loci, towards refining the biology behind the associations and identifying causal genes and therapeutic targets. Deep phenotyping through lipidomics and metabolomics will refine and increase the resolution to find causal and druggable targets, and studies aimed at demonstrating gene transcriptional and regulatory effects of lipid associated loci will further aid in identifying these targets. Thus, we argue the need for deeply phenotyped, large genetic association studies to reduce costs and failures and increase the efficiency of the drug discovery pipeline. We conjecture that in the next decade a paradigm shift will tip the balance towards a data-driven approach to therapeutic target development and the application of precision medicine where human genomics takes center stage.

Introduction

Lipids are essential for life and have several important biological functions, including energy storage, formation of a phospholipid bilayer to protect the cell, signalling, and transport ${ }^{1}$. Given the important role that lipids play in the body, the "lipidome", which is the totality of lipid molecules in cells and in circulation, can therefore reflect underlying metabolic processes that may be influenced by dietary, environmental, and genetic factors ${ }^{2}$. Indeed, in the last decade over 175 genetic loci have robustly been associated to levels of four major circulating blood lipids: total cholesterol (TC), low-density and high-density lipoprotein cholesterol (LDL-C and HDL-C, respectively), and triglycerides (TG) ${ }^{3-12}$. While exposing the polygenic architecture of circulating lipids and the underpinnings of dyslipidemia ${ }^{6}$, these genome-wide association studies (GWAS) have provided further evidence of the critical role lipids play in influencing coronary heart disease (CHD) risk ${ }^{3,13}$ and serving as markers for commonly used therapeutic targets ${ }^{3}$.

As we head into the post-GWAS era ${ }^{14,15}$, much of the focus has now turned towards determining how best to translate the enormous wealth of information gleaned through GWAS to inform clinical practice and therapeutics.

Here, we offer suggestions for how to move forward beyond genetic risk loci towards elucidating the biology underlying genetic associations and identifying causal genes. Ultimately, we hope these suggestions will help to increase the efficiency of the drug discovery pipeline ${ }^{16}$.

The genetic architecture of circulating lipids

In order to better understand the role that genetics plays in affecting lipid levels, a number of association studies of major lipids have been conducted. One of the first large-scale metaanalyses of circulating lipids was published in 2010, which reported the discovery of 95 genetic loci significantly associated with plasma concentrations of total cholesterol, LDL-C, HDL-C, and triglycerides, of which 59 loci were novel at the time ${ }^{3}$. Currently, association studies have uncovered 175 genetic loci that affect lipid levels in the population (Supplementary Table 1) ${ }^{3-12}$. Most of these variants reside in non-coding portions of the genome, where the precise function is often not well known.

A graph summarising genetic associations with the four major circulating lipids is shown in Figure 1. This indicates that the majority of the genetic loci are only associated with a single lipid or two lipids, but there is a subset of genes that are associated with most or all of the lipids, such as SUGP1, ZPR1, TRIB1, HERPUD1, and FADS1. The diagram also annotates genes that exhibit tissue-specific mRNA expression in either human liver or adipose tissue relative to all other tissues assayed by the Human Protein Atlas (HPA) (for further details see: https://www.proteinatlas.org/humanproteome/tissue+specific ${ }^{17,18}$. Specifically, 22 of the 175 genes appear to be liver-specific, with a further three genes showing specificity to adipose tissue. Furthermore, in analyses using the Functional Annotation Clustering tool at the Database for Annotation, Visualisation, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/() ${ }^{19}$, this list of 175 genes was found to be significantly enriched (enrichment score $=3.67[p<0.05]$, mean fold enrichment $=2.66$) with genes that are highly expressed (i.e., in the 3rd quartile) in human plaque macrophages as measured by RNA-seq for the Cancer Genome Anatomy Project (CGAP) ${ }^{20}$. This is indicative of a link between many of these genes (Figure 1) and CHD^{21}.

Translational perspective on lipid GWAS

At present, 88 independent and replicated loci for CHD have been identified in European populations (Supplementary Table 2) ${ }^{22-24}$, and from joint association analyses the total heritability of CHD is estimated to be $28 \%^{25}$. Of these 88 loci, 25 (such as PCSK9, APOB, ABCG5-G8, KCNK5, LPL, HMGCR, NPC1L1, CETP, TRIB1, ABO, PMAIP1-MC4R, and $L D L R$) are also associated with major circulating lipids (Figure 2). One example is PCSK9, which is involved in the regulation of LDL receptor recycling and therefore serves as a promising pharmacological target and has led to a major advance in cholesterol-lowering drug therapy ${ }^{26}$. Studies have shown that PCSK9 inhibition results in a significant reduction in LDL-C in patients at high risk for cardiovascular disease (CVD) ${ }^{26}$. Common polymorphisms in the HMGCR and NPC1L1 genes are also associated with attenuated LDL-C reduction and their gene products are targeted by successful lipid-lowering drugs (i.e. statins and ezetimibe, respectively) ${ }^{3}$.

Moving beyond GWAS

Fine-mapping GWAS signals and finding causal genes

In less than ten years the number of published genome-wide association studies has grown at an approximately exponential rate ${ }^{27}$. By definition GWAS does not require any a priori information relating to the trait in question whilst enabling genome-wide coverage, i.e. a GWAS is hypothesis-free. GWAS therefore represents perhaps our most powerful tool for the robust and agnostic identification of novel genetic loci associated with complex diseases and traits. Thereby GWAS provide us with the enormous opportunity to extend our understanding of the underlying biology, and serve as an extensive knowledge-base for the development of therapies and the prevention of disease ${ }^{28}$.

However, interpreting GWAS results has proven to be challenging as genetic associations do not necessarily point to the causal variant or gene directly.Likewise, functional annotation of the majority of associated variants is currently lacking ${ }^{29}$. To pinpoint causal variants and genes, various approaches, which are not mutually exclusive, have been developed and tested in practice.

Statistical models to fine-map the signal

Many functional and statistical fine-mapping approaches have been proposed and validated, which has led to the refinement of GWAS signals and prioritized the likely causal gene targets in associated loci. Custom-genotyping arrays have been designed by large consortia in collaboration with industry. The Metabochip, for instance, was developed to fine-map genetic regions associated with various metabolic traits and disease, such as blood lipids, glucose and insulin levels, body mass index, type 2 diabetes (T2D), and coronary artery disease ${ }^{30}$. Re-sequencing regions to gain a higher resolution of genetic variation in a region has identified a non-coding RNA, ANRIL, in the coronary artery disease (CAD)-associated $9 p 21$ region ${ }^{31}$. Conditional analyses, by which other variants in an associated locus are analyzed conditional on the sentinel variant, have successfully identified secondary signals. Bayesian statistical methods, using prior knowledge to inform the statistical modeling, have also helped to identify "credible sets" of variants that are 95% likely to contain the causal variant(s), as demonstrated in several exemplary publications focused on type 2 diabetes, Graves' disease, and CAD ${ }^{29,32,33}$. Additionally, leveraging ancestral genetic diversity through trans-ethnic meta-analyses of GWAS can help to refine signals ${ }^{34,35}$.

Deep-phenotyping

The strength of an association with any genetic variant is partly determined by how, or how well, the phenotype was measured. Deep-phenotyping the genome, through refinement of
the phenotype, ultimately increases the resolution at which we search for causal and druggable pathways.

Due to technological limitations, up until recent years most studies of lipids have been relatively crude; despite the diversity of lipid species and the wide array of functions in which lipids are involved, the majority of studies have focused on major circulating lipids that can easily be measured by standard clinical chemistry assays. Although these standard lipid biomarkers at present remain a fundamental part of everyday clinical practice, lipidomics, the measurement of hundreds of individual lipid subfractions, takes a more global yet refined view of lipid metabolism and can provide a detailed picture of abnormalities in lipid levels ${ }^{1}$. For example, mass spectrometry analysis of circulating lipids in the Bruneck Study revealed 135 lipid species across 8 different lipid classes ${ }^{36}$. Lipid species from the cholesterol ester (CE16:1) and triacylglycerol (TAG54:2) classes showed the strongest predictive value for 10year CHD risk. Adding these to a model including traditional risk factors improved the risk prediction and classification for CHD^{36}.

