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Abstract 1 

Humans comprehend speech despite the various challenges of real-world environments, 2 

such as loud noise and mispronunciation. Our auditory system is robust to these thanks 3 

to the integration of the upcoming sensory input with prior knowledge and expectations 4 

built on language-specific regularities. One such regularity regards the permissible 5 

phoneme sequences, which determine the likelihood that a word belongs to a given 6 

language (phonotactic probability; “blick” is more likely to be an English word than 7 

“bnick”). Previous research suggested that violations of these rules modulate brain 8 

evoked responses such as the N400 and the late positive complex. Yet several 9 

fundamental questions remain unresolved, especially regarding the neural encoding and 10 

integration strategy of phonotactic information. Here, we used linear modelling 11 

approaches to assess the influence of phonotactic probabilities on the brain responses to 12 

narrative speech measured with non-invasive EEG. We found that the relationship 13 

between continuous speech and EEG responses is best described when the speech 14 

descriptor includes phonotactic probabilities. This provides us with a methodology to 15 

isolate and measure the brain responses to phonotactics using natural speech at the 16 

individual subject-level. Furthermore, such low-frequency signals showed the strongest 17 

speech-EEG interactions at latencies of 100-400 ms, supporting a pre-lexical role of 18 

phonotactic information. 19 

Significance Statement 20 

Speech is composed of basic units, called phonemes, whose combinations comply with 21 

language-specific regularities determining whether a sequence “sounds” as a plausible 22 

word. Our ability to detect irregular combinations requires matching incoming sequences 23 

with our internal expectations, a process that supports speech segmentation and learning. 24 

However, the neural mechanisms underlying this phenomenon have not yet been 25 

established. Here, we examine this in the human brain using narrative speech. We 26 

identified a brain signal reflecting the likelihood that a word belongs to the language, 27 

which may offer new opportunities to investigate speech perception, learning, 28 

development, and impairment. Our data also suggest a pre-lexical role of this 29 

phenomenon, thus supporting and extending current mechanistic perspectives. 30 
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Introduction 32 

Speech can be described as a succession of categorical units called phonemes that comply 33 

with language-specific regularities determining admissible combinations within a word. 34 

A sequence is said well formed if it sounds plausible as a word to native speakers (e.g. 35 

blick) and ill formed if it is perceived as extraneous to the language (e.g. bnick) (Chomsky 36 

and Halle, 1968; Parker, 2012). This concept is referred to as phonotactics. Well-37 

formedness is gradient (Scholes, 1966; Chomsky and Halle, 1968; Frisch et al., 2000; 38 

Bailey and Hahn, 2001a; Hammond, 2004), meaning that we can assign a numerical value 39 

to each sequence of phonemes describing its likelihood of belonging to the language. 40 

Phonotactics aids lexical access (Vitevitch et al., 1999) and speech segmentation (Brent 41 

and Cartwright, 1996; Mattys et al., 1999) by constraining the space of likely upcoming 42 

phonemes, thus contributing to the robustness of speech perception to challenges such as 43 

noise, competing speakers, and mispronunciation (Davidson, 2006a; Obrig et al., 2016). 44 

High phonotactic probability facilitates learning of new words (Storkel and Rogers, 2000; 45 

Storkel, 2001, 2004; Storkel and Morrisette, 2002) and low phonotactic probability 46 

(violation) may trigger an attempt to repair a sequence into a well-formed word (Dehaene-47 

Lambertz et al., 2000; Hallé et al., 2008; Carlson et al., 2016). However, considerable 48 

uncertainty remains about the cortical mechanisms underpinning the contribution of 49 

phonotactic information to speech comprehension (Winther Balling and Harald Baayen, 50 

2008; Balling and Baayen, 2012; Ettinger et al., 2014). While part of the debate regards 51 

the pre- or post-lexical role of phonotactics, there is currently a lack of neurobiological 52 

data examining the cortical representation of phonotactic statistics. Hypotheses range 53 

from the explicit encoding of phoneme-level probabilities to the use of the lexical 54 

neighbourhood size as a proxy measure (McClelland and Elman, 1986; Bailey and Hahn, 55 

2001b; Pisoni and Remez, 2005; Leonard et al., 2015). 56 

One way to illuminate these issues is through the direct measurement of brain activity 57 

using technologies with high-temporal resolution, such as electroencephalography 58 

(EEG). Brain responses to phonotactics emerge by contrasting EEG responses to well- 59 

and ill-formed speech tokens, i.e. phonotactic mismatch response (PMM; Connolly and 60 

Phillips, 1994; Dehaene-Lambertz et al., 2000). This paradigm has been largely exploited 61 

in the literature, with somewhat sparse and inconsistent results. EEG responses to these 62 

violations emerge at latencies consistent with other well-known brain components, such 63 

as the mismatch-negativity (MMN), N400, and late positive complex (LPC) (Dehaene-64 
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Lambertz et al., 2000; Wiese et al., 2017). However, various types of confounds hamper 65 

the identification of responses specific to phonotactics. One issue is that brain responses 66 

to phonotactic probability may overlap with those reflecting subsequent processes, such 67 

as learning in case of novel well-formed sequences (pseudowords) and phonological 68 

repair for ill-formed tokens (non-words) (Bailey and Hahn, 2001a; White and Chiu, 69 

2017). Secondly, if meaningful words are contrasted with ill-formed tokens, lexical-level 70 

N400 responses may arise that confound the contrast (Kutas and Federmeier, 2011; Rossi 71 

et al., 2011). The use of nonsense words avoids this issue, but the paradigm becomes 72 

more artificial. Natural speech may allow to investigate the cortical processing of 73 

phonotactics without such confounds; however it is generally characterised by well-74 

formed words, therefore measuring PMM responses may be either not possible or 75 

suboptimal. 76 

A novel approach to investigate the brain responses to natural speech may provide a 77 

solution to these issues (Di Liberto et al., 2015, 2018a; Crosse et al., 2016b; Broderick et 78 

al., 2018; de Cheveigné et al., 2018b). This method, based on linear modelling, allows to 79 

isolate and measure cortical responses to linguistic features of interest (e.g. phonemes) 80 

using natural speech stimuli. Here, we combine this approach with a computational model 81 

of phonotactics to test whether narrative speech elicits robust brain responses time-locked 82 

to patterns of phonotactic probabilities. We characterise the dynamics of cortical signals 83 

that are representative of real-life speech perception, contributing to the debate on the 84 

underpinnings of the cortical processes specific to phonotactics. 85 

Material and methods 86 

The present study is based on new analyses of a previously published EEG dataset on 87 

natural speech perception (Di Liberto et al., 2015). The data include both the audio 88 

stimulus and the EEG response of the subjects listening to that stimulus. Data analysis 89 

involves fitting the EEG to various representations of the stimulus using a linear model. 90 

