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ABSTRACT
This paper proposes a methodology for the automatic detec-
tion of anomalous shipping tracks traced by ferries. The ap-
proach comprises a set of models as a basis for outlier detec-
tion: A Gaussian process (GP) model regresses displacement
information collected over time, and a Markov chain based
detector makes use of the direction (heading) information. GP
regression is performed together with Median Absolute Devi-
ation to account for contaminated training data. The method-
ology utilizes the coordinates of a given ferry recorded on a
second by second basis via Automatic Identification System.
Its effectiveness is demonstrated on a dataset collected in the
Solent area.

Index Terms— Anomaly Detection, Gaussian Processes,
Maritime Traffic, Median Absolute Deviation

1. INTRODUCTION
The problem of anomaly detection in machine perception has
received substantial interest over the last decade. As the no-
tion of anomaly depends on the context, various systems with
different perspectives have been proposed in the literature to
address this problem. Conventionally, anomaly is defined as
an outlier from some known distribution [1, 2] and classical
approaches that adhere to this view have been summarized in
surveys such as [3, 4, 5, 6].

Among various application domains of anomaly detec-
tion, maritime anomaly detection occupies an important place
as it aids sea traffic control and collision avoidance, as well as
navigation surveillance and detection of illegal marine traffic
activity such as piracy, drug smuggling or terrorism. In this
study, we concentrate on the special case of detecting anoma-
lous shipping tracks traced by ferries, by using unlabelled data
collected via Automated Identification System (AIS).

The compulsory AIS reporting transmitted from ships,
over 5000 tonnes, provides information about their position-
ing in terms of longitude and latitude along with other details
like their identification number. It is important to note that
although the AIS messages are expected to be transmitted
every second, due to the imperfections of the system (such
as faulty or incorrectly programmed equipment and the self-
modified, slot based, TDMA on-air access mechanism) and
environmental effects impacting range and background noise,
the data received will be incomplete.
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In this paper, we develop an unsupervised learning strat-
egy to automatically label anomalous ferry tracks in a dataset
consisting of AIS messages accumulated over a period of
time. For this, we make use of feature points such as the
ship displacement over time and sailing direction (heading)
extracted from the messages to build a set of detectors which
are based on Gaussian Processes (for displacement over time)
and Markov chains (for direction).

Section 2 discusses the existing techniques in the lit-
erature and the relationship of the proposed approach to
these methods. Section 3 defines the technical details of our
methodology and Section 4 presents the experimental results.
Finally, in Section 5, the paper is drawn to conclusion with
the discussion of future work.

2. RELATION TO PRIOR WORK

In the literature, maritime anomaly detection has been inves-
tigated utilizing various methodologies. These include ap-
proaches which are based on sets of rules defined by subject-
matter experts [7, 8], or algorithms which aim to model nor-
mality observed in the given data and use the learned model
to carry out anomaly detection by defining a test statistics.
The latter are called bottom-up approaches and constitute the
majority of the research output in this field.

Grid-based methods, which divide a region of interest
into cells to discretize and quantify local information such
as speed and placement, have been used in many bottom-up
approaches such as [9, 10, 11]. They exploit learning meth-
ods such as Hebbian learning, information theory, and Hid-
den Markov models (HMMs) respectively. Although these
methods are popular for their ease of interpretation and appli-
cability, they suffer from low accuracy (especially high false
positive rates) and resolution problems for the determination
of the grid size.

HMMs are also employed together with other techniques
such as clustering to characterize tracks belonging to differ-
ent ship types in a hierarchical way [12]. Furthermore for the
clustering of tracks, studies such as [13] make use of Gaus-
sian Processes (GPs) for the extraction of features, and dis-
tance measures like Hellinger distance for their grouping. The
main motivation behind using GPs is their flexible and non-
parametric nature, avoiding the problems of the estimation
of parameters such as the size-of-grid in grid based methods,
and the number of Gaussians in Gaussian Mixture Models
(GMMs) as used in [14].



Besides track modelling, there are various systems con-
centrating on different aspects of maritime anomaly, such as
those focusing on estimating future vessel positions [15, 13],
and on global architectures which are directed at detecting
anomalies based on multiple sensors [16] or interactions be-
tween different learning mechanisms [17].

