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Mobile phone data are an interesting new data source for official statistics. However, multiple
problems and uncertainties need to be solved before these data can inform, support or even
become an integral part of statistical production processes. In this article, we focus on
arguably the most important problem hindering the application of mobile phone data in
official statistics: detecting home locations. We argue that current efforts to detect home
locations suffer from a blind deployment of criteria to define a place of residence and from
limited validation possibilities. We support our argument by analysing the performance of five
home detection algorithms (HDAs) that have been applied to a large, French, Call Detailed
Record (CDR) data set (,18 million users, five months). Our results show that criteria choice
in HDAs influences the detection of home locations for up to about 40% of users, that HDAs
perform poorly when compared with a validation data set (resulting in 358-gap), and that their
performance is sensitive to the time period and the duration of observation. Based on our
findings and experiences, we offer several recommendations for official statistics. If adopted,
our recommendations would help ensure more reliable use of mobile phone data vis-à-vis
official statistics.

Key words: Mobile phone data; home location; home detection algorithms; official statistics;
big data.

1. Introduction

By now, big data has well and truly arrived and their potential as well as the challenges it

poses for official statistics have become much more evident. Consequently, there has been

a clear demand to invest in pilot projects that explore how big data can be integrated into

official statistics (Eurostat 2014; Glasson et al. 2013).

From a practical perspective, pilot projects are useful not only to identify practical

issues (e.g., legal issues, data management). They are also particularly useful when
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critically assessing the reliability of data sources and methodologies. It is reassuring that,

regarding such assessments, Karlberg et al. (2015, 1) observe that: “There is a clear trend

towards a more reflective approach, with an emphasis not only on producing high-quality

statistics, but also on rendering explicit details on exactly how this is being achieved”.

When it comes to big data the importance of providing explicit details is not to be

underestimated as big data sources, typically, do not adhere to official statistics’ standards

and principles – such as issues on coverage, representativity, quality, accuracy and

precision (Daas et al. 2015) – and, consequently, neither do their methodologies.

In this article, we present a pilot study focusing on, arguably, the most important step for

the application of mobile phone data in official statistics: identifying where someone lives,

that is, detecting their home location. Current home detection methods for mobile phone

data do not adhere to official statistics standards (or even to what could reasonably be

expected from academic standards). We elaborate our argument by means of an extensive

review of literature and an empirical analysis based on a large-scale, French, Call Detailed

Records (CDR) data set. In doing so, we aim to show how current home detection practices

came to be, how they are bound by limited validation possibilities and how they are

sensitive to criteria choice or decision rule development. Given the lack of research on

these problems, we argue that there is no clear framework on which to apprise the

performance or the uncertainty of current home detection methods.

Our analysis evaluated the performance of five different home detection algorithms

using a mobile phone data set from France. The case study allows us to reflect on the

findings from a more practical point of view, whilst also contributing to our discussions

and recommendations on the various uncertainties that underlie current home detection

practices. We hope our contribution will help other researchers and practitioners to

recognise the difficulties of integrating information on home locations sourced from

mobile phone data into official statistics.

2. Mobile Phone Data, Official Statistics and the Role of Home Detection Methods

2.1. Mobile Phone Data and Official Statistics

Before looking at the methods used to identify home location, let us quickly consider how

mobile phone data can be of interest for official statistics.

Over the last decade, the analysis of mobile phone data has grown into a mature research

field with a wide array of applications that are being developed and applied (Blondel et al.

2015). One line of interest is that mobile phone data have the potential to capture temporal

patterns of user presence (Deville et al. 2014), which could be used to estimate population

density (Ricciato et al. 2015). In turn, these estimations could usefully support official

statistics in developing countries (Blondel et al. 2012; de Montjoye et al. 2014).

Another line of interest relates to the large-scale recording of mobility patterns. As

mobile phones can capture individual mobility for millions of users, applications have

been developed that estimate nationwide commuting figures (Kung et al. 2014), long-

distance trips (Janzen et al. 2016; Janzen et al. 2018), inbound tourism trips (Raun et al.

2016) and even domestic tourism trips (Vanhoof et al., 2017b).
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These and similar developments have the potential to enhance official statistics in fields

such as the delineation of urban areas (Vanhoof et al. 2017a), the understanding of

migration patterns (Blumenstock 2012), or to complement tourism statistics (Ahas et al.

2008). They could even perform nowcasting of macro-economic and socio-economic

aspects of populations (Baldacci et al. 2016; Marchetti et al. 2015; Giannotti et al. 2012;

Pappalardo et al. 2016, and Vanhoof et al. 2018).

2.2. The Role and Method of Home Location

Common to many, if not all, mobile phone data research is the need to identify the home

location of mobile phone users before proceeding to more advanced analysis. For

example, knowing the place of residence is a prerequisite before analysing the amount

of time spent at home and commuting patterns, which in turn fuel mobility and

epidemiological models (Rubrichi et al. 2017). Besides its relevance within mobile phone

data analysis, knowledge of home location also forms the crucial link between mobile

phone data and other data sources, such as census data, making it a key enabler for the

combination of information.

The method of pinpointing where someone lives consists of attributing a supposed home

location to every single user in the database from the geographical metadata obtained from

their mobile phone records. In practice, identifying a person’s home means that a single

cell tower is allocated as their home location. This allocation is based on the calling and

movement patterns of each individual user. The spatial resolution of cell towers is used

because most mobile phone data sets only have geographical data of the towers’ positions.

The assumption then is not that a user lives at that exact cell tower location, but rather

somewhere in the area covered by the tower. It is remarkable that even though detecting

the home location now forms a cornerstone of mobile phone research, home detection

methods are often obscured in literature: details on their exact application, related

uncertainties, perceived performance or even the validation processes are only rarely

communicated.

In the following section, we show why current home detection practices are

problematic. In an extended literature review, we show how, over time, methodologies for

home detection have been simplified to single-step approaches using decision rules that

are based on simple, a priori defined criteria of what defines a “home”. Such methods

are questionable because the possibilities to validate are limited, and there is a lack of

knowledge on their sensitivity, specifically in respect to criteria choice. Our empirical

work with a large, French, mobile phone data set exemplifies several of the problems we

raise. It allows us to put the problems in a more practical context and outline their

consequences in more detail.