The quality of fit is used as an indicator of the relevance of each representation as a 91 

predictor of the cortical activity evoked in the listener by the speech stimulus. 92 

Subjects and Experimental Procedure 93 

Ten healthy subjects (7 male) aged between 23 and 38 years old participated in the 94 

experiment. Participants reported no history of hearing impairment or neurological 95 

disorder. The experiment was carried out in a single session for each subject. 96 
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Electroencephalographic (EEG) data were recorded from participants as they undertook 97 

28 trials, each of ~155 seconds in length, where they were presented with an audiobook 98 

version of a classic work of fiction read by a male American English speaker. The trials 99 

preserved the storyline, with neither repetitions nor discontinuities. All stimuli were 100 

presented monophonically at a sampling rate of 44,100 Hz using Sennheiser HD650 101 

headphones and Presentation software from Neurobehavioral Systems 102 

(http://www.neurobs.com). Testing was carried out in a dark room and subjects were 103 

instructed to maintain visual fixation for the duration of each trial on a crosshair centered 104 

on the screen, and to minimize eye blinking and all other motor activities. All procedures 105 

were undertaken in accordance with the Declaration of Helsinki and were approved by 106 

the Ethics Committees of the School of Psychology at Trinity College Dublin, and the 107 

Health Sciences Faculty at Trinity College Dublin. Further details about the stimulus and 108 

recording are available in Di Liberto et al., (2015) and the data is available at 109 

https://datadryad.org/resource/doi:10.5061/dryad.070jc. 110 

Speech representations 111 

The approach used here follows a system identification framework that aims at 112 

disentangling brain responses to different speech and language features (Di Liberto et al., 113 

2015). To this end, we first need to define such features (note that the first two elements 114 

are as in Di Liberto et al., 2015): 115 

1. Acoustic spectrogram (S): This was obtained by filtering the speech stimulus into 116 

16 frequency-bands between 250 Hz and 8 kHz distributed according to 117 

Greenwood's equation (equal distance on the basilar membrane; Greenwood, 118 

1961) using Chebyshev type 2 filters (order 100), and then computing the Hilbert 119 

amplitude envelope (the absolute value of the analytical signal obtained by the 120 

Hilbert Transform) for each frequency band. 121 

2. Phonetic features (F): This multivariate representation of speech encodes 122 

phoneme-level information using phonetic features. The Prosodylab-Aligner 123 

software (Gorman et al., 2011) was used to partition each word into phonemes 124 

from the American English International Phonetic Alphabet (IPA) and align the 125 

speech stimulus with its textual transcription. This procedure returns estimates of 126 

the starting and ending time-points for each phoneme. Indicator functions for each 127 

of the 35 phonemes were recoded as a multivariate time series of 19 indicator 128 
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variables, one for each of 19 phonetic features (based on the University of Iowa’s 129 

phonetics project http://soundsofspeech.uiowa.edu/) coding the manner of 130 

articulation (plosive, fricative, affricate, nasal, liquid, and glide), place of 131 

articulation (bilabial, labio-dental, lingua-dental, lingua-alveolar, lingua-palatal, 132 

lingua-velar, and glottal), voicing of a consonant (voiced and voiceless),  and 133 

backness of a vowel (front, central, and back). Also, a specific feature was 134 

reserved for diphthongs. Each indicator variable took the value 1 between the start 135 

and the end of the phoneme (if relevant) and 0 elsewhere. Each phoneme was 136 

characterised by a value of 1 for some combination of indicator variables; not all 137 

such combinations map to permissible phonemes. 138 

3. Phoneme onsets (O): This vector marks phoneme onsets with a discrete-time unit 139 

impulse, corresponding to the half-wave rectified first derivative of F. This is a 140 

non-linear transformation of the F features, thus linear models may benefit from 141 

the explicit definition of O combined with F. 142 

4. Finally, we propose a novel representation using phonotactic probabilities (P). 143 

Natural languages include various constraints on the permissible phoneme 144 

sequences. Probabilities can be derived for a given speech token from this set of 145 

constraints. For example, the pseudoword blick would “sound” better than bnick 146 

to a native English speaker, which is reflected by a higher phonotactic probability 147 

for the first word. Here, we used a computational model (BLICK; Hayes and 148 

Wilson, 2008) based on a combination of explicit theoretical rules from traditional 149 

phonology and a maxent grammar (Goldwater and Johnson, 2003), which find the 150 

optimal weights for such theoretical constraints to best match the phonotactic 151 

intuition of a native speaker. Specifically, given a phoneme sequence  ph1..n, P is 152 

composed of two vectors: a) inverse phonotactic probability (score(ph1..n) is the 153 

output of the BLICK software; it is small for well-formed tokens and large for ill-154 

formed ones) and b) within-word derivative of the phonotactic probability ( 155 

score(ph1..(n-1)) - score(ph1..n) ), which describes the contribution of the latest 156 

phoneme to the well-formedness of the sequence. 157 

In order to assess and quantify the contribution of each of the features F, O, and P to the 158 

speech-EEG mapping, the main analyses were conducted on the cumulative combinations 159 

S, FS, OFS, and POFS. The rationale is that, if the new feature carries information not 160 

subsumed by the other features, including it will improve the fitting score. To control for 161 
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any potential effect of the difference in dimensionality of the feature space, we also used 162 

variants where the newly introduced feature did not correspond to the auditory stimulus, 163 

i.e. was shuffled (the entire procedure, including model fit, was rerun for each shuffled 164 

version). These mismatched vectors/matrices were generated by randomly shuffling: a) 165 

Phonetic features in the FS speech representation (FshuS) (every given phoneme, 166 

corresponding to a combination of NF phonetic features, 1 for vowels and 3 for 167 

consonants, was replaced by NF random phonetic features for its entire duration); b) Onset 168 

time in OFS (OshuFS) (the onset vector O was replaced by vector with the same number 169 

of impulses at random time points); and c) Phonotactic probability values in POFS 170 

(PshuOFS) (the values in the phonotactic vector P were randomly permuted while keeping 171 

the time information). 172 

In addition to the phonotactic vector P, we defined three other representations that could 173 

reflect the encoding of phonotactic information in the brain. First, Pneigh is a vector of 174 

phoneme onsets amplitude-modulated using neighborhood density values. This 175 

information indicates the number of phonological neighbours given a speech token, where 176 

a phonological “neighbour” is a sequence of phonemes that can be obtained from the 177 

given token by deletion, addition, or substitution of a single phoneme. Similarly, Psur and 178 

