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Abstract

Logic languages such as Datalog have been proposed as a method for specifying

flexible and customisable static analysers. Using Datalog, various classes of static

analyses can be expressed precisely and succinctly, requiring fewer lines of code

than hand-crafted analysers. In this paradigm, a static analysis specification is en-

coded by a set of declarative logic rules and an off-the-shelf solver is used to com-

pute the result of the static analysis. Unfortunately, when large-scale analyses are

employed, Datalog-based tools currently fail to scale in comparison to hand-crafted

static analysers. As a result, Datalog-based analysers have largely remained an aca-

demic curiosity, rather than industrially respectful tools.

This thesis outlines our efforts in understanding the sources of performance

limitations in Datalog-based tools. We propose a novel evaluation technique that is

predicated on the fact that in the case of static analysis, the logical specification is

a design time artefact and hence does not change during evaluation. Thus, instead

of directly evaluating Datalog rules, our approach leverages partial evaluation to

synthesise a specialised static analyser from these rules. This approach enables a

novel indexing optimisations that automatically selects an optimal set of indexes

to speedup and minimise memory usage in the Datalog computation. Lastly, we

explore the case of more expressive logics, namely, constrained Horn clause and

their use in proving the correctness of programs. We identify a bottleneck in various

symbolic evaluation algorithms that centre around Craig interpolation. We propose

a method of improving these evaluation algorithms by a proposing a method of

guiding theorem provers to discover relevant interpolants with respect to the input

logic specification.
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The culmination of our work is implemented in a general-purpose and high-

performance tool called Soufflé. We describe Soufflé and evaluate its performance

experimentally, showing significant improvement over alternative techniques and its

scalability in real-world industrial use cases.



Impact Statement

The contributions presented in this thesis have the potential to impact a wide range

of applications in computer science. The first contribution of this thesis, the tool

Soufflé, makes a significant contribution to the field of static analysis and database

technology. This work builds on a line of research aimed improving the perfor-

mance of state-of-the-art logic defined static analysers to that of industrially re-

spected tools. The second contribution, an auto-indexing scheme, has impact on

the performance and usability of Datalog engines in general, and in particular those

aimed at large scale computations. The last contribution, improves the performance

of interpolation based symbolic model checkers, by definition the semantic space

of interpolants , and providing a solver independent mechanism of injecting domain

specific knowledge into a theorem provers interpolation algorithm. In that sense, the

impact exceeds that of performance improvements in model checking and has the

potential to impact the logic, database and verification communities. In addition,

this thesis has had direct industrial impact as outlined by the experimental sections

of the contribution chapters and the application chapter of this thesis. Soufflé is

used in production by Amazon Web Services on virtual network security analysis

and Oracle for large scale Java program analysis.
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24 Chapter 1. Introduction

This thesis explores the use of logic as a mechanism to create extensible and

scalable static analysis tools.

Static analysis tools are now mainstream, and are employed on a variety of

applications, including security, operational readiness and performance of embed-

ded systems and general bug finding in software. In fact, static analysis tools are

increasingly being used within niche domains, including network security [1], anal-

ysis of blockchain technology [2], and biomedical technology [3].

Historically, static analysers can be traced back to tools such as lint [4] that

was developed in the late 1970s at Bell Labs by developers dissatisfied with the sup-

port that compilers provided at that time. Such tools were fairly simple, performing

limited syntactic and semantic checks similar to today’s compiler warnings [4]. As

the state-of-the-art progressed due to a growing body of research from the compiler

and logic communities [5, 6], the next generation of static analysis tools became

more powerful. These tools were able to perform increasingly complex semantic

analyses [7, 8] and discover bugs such as integer overflows [9], null pointers [10],

and many more. As computing became exceedingly more ubiquitous in society,

e.g., with the emergence of e-commerce, smart phones etc in the 2000s, much at-

tention was placed on software correctness, underscored by several notable software

failures [11]. As a result, software verification began to play a more prominent role

in many organisation’s software development life cycles (SDLC). Today, organisa-

tions commonly employ some form of static analysis in their SDLC. For example,

in the application security industry, software security life cycles involving static

analysis, are commonly used; as defined by Microsoft [12]. Moreover, several reg-

ulatory authorities, including the FDA [13] and the ONR [14] now recommend the

use of static analysis in software development. As a result, there are an abundance of

industrial-strength static analysis tools available including Checkmarx [15], Cover-

ity [16], Fortify [17], and Infer [18]. These tools are comprehensive, often sup-

porting multiple programming languages [16, 19], covering an increasing range of

implementation bugs [20] and scaling to millions of lines of source code.

The major challenge of performing static analysis stems from the fact that most
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static analysis problems are undecidable [21]. As a result, static analysers perform

sound approximations encoded in the property that one wants to prove. Each tool

must therefore implement a given property of interest which will result in a some

degree of false positives [22] (resp. negatives) on the correctness (resp. incorrect-

ness) of the target system (e.g., program, network, etc.). Given, the large number of

potential properties [9, 7, 8], including ones targeting niche, domain specific bugs,

it is difficult to incorporate every type of property in a static analyser. While a

static analyser may even detect all implementation level software errors in a pro-

gram within respect to a given programming language, a defect may not necessarily

be attributed to implementation level bugs. Instead, the defect could be attributed

to a what we call a software flaw [20, 23]. That is, a software defect that may not

cause crashes or any undefined behaviour, but may not fulfil part of its functional

specification; e.g., relating to security [23]. In [20], the authors report that at Cig-

tal Inc., defects found by static analysis tools account for no more than 15% of all

defects in their source code reviews. The majority of defects found were failures

of the software to implement certain security requirements; e.g. ensuring code ap-

plies an authorisation before executing a particular functionality of an application.