A thorough review of some of the existing systems and
prototypes can be found in [18] where the authors underline
the fact that anomaly detection techniques which are also uti-
lized by the maritime problem are already established in the
literature, and therefore the main focus of research should
now be concentrated on formulating the problems of interest
into forms where these techniques can be applied.

In this paper, we consider the problem of anomaly de-
tection in recorded ferry tracks using direction information,
time and displacement jointly. As the first set of detectors,
GPs are used to model the distance function over the normal-
ized duration of a single trip between two ports. It should
be mentioned here that the proposed approach differs from a
recent study [19] in terms of exploiting overall trip duration
in addition to velocity during regression. Another novelty
presented in this study is the use of a data-cleaning system,
where the unlabelled training data, which may be corrupted
by anomalies, is purified from any outliers by using Median
Absolute Deviation (MAD) based on time grids, prior to GP
modelling. This facilitates the use of training data without
making an unrealistic assumption about the AIS records. The
second set of outlier detectors utilizes spatial grids superim-
posed on the maritime region of interest model direction by
employing Markov chains.

3. METHODOLOGY

The details of the proposed approach based on the two sets of
outlier detectors that utilize Gaussian Processes and Markov
chains are presented in Section 3.1 and Section 3.2 respec-
tively. The final combination strategy is then obtained by
fusing the decisions of the two classifiers such that if any of
the two classifiers detects a track as anomalous, it is taken as
anomalous.

3.1. Displacement Model Based on Gaussian Processes

In order to define the characteristics of a track, the first fea-
ture we exploit is the displacement of a ferry from its depar-
ture port, over the total time it takes for the trip. This way, it
becomes possible to map the tracks into a unified form, where
three critical features: time, displacement and therefore speed
are taken into account jointly.

The input data for anomalous ship movement detection
is expected to be composed of location information reported
in the form [Vk,Vl] for a given ship at any time, where Vk
denotes the longitude and Vl the latitude. Given that a ferry
operates between the ports O1 and O2, we initially carry out
an automatic extraction of the so-called “one-way trips” be-
tween any combination of these ports. Any trip between O1

& O1 or O2 & O2, where the ferry is coming back to the de-
parture port without visiting the destination is considered to

be anomalous, and such trips are left out from the training
set, while trips between O1 & O2 and O2 & O1 are accumu-
lated to be separately processed. Without loss of generality,
we can define a ferry’s displacement from the departure port
O1 for a given trip a, as a function of the time it spent after
the departure:
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where O1
k and O1

l are the latitude and longitude coordinates
for O1 and t̄ is the elapsed time. If the duration of the whole
journey is given by tl, then the displacement over normalized
time becomes
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)
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where 0 ≤ s ≤ 1. From Eq. 2 it can observed that for each
value of s, f a(s) takes different values depending on a. This
scenario can be interpreted as having a function f (s) whose
value at each s is a random variable.

Gaussian Process regression is a method for stochastically
modelling the target value of a variable, by employing a func-
tion drawn from a probability distribution [20]. Using s as the
variable, the function f can then be denoted as

f (s) ∼ GP (b (s) , k (s, s)) (3)

where b (s) is the mean of the probability distribution at a
given realization of s and k (s, s) is the covariance function
which represents the similarity between two different realiza-
tions, such that
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Eq. 4 shows that the covariance between the outputs is given
as a function of the inputs. This function is defined in terms of
the relative distances of the inputs, with the rationale that the
input points which are close to each other are likely to have
similar target values [20]. The choice of the covariance ma-
trix should be made according to the requirements of the sys-
tem. In our approach, we use the squared exponential func-
tion, given by
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where h is the length-scale specifying the width of the ker-
nel and σ2

f is the output signal variance which determines the
average distance of the function from its mean. Under the as-
sumption of having observations corrupted by independently
and identically distributed Gaussian noise with zero mean and
σ2

c variance, the noisy target values can be denoted with vari-
able ω such that ω = f (s) + ϵ. This corruption changes the
covariance function into

cov
(
ωp, ωq

)
= k

(
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)
+ σ2

cδp,q (6)

with δ being the Kronecker delta which is one if and only if
p = q.