Pent are vectors of phoneme onsets that are amplitude-modulated using phoneme surprisal 179 

and entropy respectively. These were calculated using the purely probabilistic measures 180 

“phoneme surprisal” and “cohort entropy” as defined by Gaston and Marantz (2018). 181 

 182 

Figure 1. (A) Speech representations for a 5 seconds portion of the stimulus. From bottom to top, the 183 

acoustic spectrogram (S) which consists of a 16-channel time series of power within 16 frequency bands; 184 

phonetic features (F), whose permissible combinations map to English phonemes; phoneme onsets (O), 185 

which mark the beginning of each phoneme; and the probabilistic phonotactic vector (P), a representation 186 

indicating the inverse likelihood of a sequence (from the beginning of a word to each of its phonemes). (B) 187 

Expected outcomes: We hypothesise that, if a stimulus representation encodes features not captured by 188 

other representations, adding it to the others will improve the prediction of cortical responses. In particular 189 

we predict an increase in cortical tracking due when phonotactic probabilities are added to the mix (POFS 190 

– OFS, blue increment). 191 
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 192 
Phonotactic Probability Model 193 

Phonotactic probability vectors were derived using the BLICK algorithm (Hayes and 194 

Wilson, 2008), a state-of-the-art tool based on explicit theories of phonology. 195 

Specifically, the BLICK algorithm constructs maxent grammars (e.g. Goldwater and 196 

Johnson, 2003) consisting of a set of numerically weighted phonological constraints. A 197 

training stage identifies weights that optimally match the phonotactic well-formedness 198 

intuition of experts. These weights are determined according to the principle of maximum 199 

entropy and, in the present work, were pre-assigned using an English grammar model 200 

(Hayes, 2012). Combining this pre-trained grammar with the textual transcription of the 201 

audio-book stimulus, BLICK performs a weighted sum of its constraint violations to 202 

calculate probability values reflecting the well-formedness of each speech token. Given 203 

a word, two scores were calculated for each phoneme token. The first indicates the inverse 204 

probability of the word segment up to that phoneme (e.g. the scores for /b/, /b l/, /b l ɪ /, 205 

and /b l ɪ k/ were calculated in correspondence of the four phonemes of the word ‘blick’). 206 

This time series of inverse probabilities was coded by the amplitudes of a series of pulses 207 

synchronous with those of the onset vector. The second is the finite difference of 208 

consecutive inverse probability values within a word (starting from the second phoneme 209 

of each word, e.g. P(/b/)–P(/b l/), P(/b l/)–P(/b l ɪ /), P(/b l ɪ /)–P(/b l ɪ k/); the score for 210 

the first phoneme of a word was assigned to the same value as in the phonotactic 211 

probability vector). The time series of difference measures was also coded as a time series 212 

of pulses synchronous with O. The concatenation of these two pulse trains constitutes the 213 

2-dimensional phonotactic probability vector P. 214 

Data Acquisition and Preprocessing 215 

Electroencephalographic (EEG) data were recorded from 128 scalp electrodes (plus 2 216 

mastoid channels), filtered over the range 0 - 134 Hz, and digitised with a sampling 217 

frequency of 512 Hz using a BioSemi Active Two system. Data were analysed offline 218 

using MATLAB software (The Mathworks Inc.). EEG data were digitally filtered 219 

between 0.5 and 32 Hz using a Butterworth zero-phase filter (low- and high-pass filters 220 

both with order 2; implemented with the function filtfilt), and down-sampled to 64 Hz. 221 

EEG channels with a variance exceeding three times that of the surrounding channels 222 

were replaced by an estimate calculated using spherical spline interpolation (EEGLAB; 223 

Delorme and Makeig, 2004). All channels were then re-referenced to the average of the 224 
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two mastoid channels with the goal of maximizing the EEG responses to the auditory 225 

stimuli (Luck, 2005).  226 

Dimensionality reduction 227 

The analyses that follow involve fitting the stimulus representation to the EEG response 228 

using a linear model. Both the stimulus and the EEG include a large number of 229 

dimensions (channels) many of which are correlated. To limit the risk of overfitting, it is 230 

useful to reduce their dimensionality. This is typically performed using principal 231 

component analysis (PCA). PCA finds a matrix of size N x N (if the data have N channels) 232 

that transforms the data to N ‘principal components’ (PC). The variance of the PCs sum 233 

up to the variance of the data. Subject to that constraint, the first principal component is 234 

the linear transform of the data with the largest possible variance. The second has the 235 

largest variance of transforms orthogonal to the first and so on. The first few PCs pack 236 

most of the variance, and so little variance is lost if a subset of NPC < N PCs are selected 237 

and the remainder discarded. This procedure is applied repeatedly in the following 238 

analyses. In each case NPC is tuned as a hyperparameter in a crossvalidation procedure to 239 

optimise the tradeoff between information retained and overfitting. 240 

Denoising with multiway CCA 241 

Our goal of evaluating the relevance of high-level speech structure representations by 242 

measuring their ability to predict cortical responses is hampered by the high level of noise 243 

and artifact in the EEG. We use a novel tool, multiway canonical correlation analysis 244 

(MCCA) to merge EEG data across subjects so as to factor out the noise. MCCA is an 245 

extension of canonical correlation analysis (CCA; Hotelling, 1936; de Cheveigné et al., 246 

2018a) to the case of multiple (> 2) datasets. Given N multichannel datasets Xi with size 247 

T × Ji, 1 ≤ i ≤ N (time x channels), MCCA finds a linear transform Wi (sizes Ji × J0, where 248 

J0 < min(Ji)1 ≤ i ≤ N ) that, when applied to the corresponding data matrices, aligns them to 249 

common coordinates and reveals shared patterns (de Cheveigné et al., 2018a). These 250 

patterns can be derived by summing the transformed data matrices: 𝑌 =  ∑ 𝑋𝑖𝑊𝑖
𝑁
𝑖=1 . The 251 

columns of the matrix Y, which are mutually orthogonal, are referred to as summary 252 

components (SC) (de Cheveigné et al., 2018a). Intuitively, the first few components are 253 

signals that most strongly reflect the shared information across the several input datasets. 254 

Here, these datasets are EEG responses to a same speech stimulus for 10 subjects. 255 
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This technique allows to extract a consensus signal that is shared across participants. The 256 

present study utilises this approach to test whether EEG responses to speech reflect 257 

phonotactic information. This methodology overcomes limitations of previous studies 258 

that attempted to obtain similar consensus responses by averaging data across subjects, 259 

which could not perform corregistration because of the lack of anatomical information 260 

and, therefore, ignored the likely topographical discrepancies between participants EEG 261 

signals  (O’Sullivan et al., 2014; Di Liberto and Lalor, 2017).  MCCA accounts for such 262 

discrepancies without the need for corregistration. Under the assumption that brain 263 

responses to speech share some fundamental similarities within a homogeneous group of 264 

normal hearing young adults, the MCCA procedure allows us to extract such common 265 

responses to the stimulus from other, more variable aspects of the EEG signals, such as 266 

subject-specific noise. For this reason, our analysis focuses on the first NSC summary 267 

components, which we can consider as reflecting a ground truth EEG response to speech. 268 