In 2013, Oracle reported [24] that despite using various static analyses on the Java

source code [25], a spike in Java vulnerabilities was observed from 0-day attacks,

including one which was allowed to bypass the Java sandbox. These vulnerabili-

ties were based on the unsafe use of the doPrivileged [24] operation in the Java

Development Kit (JDK). This type of error allows the bypassing of access control.

Such vulnerabilities, unlike more general, well studied implementation bugs (e.g.,

buffer overflow), lacked a clear definition and their detection was not supported in

any static analyser on the market.

1.1 Logic Defined Static Analysis

As a result of the above scenarios, the use of customisable static analysers have been

proposed. One proposal is the use of static analyser frameworks such as Clang [26].

These frameworks use extensible software engineering design patterns to ease the
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burden of much of the development overhead (e.g. parsing, data structures, etc.)

typically required when crafting a static analyser. However, this approach still re-

quires users to program in a low-level language (e.g. C++/Java) and be familiar

with aspects of static analyser internals. A more user friendly alternative proposes

the use of a high-level Domain Specific Language (DSL) [27, 28, 29] to express the

properties of the analysis without specifying the implementation details of a static

analyser. The choice of DSL is particularly important. The right level of abstraction

must be chosen so that a user can express the analysis specification in a language

congruent with their understanding and not be burdened with implementation de-

tails. On the other hand, the language must be expressive enough to adequately

encode the static analysis problem.

A recent approach that has gained popularity in the static analysis commu-

nity [30, 27, 31, 32] is the use of declarative, logic-based DSLs to specify a static

analysis in the form of logical rules and to rely on an existing off-the-shelf logic con-

straint solver/decision procedure to perform computations. These logic-based DSLs

provide declarative semantics for programs, resulting in succinct program represen-

tations and rapid-prototyping capabilities. Rather than specifying the computational

steps imperatively, they allow users to specify the intended result declaratively, and

thus are able to express computations in a more concise manner. Furthermore, the

logical specification is decoupled from the solver evaluation algorithms, thus al-

lowing for a separation of concerns between the static analysis domain expert and

the engine designer. Therefore, any improvements to state-of-the-art solvers can be

easily leveraged by users.

Many approaches have been proposed that use various logics [33, 34, 35] to

encode static analysis problems. Among them, Datalog has shown to be partic-

ularly useful in specifying various program analyses due to its balance between

expressivity and evaluation complexity. In the Datalog paradigm, a user specifies

a static analysis problem through a set of Horn clauses that do not allow function

symbols and assume finite domains. A popular extension that is often added to in-

crease the expressivity of Datalog is the limited use of negation in the body of a
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clause. This fragment of logic allows users to specify various reachability proper-

ties that can be solved in polynomial-time. Given an encoding of the analysis, the

system to be analysed, e.g., a program, is abstracted to a set of input relations. A

Datalog engine then executes the logic specification along with the input relations

and produces an output relation(s) that represent analysis results. This paradigm is

supported by a plethora of state-of-the-art Datalog engines that specifically target

static analysis. Examples of recent Datalog engines are bddbddb [36], µZ [37] and

PA-Datalog [30], which use fast/compressed data structures and have advanced the

capabilities of logic-based static analysis [38, 39].

Example 1 (Java Access Analysis). In Figure 1.1a a simple scenario based on the

do-privileged analysis presented in [24]. In our analysis, we assumes a low and

high security state. We wish to assert that the invocation of a security sensitive

method vulnerable is permitted only in the high-security state, ie., the caller is

authorised to make the call. A call to the method protect transfers the security

state from low to high if permitted. The example code of Figure 1.1a would not

violate the imposed security policy if it can be assumed that i < j whenever m is

invoked. However, since this can not be ensured, m exhibits a security violation

which we would like to detect.

The control-flow graph of m is shown in Figure 1 to the code fragment. It has a

start node s, and nodes l1, l2, and l3 representing statements in the input program.

An edge (x,y) ∈ E between two nodes represents a potential transfer of control. A

statement x ∈ P raises the security level.

void m(int i, int j){

s: while (i < j){

l1: protect();

l2: i++;

}

l3: vulnerable();

}

(a) Program to analyse

s l1

l3 l2
(b) Abstract CFG of program

Figure 1.1: Java-like input program, a graphical representation of its control-flow, and
Datalog security specification
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To discover the potential of calling a vulnerable method in a low security state,

we employ a simple Datalog analysis.

.type N

E(s:N,d:N) .input E

S(s:N) .input S

P(node:N) .input P

I(node:N) .output I

I("s").

I(y) :- I(x), E(x,y), !P(y).

Firstly, a Java program is abstracted into a set of input relations called the

extensional database (EDB). For example, the Java program in Figure 1.1a is en-

coded into two EDB relations, namely, E which encodes the edges of the CFG while

P which encodes the set of protected notes in the CFG. We represent the two rela-

tions as a CFG in Figure with the gray node representing a node calling protect,

i.e., l1.