In contrast, metabolomics, the measurement of small metabolic markers, can provide a more direct reflection of the physiological state, making them an ideal method of tracking changes induced by the environment, disease or treatment. Metabolites can also facilitate deeper phenotyping since they are closer in proximity to clinical outcomes than proteins or genes and contain more information on the health status of individuals compared to other "-omics" technologies ${ }^{37}$. Identification of metabolites that are implicated in the onset of atherosclerotic-related diseases can lead to directed screening, early-detection of at-risk individuals, and better treatment of high-risk individuals ${ }^{38}$.

A metabolite-based genome-wide association study (mGWAS) is defined as a GWAS where metabolic traits are used as the phenotypic traits ${ }^{39}$. The metabolites include all lipid-related traits as well as apolipoproteins, and in addition other metabolic classes such as amino acids, ketone bodies, glycolysis-related metabolites, carbohydrates, cofactors and vitamins,
energy-related metabolites, nucleotides, peptides, and xenobiotics. The first-ever mGWAS, published in 2008, involved quantitative measurement of 363 metabolites in serum samples from 284 male participants in the KORA study ${ }^{40}$. Although four loci associated with metabolites were discovered (FADS1, LIPC, SCAD, and MCAD), the sample size was quite limited and there was no replication data. However, a follow-up study was published in 2010 using a much larger sample from the same population (1,809 participants) along with a replication cohort of 422 participants from TwinsUK, which resulted in the discovery of eight replicated loci associated with metabolites ${ }^{41}$. The number of published mGWAS has been steadily rising in recent years. Building on a 2015 literature review that identified 21 mGWAS publications, we conducted a more up-to-date and comprehensive literature review of mGWAS with a focus on studies of high-dimensional metabolomics (i.e. studies that measured a wide variety of metabolic traits that are involved in human metabolism), excluding studies that measured only a handful of metabolites and were therefore not highdimensional. Our review identified 31 published mGWAS and one metabolite-based exomewide association study which collectively report associations of metabolites with 885 genetic loci (Supplementary Table 3). The integrated data of two of these studies are freely accessible through the Metabolomics GWAS Server at http://mips.helmholtz-muenchen.de/proj/GWAS/gwas/42-44.

Metabolomics can be used to assess the contribution of specific genes to disease onset, of for instance CHD, and to identify specific metabolic phenotypes that are associated with these genetic modifications ${ }^{45}$. Given that many cardiovascular pathologies have an underlying metabolic basis, metabolomics can reasonably be used to estimate the relative risk of patients, understand pathophysiological mechanisms, and monitor treatment progress ${ }^{45}$. Metabolomics and lipidomics are also expected to play an important role in identifying and characterising disease states and in cardiometabolic drug development ${ }^{46}$. A number of studies have examined the association of metabolites with risk of chronic diseases. These studies have provided evidence that metabolites are associated with risk of
a range of diseases, including diabetes ${ }^{47-50}$, impaired fasting glucose ${ }^{48}$, hypertension ${ }^{51}$, and CVD ${ }^{36,52,53}$.

"Genetics: an expression of interest" regulating causal pathways

As gene expression is both heritable and associated with disease, genetic analyses of gene expression patterns across tissues and populations has been a focus of many studies ${ }^{54-58}$. Variants that modulate the expression of genes, expression quantitative trait loci (eQTL), can affect disease by changing the transcription of genes ${ }^{55,59}$. For instance, common genetic variation at the 1 p13 locus is robustly associated to circulating LDL-C ${ }^{3}$ and susceptibility to myocardial infarction (MI) ${ }^{60,61}$. Individuals of European descent and homozygous for the
major alleles of these genetic variants have a $16 \mathrm{mg} / \mathrm{dL}$ higher LDL-C as well as $\sim 40 \%$ increased risk of M162. Deep-phenotyping of LDL-C subclasses in two independent population cohorts showed a strong association of these genetic variants with very small LDL ${ }^{62}$. These variants mapped to a region between two genes, CELSR2 and PSRC1, with unknown function, and tissue-specific eQTL analyses revealed a third gene, SORT1, that showed the largest change in expression ${ }^{62,63}$. Fine-mapping in other cohorts identified a $6.1-\mathrm{Kb}$ region which harboured a haploblock, that showed the largest luciferase activity upon transfection into human hepatocellular carcinoma cells with a luciferase construct, consistent with the gene expression results ${ }^{62}$. Subsequent analyses of a smaller region within this haploblock using electrophoretic mobility shift assays, identified a single variant (rs12740374) that disrupts a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene ${ }^{62}$. Thus, integrating GWAS with transcriptome-wide association studies in relevant tissues or cell-types can further assist in the prioritization of causal genes in proximity of the GWAS signal ${ }^{64}$, and thereby identify causal gene networks related to a disease. These networks may be linked through the associative signals of genetic variation, expression, and other experimental evidence ${ }^{65}$.

Indeed, many trait-associated variants act on regulatory elements that impact gene expression, and studying epigenetic chromatin marks, such as trimethylation of histone H 3 at lysine 4 (H3K4me3), has informed fine-mapping efforts by identifying cell-type specific chromatin marks pointing to active regulatory regions ${ }^{66}$. Moreover, recent epigenome-wide association studies (EWASs) have linked DNA methylation (DNAm) at cytosine-phosphateguanine dinucleotides (CpGs) in whole blood with HDL functionality ${ }^{67}$, and levels of circulating lipids in Europeans ${ }^{68-71}$ and Afro-Americans ${ }^{72}$. To date the most replicated CpGs lie near $A B C G 1, C P T 1 A, T N N T 1, M I R 33 B$, SREBF1, and TNIP ${ }^{73}$. One EWAS reported the discovery of 193 CpGs associated to blood lipids; 25 were not previously associated to blood lipids, one of which was cg27243685 that associated to HDL-C and TG ${ }^{69}$. The same CpG also affected the expression of a nearby gene (ABCG1, a key regulator of lipid metabolism), and was associated with an increased of incident CHD^{69}. The same study reported cis-acting methylation quantitative trait loci (meQTL) at 64% of the 193 reported CpGs which were enriched for known GWAS loci associated to circulating lipids and CHD risk ${ }^{69}$, adding support to the hypothesis that GWAS loci act on regulatory gene networks. Another approach to fine-map the signal involves analyzing the spatial organization of chromosomes through circular chromosome conformation capture (4C), which can uncover networks of interacting genetic loci ${ }^{74,75}$. Indeed, combining 4C with eQTL analyses in relevant cell types was shown to identify novel candidate genes for known cardiovascular risk loci ${ }^{76}$.

Such approaches are not limited to the transcriptome and epigenome, rather they extend into any "-omics"-field. Of specific interest might be the identification of protein quantitative trait loci (pQTL), as these may dampen or amplify the genetic effects and contribute to the phenotypic variation in traits, independently of mRNA expression ${ }^{77,78}$. Thus, integrating data on DNA sequence variation, the epigenome, transcriptome, proteome, lipidome, metabolome ${ }^{79}$, and chromosomal organization identifies cell-type specific regulatory gene networks and refines the initial signal uncovered through GWAS ${ }^{80}$.

Beyond the common: human knockouts

As complex diseases are part of a quantitative spectrum of conditions ${ }^{81}$, not all of the genetic determinants will be captured by common variation and so of late, focus has also shifted towards rare variants ${ }^{15,82}$. Studying rare variation is not trivial, as such variants will only be present once or twice in a population of thousands ${ }^{83,84}$. Methods collapsing rare variation into gene-based scores alleviate some of the analytical issues ${ }^{83,84}$. Sequencing efforts have revealed rare variation associated with both lipid-traits and risk for cardiovascular disease ${ }^{85}$ for example, a deletion in the asialoglycoprotein receptor (ASGR1) gene is associated with reduced LDL-C, triglycerides, and risk of CVD ${ }^{85}$.

Recent effort by Lek et al. shows the existence of human knockouts without apparent phenotypic abnormalities by examining exomes sequences from thousands of individuals ${ }^{86}$. They show that on average, each individual carries 85 heterozygous and 35 homozygous protein-truncating variants (PTVs) ${ }^{86}$. A total of 3,230 loss-of-function (LoF) intolerant genes were identified, including the majority of known severe haploinsufficiency disease genes ${ }^{86}$. These genes are under extreme selective constraint, and 72% of these LoF genes have yet no known phenotype ${ }^{86}$. Moreover, these genes are depleted of eQTLs, but enriched in genome-wide associated trait loci8. A similar earlier effort, by deCODE genetics, revealed that genes are knocked out differentially between tissues, with the lowest percentage in the brain ${ }^{87}$. These studies are useful as they allow for the identification of "naturalistic" human knockouts and provide a means to study the effects on metabolic processes analogous to the knockout of orthologues in mice. In addition, they shed light on the potential genetic redundancy that exists and the effects on human traits and diseases.