NSC was arbitrarily set to the number of dimensions for a single subject after 269 

dimensionality reduction (NPC; see the following section). This conservative choice was 270 

made by taking into consideration that the irrelevant signals within the retained 271 

components are excluded through the more restrictive CCA analysis that follows. 272 

Analysis Procedure 273 

Stimulus-response model based on Canonical Correlation Analysis 274 

Speech elicits brain responses that can be recorded with EEG. However, a large part of 275 

the EEG signal is unrelated to the stimulus as it may reflect other brain processes , as well 276 

as various forms of noise (e.g. muscle movements). Similarly, certain features of the 277 

speech input may have little or no impact on the measured brain responses. Studying the 278 

relation between speech and the corresponding EEG responses would greatly benefit from 279 

the ability to remove those unrelated portions of speech and EEG. This can be done by 280 

using canonical correlation analysis (CCA), a powerful technique that linearly transforms 281 

both stimulus and brain measurements so as to minimise irrelevant variance (Hotelling, 282 

1936; de Cheveigné et al., 2018b) . 283 

In its more general definition, given two sets of multichannel data X1 and X2 of size T × 284 

J1 and T × J2, CCA finds linear transformations of both that make them maximally 285 

correlated. Specifically, CCA produces the transformation matrices W1 and W2  (sizes J1 286 

× J0 and J2 × J0, where J0 < min(J1,J2) ) that maximise the correlation between pairs of 287 
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columns of X1W1 and X2W2, while making the columns of each transformed data matrix 288 

XiWi mutually uncorrelated. The first pair of canonical components (CC) is the linear 289 

combination of X1 and X2 with highest possible correlation. The next pair of CCs are the 290 

most highly correlated combinations orthogonal to the first, and so-on.  291 

In the present study, X1 and X2 represent speech features and the EEG signal respectively. 292 

This basic formulation of CCA can be used directly to study the instanteneous interaction 293 

between stimulus features and brain response. However, a stimulus at time t affects the 294 

brain signals for a certain length of time (a few hundreds of milliseconds). Although CCA 295 

is a linear approach, simple manipulations of the data allow for its extension to the study 296 

of non-linear and convolutional relations, therefore capturing the stimulus-to-brain 297 

interaction for a given set of latencies (or time-lags). Here, this is achieved by using a set 298 

of filters that capture increasingly long temporal structures (de Cheveigné et al., 2018b). 299 

Specifically, we used a dyadic bank of FIR bandpass filters with characteristics (center 300 

frequency, bandwidth, duration of impulse response) approximately uniformly 301 

distributed on a logarithmic scale. There was a total of 15 channels (NCH) with impulse 302 

response durations ranging from 2 to 128 samples (2 s). The filterbank was applied to 303 

both stimulus and EEG matrices, largely increasing the dimensionality of the data. 304 

Dimensionality reduction was applied to both stimulus and EEG matrices (of size T × NF 305 

and T × NEL, where T, NF, and NEL indicate numbers of time-samples, stimulus features, 306 

and EEG electrodes respectively). First, we used PCA and retained NPC < NEL principal 307 

components to spatially whiten the EEG data, whose neighbouring channels are largely 308 

correlated. The value of this parameter was adjusted using a grid search procedure. 309 

Second, the filterbank was applied to both stimulus and EEG data. Finally, PCA was used 310 

to reduce the dimensionality of both stimulus and EEG matrices, by retaining Nstim < 311 

NF*NCH and NEEG < NPC*NCH components respectively. The CCA models were all trained 312 

and tested using a leave-one-out nested cross-validation to control for overfitting. For 313 

each outer cross-validation loop, one fold was held-out for testing while a second cross-314 

validation loop was run on the remaining data. In this inner loop, the model 315 

hyperparameters were tuned on a held-out validation fold to maximise the sum of the 316 

correlation coefficients for the CC-pairs. This framework allowed for the tuning of the 317 

values Nstim and NEEG. In addition, the validation folds at each cross-validation step were 318 

used to determine the optimal shift between stimulus and neural signals. 319 
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Temporal Response Function Analysis 320 

Complementary to CCA, a system identification technique was used to compute a 321 

channel-specific mapping between each speech representation and the recorded EEG 322 

data. This method, commonly referred to as the temporal response function (TRF) 323 

analysis (forward model) (Lalor et al., 2006; Ding and Simon, 2012), estimates a filter 324 

that optimally describes how the brain transforms the speech features of interest S(t) into 325 

the corresponding continuous neural responses R(t), over a series of pre-specified time-326 

lags: R(t) = TRF * S(t), where ‘*’ indicated the convolution operator. The TRF values, or 327 

weights, were estimated using a regularised linear regression approach, wherein a 328 

regularisation parameter was tuned to control for overfitting (Crosse et al., 2016a). One 329 

way to use this approach is to study the model weights to identify scalp areas and time-330 

lags that are of particular importance for the specific speech-EEG mapping. A second 331 

approach consists of predicting the EEG signals at each channel of interest.  332 

This approach is complementary with CCA analysis in that it provides us with detailed 333 

insights on the temporal and spatial patterns. This is possible at the cost of additional 334 

constraints, specifically on the frequency-bands of interest and on the magnitude of the 335 

prediction correlation values which, since they are calculate in the noisy EEG channel-336 

space (rather than the denoised CCA-space), are usually in the order of 0.05. For this 337 

reason, it is preferable to conduct the analysis on the most relevant part of the EEG 338 

signals, which can be achieved with a more confined temporal filtering (for an example 339 

of the effect of EEG filtering on forward TRF models see Di Liberto et al., 2015). In 340 

particular, we restricted the analysis to the frequency-band 0.5-9 Hz (we applied separate 341 

low- and high-pass fifth-order Butterworth zero-phase filters).  342 

Measuring the quality of the speech-EEG mapping 343 

We used two metrics to quantify the quality of the CCA-based speech-EEG mapping 344 

model: correlation and discriminability in a match-vs-mismatch classification task. A 345 