Let us denote the vector of means belonging to the distri-
butions at each element of the training set, S , by B(S ); and the
matrix obtained after applying the covariance function to all
pairs of elements within S as K(S , S ). Accordingly, we de-
note the vector of covariances calculated between a single test
point, s∗, and S as K (S , s∗). Then, given S , the distribution
informing the prediction at s∗, namely f (s∗), can be gauged
as a Gaussian distribution with the mean and variance

f̄ (s∗) = b (s∗) + K (S , s∗)T
[
K (S , S ) + σ2

c I
]−1

(Ω − B (S ))
(7)

var ( f (s∗)) = k (s∗, s∗)−K (S , s∗)T
[
K (S , S ) + σ2

c I
]−1

K (S , s∗) .
(8)

where the vector of target values is denoted by Ω and I is
the identity matrix [20]. The parameters h, σ2

f and σ2
c are

called the hyperparameters and need to be estimated from the
anomaly-free training data. As our training set may be con-
taminated by anomalies, its initial cleaning has to be carried
out before modelling normality, from which deviations will
be classified as anomaly.

The cleaning is applied using Median Absolute Deviation
from Median (MAD). While dealing with sampled data which
is prone to outliers, MAD allows to robustly estimate the stan-
dard deviation of the underlying distribution, i.e. it is more
resilient to outliers compared to the standard deviation com-
puted from the sampled population space [14]. In our strat-
egy, we discretize the input domain sϵ[0, 1] into 200 cells,
and apply MAD on the target values falling within each cell.
MAD is calculated as the median of the absolute differences
between the points and their median:

MAD(Ωe) = c med (abs (Ωe −med (Ωe))) (9)

whereΩe is the vector of target variables in a given cell, e, and
c is the consistency constant that is equal to 1.4826 when the
underlying distribution function is assumed to be Gaussian (as
in our case). By setting a cut-off value, v, any corrupted data
point, ωc

e, which satisfies abs
(
ωc

e −med (Ωe)
)
/MAD(Ωe) > v

is removed from the training set.
After the application of MAD followed by GP regression,

the testing of anomaly for s∗ is carried out by setting a multi-
plier r for the desired confidence interval such that

g =


1 ω∗ > f̄ (s∗) + r var ( f (s∗))
1 ω∗ < f̄ (s∗) − r var ( f (s∗))
0 o.w.

where g is the flag for anomaly, ω∗ is the target value for the
test sample and r = 2.57 for 99% confidence interval. An
input trip a is labelled as anomalous if more than p% of its
time stamps are detected as anomalous, where p is a suitable
threshold.

3.2. Sailing Direction Model Based on Markov Chains

In addition to the displacement of a ferry normalized over
time within a single trip, an additional feature we exploit in
our approach is the direction of travel at a given location, also
known as heading.

Assume that we are analysing a ship’s spatial location
within a pre-set n×m grid, Gn,m. Each cell of this grid can be
named as Gn,m (x, y) where x is the row index, y is the column
index, 1 ≤ x ≤ n, 1 ≤ y ≤ m and Gn,m(1, 1) is the left-most
cell in the bottom row. For simplicity, we can also refer to
each cell as Gn,m (x, y) = G(z) where z = (y − 1)m + x and
1 ≤ x ≤ n × m. It is then possible to transform an input loca-
tion [Vk,Vl] into the form G(x, y) to find out which cell it falls
into, using quantization.

The transition of a ship from a location G(zt1 ) at time t1
to a location G(zt2 ) at a time t2 > t1 can be modeled as a
discrete-time Markov chain, where the likelihood of the ship
being in the future state, G(zt2 ), depends only on the present
state, G(zt1 ); and the corresponding transition probability can
be denoted by P(zt2 |zt1 ).

We choose the grid cell size dynamically to reflect the dis-
tance the ship is able to move in one second’s time. By mak-
ing the assumption that the sailing speed is constant within
a localized region, the transition probabilities may then be
observed to reflect different directions of travel from a given
(present) state. In other words, P(zt2 |zt1 ) can also be denoted
as P̄(θt1 |zt1 ), where θ is the variable for the direction parameter
from G(zt1 ) to G(zt2 ) in radians.

In order to accurately estimate the transition probabilities,
a large training set with enough data points in each state (cell)
is required. As the grid size is defined to be small enough
to cover for secondly-moves, in practice, there is only very
limited data available for each cell. To be able to compansate
for the lack of training data, we propose the use of a second
grid layer with a larger cell size fitted onto the original layer.