3. Identifying Homes from Large-Scale Location Traces

Given the enormity of the data sets that capture geolocated traces of users, literature

explains the automated methods developed for identifying the homes, or other meaningful

places such as the workplace, of users. Here, it is necessary to distinguish between

continuous location traces (e.g., GPS data) and noncontinuous location traces (e.g., mobile
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phone data) where the latter do not provide a similar high-volume, high-resolution capture

of location traces in time or space compared to the former.

As our main interest is to outline the deficits in the methods used for noncontinuous

location traces, this section will start by reviewing the literature on automated home

location.

3.1. Identifying Meaningful Places from Continuous Location Traces

The analysis of continuous location traces has been the focus of early developments in the

automated identification of meaningful places. Related work typically used small-scale

data sets, most commonly from continuous GPS traces, but also from Bluetooth, or Wi-Fi

positioning (Wolf et al. 2001; Shen and Stopher 2014). The general methodology used

to identify meaningful places from continuous location traces consists of a two-step

approach.

In the first step, location traces are clustered in space (and sometimes in time) in order to

detect important places. Techniques for clustering continuous location traces range from

manual GIS analysis (Wolf, Guensler, and Bachman 2001; Gong et al. 2012) to automated,

unsupervised analysis using, for example, k-means clustering (Ashbrook and Starner

2003), nonparametric Bayesian approaches (Nurmi and Bhattacharya 2008), or

fingerprinting of the radio environment (Hightower et al. 2005).

In a second step, the important places identified are then annotated as meaningful places

(such as home, work, recreation area). Annotation can be done either through

interpretation, for example by expert judgment, by surveying the user that produced the

traces, or through automation, mainly by means of time-space heuristics (Nurmi and

Bhattacharya 2008).

3.2. Identifying Meaningful Places from Noncontinuous Traces

In contrast to the above-mentioned continuous location traces, the use of noncontinuous

location traces has recently become very popular. Examples of activities that produce

noncontinuous location traces in large-scale data sets are mobile phone usage, credit card

transactions, or check-ins through location-based services (e.g., Foursquare) and online

social networks (e.g., Twitter).

The identification of meaningful places from noncontinuous location traces poses

substantial challenges, most notably due to the less frequent observations and the larger

spatial resolution in which observations are captured (e.g., mobile phone data are

only captured at the location of the cell tower used). However, these challenges are

outweighed by the presumed advantages associated with the larger coverage, in terms of

users, timespan and spatial extent of the data sources (Järv, Ahas, and Witlox 2014; Kung

et al. 2014).

The following analysis will focus on one example of how to identify one meaningful

place – the location of a user’s home, using one prominent example of noncontinuous

traces: Call Detailed Record (CDR) data.

CDR data are mobile phone data captured by the network operator every time a user

makes or receives a text or call (hence the noncontinuous tracing). Note that the methods
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and problems described in the following sections are not limited to CDR data, but are

relevant for all data sets covering noncontinuous location traces.

3.2.1. Two-Step Approaches for Noncontinuous Traces

As with the two-step approaches for continuous traces, initial methods to detect home

locations from CDR data also clustered location traces into important places before

annotating them as meaningful places. For example, in Isaacman et al. (2011) individual

traces from CDR data are clustered using Hartigan’s leader algorithm. Clusters are then

annotated into meaningful places by means of a logistic regression model that is trained on

data from 18 persons for which ground truth was available. Next, and for each user, the

cluster with the highest score on the logistic regression model is chosen to be the presumed

home area.

3.2.2. Single-Step Approaches for Noncontinuous Traces

However, two-step approaches for noncontinuous location traces quickly gave way to

single-step approaches that are now widely deployed in literature (Calabrese et al. 2014;

Calabrese et al. 2011; Kung et al. 2014; Phithakkitnukoon et al. 2012). The difference

between two-step and single-step methods is that the latter skips the clustering into

important locations and thus acts directly on individual cell towers instead of groups of

cell towers.

One of the reasons for switching to single-step approaches is that the standard clustering

methods used in the two-step approaches make it difficult to construct consistent spatial

traces when combined with noncontinuous location traces. Nevertheless, the main

drawback of this switch to a single-step approach is that the spatial pattern of the location

traces is largely neglected, as only single cell tower annotation is targeted. This increases

the uncertainty of fixing home location, because single events at individual cell towers

may be sufficient to undermine the method.

In practical terms, detecting a home in a single-step approach is done by using a

decision rule that is based on an a priori definition of home – the home criterion as we call

it – in order to produce a list of one or several cell towers that could be the home location.

A standard example of a home criterion for the case of CDR data is “home is where calls

are made during the night”. The problem with single-step approaches is that such decision

rules are being applied as heuristics, meaning that one general rule is applied to the

location traces of all users even though a different set of decision rules could potentially

lead to better results.

In terms of identifying home location, applying heuristics implies that meaningful

places (like the home) can be described similarly for all users in the data set, regardless of

the user’s characteristics as observed in their movements and calling patterns. It seems

logical that the imposition of this assumption can only be done when a proper evaluation

and validation of their movements has been carried out, or when clear evidence exists for

the use of a specific criterion or decision rule. For this reason, the following paragraphs

will discuss how to define decision rules for one-step home detection methods and which

criteria to use.
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3.3. Defining Decision Rules for Single-Step Home Identification

3.3.1. Simple Decision Rules for Single-Step Home Detection

The core challenge for single-step home detection is in defining a decision rule that

is simultaneously capable of i) distinguishing between different important places, and

ii) annotating the correct home location. Most research employs simple decision rules that are

either based on information from official statistics or rely on precedents found in literature.