In the analysis we define a type N, representing nodes, and E is defined as

a binary relation between two N elements so as to represent edges between two

nodes. The sets P and I are defined such that they also contain elements of type

N. The qualifier .input denotes that the relations are an EDB and are provided

as an input when executing the analysis. The set I is an output relation that will

contain all nodes in the control-flow that are not secure and hence is marked with

the qualifier output. If node `3, which is a vulnerable call, is in set I, the method

m does not fulfil the security policy to be enforced and would thus be identified as

insecure. The analysis always assumes the entry node s to be insecure by adding it

to set I via I("s"). The propagation rule

I(y) :- I(x), E(x,y), !P(y).
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adds node y to the set of insecure nodes if (1) node x is insecure, (2) there is a

control-flow from x to y, and (3) the target node y does not raise the security level.

If we execute our analysis we will discover a potential insecure path, i.e., a

path that starts at node s, bypasses l1 and yet reaches l3. This can be easily seen

in the Java program for the case that i ≥ j. While this is a very simple analysis

for demonstration purposes, Datalog analysis that check various properties can

consist of many hundreds of Datalog rules e.g., [28] and analyse code bases of over

a billion tuples [31, 40].

�

1.1.1 Open Problems

Despite the vast potential of Datalog-based static analysis and the continuing ad-

vances in Datalog solver technology [37, 41, 30, 36, 42], Datalog solvers fail to

perform at the level of hand-crafted analysers. Consider the reasonable attempt at

a hand-crafted C++ implementation shown in Figure 1.2. Here a worklist-based

algorithm computes the analysis result in the I relation. The relation I is initialised

with the s value and each for loop iteration attempts to add new information to I

until no further information can be inferred, i.e., a fixpoint is reached. Of particu-

lar significance is that the performance disparity between the hand-crafted version

that is equivalent to the Datalog analysis in Example 1. Despite the Datalog version

being obviously simpler and more concise, if it is executed on the µZ (a state-of-the-

art Datalog engine), a difference is observed in both run-time and memory usage1.

For a CFG with 1 million generated nodes, the C++ program performs 4.5 times

faster than µZ, while consuming 3.2 times less memory2. In general, because of the

performance exhibited by above example, static analysers expressed by declarative

DSLs (like the Datalog) tend to be limited in size, complexity and precision of the

analyses performed, and as a result, have largely remained an academic curiosity.

Given the above, the question arises: Can logic-based analysers be made to

perform on par with hand-crafted alternatives?

1On a Intel(R) Core(TM) i7-6600U CPU 2.60GHz 20GB of memory
28x less memory compared to bddbddb
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using Tuple1 = std::array<int,1>;

using Tuple2 = std::array<int,2>;

using Relation1 = std::set<Tuple1 >;

using Relation2 = std::set<Tuple2 >;

Relation1 I,P;

Relation2 E;

E = someSourceForE();

P = someSourceForP();

I.insert(Tuple1{0});

auto dI = I;

while(!dI.empty()) {

Relation1 newI;

for(const auto& t1 : I) {

auto x = t1[0];

auto l = E.lower_bound({x,0});

auto u = E.lower_bound({x+1,0});

for(auto it = l; it != u; ++it) {

auto y = (*it)[1];

if (!contains(P,{y}) &

!contains(I,{y})) {

newI.insert({y});

}

}

}

I.insert(newI.begin(),newI.end());

newI.swap(dI);

}

Figure 1.2: Manual C++ analysis
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This thesis investigates methods for improving the performance and scalability

of the logic-based static analysers with the goal of achieving best-in-class perfor-

mance. First the thesis focuses on Datalog-based static analysers, and later investi-

gates efficiently solving more expressive logics, namely, constrained Horn clauses

using predicate abstraction and interpolation.

1.1.1.1 Thesis Hypothesis

To achieve the techniques presented in this thesis, we proceed from the hypothesis

that in order to increase solver performance, solvers need to leverage the informa-

tion present in the input logic specification and specialise their otherwise generic

methods of evaluation. This approach allows engines to perform input specific

optimisations instead of the relying on the solver designer to determine the most

beneficial optimisation for average case inputs.

In the case of Datalog engines, state-of-the-art evaluation algorithms do not

make any assumption about the input logical specification and performance is

highly sensitive to the encoding of the Datalog rules. Any instance specific op-

timisations are typically performed at evaluation-time, incurring runtime over-

heads [43]. Therefore in order to further improve their performance, manual op-

timisations are required to modify the Datalog input to suite the underlying engine.

For example, this approach can be observed in the Datalog static analysis library

Doop [44] which requires a range of optimisations to enable the Logicblox en-

gine to perform static analysis. In fact most Datalog engines require annotations to

the Datalog program to provide hints for indexing [45], data structure order [36] etc.

While these approaches can indeed result in runtime improvements, they are tedious

to perform, are only good for the current input specification, and require detailed

knowledge of the internals of the used Datalog engine, e.g., evaluation algorithm,

indexing policy, scheduling policy etc.