Let us name the new k × l grid as G′k,l; where k ≤ n
and l ≤ m; and the corresponding vector form as G′(z′). A
G(z) cell lying within a given G′(z′) can then be indicated by
G(z) ϵG′(z′). The second layer grid cell size is selected so
as to cover the first layer cells with similar grid sizes. Doing
so, the proposed model aims to come up with a distribution
associated to ship behaviour within each cell G′(z′), by gen-
eralizing over G(z) ϵG′(z′) through simply marginalizing out
the location variable, z, such that

P̄S (z′)(θ) =
∑

zϵS (z′)

P̄(θ|z)P (G(z)) (10)

where S (z′) is the set of z satisfying G(z) ϵG′(z′) for a given
z′, and P(G(z)) is the probability of being in cell G(z). Note
that in practice, the calculation in Eq. 10 for a given z′ can
be obtained for all possible θ using a normalized histogram.
After obtaining P̄S (z′), ∀z′, an anomaly in a test ship’s move-
ment from state G(zt1 ) to G(zt2 ) within G′(z′), can be detected
by thresholding the corresponding probability of the obtained
direction of travel, θt. That is,

g =
1 P̄S (z′)(θt) < r

0 o.w.
(11)

where g is the flag for anomaly and r is a suitable threshold.
As in the case of the GP classifier, a test trip a is labelled
as anomalous if more than p% of its moves related to time
stamps are flagged as anomalous.



4. EXPERIMENTAL RESULTS

The experimental study has been conducted on the dataset
collected by Thales UK Ltd. at the Solent area between
20/07/2012 and 19/08/2012. The dataset consists of AIS
messages received from various vessels occupying the region
of interest, out of which ferries have been selected for the
application of our methodology. For each ferry, the dataset
is split into training and test at a rate of 1:6 respectively, via
randomly choosing 4 days for training and 24 for test, and
this sampling procedure is repeated.

In order to show the effect of the MAD cleaning, the GP
regression obtained for a given training set (based on trips
from one of the ports) is depicted in Fig. 1 where the training
samples after cleaning are represented by dark dots (red), and
those cleaned during MAD are represented by light colour
(green). In our experiments, by setting the confidence con-
stant c = 1.4826, 3.4% of the training data is detected as
anomalous/corrupted. The mean of the GP regression, which
is then fitted onto the purified data is provided by light circles
(yellow), and the 95% confidence intervals are depicted by
dark circles (black).

As for the necessity of the MC classifier based on direc-
tion information to be used in addition to GPs, in Fig. 2 we
show two anomalous tracks which are identified by this clas-
sifier but cannot be detected by the GP based detector. The
track indicated by the dashed lines, where the ferry is per-
forming a sudden sharp turn is taken from the test set, whereas
the track indicated by the solid line is artificially created.

In Fig. 3, we carry out an assessment of the tracks that
are classified as anomalous together with those that are la-
belled normal by the algorithm. For an example test set, the
tracks labelled anomalous are provided in dark shade (red)
whereas the normal tracks are given in lighter colour (yel-
low). Using a 90% confidence interval during the GP regres-
sion, a threshold of r = 0.0005 for the MC direction clas-
sifier, and an anomaly threshold of p = 30 for both clas-
sifiers, we obtain a 93% detection rate for anomalies, and
2% false positive rate (FPR). It is also possible to detect all
anomalies with FPR=6%. The ROC curve using confidence
intervals [1, 0.99, 0.95, 0.90, 0.85, 0.80, 0.75, 0.50] is given
in Fig. 4.
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Fig. 1. GP regression on training data after MAD cleaning

Fig. 2. Anomalous tracks identified by the MC classifier
which cannot be detected by the GP classifier

Fig. 3. Detected anomalies plotted on top of normalities (dark
shade on light)
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Fig. 4. ROC analysis for the proposed methodology

5. CONCLUSIONS

In this paper, we present a novel approach for detecting
anomalous tracks in an unlabelled dataset, by using features
involving speed, time and direction information. Gaussian
Processes and Markov chains have been utilized for this
purpose, together with the application of Medium Absolute
Deviation for the initial cleaning of the training data before
the application of GPs. The method is shown to successfully
detect all anomalies in an example dataset with a FPR of 6%,
although a more detailed experimental study involving other
datasets is left for future work. Moreover, the application of
MAD on the MC classifier can also be addressed to see its
effect on the possible reduction of the false positive rate.
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