When examining the existing decision rules in research literature, the most popular are:

time-based limitations for the night (“home is the location that has the most activity

between x p.m. and y a.m.”), time-based aggregations (‘home is where the most distinct

days, or weekend-days are spent), and spatial groupings (‘home is the location with

the most activity in a spatial radius of x km around it), (Calabrese et al. 2011;

Phithakkitnukoon et al. 2012; Frias-Martinez and Virseda 2012; Kung et al. 2014; Tizzoni

et al. 2014). One example, using time-interval statistics from a Boston data set drawn from

the American Time Use Survey (Calabrese et al. 2011), uses the highest distinct number of

observations between 6 p.m. and 8 a.m. to derive home locations.

Almost all studies using simple decision rules rely on census data. They depend either

on specific surveys and questionnaires to define the criteria deployed, (Calabrese et al. 2011)

or, for high-level validation, on aggregated population density data (Phithakkitnukoon

et al. 2012) or commuting Figures (Kung et al. 2014).

3.3.2. Complex Decision Rules for Single-Step Home Detection

A few studies have elaborated more complex decision rules for home detection. The

seminal work of Ahas et al. (2010), for example, uses a tree-based approach that combines

a set of criteria including distinct days of activities on a cell tower, the starting times of

calls, deviations of starting time of calls, durations of calls, and this all for a training set of

14 people for which the ground truth was known. The decision rules, as defined by the

classification tree, were consequently deployed to all users in an Estonian data set (as

heuristics in other words), raising the question of how representative a training set of

14 people could possibly be for a large population.

The problem of small training sets was overcome in Frias-Martinez et al. (2010), who

used a training set of 5,000 users to construct a complex decision rule for home detection.

Deploying a Genetic Algorithm technique, they focus on finding the best combination

of temporal criteria to denote home locations in an emerging economy. Their best

performance is a correct prediction of around 70% for a subset of 50% of the users. Users

were filtered on the basis of having at least a 20% difference in the percentage of total calls

between the first and second eligible cell tower. The complex decision rule they use to

obtain this result is to select the cell tower logging the most activity during the nights of

Friday, Saturday, Sunday, Monday and Tuesday from 5:15 p.m. to 8:30 a.m.

The individual ground truth data in Frias-Martinez et al. (2010) are retrieved from users’

contracts with the provider. This data is not available in most countries due to legal

obligations to anonymise users or bans on linking individual information to CDR data.

As a consequence, Csáji et al. (2013), tried to derive a temporal decision rule, but this

time without a training/validation data set at individual level. Applying an unsupervised
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k-means algorithm to the temporal activity patterns of frequently used cell towers in

Portugal, they found clusters that are interpretable as temporal patterns typically relating

to presence at home, at work, or as not interpretable at all. Consequently, their decision

rule to detect home locations was based on these temporal patterns interpreted as home

presence. Compared to Frias-Martinez et al. (2010), one of the drawbacks of their

approach is that they did not construct their criteria based on individual observations. This

raises the question as to the degree to which such criteria are realistic for different subsets

of users.

In a way, the subset representativity problem persists for all single-step approaches,

regardless of whether their decision rules are defined in a complex or simple way. If the

same decision rules is applied to all phone users, careful investigation into the effect at

individual level, or at population subset level should be carried out, in order to know the

degree to which generalisation favours or disfavours subsets of users. In other words,

if decision rules are applied generically, indepth validation of the single-step approaches

is important.

3.4. Validating Large-Scale Home Detection Methods

The use of a particular decision rule, whether derived from a census, borrowed from

literature or defined by training sets, is often based on comparing population counts from

mobile phone data with census data. However, such high-level validation does not offer a

direct evaluation of performance at individual user level, nor does it allow for comparison

between cases. In fact, assessing the performance of different decision rules by comparing

the resultant population counts with census data is, strictly speaking, a rather limited

alternative solely justified by the absence of individual level validation data.

The absence of validation data at individual level is a common problem in published

research, and is therefore often taken for granted. However, the absence of validation data

has several consequences. First and foremost, it impedes the creation of evaluation metrics

that can assess the performance of home detection at individual level. Such an individual

level evaluation could allow us to better understand the workings of different decision

rules on a specific data set and user subsets, which in turn could enable a comparison

between different decision rules, data sets, users and areas.

Secondly, the absence of validation data at individual level is implicitly why single-step

approaches apply decision rules as heuristics. In the absence of individual level validation

data, it is impossible to understand which decision rules works best for any individual user.

Consequently, case-adjusted, adaptive algorithms cannot be developed. This implicitly

forces researchers and practitioners to adhere to a one-size-fits-all solution in order to be

clear and consistent.

It is worth noting that, currently, high-level validation is still assumed to be a good

solution in the absence of individual level validation data. In particular, two observations

stand out.

Firstly, census data is often used for high-level validation. For example, comparisons

for small geographical areas can be made between the counts of home locations identified

from mobile phone data and the aggregated counts of peoples’ residential locations

obtained from censuses. This is a very opportunistic, if not naı̈ve, validation attempt as
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census data has never specifically been gathered to serve this purpose and little or no

information exists on how, for example, different spatial delineations or the distorted

market shares of mobile phone operators could influence this kind of validation.

Secondly, it is noteworthy that no studies have used high-level validation to compare

the performance of different decision rules. Nor are there studies that evaluate the

sensitivity of high-level validation to criteria choice. This absence is probably because

high-level validation is not informative enough to properly understand the differences

between criteria, decision rules, and their performances. Given this, we are far from

obtaining a consensus on which criteria are best, or on how to construct optimal decision

rules. In fact, we are far from understanding the strengths and weaknesses of different

home detection methods altogether. Given this, we should question the degree to which

high-level validation contributes to the development and trustworthiness of home

detection.

3.5. Current Deficits of Home Detection Using Noncontinuous Location Traces

In conclusion, we find a clear framework is missing to allow us to understand the

performance, uncertainty and sensitivity of the criteria choice or decision rule

development, especially at individual level, when using noncontinuous location traces

to detect home location. Despite their widespread use, no clear reasoning exists as to why

single-step approaches should be chosen over two-step approaches. Nor does a consensus

exist on which criteria should be used, or how optimal decision rules for a given data set

should be defined.