A prominent exemplar for studying knock-outs to identify therapeutic targets is represented by studies of PCSK9. Some individuals carry rare variants leading to dysfunctional or low-
expressing PCSK9 and subsequently extremely low LDL-C levels and markedly reduced risk of cardiovascular disease ${ }^{88}$. At present, antibodies against PCSK9 are on the market and are the subject of investigation in clinical trials ${ }^{88-91}$. While clinical trials are still ongoing, these genetic analyses and first reports from clinical trials indicate that human genetic studies have successfully identified a therapeutic target ${ }^{92}$. Since the Food and Drug Administration (FDA) has approved the use of PCSK9 inhibitors (PCSK9i) in patients with clinical atherosclerotic CVD (ASCVD), but has permitted a broad range of LDL-C thresholds and statin usage intensities to determine eligibility, approximately 8.4 million Americans are eligible for PCSK9i93. To reduce the need for costly PCSK9i therapy, a range of other options such as lifestyle modifications and targeting a subset of patients with ASCVD at higher risk of CVD events should be considered ${ }^{93}$.

Inferring causality to identify valid drug targets

Traditional epidemiological studies can suffer from measurement error, confounding and reverse causality, which often renders the inference of causality impossible. However, in recent years human genetics has been used to deduce causal effects of presumed biomarkers or drug targets ${ }^{94}$. Indeed Mendelian randomization (MR) studies make use of the intrinsic properties of the human genome; specifically, the random assortment of (riskconferring) alleles from parent to offspring at conception imply that the genetic information is not influenced by disease status (reverse causality) and necessarily free from confounding by risk factors ${ }^{95}$.

This concept of MR was first coined by Martijn Katan ${ }^{96}$ and has since gained traction. For instance, the genetic variation in the CETP locus is robustly associated with increased HDLC levels - considered the "good" cholesterol and considered protective against CHD. Cholesterol ester transfer proteins (encoded by CETP) in exchange with triglycerides are known to facilitate the off-loading of cholesterol from HDL particles to particles rich in
apolipoprotein $\mathrm{B}(\text { encoded by } A P O B)^{97}$. Thus, therapeutic modalities directed at decreasing CETP and thereby increasing HDL-C are thought to be beneficial. However, the same locus did not show evidence for an association with $\mathrm{CHD}^{3,22}$ Indeed, all but one clinical trial for CETP inhibitors (CETPi) failed by lack of efficacy (dalcetrapib ${ }^{98-103}$, by Roche Inc. and evacetrapib ${ }^{104-106}$, by Eli Lilly \& Co.), or because of side-effects (torcetrapib from Pfizer, Inc.) ${ }^{107-110}$. Interestingly, the REVEAL trial showed that treatment with anacetrapib (Merck, Inc. $)^{111}$ on top of atorvastatin significantly reduced LDL-C, while substantially increasing HDL-C and decreasing composite cardiovascular endpoints ${ }^{112}$. Some argue that this was entirely expected as, like the other CETPi, anacetrapib alone did not have a large effect on the levels of atherogenic lipoproteins, as measured by LDL-C or APOB ${ }^{97}$. The decrease in CHD risk is reminiscent of the effects of statins and ezetimibe and likely due to the reduction in non-HDL-C particles such as APOB ${ }^{97,113,114}$. Further, a recent MR study showed that a genetic score comprising CETP variants associated with increases in HDL-C does not show a protective causal effect for CHD ${ }^{113-115}$. Consequently, in October 2017 Merck issued a statement stating that "the clinical profile for anacetrapib does not support regulatory filings" ${ }^{116}$. Amgen, Inc. followed suit soon thereafter dropping their CETP inhibitor (AMG899) owing in part to the limited genetic evidence ${ }^{117}$, while DalCor Pharmaceuticals continues the development of dalcetrapib for CHD reduction in ADCY9 mutation carriers ${ }^{118}$. Similarly, epidemiological studies showed an inverse association of apolipoprotein A1 (ApoA1) with CHD. Intriguingly, the ApoA-1 Milano genetic variant is associated with a protection against atherosclerosis development and low ApoA1 levels, despite low HDL-C levels. This formed the basis of the development of an ApoA1 inhibitor, MDCO-216 which showed profound ABCA1-mediated cholesterol efflux and was generally well-tolerated ${ }^{19,120}$. However, in 2016 The Medicines Company (MDCO) announced that MDCO-216 failed to meet the primary end point of change in intracoronary atherosclerotic plaque volume as measured by intravascular ultrasound in the MILANO-PILOT ${ }^{121}$, and MDCO subsequently abandoned further development of the compound ${ }^{122}$.

In retrospect the enormous costs associated with running a clinical trial for CETP inhibitors or others could have been prevented had MR analyses been performed sooner.

Lastly, clinical trials of Darapladib - an inhibitor of lipoprotein-associated phospholipase A2 (Lp-PLA 2) involved in inflammation (a hallmark of atherosclerosis) - have stopped due to a failure to reduce major adverse cardiovascular events ${ }^{123-127}$. Indeed, recent studies showed that inhibiting Lp-PLA 2 is unlikely to be beneficial ${ }^{128,129}$. This was hinted early on in a GWAS of $\mathrm{Lp}-\mathrm{PLA}_{2}$ activity and mass where eight associated loci were discovered that showed no effect for CAD susceptibility ${ }^{123-126,130}$, although this did not involve a formal MR study. Human genetics may also point to early unwanted on-target side-effects or may also highlight associations with seemingly distinct diseases ${ }^{94}$. Indeed, variants in CETP associated with increased HDL-C levels are also associated with systolic blood pressure as well as increased risk for age-related macular degeneration ${ }^{114}$. Information such as this will of course enable a more comprehensive assessment of the safety and cost-benefit ratio of drug targets prior to embarking on clinical trials and other costly research endeavours.

Past the inflection point: back to the future

Moving beyond GWAS of lipids, or any other complex trait, requires creative approaches and the analysis, and perhaps more importantly, synthesis, of the ever-expanding wealth of multi "-omics" data now available. It will also require re-discovering 'old' models, implementing new methodology, and an open-mind towards conceivably futuristic technologies. We touch upon a few here.

Re-discovering the 'classical' preclinical experimental model

Lipids play a pivotal role in atherosclerosis, an inflammatory disease involving the deposition of oxidized lipid-particles in the arteries contributing to their hardening ${ }^{131}$. The resulting
restriction in blood flow to vital organs can lead to a heart attack or stroke and other forms of cardiovascular disease. Experimental animal models of atherosclerosis have brought about valuable insights with respect to CVD development and progression, as well as putative molecular and cellular processes involved. They remain, however, experimental. The poor track record of drug development ${ }^{132}$ is evident of a caveat in translating putative cardiovascular drug targets (or indeed any potential drug target) identified in animal models to the human species.

The most widely used models of atherosclerosis, and by extension CVD, are mice lacking the ApoE or LDL-receptor gene, two genes critical in lipid metabolism. Yet, the majority of murine-derived atherosclerotic genes show no human genetic evidence for association with—let alone causality to-cardiovascular disease ${ }^{133}$. In contrast, when studying those genes identified in GWAS of CVD mechanistically in murine models of atherosclerosis the concordance is much higher ${ }^{134}$. Results from genomic analyses comparing murine models to the human condition in studying immune response have been conflicting ${ }^{135-137}$. Likewise, murine models of atherosclerosis frequently lack a fibrous cap in coronary lesions, making them less suitable as a model for fibrous cap rupture ${ }^{138}$. Such studies raise the question to what extent the hypotheses driving animal research bares relevance for human CVDsound as they may be both scientifically and biologically ${ }^{136,139,140}$. Preclinical research is still the cornerstone of many drug development programs, but the mounting evidence from human genetic studies may challenge this paradigm ${ }^{16,141}$. The goal of human genetics is to agnostically identify strong footings for the development of therapies and preventive strategies. It seems only sensible to align our scientific methods with the knowledge coming out of human genetic analyses, before entering into expensive preclinical research programs. In other words, a scientific process going from humans to mice to humans seems more meaningful, logical, and timely (Figure 3) ${ }^{140}$.