Pearson’s correlation coefficient was calculated for each CC-pair. The first CC-pair is the 346 

most relevant, but meaningful speech-EEG correlations can arise for an arbitrary number 347 

of components. To obtain a measure sensitive to these multiple dimensions, we 348 

introduced a match-vs-mismatch classification task that consisted in deciding whether a 349 

segment of EEG (duration TDECODER) was produced by the segment of speech that gave 350 

rise to it, or by some other segment. Discriminability in this task, measured by d-prime, 351 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/359828doi: bioRxiv preprint first posted online Jun. 30, 2018; 

http://dx.doi.org/10.1101/359828


reflects the ability of the model to capture the relation between speech and EEG. The d-352 

prime metric was derived from the discriminant function of a support vector machine 353 

(SVM) classifier trained on the normalised Euclidean distance between pairs of CCs. A 354 

cross-validation procedure (k = 30) was used in which the classifier was trained and 355 

evaluated on distinct data to discriminate between match and mismatch segments. 356 

TDECODER was set to the value 1 second, which avoided saturation (classification either 357 

too easy or too difficult) in both group and single-subject level analyses. 358 

The quality of the TRF-based speech-EEG mapping was assessed using a correlation 359 

metric. Specifically, Pearson’s correlation coefficients were calculated between the EEG 360 

signal and its prediction for each scalp electrode separately. This procedure was repeated 361 

for TRF models fit using various time-latency windows and stimulus feature-sets, which 362 

allowed the pinpointing of latencies that were most relevant to the interaction between 363 

EEG and particular speech features of interest (the time-lag windows were within the 364 

interval 0 – 900 ms, non-overlapping, and of duration 100 ms). A similar analysis was 365 

conducted to investigate topographical patterns corresponding to the various speech-EEG 366 

latencies. Specifically, TRF models were fit using a single time-latency window between 367 

0 and 900 ms. Topographical patterns of the corresponding TRF weights were averaged 368 

for intervals of interest.  369 

Statistical Analyses 370 

Unless otherwise stated, all statistical analyses were performed using two-tailed 371 

permutation tests. For tests involving several contiguous time latencies, a cluster-mass 372 

non-parametric analysis was conducted, with one as the minimum cluster size (Maris and 373 

Oostenveld, 2007). This statistical test takes into consideration the scalp distribution of 374 

the measure of interest by performing a permutation test on the cluster of electrodes with 375 

the highest score, i.e., the most important cluster according to the metric of interest. This 376 

approach provides a solution to the multiple comparison problem by including 377 

biophysically-motivated constraints that increase the sensitivity of this statistical test in 378 

comparison with a standard Bonferroni correction. 379 

 380 

  381 
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Results 382 

Non-invasive EEG signals were recorded from ten participants as they listened to an 383 

audiobook. We conducted three analyses tackling the questions: 1) Do cortical signals 384 

track the small changes in phonotactic probability that characterise natural speech? 2) 385 

Can we measure these phonotactic responses at the individual-subject level? And 3) do 386 

these signals reflect a pre-lexical influence of phonotactics in speech comprehension? 387 

 388 

Neural Evidence for the Processing of Probabilistic Phonotactics 389 

Brain signals that are common among participants listening to the same speech stimulus 390 

were estimated using MCCA (de Cheveigné et al., 2018a). This consensus signal (CS) 391 

can be thought of as a ground truth cortical response with better signal-to-noise ratio than 392 

EEG data of individual subjects. A speech-EEG model based on CCA was then employed 393 

to related this consensus EEG signal to different speech feature sets. The quality of the 394 

model (measured by correlation and d-prime metrics) was used as a measure of the ability 395 

of each feature set to capture speech structure predictive of the EEG response.  396 

We wish specifically to evaluate the predictive power of the phonotactic feature set P 397 

relative to, and in combination with, other known feature sets such as spectrogram of 398 

phonetic features. 399 

We first estimated the quality of a CCA-based model involving only the phonotactic 400 

feature vector (P; Figure 1A,top) and EEG. The r-value of 0.42 obtained for the first CC-401 

pair was larger than the 99th percentile of a distribution obtained by shuffling the values 402 

of the pulses within the P vector while leaving their times intact (median over 100 403 

shuffles: r = 0.34; 99th percentile: r = 0.35). This result indicates that phonotactic 404 

probabilities were reflected by the EEG signals. However the phonotactic feature vector 405 

is correlated with other predictive features (such as spectrogram or phonemes), so we 406 

cannot be sure that its predictive power stems from phonotactic information per se.  For 407 

that, we must compare combinations of features that include, or not, the phonotactic 408 

vector P. We formed combinations of features including  the acoustic spectrogram S (Di 409 

Liberto et al., 2015; Lalor et al., 2009; Obleser et al., 2012), a phoneme representation 410 

based on phonetic features F (Mesgarani et al., 2014; Di Liberto et al., 2015, 2018a), 411 

phoneme onsets O (Brodbeck et al., 2018) and our newly introduced phonotactic features 412 

P (see Figure 1A). If each of these features carries information complementary to the 413 

others, and not captured by them, we expect speech-EEG correlations to monotonically 414 
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increase with the inclusion of additional features in the analysis: namely S, FS, OFS, and 415 

POFS as schematized in Figure 1B. Indeed, correlation coefficient values for CCA 416 

models based on these four combination of features agree with this prediction (Figure 417 

2A; rS < rFS < rOFS < rPOFS). Of possible concern is that these models differ in the number 418 

of dimensions (and thus parameters) involved. A large number of parameters can lead to 419 

overfitting, which should penalise the models with more features, contrary to what we 420 

observe. To further exclude such a possibility, we randomly shuffled the values of the 421 

pulses within the phonotactic feature vectors while keeping their timing constant. The 422 

distribution of correlation scores for PshuOFS obtained by repeated shuffling is indicated 423 

in Figure 2A.  The value obtained for POFS is above the 99th percentile of that 424 

distribution. This same control procedure was applied to the F and O features and 425 

confirmed that their respective enhancements are driven by the addition of meaningful 426 

features, and not by differences in dimensionality, as they produced stronger correlations 427 

than the 99th percentile of the corresponding shuffled distributions. In summary, each of 428 

these features carries useful information not carried by the others. 429 

The previous analysis was based on correlations for the first CC-pair only, but other 430 

components may carry relevant information as well. To get a more complete picture we 431 

performed a similar analysis based on the d-prime measure for a match-vs-mismatch trial 432 

classification, which combines all components simultaneously (see Methods). The d-433 

prime values showed patterns resembling what previously seen for the correlation 434 

analysis. Specifically, a d-prime of 0.704 resulted from the CCA analysis on P, which 435 

was greater than the 99th percentile of the shuffled distribution (median over 100 shuffles: 436 

d-prime = 0.504; 99th percentile: d-prime = 0.544). Furthermore, d-prime values 437 

monotonically increased for S, FS, OFS, and POFS, showing again greater values than 438 

the corresponding shuffle distributions (Figure 2B).  The greater value for POFS relative 439 

to OFS and PshuOFS reinforces our claim that cortical signals track phonotactic 440 

probabilities.  441 
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 442 

Figure 2: EEG responses to natural speech are best explained when including phonotactic probability 443 

among the speech features. Data from all participants were combined using MCCA. This consensus EEG 444 

signal (CS) preserves signals that are maximally correlated across subjects. (A) A CCA analysis was 445 

conducted between each speech representation and the CS signals. Speech-EEG correlations for the first 446 

canonical component (CC) pair were best when using the combined model POFS, indicating that 447 

phonotactic probabilities explain EEG variance that was not captured by the purely acoustic-phonemic 448 

models (S, FS, and OFS). (B) In addition, phonotactic probabilities enhanced the d-prime score of a match-449 

vs-mismatch classification test. The box-plots indicate the 99th percentile of the performance when using a 450 

combined model (FS, OFS, or POFS) after randomly shuffling information for the newly added feature (F, 451 