Similarly, it is striking that no work investigates the sensitivities of single-step

approaches to criteria choice. Additionally, we find that the validation of large-scale home

detection methods is severely limited because of the absence of ground truth data at

individual level. As a result, current assessments of home detection methods are based on

high-level validation, but the trustworthiness and exact contribution of this practice is

rather dubious.

In summary, our findings indicate that the current methods to identify users’ home

locations for official statistics are rather questionable. We illustrate some of the

aforementioned problems by means of a case study for identifying home locations using

French CDR data.

4. Investigating Home Detection Algorithms for French CDR Data

To explore the application of single-step home detection methods on a French CDR data

set, we start by constructing five home detection algorithms that incorporate different

popular home criteria in simple decision rules. We apply these algorithms to the French

data set, perform high-level validation, and investigate sensitivity to criteria choice. This

allows us to demonstrate some of the aforementioned problems in an applied context.

4.1. The French CDR Data Set

CDR data are the most widely-used examples of mobile phone data in research. CDR data

are passively gathered by operators for billing and maintenance purposes and are collected
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every time a mobile phone user makes or receives a text or a call. Apart from technical

metadata on the workings of the network, CDR data contain information on the time, the

location (the cell tower used), as well as the caller and the call receiver.

For our analysis, we use an anonymised CDR data set from the mobile phone carrier

Orange. The data covers the mobile phone usage of ,18 million users on the Orange

network in France during a period of 154 consecutive days in 2007 (13 May 2007 to 14

October 2007). At that time, mobile phone penetration was estimated at 86% (ARCEP

2008). Given a population of 63.9 million inhabitants during the observed period (counted

as the average of monthly estimates between May and October 2007 as obtained from the

INSEE Website: www.insee.fr), this data set covers about 32.8% of all French mobile

phone users and 28.6% of the total population.

The Orange France 2007 CDR data set is one of the largest CDR data sets available in

terms of population-wide coverage and has been extensively studied before (Grauwin et al.

2017; Sobolevsky et al. 2013; Deville et al. 2014). It is the latest CDR data set available for

France that allows for long-term, temporal continuous tracking of mobile phone users.

Access to more recent data sets is limited by The French Data Protection Agency (CNIL),

which is anticipating the EU General Data Protection Regulation and does not allow

individual traces for periods of more than 24 hours to be collected, before being

irreversibly recoded.

Some of the typical characteristics of CDR data sets that pose substantial challenges for

their automated analysis are the temporal sparsity in observations and the spatially uneven

distribution of the areas covered. The former results in only a few records per user per day.

For example: for an arbitrary day in the French data set (Thursday, 1 October 2007), the

median number of records per user was four, relating to only two different locations. Such

statistics are representative for CDR based studies and can be deemed rather high

compared to other large-scale noncontinuous datasets like credit-card transactions or

Flickr photos (Bojic et al. 2015). The latter is the result of a demand-driven, nonuniform

distribution of cell tower locations (higher densities of cell towers are found in more

densely populated areas, such as cities or coastlines), meaning that the spatial accuracy of

the dataset is restricted to the network’s spatial resolution.

On the other hand, it is very attractive to have the possibility of researching the large-

scale CDR data sets at population level, without users needing to share their locations.

This increases the feasibility of automated applications such as home location. In addition,

continuous data collection allows us to observe over extended periods, which in turn

enables complex analysis and lessens any influence emanating from singular events and/or

nonroutine behaviour.

4.2. Applying Five HDAs to the French CDR Data

4.2.1. Constructing Five HDAs with Simple Decision Rules Based on

Popular Home Criteria

To perform home detection, we construct five basic Home Detection Algorithms (HDAs).

Each incorporates one or two popular home criteria that are applied by means of simple

decision rules. In order to select criteria, we took into account literature that dealt with

Vanhoof et al.: Quality of Home Detection from Mobile Phone Data 943

http://www.insee.fr


single-step approaches (e.g., Ahas et al. 2010; Isaacman et al. 2011; Calabrese et al. 2011;

Tizzoni et al. 2014; Chen et al. 2014; Phithakkitnukoon et al. 2012; Csáji et al. 2013; Kung

et al. 2014). We also used distilled criteria that were sometimes used independently (e.g.,

Tizzoni et al. 2014), sometimes combined (e.g., Ahas et al. 2010), sometimes within

simple decision rules (e.g., Phithakkitnukoon et al. 2012), and sometimes within complex

decision rules (e.g., Csáji et al. 2013 and Frias-Martinez 2010).

The HDAs we construct use the decision rules that ‘home’ is in the area of the cell tower

where:

1. The majority of both outgoing and incoming calls and texts were made (amount of

activities criterion),

2. The maximum number of distinct days with phone activities – both outgoing and

incoming calls and texts – was observed (amount of distinct days criterion),

3. Most phone activities were recorded during 7 p.m. and 9 a.m. (time constraints

criterion),

4. Most phone activities were recorded, implementing a spatial perimeter of 1,000

meters around a cell tower that aggregates all activities within (space constraints

criterion) and

5. The combination of 3) and 4), thus most phone activities recorded during 7 p.m. and

9 a.m. and implementing a spatial perimeter of 1,000 meter (time constraints and

space constraint criterion).

Note that throughout this article, we will estimate cell tower areas by means of the

Voronoi tessellation of the cell tower network. The use of Voronoi polygons to describe

the spatial patterns of cell tower coverage has disadvantages. Although widely used in

literature, Voronoi polygons are a simplification of the actual capacity of cell towers

to cover areas. In reality, capacity is dependent on factors such as humidity, urban

environment, elevation of the cell tower, and orientation. Theoretically, developing

estimation models for the coverage of cell towers should be possible, but such models need

extensive field surveys for validation, surveys that are expensive and thus rarely available.

Therefore, there exists an unobservable measurement error when using Voronoi polygons

and most findings (including ours) are dependent on the assumption that this error has an

insignificant impact.

Note also that Bojic et al. (2015) uses similar HDAs when assessing and comparing

home detection methods for a credit card transaction and Flickr data set. This shows that

the relevance of these algorithms goes beyond the case of CDR data and also serves other

data sets with non-continuous location traces.