Aside from GWAS and MR studies, the recent Mouse and Human ENCODE projects ${ }^{142-146}$ provide another starting point to prioritize putative atherosclerotic genes. As phenotypic effects of orthologous genes frequently differ between humans and mice, a "sensible approach would be to group genes based on mouse-human orthology to improve the translational power" ${ }^{147}$. Many GWAS signals are found in noncoding regions ${ }^{148}$, and Stergachis et al. ${ }^{144}$ show that even though 95% of the regulatory transcription network is identical between humans and mice, most conservation is found in promoters, rather than distal elements. Taking such information into account seems relevant when designing experiments involving murine knockouts.

A crisp future for precision medicine

Experimentally generating knock-outs in humans in vivo will clearly never become legally or ethically acceptable. Nevertheless, enormous progress has been made in recent years in the field of gene editing, which has enabled the routine knock-down of human genes in vitro with unprecedented efficiency and cost-effectiveness. The CRISPR-Cas9 system has emerged as the preferred method, largely due to its high levels of precision relative to other methods ${ }^{149}$. Indeed, Cas9 endonucleases are found in microbial organisms and contain repetitive elements named CRISPR; the CRISPR-Cas9 system has the natural ability to insert any form of mutation (single nucleotide changes, insertion, or deletions) with precision at any given location ${ }^{149}$. The technology can aid in the creation of knockouts or the introduction of synthetic variants to study the effect on gene regulation and transcription ${ }^{150}$. When integrative "-omics" studies have identified potential gene targets, effects of "credible" causal variation (e.g. identified through fine-mapping, analyses of knock-outs, or MR studies)—as surrogate of therapeutics—can be systematically analyzed in high-throughput setups.

In conclusion, GWAS identified 175 loci robustly associated to major blood lipids. To move forward in the post-GWAS era we argue the need for deeply phenotyped, large genetic association studies to reduce costs and failures and increase the efficiency of the drug discovery pipeline. We concur that the field of biomedicine is at an inflection point ${ }^{151}$: as the fields of human genetics, bioinformatics, and epidemiology have matured, they collide into an age of unparalleled 'cloud' computing power, and 'big data' ${ }^{152}$. We surmise that in the next decade a paradigm shift will tip the balance towards a data-driven approach to therapeutic target development and the application of precision medicine where human genomics takes center stage (Figure 3).

Acknowledgements

Parts of this review are taken from 'The genetics of carotid atherosclerosis' by Sander W. van der Laan (2016), ISBN 978-90-393-6639-4 (https://dspace.library.uu.nl/handle/1874/346682).

Figures

Figure 1: Lipid-loci and their cellular location.

Figure 2: Circos-plot showing co-localization of lipids-associated loci and CADassociated loci. The outer ring is a circular ideogram of the human genome (b37) annotated with chromosome number, gene name, karyotype. Each SNP is marked green, red, yellow or blue in the graph; represented by a line on the inner side of the karyotype, or a dot in the colored rings. Green dots in the green shaded ring represent SNPs associated to HDL-C; Red dots in the red shaded ring represent SNPs associated to LDL-C; Yellow dots in the yellow shaded ring represent SNPs associated to TC; Blue dots in the blue shaded ring represent SNPs associated to TG. Different formats reveal if the SNP is firstly (circle),
secondly (triangle), thirdly (rectangle) or fourthly (small dot) associated to the trait. In the innermost ring are lipid associations located in CAD-associated loci, with colours highlighting their first associations as described previously. The three genes currently targeted by drugs are marked bold in bright pink: PCSK9 by monoclonal antibodies, HMGCR by statins, NPC1L1 by ezetimide. In blue is the CETP gene that was targeted by inhibitors, but failed in three clinical trials.

Figure 3: Shifting the paradigm of lipid drug discovery: moving beyond GWAS. Traditionally drug discovery is hypothesis driven, that is it is based on basic research followed by pre-clinical research. In a precision medicine discovery framework human genomics takes center stage by starting off with a genome-wide association study of the trait or disease of interest, and then followed by various fine-mapping efforts. When a handful of likely causal variants or genes are identified, basic and preclinical research are starting. We envision that such an approach will likely yield more successful candidates that end up being valid therapeutic targets.

References

1. Kolovou G, Kolovou V, Mavrogeni S. Lipidomics in vascular health: current perspectives. Vasc Health Risk Manag 2015;11:333-342.
2. Mundra PA, Shaw JE, Meikle PJ. Lipidomic analyses in epidemiology. Int J Epidemiol 2016;45:1329-1338.
3. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature Nature Publishing Group; 2010;466:707-713.
4. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang H-Y, Demirkan A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikkilä K, Hyppönen E, Isaacs A, Jackson AU, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013;45:1274-1283.
5. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, Wahlstrand B, Hedner T, Corella D, Tai ES, Ordovas JM, Berglund G, Vartiainen E, Jousilahti P, Hedblad B, Taskinen M-R, Newton-Cheh C, Salomaa V, Peltonen L, Groop L, Altshuler DM, Orho-Melander M. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008;40:189-197.
6. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU, Crawford G, Surti A, Guiducci C, Burtt NP, Parish S, Clarke R, Zelenika D, Kubalanza KA, Morken MA, Scott LJ, Stringham HM, Galan P, Swift AJ, Kuusisto J, Bergman RN, Sundvall J, Laakso M, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009;41:56-65.
7. Asselbergs FW, Guo Y, van Iperen EPA, Sivapalaratnam S, Tragante V, Lanktree MB, Lange LA, Almoguera B, Appelman YE, Barnard J, Baumert J, Beitelshees AL, Bhangale TR, Chen Y-DI, Gaunt TR, Gong Y, Hopewell JC, Johnson T, Kleber ME, Langaee TY, Li M, Li YR, Liu K, McDonough CW, Meijs MFL, Middelberg RPS, Musunuru K, Nelson CP, O'Connell JR, Padmanabhan S, et al. Large-Scale GeneCentric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci. Am J Hum Genet 2012;91:823-838.
8. Albrechtsen A, Grarup N, Li Y, Sparsø T, Tian G, Cao H, Jiang T, Kim SY, Korneliussen T, Li Q, Nie C, Wu R, Skotte L, Morris AP, Ladenvall C, Cauchi S, Stančáková A, Andersen G, Astrup A, Banasik K, Bennett AJ, Bolund L, Charpentier G, Chen Y, Dekker JM, Doney ASF, Dorkhan M, Forsen T, Frayling TM, Groves CJ, et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia 2013;56:298-310.
9. Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, Brody JA, Khetarpal SA, Crosby JR, Fornage M, Isaacs A, Jakobsdottir J, Feitosa MF, Davies G, Huffman JE, Manichaikul A, Davis B, Lohman K, Joon AY, Smith AV, Grove ML, Zanoni P,