O, and P respectively). 452 

 453 

Robust Individual-subject EEG Tracking of Phonotactic Probabilities 454 

The previous analysis provided evidence that the cortical responses to natural speech, 455 

measured with non-invasive EEG, are influenced by phonotactic probabilities. To test 456 

whether such responses can be reliably measured at the individual-subject level, we 457 

conducted the same CCA analysis as in the previous section on the brain recordings from 458 

each individual. Figure 3 (left panels of A and B) illustrates both correlation and d-prime 459 

results. The scores are overall smaller than for the analysis based on the consensus signal, 460 

reflecting the greater amount of noise in the subject-specific data, but the same trends are 461 

observed. POFS is the best performing model in terms of both correlation (POFS > OFS, 462 

p = 0.0008; d = 1.35; POFS > FS, p < 0.0001; d = 1.89; POFS > S, p < 0.0001; d = 1.20) 463 

and d-prime (POFS > OFS, p = 0.027; d = 0.60; POFS > FS, p = 0.0012; d = 0.86; POFS 464 

> S, p = 0.0049; d = 0.98). In addition, this analysis confirmed that phonetic features 465 

explain EEG variance not captured by the acoustic spectrogram (FS > S; correlations: p 466 
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= 0.0045, d = 1.17; d-prime: p < 0.014, d = 0.85) and, similarly, that the phoneme onsets 467 

vector refines the FS representation of speech (OFS > FS; correlations: correlations: p < 468 

0.0001, d = 1.03; d-prime: p = 0.042, d = 0.65). The average benefits (relative gain) of 469 

adding the onset vector O, and the phonotactic vector P, for both measures is plotted in 470 

the right-hand panels of Figure 3A and B. Statistical analysis on these average measures 471 

confirms that phonotactic information has a measurable effect on the EEG responses to 472 

speech (correlation: p = 0.0008, d = 1.03; d-prime: p = 0.016, d = 0.65).  473 

Finally, we conducted additional analyses to test whether other models of phonotactic 474 

information can explain EEG responses as well, or better, than P. A first single-subject 475 

CCA-based analysis compared P to neighbourhood density (Pneigh). This feature was 476 

suggested as a possible neural strategy for an indirect encoding of phonotactic 477 

information (Vitevitch et al., 1999; Bailey and Hahn, 2001a). P performed better than this 478 

new measure in terms of d-prime (POFS > PneighOFS; one-tailed permutation test: p = 479 

0.0179; d = 0.68). We performed a similar comparison between P and probabilistic 480 

definitions of phoneme surprisal (Psur) and entropy (Pent) (Brodbeck et al., 2018; Gaston 481 

and Marantz, 2018). Again, P performed better than these two measures. Specifically, P 482 

showed larger d-prime values than Pent (POFS > PentOFS; one-tailed permutation test: p 483 

= 0.037; d = 0.67) and Psur (POFS > PsurOFS; one-tailed permutation test: p = 0.02; d = 484 

0.73). 485 

 486 
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Figure 3: Phonotactic probabilities enhance the speech-EEG mapping at the individual subject level. 487 

CCA analyses were conducted between each speech representation and the corresponding EEG responses 488 

for each individual subject. (A) Speech-EEG correlations for the first canonical component pair were 489 

greatest when using the combined model POFS (left panel). The thick black line indicates the average 490 

across subjects while the coloured dots/lines refer to the individual subjects. The bar-plot shows the relative 491 

correlation gain (%) of the combined models OFS and POFS with FS (i.e. the contribution given by O and 492 

P respectively). (B) Similar results are shown for the d-prime scores of a match-vs-mismatch classification 493 

test. Results for individual subjects are colour-coded (same colors as for A). Phonotactic probabilities 494 

enhance the single-subject scores for FS and also show significant improvement compared to OFS. 495 

 496 

Timescale of Cortical Responses to Phonotactics 497 

Our results suggests that phonotactic probabilities influence the cortical processing of 498 

natural speech. We conducted further analyses to assess the temporal dynamics of this 499 

effect. Linear forward models were fit using the TRF approach to describe how speech 500 

features are transformed into EEG signals. Because of the sensitivity of the forward TRF 501 

method to EEG noise, we restricted the analysis to the frequencies 0.5-9 Hz, which are 502 

most relevant for the EEG tracking of speech acoustic and phoneme-level features (Di 503 

Liberto et al., 2015, 2018b; Kösem and van Wassenhove, 2016; Vanthornhout et al., 504 

2018). 505 

Forward encoding models were fit for each speech representation (S, FS, OFS, POFS) 506 

using non-overlapping time-lag windows of duration 100 ms within the interval 0 – 900 507 

ms. Average EEG prediction correlations confirm the hypothesised general trend that 508 

emerged also from the CCA analysis (S < FS < OFS < POFS; Figure 4-1). Crucially, the 509 

direct comparison of POFS and OFS reveals a significant effect of phonotactics for a 510 

cluster of speech-EEG latencies between 100 and 400 ms (cluster statistics, p < 0.05), 511 

with peak effect-size at the latency-window 300 – 400 ms (d = 1.53) (Figure 4). 512 

  513 
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Figure 4: EEG tracking of phonotactic probabilities is 514 

specific to speech-brain latencies of 100-400 ms. A temporal 515 

response function (TRF) analysis was conducted to estimate 516 

the amount of EEG variance explained by phonotactic 517 

probabilities for speech-EEG latency windows between 0 and 518 

900 ms and window-size 100 ms. EEG prediction correlations 519 

were calculated for different speech feature-sets and for the 520 

various speech-EEG latencies. The enhancement in EEG 521 

predictions due to phonotactic probabilities is shown for all 522 

time-latency windows. Shaded areas indicate the standard error 523 

of the mean (SE) across subjects. Stars indicate significant 524 

enhancement (*p < 0.05) as a result of a cluster mass statistics 525 

(top). Cohen’s d was calculated to measure the effect size of 526 

the enhancement due to phonotactics. Values above 0.8 are 527 

considered as ‘large’ effects (above dashed grey line) (centre). 528 

Topographical patterns of the TRF weights for a model fit over 529 

time-lags from 0 to 900 ms are shown for latencies with a significant effect of phonotactic probabilities 530 