4.2.2. Applying Five HDAs to the French CDR Dataset

We apply all five HDAs to the Orange France 2007 CDR data set to detect the cell tower

that covers the presumed home location (L1) for all users during all months in the data set

(May to October). Besides the L1 cell tower, we gather information about the second (L2)

and the third (L3) most plausible cell tower to cover the home location following the

particular decision rule applied.

Table 1 shows the total number of times each HDA could detect an L1, L2 or L3 cell

tower based on the CDR data of ,18 million users and when applied to each month in the
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data set. Given the availability of six different months (mid-May to mid-October), non-

restrictive algorithms (such as algorithm 1 and 2) will be capable of detecting an L1 cell

tower for about 109.4 million users (,18 000 000*6). Restrictive algorithms, such as the

time-constraining algorithm 3, have fewer users for which a presumed home cell tower

(L1) can be detected. The reason is that some users might not have made or received calls

or texts during the restricted timeframe, so no CDR records exist and therefore the

algorithm cannot identify an L1 cell tower.

For example, when we compare the number of times algorithm 1 (all activities) was

capable of detecting an L1 compared to algorithm 3 (only nighttime activities), we can

derive that up to 10% (98.4/109.4) of the users did not have mobile phone activities during

the night. This made it impossible for the time-constraint HDAs to detect a cell tower

presumably covering the home location. It is also interesting to note that, depending on

decision rule of the algorithm, between 79.6 and 93.5% and between 62.3 and 87.9% of

users have an L2 or L3 cell tower that could also be nominated as the home location cell

tower, as they only varied by a slight degree compared to the L1 (or L2) cell tower(s). In

other words, the decision rules applied do not overly discriminate between the eligibility

of different cell towers to be the presumed home location. This raises the question of

whether the French data set would not have benefited from a two-step approach.

4.3. Comparison of HDAs at Individual Level

One intriguing question is whether, for the same individual user, different HDAs would

detect different home locations (L1 cell towers). We assess to which degree two different

algorithms detect similar home locations for all individual users in the data set by

evaluating the Simple Matching Coefficient (SMC) (Bojic et al. 2015):

%SMC ðalgorithmA; algorithmBÞ ¼ 100*

Xn

i¼1
dðHomeA;i;HomeB;iÞ

N
ð1Þ

where i ¼ 1, : : : , N denotes the N users analysed, and dðHomeA;i;HomeB;iÞ is the

Kronecker delta which is equal to 1 when the home detected by algorithm A for the i-th

user is identical to the home detected by algorithm B for the same user. The Kronecker

delta becomes 0 otherwise. Values of per cent SMC thus range between 0 and 100 and can

be interpreted as the percentage of individual cases for which both algorithms detected the

same home locations. When calculating SMC values, we omit all cases where one of the

algorithms failed to detect a home location (e.g., when no observations were left after

implementing a time constraint).

Figure 1 shows the SMC values for all pair combinations of HDAs during the different

months in the data set. In general, pair accordance ranges between 61.5% and 96.4% of the

detected homes, resulting in discordance rates between about 40% and 4%. In absolute

numbers, this means that different decision rules predict different homes for between

6.8 and 0.6 million users. The patterns of (dis)similarities between HDAs are rather clear.

Algorithms that incorporate time-constraints (algorithms 3 and 5) have a high degree of

variance with algorithms that count the amount of activities (algorithm 1), distinct days

(algorithm 2), or perform spatial groupings (algorithm 4), all of which show rather high

degrees of pair accordance. The different results for the time-constraints algorithms might
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stem from sparser observations or different movement patterns during the night, but exact

reasons are unknown.

4.4. High Level Validation of Home Detection Algorithms

Given that different HDAs give different results for a considerable share of all individual

users, the question becomes which decision rule should be preferred. As discussed

previously, no consensus exists in literature on which decision rule(s) are best. This is

partly because of the absence of comparative studies, but mainly because of the lack of

proper validation data at individual level. In our case too, individual-level ground truth

data was not available and so our assessment is at high-level, comparing census figures

with population counts produced by HDAs.

4.4.1. National Statistics Validation Data Set

In contrast to related works, our high-level validation is based on a unique validation data

set that was created in collaboration with the French National Statistics Institute (INSEE).

To construct the validation data set, the Public Finances Directorate General (DGFIP)

collected individual (or household) home locations from revenue declarations, housing

taxes and the directory of taxable individuals. It then aggregated this information into

population counts at the resolution of the Orange cell tower network (see also Figure 3a).

In other words, an estimation of the population numbers, based on census data, for the

geographical areas created by the Voronoi polygons of the Orange cell towers was

produced and made available to the research project under a non-disclosure agreement.

It is a huge advantage to have access to a validation data set that has the same spatial

resolution as the mobile phone network. It avoids the spatial translation of statistical zones

Algorithm 1: Maximum actions

Algorithm 3: Time restraints
Algorithm 4: Space restraints
Algorithm 4: Time and space restraints

Algorithm 2: Distinct days

Algorithm 5Algorithm 4

Algorithm 3
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Fig. 1. SMC values for all pair combinations of HDAs, for each month in the data set. SMC values express the

ratio of users for which two HDAs detect the same home.
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to the cell tower Voronoi areas, which is complicated and prone to errors (Frias-Martinez

et al. 2010), given the spatially uneven distribution of cell towers.

Unfortunately, the individual (or household) home locations used to construct the

validation data set could only be made available for the year 2010. However, for reasons

explained in the previous paragraph we do opt to use this validation data set with its

temporal mismatch (the mobile phone data set covers 2007) over the low resolution,

publicly available census data that are updated every year. Since we only use the

validation data set for relative comparisons between HDAs (i.e., no absolute validation is

attempted), the assumption we introduce concerning this temporal mismatch is that

relative population patterns do not change drastically within three years.