Redon V, Demissie S, Lawson K, Peters U, Carlson C, Jackson RD, Ryckman KK, Mackey RH, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet 2014;94:223-232.
10. Surakka I, Horikoshi M, Mägi R, Sarin A-P, Mahajan A, Lagou V, Marullo L, Ferreira T, Miraglio B, Timonen S, Kettunen J, Pirinen M, Karjalainen J, Thorleifsson G, Hägg S, Hottenga J-J, Isaacs A, Ladenvall C, Beekman M, Esko T, Ried JS, Nelson CP, Willenborg C, Gustafsson S, Westra H-J, Blades M, Craen AJM de, Geus EJ de, Deelen J , Grallert H, et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet 2015;47:589-597.
11. Leeuwen EM van, Sabo A, Bis JC, Huffman JE, Manichaikul A, Smith AV, Feitosa MF, Demissie S, Joshi PK, Duan Q, Marten J, Klinken JB van, Surakka I, Nolte IM, Zhang W, Mbarek H, Li-Gao R, Trompet S, Verweij N, Evangelou E, Lyytikäinen L-P, Tayo BO, Deelen J, Most PJ van der, Laan SW van der, Arking DE, Morrison A, Dehghan A, Franco OH, Hofman A, et al. Meta-analysis of 49549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels. J Med Genet 2016;53:441-449.
12. Leeuwen EM van, Huffman JE, Bis JC, Isaacs A, Mulder M, Sabo A, Smith AV, Demissie S, Manichaikul A, Brody JA, Feitosa MF, Duan Q, Schraut KE, Navarro P, Vliet-Ostaptchouk JV van, Zhu G, Mbarek H, Trompet S, Verweij N, Lyytikäinen L-P, Deelen J, Nolte IM, Laan SW van der, Davies G, Vermeij-Verdoold AJ, Oosterhout AA van, Vergeer-Drop JM, Arking DE, Trochet H, Generation Scotland, et al. Fine mapping theCETPregion reveals a common intronic insertion associated to HDL-C. NPJ Aging Mech Dis 2015;1:15011.
13. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM, Strait J, Duren WL, Maschio A, Busonero F, Mulas A, Albai G, Swift AJ, Morken M a., Narisu N, Bennett D, Parish S, Shen H, Galan P, Meneton P, Hercberg S, Zelenika D, Chen W-M, Li Y, Scott LJ, Scheet P a., et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008;40:161-169.
14. Huang Q. Genetic study of complex diseases in the post-GWAS era. J Genet Genomics 2015;42:87-98.
15. Marian AJ. The enigma of genetics etiology of atherosclerosis in the post-GWAS era. Curr Atheroscler Rep 2012;14:295-299.
16. Kamb A, Harper S, Stefansson K. Human genetics as a foundation for innovative drug development. Nat Biotechno/ Nature Publishing Group; 2013;31:975-978.
17. Mardinoglu A, Kampf C, Asplund A, Fagerberg L, Hallström BM, Edlund K, Blüher M, Pontén F, Uhlen M, Nielsen J. Defining the human adipose tissue proteome to reveal metabolic alterations in obesity. J Proteome Res 2014;13:5106-5119.
18. Kampf C, Mardinoglu A, Fagerberg L, Hallström BM, Edlund K, Lundberg E, Pontén F, Nielsen J, Uhlen M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. FASEB J 2014;28:2901-2914.
19. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.
20. Patino WD, Kang J-G, Matoba S, Mian OY, Gochuico BR, Hwang PM. Atherosclerotic
plaque macrophage transcriptional regulators are expressed in blood and modulated by tristetraprolin. Circ Res 2006;98:1282-1289.
21. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011;145:341-355.
22. Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan A, Alver M, Armasu SM, Auro K, Bjonnes A, Chasman DI, Chen S, Ford I, Franceschini N, Gieger C, Grace C, Gustafsson S, Huang J, Hwang S-J, Kim YK, Kleber ME, Lau KW, Lu X, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015;47:1121-1130.
23. Howson JMM, Zhao W, Barnes DR, Ho W-K, Young R, Paul DS, Waite LL, Freitag DF, Fauman EB, Salfati EL, Sun BB, Eicher JD, Johnson AD, Sheu WHH, Nielsen SF, Lin W-Y, Surendran P, Malarstig A, Wilk JB, Tybjærg-Hansen A, Rasmussen KL, Kamstrup PR, Deloukas P, Erdmann J, Kathiresan S, Samani NJ, Schunkert H, Watkins H, CARDIoGRAMplusC4D, Do R, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet 2017;49:1113-1119.
24. Verweij N, Eppinga RN, Hagemeijer Y, Harst P van der. Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure. Sci Rep 2017;7:2949-2949.
25. McPherson R, Tybjaerg-Hansen A. Genetics of Coronary Artery Disease. Circ Res 2016;118:564-578.
26. Rallidis LS, Lekakis J. PCSK9 inhibition as an emerging lipid lowering therapy: Unanswered questions. Hellenic J Cardiol 2016;57:86-91.
27. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet The American Society of Human Genetics; 2012;90:7-24.
28. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108.
29. Wellcome Trust Case Control Consortium, Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K, Su Z, Howson JMM, Auton A, Myers S, Morris A, Pirinen M, Brown MA, Burton PR, Caulfield MJ, Compston A, Farrall M, Hall AS, Hattersley AT, Hill AVS, Mathew CG, Pembrey M, Satsangi J, Stratton MR, Worthington J, Craddock N, Hurles M, Ouwehand W, Parkes M, Rahman N, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 2012;44:1294-1301.
30. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS, Burtt NP, Fuchsberger C, Li Y, Erdmann J, Frayling TM, Heid IM, Jackson AU, Johnson T, Kilpeläinen TO, Lindgren CM, Morris AP, Prokopenko I, Randall JC, Saxena R, Soranzo N, Speliotes EK, Teslovich TM, Wheeler E, Maguire J, Parkin M, Potter S, Rayner NW, Robertson N, Stirrups K, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 2012;8:e1002793.
31. Holdt LM, Teupser D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol 2012;32:196-206.
32. Wallace C, Cutler AJ, Pontikos N, Pekalski ML, Burren OS, Cooper JD, García AR, Ferreira RC, Guo H, Walker NM, Smyth DJ, Rich SS, Onengut-Gumuscu S, Sawcer SJ,

Ban M, Richardson S, Todd JA, Wicker LS. Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping. PLoS Genet 2015;11:e1005272-22.
33. Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Poland GA, Schaid DJ. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics. Genetics 2015;200:719-736.
34. Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 2011;35:809-822.
35. Asimit JL, Hatzikotoulas K, McCarthy M, Morris AP, Zeggini E. Trans-ethnic study design approaches for fine-mapping. Eur J Hum Genet 2016;24:1330-1336.
36. Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U, Menni C, Moayyeri A, Santer P, Rungger G, Spector TD, Willeit J, Kiechl S, Mayr M. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 2014;129:1821-1831.
37. Dehghan A. Mass spectrometry in epidemiological studies: What are the key considerations? Eur J Epidemiol 2016;31:715-716.
38. Napoli C, Lerman LO, Nigris F de, Gossl M, Balestrieri ML, Lerman A. Rethinking primary prevention of atherosclerosis-related diseases. Circulation 2006;114:25172527.
39. Pirih N, Kunej T. Toward a Taxonomy for Multi-Omics Science? Terminology Development for Whole Genome Study Approaches by Omics Technology and Hierarchy. OMICS 2017;21:1-16.
40. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T, Mewes H-W, Wichmann H-E, Weinberger KM, Adamski J, Illig T, Suhre K. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 2008;4:e1000282.
41. Illig T, Gieger C, Zhai G, Römisch-MargI W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmüller G, Kato BS, Mewes H-W, Meitinger T, Angelis MH de, Kronenberg F, Soranzo N, Wichmann H-E, Spector TD, Adamski J, Suhre K. A genome-wide perspective of genetic variation in human metabolism. Nat Genet 2010;42:137-141.
42. Raffler J, Friedrich N, Arnold M, Kacprowski T, Rueedi R, Altmaier E, Bergmann S, Budde K, Gieger C, Homuth G, Pietzner M, Römisch-Margl W, Strauch K, Völzke H, Waldenberger M, Wallaschofski H, Nauck M, Völker U, Kastenmüller G, Suhre K. Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality. PLoS Genet 2015;11:e1005487.
43. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, Arnold M, Erte I, Forgetta V, Yang T-P, Walter K, Menni C, Chen L, Vasquez L, Valdes AM, Hyde CL, Wang V, Ziemek D, Roberts P, Xi L, Grundberg E, Multiple Tissue Human Expression Resource (MuTHER) Consortium, Waldenberger M, Richards JB, Mohney RP, Milburn MV, John SL, Trimmer J, Theis FJ, Overington JP, et al. An atlas of genetic influences on human blood metabolites. Nat Genet 2014;46:543-550.
44. Suhre K, Shin S-Y, Petersen A-K, Mohney RP, Meredith D, Wägele B, Altmaier E, CARDloGRAM, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, Angelis MH de,