A similar problem can be observed for engines that are used to solve static

analysis problems encoded as recursive constrained Horn clauses. These solvers

rely on external theorem provers to compute Craig interpolants [46], a mechanism

that explains unsatisfiable formulae. However, for any given unsatisfiable formu-
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lae, there may be an infinite set of interpolants. Therefore the theorem prover may

return an interpolant that results in the solver exhibiting poor performance or even

non-termination. Existing approaches have resorted to modifying the way theorem

provers internally compute interpolants [47, 48]. However, there is no universal

notion of what is a good interpolant, and while these approaches can improve per-

formance for some targeted use cases, they may not always return a good interpolant

for others.

In this thesis, we propose several novel techniques that incorporate knowledge

of the input logical specification to the underlying engine/solver. In the case of Dat-

alog evaluation, we leverage the fact that in the static analysis use case, the anal-

ysis specification, encoded as Datalog rules, is a design time artefact that remains

fixed during evaluation. Therefore we employ partial evaluation to to synthesise a

specialised static analyser. This approach leads to several optimisations during spe-

cialisation time. Among these the ability to automatically infer the optimal number

of indexes required to speed up search operations for a given analysis specification.

As a result these techniques which are implemented in Soufflé, enable the evalua-

tion of complex static analyses performed on giga-tuples sized relations, typically

deemed too difficult for Datalog based analysers.

We extend the expressivity of Datalog and investigate evaluation techniques

for more expressive logics, such as constrained Horn clauses. For engines that

solve recursive constrained Horn clauses, we present a technique that incorporates

domain specific knowledge e.g., obtained from the input logic, and forces the the-

orem prover to compute interpolants with desired characteristics that improve CE-

GAR convergence and limit non-termination of Horn clause engines such as Eldar-

ica [49]. Unlike other techniques, we do not resort to modifying theorem prover

internals, but rather, present a theorem prover agnostic approach which abstracts

the interpolation problem to force the theorem prover to give us the interpolants we

deem useful w.r.t the abstraction. We have demonstrated that our technique enables

solvers such as Eldarica to solve problems which previously it could not solve.
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1.2 Thesis Contributions and Structure
The thesis is structured as follows. In Chapter 2, preliminary definitions and base-

line knowledge are presented.

Contribution I: In Chapter 3, the first contribution of this thesis is presented. The

chapter describes the Soufflé tool which is a Datalog based analyser that performs

on a par with hand-crafted tools. For example, compared to the C++ hand-crafted

solution to 1, Soufflé is able to perform the analysis 17x faster then the C++ pro-

gram, using 20x less memory. Instead of evaluating a Datalog program directly, the

framework proposes a paradigm shift. In the presented approach, the Datalog rules

are treated as a logical specification which is used to synthesises an efficient C++

static analyser that adheres to this specification. The synthesis is performed using a

hierarchy of partial evaluation stages which use the interpreter of various represen-

tations of the specification to lower the analysis to a more concrete form, eventually

resulting in a parallel C++ version of the analyser. In addition, we extend Datalog

to include more user friendly language constructs which aid users in engineering

large analysis specifications. The framework has been implemented in the Soufflé

tool and has been shown to perform on par with state-of-the-art hand-crafted anal-

ysers [50] on large industrial benchmarks. Contribution I can be broken down into

the following sub-contributions:

• A novel approach to synthesising C++ analysers from Datalog via staged

partial evaluation

• The definition of the relational algebra machine (RAM) intermediate repre-

sentation

• The parallelisation of Datalog within the Soufflé framework

• Experiments showing the effectiveness of our approach using large, real world

rulesets and factsets

This work has been published in Compiler Construction (CC) [40], Computer Aided

Verification (CAV) [31], and the Symposium on Principles and Practice of Paral-
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lel Programming (PPoPP) [51]. I am the main co-researcher, co-author and co-

implementer with Bernhard Scholz and Herbert Jordan.

Contribution II: In Chapter 4, we present a new automatic indexing mecha-

nism tailored for large scale Datalog computations. We present our novel index-

ing scheme that unlike previous Datalog indexing schemes, allows for an optimal

number of indexes to be automatically inferred statically. The indexing approach

exhibits negligible overhead during specialisation/compilation time while resulting

in both runtime improvements and low memory usage compared to existing index-

ing schemes. Apart from boosting performance this technique avoids the need for

users to manually reorder attributes in relations, as is required to scale program

analysis frameworks such as Doop on single indexing schemes in state-of-the-art

engines such as Logicblox/PA-Datalog. Contribution II can be broken down into

the following sub-contributions:

• The formulation of an automatic indexing for large-scale Datalog computa-

tion based on this theory

• A formal definition of the minimum index selection problem (MISP) that

finds the minimum number of indexes to cover all primitive searches

• A polynomial-time algorithm to solve MISP optimally via computing search

chains

• Experiments showing the effectiveness of the indexing scheme in Soufflé,

using large, real world rulesets and factsets

This work has been published in Very Large Databases (VLDB) [52]. I am the main

researcher, co-author with Bernhard Scholz, Alan Feteke and Lijun Chang and sole

implementer of this research.

Contribution III: In Chapter 5, In this chapter of this thesis we present a semantic

and solver-independent approach for systematically exploring interpolant lattices,

based on the notion of interpolation abstraction. We discuss how interpolation ab-

stractions can be constructed for a variety of logics, and how they can be exploited
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to improve solver performance. Contribution III can be broken down into the fol-

lowing sub-contributions:

• An approach to guiding theorem provers to discover specialised interpolants

• The theory of interpolant abstractions and their properties

• A number of exploration algorithms for finding feasible and cost effective

interpolant abstractions

• Experiments demonstrating the feasibility of our technique on a set of diverse

benchmarks

This work has been published at Formal Methods Computer Aided Design (FM-

CAD) [53] and Acta Informatica [54]. I am the main co-author/researcher with

Philipp Ruemmer and sole implementer of the work.