4.4.2. Validation of HDA Results at Cell Tower Level

To compare results from HDAs with the proposed validation data set, we evaluate the

degree of similarity in population counts attributed to all cell tower areas. Note that we do

not target an absolute assessment of similarity, as this is impossible given the unknown

spatial distribution of the 28.7% sample of Orange users and the differences in times of

collection between the CDR data set (2007) and our validation data (2010). Instead, we

compare general patterns of estimated populations by means of vector comparison.

In our case, a first vector denotes the estimated population by one HDA for all cell tower

areas and is compared to a second vector that describes the validation population count for

exactly the same cell tower areas. Both vectors thus have an equal length (n ¼ 18 273 the

amount of cell towers in the Orange network). To quantify the similarities and differences

between both vectors, we use a standard Cosine Similarity Metric (CSM). According to Ye

(2011, 91): “The cosine similarity is a classic measure used in information retrieval and is

the most widely reported measure of vector similarity”, and it is based on the angle

between two vectors described by its cosine:

cos ð~x; ~yÞ ¼

Xn

i¼1
xi*yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2

i

q
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
y2

i

q ð2Þ

where xi and yi are components of vectors ~x and ~y respectively and n is the total number of

cell tower areas.

Values of the cosine will range between 21 and 1. A value of 1 indicates the highest

similarity in orientation (the angle between ~x and ~y is zero degrees), 0 indicates the lowest

similarity in orientation (the angle between ~x vector and ~y vector is 90 or 290 degrees)

and 21 indicates an opposite orientation (the angle between ~x and ~y is 180 degrees).

Deriving the angle between two vectors and expressing it in degrees (8) consequently gives

us the CSM value we want:

CSMð~x; ~yÞ ¼ cos21

Xn

i¼1
xi*yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2

i

q
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
y2

i

q

0

B@

1

CA*
180

p

�������

�������
ð3Þ
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A CSM value of 08 denotes the highest possible similarity, 908 indicates the lowest

similarity in orientation whereas 1808 degrees refers to an opposite orientation.

4.4.3. Validation with Census Data: CSM

Figure 2 shows the calculated CSM values for all HDAs and for different months. The

distinct days that the algorithm performs best in replicating the population pattern of the

validation data set, followed by the number of activities and the time-constrained number

of activities. The HDAs that involve grouping in space perform worst, even though the

applied perimeter (1 kilometre) in reality does not correspond to a substantial distance.

It is worth noting that the performance of all HDAs range between 348 and 388. This is

substantially different from the intended 08, which would signify a perfect match with the

validation set. In other words, a ‘gap’ of about 35 degrees exists when using the CSM

measure. This is indicative for the limited performance of our HDAs and raises the

question of whether there is a structural limitation on the performance of single-step HDAs

when applied to the French data set or to CDR data in general.

Interestingly, the performance of all HDAs is rather similar. Especially in their temporal

patterns, where lower CSM values for June and September, and higher values for May,

July, August and October are observed. A possible explanation for the high SMC values

for May and October is the limited number of available days for these months in the data

set (18 and 14 days respectively). This indicates that data should be collected for a certain

duration for the HDA to perform properly.

The highest CSM values are observed during summer (July and August). All algorithms

are sensitive to this temporal change, most likely because of the changing spatial

behaviour of users who go on holiday (see also Deville et al. 2014; Vanhoof et al., 2017b).

Time-limited criteria are more sensitive to temporal changes, which raises questions

about their widespread adaptation in literature. In addition, it is interesting to note

that differences between each algorithm are smaller than the differences of each algorithm
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Fig. 2. CSM values (in degrees) of the comparison with ground truth data, for all HDAs applied to all months in

the dataset. CSM values were calculated at cell tower level. The 358gap is denoted as the difference between the

best performing HDA and the expected CSM of 08 in the case of a perfect match between population counts from

home location and the validation data set.
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over time. Future analysis of HDA performance should therefore take into account the

time period.

4.4.4. Spatial Patterns of Population Count

Although the CSM values for all HDAs are within a rather small range, it is important

to realise that small differences in CSM values can imply major differences in the related

spatial patterns of population counts.

Figures 3c and 3d for instance, show the spatial patterns of population counts obtained

by the number of activity algorithms for June and August respectively. The difference in

CSM values between both is a mere 1.088, but their spatial pattern, as emphasised by the

Getis-Ord Gi* statistic (Getis and Ord 1992), is rather different. This statistic shows

statistically significant clusters of high (hotspots) or low (coldspots) population counts.

In August, for instance, the detected hotspots illustrate clear clusters of high numbers of

home locations near sea and mountain areas. This is in contrast to an expected spatial

pattern, where high clusters of population counts are found near cities and in urban areas,

as can be seen from the spatial pattern of the validation data set in Figure 3b.

The spatial pattern of the differences between the validation data sets and detected

homes in June and August are given in Figures 3e and 3f and visualise this contrast. Note

that in Figure 3, the centre of Paris is often denoted as a coldspot because of the high

density of cell towers, so each tower has a lower number of users, resulting in apparent

coldspots. This effect is also visible in other city centres where cell tower density is high.

5. Discussion

5.1. Differences at Individual Level and the Absence of Ground Truth Data

Our results showed high discordance rates between different HDAs (ranging from 4% to

40% of the individual mobile phone users). This finding challenges the use of single-step

home detection approaches for the French CDR data set when done without fully

justifying the home location criteria used and the decision rules involved in the HDAs. As

we argued, such justification is currently absent in the aforementioned literature, mainly

because of the absence of ground truth data at individual level. Our case study clarifies

how the absence of individual ground truth data necessitates a heuristic application of

decision rules in current home detection methods. By this, we mean that one decision rule

is applied to all users in the data set, regardless of the nature of their CDR traces.

Obviously, the better approach would be to have non-generic algorithms that could

flexibly select decision rules (and validation) based on the characteristics of individual

user traces. Such a solution, however, would require large training samples (individual

ground truth) to learn how to switch between different decision rules. As yet, these are not

available.