Kastenmüller G, Köttgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger T, Mewes H-W, Milburn MV, Prehn C, Raffler J, Ried JS, Römisch-Margl W, Samani NJ, Small KS, Wichmann H-E, Zhai G, Illig T, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011;477:54-60.
45. Griffin JL, Atherton H, Shockcor J, Atzori L. Metabolomics as a tool for cardiac research. Nat Rev Cardiol 2011;8:630-643.
46. Puri R, Duong M, Uno K, Kataoka Y, Nicholls SJ. The emerging role of plasma lipidomics in cardiovascular drug discovery. Expert Opin Drug Discov 2012;7:63-72.
47. Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, Ghorbani A, O'Sullivan J, Cheng S, Rhee EP, Sinha S, McCabe E, Fox CS, O'Donnell CJ, Ho JE, Florez JC, Magnusson M, Pierce KA, Souza AL, Yu Y, Carter C, Light PE, Melander O, Clish CB, Gerszten RE. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest 2013;123:4309-4317.
48. Xu F, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab 2013;98:E1060-E1065.
49. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kröger J, Schulze MB, Crowe FL, Huerta JM, Guevara M, Beulens JWJ, Woudenbergh GJ van, Wang L, Summerhill K, Griffin JL, Feskens EJM, Amiano P, Boeing H, Clavel-Chapelon F, Dartois L, Fagherazzi G, Franks PW, Gonzalez C, Jakobsen MU, Kaaks R, Key TJ, Khaw K-T, Kühn T, Mattiello A, Nilsson PM, Overvad K, et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol 2014;2:810-818.
50. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, Ye Z, Sluijs I, Guevara M, Huerta JM, Kröger J, Wang LY, Summerhill K, Griffin JL, Feskens EJM, Affret A, Amiano P, Boeing H, Dow C, Fagherazzi G, Franks PW, Gonzalez C, Kaaks R, Key TJ, Khaw KT, Kühn T, Mortensen LM, Nilsson PM, Overvad K, Pala V, et al. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. PLoS Med 2016;13:e1002094.
51. Nikolic SB, Sharman JE, Adams MJ, Edwards LM. Metabolomics in hypertension. J Hypertens 2014;32:1159-1169.
52. Fernandez C, Sandin M, Sampaio JL, Almgren P, Narkiewicz K, Hoffmann M, Hedner T, Wahlstrand B, Simons K, Shevchenko A, James P, Melander O. Plasma lipid composition and risk of developing cardiovascular disease. PLoS One 2013;8:e71846.
53. Ganna A, Salihovic S, Sundström J, Broeckling CD, Hedman AK, Magnusson PKE, Pedersen NL, Larsson A, Siegbahn A, Zilmer M, Prenni J, Arnlöv J, Lind L, Fall T, Ingelsson E. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet 2014;10:e1004801.
54. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, Ingle CE, Dunning M, Flicek P, Koller D, Montgomery S, Tavaré S, Deloukas P, Dermitzakis ET. Population genomics of human gene expression. Nat Genet 2007;39:1217-1224.
55. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir

U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, et al. Genetics of gene expression and its effect on disease. Nature 2008;452:423-428.
56. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KCC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WOC. A genome-wide association study of global gene expression. Nat Genet 2007;39:1202-1207.
57. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, Grassi A de, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007;315:848-853.
58. Cox NJ. Human genetics: an expression of interest. Nature 2004;430:733-734.
59. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE, Zhernakova A, Zhernakova DV, Veldink JH, Van den Berg LH, Karjalainen J, Withoff S, Uitterlinden AG, Hofman A, Rivadeneira F, Hoen PAC 't, Reinmaa E, Fischer K, Nelis M, Milani L, Melzer D, Ferrucci L, Singleton AB, Hernandez DG, Nalls MA, Homuth G, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 2013;45:1238-1243.
60. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann H-E, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet D-A, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, et al. Genomewide association analysis of coronary artery disease. N Engl J Med Mass Medical Soc; 2007;357:443-453.
61. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader DJ, Morgan T, Spertus JA, Stoll M, Girelli D, McKeown PP, Patterson CC, Siscovick DS, O'Donnell CJ, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Melander O, Altshuler D, Ardissino D, Merlini PA, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009;41:334-341.
62. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM, Pirruccello JP, Muchmore B, Prokunina-Olsson L, Hall JL, Schadt EE, Morales CR, Lund-Katz S, Phillips MC, Wong J, Cantley W, Racie T, Ejebe KG, Orho-Melander M, Melander O, Koteliansky V, Fitzgerald K, Krauss RM, Cowan CA, Kathiresan S, Rader DJ. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2010;466:714-719.
63. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, Nas A van, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008;6:e107.
64. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, Geus EJC de, Boomsma DI, Wright FA, Sullivan PF, Nikkola E, Alvarez M, Civelek M, Lusis AJ, Lehtimäki T, Raitoharju E, Kähönen M, Seppälä I, Raitakari OT, Kuusisto J, Laakso M, Price AL, Pajukanta P, Pasaniuc B. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 2016;48:245-252.
65. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC, Chasman DI, FitzGerald GA, Dolinski K, Grosser T, Troyanskaya OG. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 2015;1-11.
66. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, Raychaudhuri S. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet Nature Publishing Group; 2013;45:124-130.
67. Sayols-Baixeras S, Hernáez A, Subirana I, Lluis-Ganella C, Muñoz D, Fitó M, Marrugat J, Elosua R. DNA Methylation and High-Density Lipoprotein Functionality-Brief Report: The REGICOR Study (Registre Gironi del Cor). Arterioscler Thromb Vasc Biol 2017;37:567-569.
68. Braun KVE, Dhana K, Vries PS de, Voortman T, Meurs JBJ van, Uitterlinden AG, BIOS consortium, Hofman A, Hu FB, Franco OH, Dehghan A. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics 2017;9:15.
69. Hedman ÅK, Mendelson MM, Marioni RE, Gustafsson S, Joehanes R, Irvin MR, Zhi D, Sandling JK, Yao C, Liu C, Liang L, Huan T, McRae AF, Demissie S, Shah S, Starr JM, Cupples LA, Deloukas P, Spector TD, Sundström J, Krauss RM, Arnett DK, Deary IJ, Lind L, Levy D, Ingelsson E. Epigenetic Patterns in Blood Associated With Lipid Traits Predict Incident Coronary Heart Disease Events and Are Enriched for Results From Genome-Wide Association Studies. Circ Cardiovasc Genet 2017;10.
70. Dekkers KF, Iterson M van, Slieker RC, Moed MH, Bonder MJ, Galen M van, Mei H, Zhernakova DV, Berg LH van den, Deelen J, Dongen J van, Heemst D van, Hofman A, Hottenga JJ, Kallen CJH van der, Schalkwijk CG, Stehouwer CDA, Tigchelaar EF, Uitterlinden AG, Willemsen G, Zhernakova A, Franke L, Hoen PAC 't, Jansen R, Meurs J van, Boomsma DI, Duijn CM van, Greevenbroek MMJ van, Veldink JH, Wijmenga C, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol 2016;17:138.
71. Sayols-Baixeras S, Subirana I, Lluis-Ganella C, Civeira F, Roquer J, Do AN, Absher D, Cenarro A, Muñoz D, Soriano-Tárraga C, Jiménez-Conde J, Ordovas JM, Senti M, Aslibekyan S, Marrugat J, Arnett DK, Elosua R. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum Mol Genet 2016;25:4556-4565.
72. Wright ML, Ware EB, Smith JA, Kardia SLR, Taylor JY. Joint Influence of SNPs and DNA Methylation on Lipids in African Americans From Hypertensive Sibships. Biol Res Nurs 2018;1099800417752246.
73. Braun KVE, Voortman T, Dhana K, Troup J, Bramer WM, Troup J, Chowdhury R, Dehghan A, Muka T, Franco OH. The role of DNA methylation in dyslipidaemia: A systematic review. Prog Lipid Res 2016;64:178-191.
74. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, Wit E de, Steensel B van, Laat W de. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 2006;38:1348-1354.
75. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 2006;38:1341-1347.
76. Haitjema S, Meddens CA, Laan SW van der, Kofink D, Harakalova M, Tragante V, Foroughi Asl H, Setten J van, Brandt MM, Bis JC, O'Donnell C, Cheng C, Hoefer IE, Waltenberger J, Biessen E, Jukema JW, Doevendans PAFM, Nieuwenhuis EES, Erdmann J, Björkegren JLM, Pasterkamp G, Asselbergs FW, Ruijter HM den, Mokry M. Additional Candidate Genes for Human Atherosclerotic Disease Identified Through Annotation Based on Chromatin Organization. Circ Cardiovasc Genet 2017;10.
77. Hause RJ, Stark AL, Antao NN, Gorsic LK, Chung SH, Brown CD, Wong SS, Gill DF, Myers JL, To LA, White KP, Dolan ME, Jones RB. Identification and validation of genetic variants that influence transcription factor and cell signaling protein levels. Am J Hum Genet 2014;95:194-208.
78. Melzer D, Perry JRB, Hernandez D, Corsi A-M, Stevens K, Rafferty I, Lauretani F, Murray A, Gibbs JR, Paolisso G, Rafiq S, Simon-Sanchez J, Lango H, Scholz S, Weedon MN, Arepalli S, Rice N, Washecka N, Hurst A, Britton A, Henley W, Leemput J van de, Li R, Newman AB, Tranah G, Harris T, Panicker V, Dayan C, Bennett A, McCarthy MI, et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet 2008;4:e1000072.
79. Hartiala JA, Tang WHW, Wang Z, Crow AL, Stewart AFR, Roberts R, McPherson R, Erdmann J, Willenborg C, Hazen SL, Allayee H. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat Commun 2016;7:10558.
80. Watanabe K, Taskesen E, Bochoven A van, Posthuma D. FUMA: Functional mapping and annotation of genetic associations. bioRxiv. 2017. p. 110023.
81. Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. Nat Rev Genet Nature Publishing Group; 2009;10:872-878.
82. Schork NJ, Murray SS, Frazer K a., Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 2009;19:212-219.
83. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008;40:695-701.
84. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-450.
85. Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, Helgadottir A, Magnusdottir A, Jonasdottir A, Gretarsdottir S, Jonsdottir I, Steinthorsdottir V, Rafnar T, Swinkels DW, Galesloot TE, Grarup N, Jørgensen T, Vestergaard H, Hansen T, Lauritzen T, Linneberg A, Friedrich N, Krarup NT, Fenger M, Abildgaard U, Hansen PR, Galløe AM, Braund PS, Nelson CP, Hall AS, et al. Variant ASGR1Associated with a Reduced Risk of Coronary Artery Disease. N Engl J Med 2016;374:2131-2141.
86. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, et al. Analysis of protein-coding genetic variation in 60,706 humans. bioRxiv 2016;536:285-291.
87. Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E,