In Chapter 6, two use cases are presented that evaluate Soufflé on two indus-

trial use cases. The first evaluates Soufflé in the context of security analysis of

Amazon virtual networks. This use case demonstrates Soufflé’s ability to scale to

very large networks that are typically too difficult for alternative solvers. The second

use case evaluates the Soufflé in the evaluation of Datalog encoded points-to anal-

yses of the Java Development Kit (JDK) version 7. This use case is typically too

complicated for existing Datalog engines and has been only recently been solved

using highly specialised hand-crafted analysers, namely, Dietrich etal., in OOP-

SLA’15 [50]. The Amazon virtual network analysis use case is based on an yet

to be published technical report that was co-authored with Evgeny Kotelnikov and

Byron Cook at Amazon Web Services. The program analysis use case was done in

collaboration with Bernhard Scholz at Oracle Labs.

In Chapter 7, we conclude with a discussion of future work resulting from this

thesis.





Chapter 2

Background
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In this chapter, we present the contextual and technical foundations required

for understanding the approaches presented in later chapters of this thesis.

2.1 Datalog
In this section, we provide background on aspects of Datalog used in this thesis.

This section is background knowledge for Chapter 3 and 4.

Datalog’s origins date back to the 1977 Symposium on Logic and Databases,

where David Maier is credited with coining the term Datalog. Datalog became an

active area of interest in the database systems community in the eighties and early

nineties with several seminal works investigating the pros and cons of various eval-

uation techniques [55, 56] language extensions [57, 58, 59], pragmatics [60, 61] etc.

This research resulted in several early Datalog tools such as LDL [61], LOLA [62],

Nail [61], and Coral [60]. However, due to a perceived lack of compelling applica-

tions at the time [63] Datalog research remained largely dormant [64].

Recently, Datalog has reemerged at the centre of several computer science

communities resulting from a wide range of new applications, including data in-

tegration [65, 66], networking [67], security [68, 69], and, particularly important to

this thesis, static analysis [28, 36, 70, 71, 72, 73].

Each of these application domains use Datalog language as a core, and further

customise its syntax, expressivity and engine design to meet the particular needs of

the given use case. The tool Soufflé, described in Chapters 3 and 4 of this thesis, is

primarily focused on static analysis.

2.1.1 Datalog Engines

Below we survey several Datalog engines targeting static analysis and beyond:

2.1.1.1 Datalog Engines and Static Analysis

Datalog has been used a language to specify various classes of program analyses.

Early work by Reps [38] and Dawson etal. [39] considered small programs (hun-

dreds of lines of code) and was not viable for industrial sized code bases. In recent

years, there have been efforts to apply Datalog program analysis to much larger code

bases (e.g., thousands of lines) and more complex analysis problems (e.g., context
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sensitive points-to).

The Prolog based analysis framework Dimple [74] demonstrated reasonable

performance for simple context-insensitive pointer analysis using tabled Prolog.

Whaleys bddbddb engine [36] demonstrated encoding context-sensitive pointer

analysis using Datalog and BDDs. The main challenge in using bddbddb for large

systems relates to the issue of variable ordering. As it is uses BDDs (binary decision

diagrams) as the underlying structure, choosing the right ordering is of paramount

importance to performance. Given an unfavourable order, the analysis does not

terminate within reasonable bounds. In our experimentation the default variable or-

dering rarely works, e.g., in the case of the JDK (see Chapter 6) the default order

could not compute a context insensitive analysis. However, after significant explo-

ration we were able to get a variable ordering do that bddbddb scaled for less precise

analyses on the JDK. This variable ordering was not useful for the analysis of a dif-

ferent version of the JDK and other code. Such repeated exploration to find suitable

variable orderings is too time consuming for bddbddb to be useful in our context.

µZ [37] is another tool that does very well on small examples. We have found

that on very small Datalog programs, µZ performs on a par and occasionally better

than Soufflé. However, the µZ performance quickly falls off as the input size and

analysis complexity increases. In particular µZ does not seem to handle the large

data sets generated during the analysis of the JDK. A common difference between

the aforementioned Datalog engines and Soufflé is that they perform Datalog eval-

uation whereas we use Datalog as a specification to synthesise a C++ program.

In the case of static analysis, a number of engines have been proposed that

are primarily used for analysing programs, networks, etc. Among them is Network

Optimised Datalog(NoD [72]), implemented within the µZ engine, which provides

customised data structures for network analysis. In our experience (see Chapter 6),

NoD/µZ does not scale for large-scale static analyses.

Logicblox is a state-of-the-art proprietary tool that is used primarily for busi-

ness use cases. However, modified variant of Logicblox version 3, PA-Datalog

specifically targets program analysis. The popular program analysis library/frame-
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work Doop uses PA-Datalog as its backend engine [28]. While Doop can exhibit

good performance, it requires manual optimisations, as described in [44]. The

syntax and some semantic aspects of PA-Datalog differs from Soufflé. As such,

comparisons between the two tools have been difficult for large, complex analyses.