5.2. Sensitivity of Performance Considering Time and Decision Rule Choice

Performing high-level validation on five HDAs, by comparing population counts with

census data, unveiled rather poor performances (CSM values between 348 and 388), and a

clear sensitivity to the chosen time period. In fact, for the French data set, defining a time
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Fig. 3. Population counts of the validation data set: (a) Hotspots (red) and coldspots (blue) as defined by

the 90þ% interval of the Getis-Ord Gi* statistic for the population counts of the validation data set (b); for

the number of detected homes using the amount of activities algorithm in June (c); for the number of detected

homes using the amount of activities algorithm in August (d); for the log(ratio) between the amount of

activities algorithm in June and the population counts of the validation data set (e); and for the log(ratio)

between the amount of activities algorithm in August and the population counts of the validation data set (f).

All maps are compiled from Voronoi tessellation of the Orange cell towers. Figures b, c, d, e, and f share the

legend of Figure b.

Vanhoof et al.: Quality of Home Detection from Mobile Phone Data 951



period to carry out home detection seems as important as criteria choice. As was illustrated

by the spatial pattern of population counts in Figure 3d, and by increasing CSM values in

July and August in Figure 2, summer periods should be avoided when running HDAs.

Additionally, shorter observation periods (like May and October in our case) also seem to

influence the performance of HDAs.

When comparing criteria, it is clear that the space constraints criterion is outperformed

by all others. The main logic behind grouping close locations together (in this case, within

a 1 km perimeter) is to avoid frequent handovers between close cell towers. However, on a

large scale, such a precaution, seems to have a negative impact. Furthermore, the extreme

volatility of the performance of the time constraints criteria is remarkable. Clearly, this

criterion is not able to cope with (changing) user behaviour during the summer months,

resulting in the worst performance obtained.

5.3. The 358-gap in High-Level Validation

The most telling result of our analysis, is that all tested HDAs have CSM values which are

still far off from the intended 08, as can be observed in Figure 2. Additionally, it is

remarkable that CSM values for all HDAs occur in the same, rather small, range of CSM

values (even though a small difference in CSM can induce a rather profound change in

spatial patterns). The 358-gap observed is indicative for the (current) limits of single-step

approaches based on simple decision rules, at least at cell tower level (as aggregation to

higher levels might diminish the gap considerably).

The 358-gap also adds to the discussion of high-level validation. As mentioned before,

the absence of individual-level validation is hindering a clear understanding of why the

performance between algorithms may differ. Playing devil’s advocate, one couldn’t care

less about individual correctness, as long as the statistical performance at nationwide level

is sufficient. However, given the considerable differences between census and mobile

phone home location data at cell tower level, as reveled by both the 358-gap, in Figure 2,

and the clear differences in spatial patterns in Figure 3, it seems inevitable that

investigations at individual or subset level will need to be undertaken to improve insights

into the workings of HDA and, ultimately, the performance of home detection methods

in general.

It is clear that the 358-gap requires further exploration so as to understand its constituent

parts. We consider, at least, the following elements to be of importance:

. Distorted local market shares: Local market shares for individual mobile phone

operators can be highly volatile and are often unknown. This causes a lot of uncertainty

when it comes to high-level validation with census data, as the percentage of the

population that the operator actually captures in different regions is unclear. Unknown

local market shares therefore impede both validation techniques that perform in pairs

and/or absolute comparisons between population estimations and ground truth figures

collected by nationwide censuses. They also most probably hinder validation

techniques that are based on relative differences (like the CSM metrics).

. Diversity of mobile phone use: Differences in mobile phone use between users and/or

regions can structurally influence the validation of single-step HDAs. When

concentrated, differences in mobile phone use influence high-level validation in the
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same way as distorted market shares would. Additionally, it is clear that mobile

phone usage changes rapidly over time. It can be argued that the use of phones for

professional or private purposes was different in 2007 than it is today. Unfortunately,

such usage contexts are not available in CDR data. Neither can they be easily derived

since, in general, privacy regulations ban the linking of CDR data and customer

databases that gather for example, billing addresses or type of payment information.

In other words, traces in CDR data will be of a different nature at different times

because of differences in mobile phone usage. This implies that information on

mobile phone usage is necessary to understand the effect on home detection

performance.

. Differing definitions of home: Differences between the definition of home in census

data and the definition of home by HDAs may cause structural discordance when

validating the latter by the former. Even though official statistical practices have a

tradition of distinguishing between different definitions of home, such as ‘usual

resident population’ and ‘second home population’, it remains unclear to what degree

mobile phone data is capable of capturing such concepts of home and to what degree

different decision rules would favour the detection of different types of homes.

. Technical aspects of the data collection and methodology: Research has paid wide

attention to the technical aspects of mobile phone data, especially when it comes to

the estimation of cell tower areas and their translation into statistical areas (Ricciato

et al. 2015). In our case, we avoided the translation problem by constructing a

validation data set at cell tower level, but for many cases this is not an option.

Estimation of cell tower areas was done by Voronoi polygons, which introduces

errors at a local scale, but could also structurally influence high-level validation if, for

example, areas of cell towers in high population density locations were consistently

underestimated. Here too, the effects on high-level validation practices are currently

unknown, but we expect them to be minor compared to previous points.

For all the points raised above, no quantification of their effect(s) has yet been explored.

Additionally, it is worth nothing that some of these points may become more or less

relevant over time due to, factors such as technical advancements or regulations. The EU

General Data Protection Directive 2018, for example, will probably make it harder to work

at the individual level (individual mobile phone use, different types of home definition).

This will make high-level validation techniques more relevant, and thus increase the need

to have proper knowledge of local market shares. For this reason, it is difficult to assess the

relevance of the findings given in this article. However, we strongly suggest that all are the

topics of future research and consideration.

6. Recommendations

Throughout this work, we have given suggestions concerning the use of HDAs for mobile

phone data. In summary, we believe we can compile these suggestions into a set of three

recommendations, which are relevant at different levels.