Sigurdsson GT, Jonasdottir A, Jonasdottir A, Sigurdsson A, Magnusson OT, Kong A, Helgason A, Holm H, Thorsteinsdottir U, Masson G, Gudbjartsson DF, Stefansson K. Identification of a large set of rare complete human knockouts. Nat Genet 2015;47:1-6.
88. Kathiresan S, Myocardial Infarction Genetics Consortium. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med 2008;358:2299-2300.
89. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA. Efficacy and Safety of Evolocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med 2015;150315080057008-150315080057004.
90. Kuhnast S, Hoorn JWA van der, Pieterman EJ, Hoek AM van den, Sasiela WJ, Gusarova V, Peyman A, Schafer HL, Schwahn U, Jukema JW, Princen HMG. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 2014;55:2103-2112.
91. Shen L, Peng H-C, Nees SN, Zhao S-P, Xu D-Y. Proprotein convertase subtilisin/kexin type 9 potentially influences cholesterol uptake in macrophages and reverse cholesterol transport. FEBS Lett 2013;587:1271-1274.
92. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017;376:1713-1722.
93. Hess PL, Kennedy K, Cowherd M, Virani SS, Masoudi FA, Navar AM, Yeh RW, Ho PM, Maddox TM. Implications of the FDA approval of PCSK9 inhibitors and FOURIER results for contemporary cardiovascular practice: An NCDR Research to Practice (R2P) project. Am Heart J 2018;195:151-152.
94. Kathiresan S. Developing medicines that mimic the natural successes of the human genome: lessons from NPC1L1, HMGCR, PCSK9, APOC3, and CETP. J Am Coll Cardiol 2015;65:1562-1566.
95. Davey Smith G, Ebrahim S. What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ 2005;330:1076-1079.
96. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1986;1:507-508.
97. Holmes MV, Smith GD. Dyslipidaemia: Revealing the effect of CETP inhibition in cardiovascular disease. Nat Rev Cardiol 2017;14:635-636.
98. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJV, Mundl H, Nicholls SJ, Shah PK, Tardif J-C, Wright RS. Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N Engl J Med 2012;367:2089-2099.
99. Stein EA, Roth EM, Rhyne JM, Burgess T, Kallend D, Robinson JG. Safety and tolerability of dalcetrapib (RO4607381/JTT-705): results from a 48-week trial. Eur Heart J 2010;31:480-488.
100. Luscher TF, Taddei S, Kaski JC, Jukema JW, Kallend D, Munzel T, Kastelein JJP, Deanfield JE, on behalf of the dal-VESSEL Investigators. Vascular effects and safety of
dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J 2012;33:857-865.
101. Cutler DM. The Demise of the Blockbuster? N Engl J Med 2007;356:1292-1293.
102. Fayad ZA, Mani V, Woodward M, Kallend D, Bansilal S, Pozza J, Burgess T, Fuster V, Rudd JHF, Tawakol A, Farkouh ME. Rationale and design of dal-PLAQUE: A study assessing efficacy and safety of dalcetrapib on progression or regression of atherosclerosis using magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Am Heart J 2011;162:214221.e2.
103. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif J-C, Rudd JHF, Farkouh ME, Tawakol A. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 2011;378:1547-1559.
104. Cao G, Beyer TP, Zhang Y, Schmidt RJ, Chen YQ, Cockerham SL, Zimmerman KM, Karathanasis SK, Cannady EA, Fields T, Mantlo NB. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure. J Lipid Res 2011;52:21692176.
105. Teramoto T, Takeuchi M, Morisaki Y, Ruotolo G, Krueger KA. Efficacy, Safety, Tolerability, and Pharmacokinetic Profile of Evacetrapib Administered as Monotherapy or in Combination With Atorvastatin in Japanese Patients With Dyslipidemia. Am J Cardiol 2014;113:2021-2029.
106. Toth PP. Effects of the CETP Inhibitor Evacetrapib Administered as Monotherapy or in Combination With Statins on HDL and LDL Cholesterol: A Randomized Controlled Trial. Yearbook of Endocrinology 2012;2012:74-79.
107. Clark RW. Description of the torcetrapib series of cholesteryl ester transfer protein inhibitors, including mechanism of action. J Lipid Res 2005;47:537-552.
108. Davidson MH, McKenney JM, Shear CL, Revkin JH. Efficacy and Safety of Torcetrapib, a Novel Cholesteryl Ester Transfer Protein Inhibitor, in Individuals With Below-Average High-Density Lipoprotein Cholesterol Levels. J Am Coll Cardiol 2006;48:1774-1781.
109. McKenney JM, Davidson MH, Shear CL, Revkin JH. Efficacy and Safety of Torcetrapib, a Novel Cholesteryl Ester Transfer Protein Inhibitor, in Individuals With Below-Average High-Density LipoproteinCholesterolLevelsonaBackgroundofAtorvastatin. J Am Coll Cardiol 2006;48:1782-1790.
110. Joy T, Hegele R a. The end of the road for CETP inhibitors after torcetrapib? Curr Opin Cardiol 2009;24:364-371.
111. Gutstein DE, Krishna R, Johns D, Surks HK, Dansky HM, Shah S, Mitchel YB, Arena J, Wagner JA. Anacetrapib, a novel CETP inhibitor: pursuing a new approach to cardiovascular risk reduction. Clin Pharmacol Ther 2012;91:109-122.
112. HPS3/TIMI55-REVEAL Collaborative Group, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, Collins R, Wiviott SD, Cannon CP, Braunwald E, Sammons E, Landray MJ. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease.