However, a recent Doop port to Soufflé (See [75]) has made comparisons possi-

ble for program analysis benchmarks. In Chapters 3 and 4 we compare Soufflé to

PA-Datalog.

A recent tool Flix [27] extends the semi-naı̈ve evaluation to include lattices.

This enables Datalog based solvers to perform abstract interpretation [5] with vari-

ous abstract domains. This is an approach that contrasts to constraint databases [76]

which have been linked to abstract interpretation. We believe that records imple-

mented in Soufflé can be used as a foundation to encode lattices, this however is

left to future work.

Semmle is a software engineering analytics and code exploration provider

whose SemmleCode [77, 71] and QL [78] technology is built on Datalog research.

QL [78] is a meta language that compiles to Datalog, similar in spirit to the Soufflé

language extensions in Chapter 3. The approach described in [71] uses existing

RDBMS engines to perform evaluation. For large scale static analyses described

in Chapter 6 such approaches, including SQL-Lite [79], LOLA [80], SDS/DE-

CLARE [81] and Logres [82] which use a RDBMS e.g., via source-to-source trans-

lators from Datalog to SQL, do not scale. In our experience, current relational

database management systems cannot cope with the vast amounts of data and com-

plex queries that arise translating Datalog to SQL (e.g., JDK experiments in Chap-

ter 6).

2.1.1.2 Other Datalog Engines

Other systems that do not target static analysis but provide support for Datalog exe-

cution include IRIS [83] and DLV [84]. Both of them are bottom-up rule inference

engines. However, they cannot be used as a stand-alone system. They provide the

basic knowledge base component and the actual application needs to be written in a

language like C++. Datalog Education System [85] (DES) is a deductive database
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system that supports querying via both Datalog and SQL. Their focus is to support

SQL queries in Datalog and thus translate SQL into Datalog. Socialite [86] provides

extensions to Datalog to facilitate parallel execution. The aim is to speed up various

graph algorithms and hence provide support for features such as aggregation. The

programmer needs to provide suitable annotations to enable effective parallelisation

on distributed systems. A similar approach is provided by [87]. Liu and Stoller [88]

describe a general method for transforming Datalog rules to SETL programs. Their

focus is on guaranteed worst-case time and space complexities. They use a mix-

ture of arrays and linked list to manipulate the various sets. While this is useful in

guaranteeing worst-case complexities their experiments are on relatively small data

sets. Thus, it is not clear if their approach can handle large data sets. There are

other approaches to implementing Datalog engines using GPUs [89] that harness

the parallel capabilities of accelerators. In their work, tables may store the same

tuple several times, and enforcing a set constraint at a later stage becomes costly,

dominating the overall execution time. The duplication of tuples depletes the GPU

memory quickly, and memory limitations of contemporary GPUs just amplify the

short-coming of their approach for large-scale program analysis.

2.1.2 Datalog Preliminaries

2.1.2.1 Datalog Programs

A relation R is a subset of a m-ary cartesian productD =D1×· · ·×Dm (i.e., R ⊆D),

where Di (1 ≤ i ≤ m) are the finite domains of the relation. Elements of a relation

R are referred to as tuples. Each tuple t = 〈e1,e2, . . . ,em〉 ∈ R has a fixed length m,

and ei is an element of the domain Di for 1 ≤ i ≤ m. Given a relation R, attributes

are used to refer to specific element positions of tuples of R. The set of attributes

of R, denoted by A = {x1, . . . , xm}, are m distinct symbols, and we write R(x1, . . . ,

xm) to associate symbol xi to the i-th position in the tuples. The elements of a tuple

t = 〈e1, . . . ,em〉 can be accessed by access function t(xi) that maps tuple t to element

ei. For example, given a relation R(x,y,z) and a tuple t = 〈e1,e2,e3〉 ∈ R, the access

function is {t(x) 7→ e1, t(y) 7→ e2, t(z) 7→ e3}.

A Datalog program P consists of a finite set of Datalog rules {r1,r2, . . .}, each
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of the form:

r : R0(X0) :- L1(X1),L2(X2), . . . ,Ld(Xd),C(X0, . . . ,Xd).

Each L denotes a literal which is either a positive or negative atom, i.e., R j(X j) or

¬R j(X j), where each R j is a relation name, and each X j is a sequence of variables

and constants, and symbol “ ” indicating irrelevance; for example, R(u, ,1) where u

is a variable. We assume each X j is of correct arity and each R j(X j) is a predicate or

named relation. C is an equality constraint, i.e., a conjunction of equalities between

variables ranging over {X0, . . . ,Xd}.

R0(X0) is called the head of the rule, and other atoms form the body of the rule.

A rule with only a head is called a fact (it must be instantiated) and a rule with

only a body literal is called a query.

The set of relations that appear in the heads of P’s rules are referred to as the

intensional database (IDB). The set of input relations are referred to as the exten-

sional database (EDB) or dataset. The extensional schema of P, edb(P), consists

of all extensional predicates of P. The intensional schema of P, idb(P), consists of

all intensional predicates of P. The set of all predicates in a Datalog program are

referred to as a schema and denoted sch(P) = idb(P)∪ edb(P). The set of rules in a

Datalog program are called the ruleset.