1. Individual level: Currently, the biggest problem in ensuring the reliable use of

HDAs for mobile phone data (and, in extension, other similar data sources like
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location based services or geotagged online social networks) is the absence of ground

truth data at the individual level. We strongly recommend the collection of ground

truth data linking mobile phone usage, the related CDR data, and movement patterns

of individual users. Even if collected for only small samples of users, this step is

essential for giving proper estimations of error and performance of HDAs at

individual level. It also would help in understanding the differences between

decision rules, and plausibly allow for the development of non-generic HDAs that

could switch between decision rules based on the characteristics of individual traces,

instead of being generically applied to all users. Additionally, the availability of

individual level ground truth could shed light on the structural effects that currently

obscure high-level validation practices, such as the changing usage of mobile phones

and the differences between declared homes and lived-in homes as captured by

census and mobile phone data respectively.

2. National level: Apart from ensuring nationally representative sampling of individual

level ground truth data, we believe it to be important either to understand local

market shares of single operators, or to collect mobile phone data from all operators

in the territory. Without this information, high-level validation of population

estimations at nationwide level will remain flawed, making it impossible to describe

correctly the performance of HDAs at a larger geographical scale. In addition,

resolving the local market share issue is a crucial step in the investigation of the

(spatial) representativity of available mobile phone data sets, as unknown market

shares at local level impede the analysis of subset populations in data sets.

3. International level: Finally, we believe that one of the key components to ensure

reliable use of mobile phone data in official statistics is the opportunity to test ideas

and methodologies on different data sets, which contain differing populations and

cover various time periods. This is not necessarily a matter of testing for uniformity.

On the contrary, it is a matter of understanding the limits of current methodologies,

assessing the true potential for applications and anticipating the wider challenges

posed by fast-evolving technology usage and deployment. All of these factors are

necessary to ensure the future applicability of mobile phone data sources in official

statistics.

As we reflect on the direction that further investigation should take, together with the

feasibility of carrying out the recommendations proposed, we realize that this is a larger

intervention than any single researcher, research group, national statistics office or even

operator can be expected to take. Therefore, it is encouraging to see that collaborations are

being formed to address different parts of the problem.

In France, for example, a collaboration between the operator Orange and the national

statistics office INSEE is investigating different aspects of the high-level validation of

home detection practices, such as translating Voronoi polygons into existing statistical

grids (Sakarovitch et al. in preperation.).

On a European scale, the ESSnet Big Data project has been organising the exchange of

best practices for the integration of mobile phone data (and multiple other big data

sources) in official statistics. Its goal is directly in line with the recommendations

previously described (especially recommendation 3: international level), facilitating the
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uniformity of quality and methodologies for the use of big data sources in European

official statistics (ESSnet Big Data 2018).

As a last example, the Open Algorithm project (OPAL) is a collaboration between

operators, academia, and institutional partners who are building a platform to allow the use

of Open Algorithms on mobile phone data sets from different operators (OPAL 2018). The

idea is that users can launch a predefined set of algorithms (such as home detection

algorithms), which are then run behind the firewalls of the operators before returning the

aggregated results back to the user. Although the project is currently still in its test phase

(with pilots in Senegal and Colombia), hopes are that it could facilitate cooperation

between different operators in sharing basic statistical information from their data sets (as

captured by the predefined set of algorithms). If all of a country’s mobile phone operators

would engage in this form of cooperation, the problem of dealing with a distorted market

share, for example, would be solved.

Hence, the bottom line is that although the home location problem is mainly a

methodological one, the paths to address the problem are much more complex. They

require the combination of collaborative, technical, methodological, institutional and

strategic actions. Optimistically, we believe that official statistics offices are in a good

position to (continue to) play a prominent role, because of their organisational structure,

methodological knowledge and recognised institutional role within a country.

7. Conclusion

Big data sources in general, and mobile phone data in particular, create intriguing new

opportunities and challenges for official statistics. Because of this, there has been a clear

call for exploratory pilot projects to be carried out, as well as a trend towards critical

investigation and transparency of methodologies to produce high-quality statistics. This

article adhered to both of these calls in its analysis of home detection practices for non-

continuous location traces, focusing mainly on mobile phone data.

Based on a critical review of literature, we discussed how existing methods to identify

home locations using non-continuous location traces mainly consist of single-step

approaches that deploy simple decision rules and use high-level validation only.

We argued that, given the absence of ground truth data at individual level, i) it is unclear

why one-step approaches are preferred over two-step approaches that are typically used for

continuous location traces; ii) no consensus in literature exists on which criteria are best to

deploy when creating decision rules for home detection methods, nor has work been done

to investigate the sensitivity of the results to these decision rules and criteria; and iii) the

trustworthiness of high-level validation and its added value to the home detection practices

are questionable at best.

By deploying five algorithms with simple decision rules to a large French CDR data set,

we demonstrated several of the problems. At individual level, we found home detection

methods to be rather sensitive to criteria choice, with pair comparison of different home

detection algorithms resulting in different identified homes for up to 40% of users. When

looking at high-level validation, we found that five different home detection algorithms

performed in a similar range (348–388) with a similar sensitivity to the time period and the

duration for which the mobile phone data was collected. Even though we found that the
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sensitivity to time and the differences between different HDA algorithms does not seem

large when expressed in CSM values, we showed how small changes to CSM values

influence substantive and nationwide changes in the spatial patterns of population counts.

Our most noteworthy finding is the magnitude of the mismatch (the 358-gap) between

population counts constructed from mobile phone-based data on home location and a

validation data set based on census data. This large mismatch is indicative of the severity

of the home location problem and challenges the validity of single-step approaches in

literature. In our discussion, we listed several elements that plausibly effect this mismatch

but go unnoticed when only high-level validation is undertaken. We believe that these

(structural) elements, such as unknown market shares and differences in mobile phone

usage, need further investigation if ever home detection methodologies are to comply with

official statistics’ standards.

Finally, we compiled our findings, insights, and experiences into a set of specific

recommendations, ranging from the collection of individual ground truth data to the

testing of methods on multiple data sets. Given the nature of these recommendations and

the tasks at hand, we think that it is unlikely that individual researchers, research groups,

national statistics offices, or even mobile phone operators can, or will, invest in them.

Therefore, we call on and support any ongoing, collaborative actions that tackle these

problems, while recognising the prominent role official statistics can (continue to) play

in this area.
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