N Engl J Med 2017;377:1217-1227.
113. Ference BA, Kastelein JJP, Ginsberg HN, Chapman MJ, Nicholls SJ, Ray KK, Packard CJ, Laufs U, Brook RD, Oliver-Williams C, Butterworth AS, Danesh J, Smith GD, Catapano AL, Sabatine MS. Association of Genetic Variants Related to CETP Inhibitors and Statins With Lipoprotein Levels and Cardiovascular Risk. JAMA 2017;318:947-956.
114. White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, Sattar N, Humphries SE, Hingorani AD, Holmes MV. Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. JAMA Cardiol 2016;1:692-699.
115. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Hólm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K, Pirruccello JP, Saleheen D, Chen L, Stewart AFR, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 2012;380:572-580.
116. Merck Abandons Plans to Pursue Anacetrapib. Medscape. 2017. https://www.medscape.com/viewarticle/886953 (9 February 2018)
117. Sean Harper. Nat Rev Drug Discov 2017;17:10-11.
118. Mullard A. CETP inhibitors stumble on. Nat Rev Drug Discov 2017;16:669.
119. Kallend DG, Reijers JAA, Bellibas SE, Bobillier A, Kempen H, Burggraaf J, Moerland M, Wijngaard PLJ. A single infusion of MDCO-216 (ApoA-1 Milano/POPC) increases ABCA1-mediated cholesterol efflux and pre-beta 1 HDL in healthy volunteers and patients with stable coronary artery disease. Eur Heart J Cardiovasc Pharmacother 2016;2:23-29.
120. Kempen HJ, Asztalos BF, Moerland M, Jeyarajah E, Otvos J, Kallend DG, Bellibas SE, Wijngaard PLJ. High-Density Lipoprotein Subfractions and Cholesterol Efflux Capacities After Infusion of MDCO-216 (Apolipoprotein A-IMilano/Palmitoyl-OleoylPhosphatidylcholine) in Healthy Volunteers and Stable Coronary Artery Disease Patients. Arterioscler Thromb Vasc Biol 2016;36:736-742.
121. The Medicines Company Discontinues Development of MDCO-216, its Investigational Cholesterol Efflux Promoter | The Medicines Company. http://www.themedicinescompany.com/investors/news/medicines-company-discontinues-development-mdco-216-its-investigational-cholesterol (9 February 2018)
122. Vascular H\&., Research. MILANO-PILOT Brings ApoA-1 Milano Hopes to an End. Consult QD. 2016. https://consultqd.clevelandclinic.org/2016/11/milano-pilot-brings-apoa-1-milano-hopes-end/ (9 February 2018)
123. Polfus LM, Gibbs RA, Boerwinkle E. Coronary heart disease and genetic variants with low phospholipase A2 activity. N Engl J Med 2015;372:295-296.
124. OltextquoterightDonoghue ML, Braunwald E, White HD, Steen DP, Lukas MA, Tarka E, Steg PG, Hochman JS, Bode C, Maggioni AP, Im K, Shannon JB, Davies RY, Murphy SA, Crugnale SE, Wiviott SD, Bonaca MP, Watson DF, Weaver WD, Serruys PW, Cannon CP. Effect of Darapladib on Major Coronary Events After an Acute Coronary Syndrome. JAMA 2014;312:1006-1010.
125. Mullard A. GSK's darapladib failures dim hopes for anti-inflammatory heart drugs. Nat Genet 2014;13:481-482.
126. The STABILITY Investigators. Darapladib for Preventing Ischemic Events in Stable Coronary Heart Disease. N Engl J Med 2014;370:1702-1711.
127. GSK announces phase III study with darapladib did not meet primary endpoint in patients following an acute coronary syndrome | GSK. https://us.gsk.com/en-us/media/press-releases/2014/gsk-announces-phase-iii-study-with-darapladib-did-not-meet-primary-endpoint-in-patients-following-an-acute-coronary-syndrome/ (10 October 2017)
128. Holmes MV, Exeter HJ, Folkersen L, Nelson CP, Guardiola M, Cooper JA, Sofat R, Boekholdt SM, Khaw K-T, Li K-W, Smith AJP, Van't Hooft F, Eriksson P, FrancoCereceda A, Asselbergs FW, Boer JMA, Onland-Moret NC, Hofker M, Erdmann J, Kivimaki M, Kumari M, Reiner AP, Keating BJ, Humphries SE, Hingorani AD, Mallat Z, Samani NJ, Talmud PJ, CARDIoGRAM Consortium. Novel genetic approach to investigate the role of plasma secretory phospholipase A2 (sPLA2)-V isoenzyme in coronary heart disease: modified Mendelian randomization analysis using PLA2G5 expression levels. Circ Cardiovasc Genet 2014;7:144-150.
129. Holmes MV, Simon T, Exeter HJ, Folkersen L, Asselbergs FW, Guardiola M, Cooper JA, Palmen J, Hubacek JA, Carruthers KF, Horne BD, Brunisholz KD, Mega JL, Iperen EPA van, Li M, Leusink M, Trompet S, Verschuren JJW, Hovingh GK, Dehghan A, Nelson CP, Kotti S, Danchin N, Scholz M, Haase CL, Rothenbacher D, Swerdlow DI, Kuchenbaecker KB, Staines-Urias E, Goel A, et al. Secretory phospholipase A(2)-IIA and cardiovascular disease: a mendelian randomization study. J Am Coll Cardiol 2013;62:1966-1976.
130. Petersen A-K, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, Meisinger C, Strauch K, Hengstenberg C, Pagel P, Huber F, Mohney RP, Grallert H, Illig T, Adamski J, Waldenberger M, Gieger C, Suhre K. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet 2014;23:534-545.
131. Lusis AJ. Atherosclerosis. Nature 2000;407:233-241.
132. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014;32:40-51.
133. Pasterkamp G, Laan SW van der, Haitsema S, Bezemer T, Setten J van, Tragante do O V, Hoefer I, Jager SCA de, Ruijter HM den, Asselbergs FW. Human validation of genes associated with a murine atherosclerotic phenotype. Atherosclerosis Elsevier; 2014;237:e3.
134. Scheidt M von, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metab 2017;25:248-261.
135. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, MillerGraziano C, Calvano SE, Mason PH, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences 2013;110:3507-3512.
136. Souza N de. Model organisms: Mouse models challenged. Nat Methods 2013;10:288-288.
137. Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences 2014;112:1167-1172.
138. Calara F, Silvestre M, Casanada F, Yuan N, Napoli C, Palinski W. Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 2001;195:257-263.
139. Rice J. Animal models: Not close enough. Nature 2012;484:S9.
140. Pasterkamp G, Laan SW van der, Haitjema S, Foroughi Asl H, Siemelink MA, Bezemer T, Setten J van, Dichgans M, Malik R, Worrall BB, Schunkert H, Samani NJ, Kleijn DPV de, Markus HS, Hoefer IE, Michoel T, Jager SCA de, Björkegren JLM, Ruijter HM den, Asselbergs FW. Human Validation of Genes Associated With a Murine Atherosclerotic Phenotype. Arterioscler Thromb Vasc Biol 2016;36:1240-1246.
141. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Genet 2013;12:581-594.
142. Koch L. Genomics: The best-laid plans of mice and men. Nat Rev Genet 2014;16:11.
143. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See L-H, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014;515:355-364.
144. Stergachis AB, Neph S, Sandstrom R, Haugen E, Reynolds AP, Zhang M, Byron R, Canfield T, Stelhing-Sun S, Lee K, Thurman RE, Vong S, Bates D, Neri F, Diegel M, Giste E, Dunn D, Vierstra J, Hansen RS, Johnson AK, Sabo PJ, Wilken MS, Reh TA, Treuting PM, Kaul R, Groudine M, Bender MA, Borenstein E, Stamatoyannopoulos JA. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 2014;515:365-370.
145. Cheng Y, Kim B-H, Boyle AP, Xing X, Li J, Lin S, Visel A, Yang X, Keller CA, Giardine B, Mouse ENCODE Consortium, Kundaje A, Wang T, Hardison RC. Principles of regulatory information conservation between mouse and human. Nature 2014;515:371-375.
146. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis C a., Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee B-KB-K, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Ernst J, et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:5774.
147. Pasterkamp G, Laan SW van der, Haitjema S, Foroughi AsI H, Siemelink MA, Bezemer T, Setten J van, Dichgans M, Malik R, Worrall BB, Schunkert H, Samani NJ, Kleijn DPV de, Markus HS, Hoefer IE, Michoel T, Jager SCA de, Björkegren JLM, Ruijter HM den, Asselbergs FW. Human Validation of Genes Associated With a Murine Atherosclerotic Phenotype. Arterioscler Thromb Vasc Biol Elsevier; 2014;237:1240-
1246.
148. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190-1195.
149. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32:347-355.
150. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-1278.
151. Hawgood S, Hook-Barnard IG, O'Brien TC, Yamamoto KR. Precision medicine: Beyond the inflection point. Sci Transl Med 2015;7:300ps17.
152. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-795.