The semantic meaning of a Datalog rule is that given a binding of all variables

to constants, the head of the rule holds if each atom in the body of the rule holds.

In this thesis, we allow negated predicates in the body, but we limit its usage

by the semantics of stratified and semi-definite Datalog (see [90] for the details of

stratified Datalog), meaning that negated predicates must have an EDB relation or

already computed IDB relation (hence in a lower strata), and a negated predicate

holds if the positive version does not hold.

Example 2 (Datalog Program). The example program below computes the transi-

tive closure of a graph in relation Path given an input edge set in Edge. The first

clause is the base case and the second clause is the inductive case.



2.1. Datalog 43

Path(x,y) :- Edge(x,y).

Path(x,z) :- Edge(x,y),Path(y,z).

A concrete instantiation of a predicate R(X), with variables replaced by ap-

propriate constants, is denoted as a fact or a tuple, R(u). An instance of a Datalog

program P, denoted inst(P) is a set of tuples with relations from P, we use I to

denote inst(P). An instance is in the EDB if all tuples contained are in the EDB,

otherwise it is in the IDB.

2.1.2.2 Datalog Semantics

We now briefly describe the Herbrand interpretation of a Datalog program. The

Herbrand universe U of a Datalog program P is the set of all possible ground terms.

A ground term is a non-variable term, i.e. a constant value appearing somewhere

in the program P. In important characterisation of Datalog is that the Herbrand

universe is finite since the program P contains a finite number of constants.

The Herbrand base B of a Datalog program P is the set of all ground atoms.

A ground atom is a predicate symbol that occurs in P with its arguments drawn

from the Herbrand universe. Note that the Herbrand base respects the arity of the

predicates. The Herbrand base is also finite.

An interpretation I of a Datalog program P is a subset of the Herbrand base B.

A ground atom R is true w.r.t. an interpretation I if R ∈ I. A conjunction of atoms

R1, . . . ,Rn is true w.r.t. an interpretation, if each atom is true in the interpretation.

A ground rule is true if either the body conjunction is false or the head is true. A

ground rule is a rule where all atoms are ground. A model M of a Datalog program

P is an interpretation, i.e. a subset of the Herbrand base B, that makes each ground

instance of each rule in P true. A ground instance of a rule is obtained by replacing

every variable in a rule with a term from the Herbrand universe. A model M is

minimal if there is no other model M1 such that M1 ⊂ M.
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2.1.3 Bottom-up Datalog Program Evaluation

The model theoretic semantics above to not tell us how to compute a minimal model.

For this, Datalog has a wide variety of evaluation approaches [90]. Among them

is the bottom-up evaluation scheme. The bottom-up scheme computes the minimal

model or solution by applying a monotonic ΓP operator until a fixpoint is reached.

Definition 1 (Immediate Consequence Operator). We define an immediate conse-

quence of I to be a fact R(u) such that either R(u) ∈ I, or R(u) :- R1(u1), . . . ,Rn(un)

is a valid instantiation of a rule with each Ri(ui) ∈ I. We then define the immediate

consequence operator as a function ΓP : 2inst(P)→ 2inst(P) such that

ΓP(I) = {t : t is an immediate consequence of I}

The process starts from an instance I of P that consists only of EDB tuples

(also called facts). Then, an immediate consequence operator ΓP in Definition 1 is

repeatedly applied to I to generate new IDB tuples to be included into I. The process

completes when a fixed-point is reached, i.e. no more IDB tuples can be generated.

Due to the monotonicity of ΓP, we can show using Tarski’s Fixpoint Theorem [91],

that there exists a least fixpoint of ΓP. The resulting least fixpoint is denoted the

model of P given I, or P(I), and is the final result of bottom-up evaluation.

Example 3 (Bottom-up Evalaution). The program in Example 2 can be evaluated

in the following steps assuming the Edge relation holds tuples (1,2) and (2,3):

I : Edge(1,2),Edge(2,3)

ΓP(I) : Edge(1,2),Edge(2,3),Path(1,2),Path(2,3)

Γ2
P(I) : Edge(1,2),Edge(2,3),Path(1,2),Path(2,3),Path(1,3)

This process can therefore be seen as constructing an instance of the program,

starting from the EDB and applying rules to compute new facts until no more new

facts can be computed.
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2.1.4 Properties of Bottom-up Datalog Evaluation

In Chapter 3 we base our evaluation strategy on bottom-up methods. In this sec-

tion we discuss our justification our decision. However we first briefly discuss an

alternative approach below.

An alternative to bottom-up evaluation, top-down evaluation describes a dual,

proof theoretic method where proofs are explicitly constructed from queries to facts.