(100-400 ms) (bottom). 531 

 532 

Discussion 533 

Our results demonstrate that cortical responses to natural speech reflect probabilistic 534 

phonotactics. First, linear modelling revealed a time-locked interaction between 535 

phonotactic information and low-frequency EEG. Then, we established that brain 536 

responses to phonotactics can be measured at the individual subject-level. Finally, we 537 

found that speech-EEG latencies of 100-400 ms are most relevant to those brain 538 

responses, suggesting that phonotactic information contributes to natural speech 539 

processing at pre-lexical stages. 540 

 541 

A novel measure of phonotactic processing 542 

Phonotactic information plays an important role in speech perception. However, crucial 543 

questions remain unanswered about the underpinnings of the corresponding cortical 544 

processes, mainly due to a lack of tools to extract direct measures of brain responses to 545 

phonotactics. Although neurophysiology has partially fulfilled this need (Connolly and 546 

Phillips, 1994; Dehaene-Lambertz et al., 2000; Wagner et al., 2012; Cibelli et al., 2015; 547 

Leonard et al., 2015), its findings were mainly confined to nonsense words or to the 548 

domain of phonotactic violations, which are exceptions in natural speech scenarios. The 549 
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present study aimed to measure brain signals corresponding to the continuous integration 550 

of phonotactic information, which are difficult to isolate when measuring only 551 

phonotactic violations. These violations trigger various other processes such as 552 

phonological repair, which may emerge in the evoked-response (Dehaene-Lambertz et 553 

al., 2000; Dupoux and Pallier, 2001; Domahs et al., 2009). Here, we found evidence that 554 

cortical responses to narrative speech reflect the well-formedness of phoneme segments 555 

as expressed by probability values, therefore with no (or very few) violations and 556 

phonological repair (Figures 2 and 3). This finding pushes beyond the phonotactic 557 

violation paradigm  and provides us with a tool based on linear models to isolate measures 558 

of phonotactic-level processing during natural speech perception.  559 

This work constitutes a further step towards the characterisation of brain responses to 560 

natural speech, adding to recent work aimed at isolating brain responses to distinct 561 

processing stages, involving speech acoustics (Ding and Simon, 2014), phonemes (Di 562 

Liberto et al., 2015, 2018c), sentence structure (Ding et al., 2015, 2017), and semantic 563 

similarity (Broderick et al., 2018). The ability to simultaneously account for and 564 

disentangle brain responses to continuous speech at different processing stages constitutes 565 

a novel and powerful tool to study the neurophysiology of speech. In particular, isolating 566 

brain responses to phonotactics could provide new insights on the positive impact of this 567 

mechanism in case of language impairment, and also when the phenomenon plays against 568 

us. For example, when learning a second language, these brain mechanisms cause 569 

misperception and mispronunciation, and contribute to stereotypical accents (Davidson, 570 

2006a, 2006b; Lentz and Kager, 2015). In addition, the present framework produces 571 

objective measures indicating how strongly EEG responses to speech correspond with a 572 

particular phonotactic model, thus offering a new opportunity to test the 573 

neurophysiological validity of theoretical and computational models (e.g. BLICK).  574 

Our results provide new insights in this direction, indicating that phonotactic 575 

probabilities, as defined by the computational model BLICK, are better represented in the 576 

EEG signal than a purely probabilistic definition of phoneme probability (Psur, Pent) 577 

(Gaston and Marantz, 2018) and, importantly, than phonological neighbourhood density 578 

(Pneigh) (Vitevitch et al., 1999; Frisch et al., 2000; Bailey and Hahn, 2001a). While further 579 

studies could explore other hypotheses on the encoding and processing of phonotactic 580 

information more comprehensively, the present finding is in line with research suggesting 581 

distinct roles for phonotactics and neighbourhood density (Vitevitch et al., 1999; Bailey 582 
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and Hahn, 2001a; Storkel et al., 2006). Specifically, the first would aid speech perception 583 

by facilitating processing and triggering learning of new words at early pre-lexical stages, 584 

while the latter would influence the integration of new and existing lexical representations 585 

at a later stage.   586 

A similar issue relates to the speech-brain latencies associated with phonotactic 587 

information. Indeed, previous research found interactions between phonotactic violations 588 

and evoked brain components such as N400 and LPC (Domahs et al., 2009; White and 589 

Chiu, 2017). It has also been suggested that the N400 magnitude may be directly linked 590 

to phonotactic information, while effects at the longer LPC latencies may be spurious 591 

and, instead, reflect other related processes, such as changes in cognitive load related to 592 

the size of the neighbourhood of permissible words (Dupoux et al., 1999; Vitevitch et al., 593 

1999; Dupoux and Pallier, 2001; Storkel et al., 2006). Our results contribute to this debate 594 

by suggesting that latencies of 100-400 ms are the most relevant for the processing of 595 

phonotactic probabilities. Furthermore, topographical patterns at those latencies present 596 

activations over centro-parietal scalp areas that qualitatively resemble that of an N400 597 

component. One possibility is that this response is related to an early N400, whose 598 

latencies reflect the rapid processing of phonotactics in a natural speech scenario. It is 599 

also possible that this response reflects multiple cortical correlates, one in correspondence 600 

with the earlier weaker effect (100-300 ms) (Brodbeck et al., 2018), and a separate one 601 

with a larger effect-size at longer latencies (300-400 ms) (Pylkkänen et al., 2002, 2000). 602 

A direct comparison between EEG responses to phonotactic probabilities and phonotactic 603 

violations could clarify some of these issues, as previously attempted in the similar 604 

context of semantic-level processing (Broderick et al., 2018). 605 

Theoretical implications of a rapid time-locked response to phonotactics 606 

Our results have important implications for current theories on phonotactics, by providing 607 

insights into both temporal dynamics (when) and neural encoding (how) of this cortical 608 

mechanism. Phonotactic information, which aids speech recognition and learning of new 609 

words (Mattys and Jusczyk, 2001; Munz, 2017), was suggested to involve one of the 610 

following: 1) the phoneme identification stage (one-step models; Dehaene-Lambertz et 611 

al., 2000; Dupoux et al., 2011); 2) a pre-lexical stage that occurs after phoneme 612 

identification (two-step models; Church, 1987); or 3) a later lexical stage that influences 613 

pre-lexical processes through feedback connections (lexicalist models; McClelland et al., 614 

2006; McClelland and Elman, 1986). In this context, a large body of literature in 615 
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psycholinguistics supports a pre-lexical account of phonotactics (McQueen, 1998; 616 

Jusczyk et al., 1999; Sebastián-Gallés, 2007). For example, infants showed sensitivity to 617 

phonotactics by 9 months of age, suggesting that this information aids speech 618 

segmentation even at early developmental stages, before being able to understand speech 619 

(Jusczyk et al., 1994). Similarly, it was shown that humans are sensitive to phonotactic 620 

information even when meaning is not involved (nonsense words), pointing to the early 621 

implementation of phonotactic repair (Dupoux et al., 1999; Davidson, 2011; Rossi et al., 622 

2013). This indirect evidence for a pre-lexical influence of phonotactic information finds 623 

experimental support in both phonotactic violation studies (Dehaene-Lambertz et al., 624 

2000; Pylkkänen et al., 2002) and in the present work, which isolated cortical responses 625 

to probabilistic phonotactics showing short speech-EEG latencies (100-400 ms). 626 

Indeed, it is possible that other post-lexical brain responses to phonotactics exist but could 627 

not be measured. In fact, such higher-level effects could exhibit weaker time-locking, 628 

which would hamper the ability to capture them with our framework. Indeed, this 629 

hypothesis should be tested with more controlled experimental paradigms, possibly by 630 

making less assumptions on the time-locking between phonotactics and brain signals. 631 

Although we cannot be conclusive on this point, the latencies of 100-400 ms could be in 632 

line with one-step models (Dehaene-Lambertz et al., 2000; Dupoux et al., 2011), which 633 

hypothesise that phonotactic processing occurs pre-lexically and together with phoneme 634 

identification, whose EEG responses were measured for latencies up to 300 ms (Di 635 

Liberto et al., 2015; Khalighinejad et al., 2017). 636 

In summary, our results indicate rapid time-locked brain responses to probabilistic 637 

phonotactics. This phenomenon emerged for low-frequency cortical signals (< 9 Hz) and 638 

were reliably measured at the individual subject-level. We also found that the speech-639 

EEG latencies of 100-400 ms most strongly reflects phonotactic information, which is in 640 

line with a pre-lexical account of phonotactic processing. This provides the field with a 641 

new tool to study the brain processing of phonotactics using natural speech.  642 
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 957 

Figures 958 

Figure 1. (A) Speech representations for a 5 seconds portion of the stimulus. From bottom to top, the 959 

acoustic spectrogram (S) which consists of a 16-channel time series of power within 16 frequency bands; 960 

phonetic features (F), whose permissible combinations map to English phonemes; phoneme onsets (O), 961 

which mark the beginning of each phoneme; and the probabilistic phonotactic vector (P), a representation 962 

indicating the inverse likelihood of a sequence (from the beginning of a word to each of its phonemes). (B) 963 

Expected outcomes: We hypothesise that, if a stimulus representation encodes features not captured by 964 

other representations, adding it to the others will improve the prediction of cortical responses. In particular 965 

we predict an increase in cortical tracking due when phonotactic probabilities are added to the mix (POFS 966 

– OFS, blue increment). 967 

Figure 2: EEG responses to natural speech are best explained when including phonotactic probability 968 

among the speech features. Data from all participants were combined using MCCA. This consensus EEG 969 

signal (CS) preserves signals that are maximally correlated across subjects. (A) A CCA analysis was 970 

conducted between each speech representation and the CS signals. Speech-EEG correlations for the first 971 

canonical component (CC) pair were best when using the combined model POFS, indicating that 972 

phonotactic probabilities explain EEG variance that was not captured by the purely acoustic-phonemic 973 

models (S, FS, and OFS). (B) In addition, phonotactic probabilities enhanced the d-prime score of a match-974 

vs-mismatch classification test. The box-plots indicate the 99th percentile of the performance when using a 975 

combined model (FS, OFS, or POFS) after randomly shuffling information for the newly added feature (F, 976 

O, and P respectively). 977 

Figure 3: Phonotactic probabilities enhance the speech-EEG mapping at the individual subject level. 978 

CCA analyses were conducted between each speech representation and the corresponding EEG responses 979 

for each individual subject. (A) Speech-EEG correlations for the first canonical component pair were 980 

greatest when using the combined model POFS (left panel). The thick black line indicates the average 981 

across subjects while the coloured dots/lines refer to the individual subjects. The bar-plot shows the relative 982 

correlation gain (%) of the combined models OFS and POFS with FS (i.e. the contribution given by O and 983 

P respectively). (B) Similar results are shown for the d-prime scores of a match-vs-mismatch classification 984 

test. Results for individual subjects are colour-coded (same colors as for A). Phonotactic probabilities 985 

enhance the single-subject scores for FS and also show significant improvement compared to OFS. 986 

 987 

Figure 4: EEG tracking of phonotactic probabilities is specific to speech-brain latencies of 100-400 988 

ms. A temporal response function (TRF) analysis was conducted to estimate the amount of EEG variance 989 

explained by phonotactic probabilities for speech-EEG latency windows between 0 and 900 ms and 990 

window-size 100 ms. EEG prediction correlations were calculated for different speech feature-sets and for 991 

the various speech-EEG latencies. The enhancement in EEG predictions due to phonotactic probabilities is 992 

shown for all time-latency windows. Shaded areas indicate the standard error of the mean (SE) across 993 

subjects. Stars indicate significant enhancement (*p < 0.05) as a result of a cluster mass statistics (top). 994 

Cohen’s d was calculated to measure the effect size of the enhancement due to phonotactics. Values above 995 
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0.8 are considered as ‘large’ effects (above dashed grey line) (centre). Topographical patterns of the TRF 996 

weights for a model fit over time-lags from 0 to 900 ms are shown for latencies with a significant effect of 997 

phonotactic probabilities (100-400 ms) (bottom). 998 

 999 

Extended data 1000 

 1001 

Figure 4-1. A temporal response function (TRF) analysis was conducted to estimate the amount of EEG 1002 

variance explained by phonotactic probabilities for speech-EEG latency windows between 0 and 900 ms 1003 

and window-size 100 ms. EEG prediction correlations averaged across all scalp electrodes are shown for 1004 

different speech feature-sets and for the various speech-EEG latencies. Shaded areas indicate the standard 1005 

error of the mean (SE) across subjects. The contrast between EEG prediction values for POFS and OFS is 1006 

shown in Figure 4. 1007 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/359828doi: bioRxiv preprint first posted online Jun. 30, 2018; 

http://dx.doi.org/10.1101/359828