These approaches [92] start from a query, and checking in the program whether

there are rules and facts that make the query satisfiable. The query takes the form

of a goal clause, which is a sequence of atoms:

← R1, . . . ,Rn

We consider each atom Ri in the goal clause, and search for some rule with

Ri as the head. Once found we perform unification where we substitute constants

for variables so they match. We then replace Ri in the goal clause with the body

of that rule. We can apply this step repeatedly until either we reach EDB facts, in

which case we show that the original goal clause holds, or we fail to find a valid

instantiation at some point, in which case the original goal clause does not hold. An

example of top-down evaluation is given in Example 4

Example 4 (Top-Down Evaluation). The program in Example 2 can be evaluated

as follows in a top-down approach:

← path(1,3)

← edge(1,y), path(y,3)

← edge(1,2), path(2,3)

← edge(1,2),edge(2,3)

← �

Top-down is rarely employed in Datalog for large-scale problems due to its

inefficiency when non-ground terms are not present [93, 55, 56] due to the cost of
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memoising facts. Moreover, top-down provides no guarantee that minimal proof-

trees are constructed during its evaluation, and the full proof tree must be con-

structed in order to prove the existence of a tuple. For large-scale problems, this

may impose a serious obstacle. We further elaborate in this problem below:

Observation 1 (Proof Derivation Level). We therefore prove that R(u)l iff the ΓP

was applied l times to derive R(u).

Proof. By induction on l:

• The base case (l = 0): Since very tuple in a EDB has l = 0 if R(u) was derived

then it either exists already and is thus by definition of the set semantics of

relations cannot exist as a duplicate with another level or l , 0.

• Inductive case: We assume R(u) was derived by a set of body tuples

Rl1
1 (u1), . . .Rln

n (un). Our IH assumes l1 to ln are equal to the applications of ΓP

for their existence. By definition of derivation and its monotonicity property,

R(u) must either not already have been derived if it is derived and hence its

existence depends on Rl1
1 (u1), . . .Rln

n (un). Hence the number of applications of

ΓP needed are the maximum of l1 to ln plus the one current application.

�

In the proof above, we observe that the top-down evaluation explicitly acts on a

proof tree, where each branch has a height or derivation level. Below we connect the

two notions via a derivation level on tuples. Assume we assign a proof derivation

level l to each tuple as follows: R(u)l. For every application of ΓP operator a derived

tuple is assigned a derivation level of 0 if it is from the EDB or the incremented level

of the maximal height of tuples used to derive it. Given a tuple R(u)l its derivation

level is therefore l. We therefore prove that R(u)l iff the ΓP was applied l times to

derive R(u). Next we use this result to prove that bottom-up evaluation produces

minimal proof heights.

Theorem 1 (Bottom-up Produces Minimal Height Derivations). Bottom-up Pro-

duces Minimal Height Proof Derivations, i.e., given a tuple R(u)l of a Datalog pro-

gram P, there is no l′ < l such that R(u)l′ ∈ P(I).
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Proof. Given Observation 1, we give a proof by contradiction. Assume R(u)l ∈ P(I),

and there is an l< l such that R(u)l′ ∈ P(I). Then, R(u)l′ is produced in fewer applica-

tions than R(u)l, and so will have been added to the model earlier in evaluation. Due

to the monotonously and definition of ΓP, R(u) is added only when first encountered.

Hence as R(u)l′ is in P(I), R(u)l cannot be in P(I) and we have a contradiction. �

On the other hand, for Datalog programs that query small number of tuples top-

down may be more efficient as the entire IDB does not need to be computed to assert

the existence of a single tuple. However, by combining a magic set transformation,

a technique that statically simulates top-down evaluation, bottom-up can mitigate

this drawback. Such an approach has been shown to be strictly better for Datalog

programs compared to top-down [55]. Another limitation of bottom-up is its need

to perform copies and existence/subsumption checks. For large amounts of data

this can become costly [94]. We mitigate these issues in Soufflé with a variation of

bottom-up algorithm and heavy use of indexing in searches.

2.1.5 Implementation of Bottom-up Datalog Evaluation

Recall, the result of program evaluation is attained when ΓP reaches a fixpoint, i.e.,

when ΓP(I) = I . Note that this evaluation appears closely related to the inductive

construction of proof trees, and as we proved above the set of tuples represented

by the proof tree T of height i is equal to the set of tuples generated by the i-th

application of ΓP . However, this naı̈ve evaluation will repeat computations, since

a tuple computed in some iteration will then be recomputed in every subsequent

iteration. Therefore, the standard implementation of bottom-up evaluation in real

world engines is typically based on semi-naı̈ve. Semi-naı̈ve evaluation contains two

main optimisations over naı̈ve bottom-up evaluation:

• Precedence graph optimisation: the Datalog program is split into strata.

Firstly, a precedence graph of relations is computed, then each strongly con-

nected component of the precedence graph forms a stratum. Each stratum is

evaluated in a bottom-up fashion as a separate fixpoint computation in order

based on the topological order of SCCs. The input to a particular stratum is
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the output of the previous stratum.

• New knowledge optimisation: within a single stratum, the evaluation is op-

timised in each iteration by considering the new tuples generated in the pre-

vious iteration. A new tuple is generated in the current iteration only if it

directly depends on tuples generated in the previous iteration. This avoids the

recompilation of tuples already computed in prior iterations. The process is

described in further detail below.

With these two optimisations, semi-naı̈ve performs less repeated computations

than the naı̈ve algorithm. We present the semi-naı̈ve algorithm in Algorithm 1 fol-

lowing the outline given in [90].

In this description we assume a set of rules and relations in a Datalog program

such that each relation Ri, which is the i-th relation in a component C has a j-th

rule, i.e., its head. A non-recursive rule consists of a singleton component with one

relation R1.

In a Datalog program evaluation we differentiate between recursively defined

relations and non-recursive relations. Recall, recursively defined relations are de-

fined such that the relation itself shows up immediately or intermediately in the body

of its clauses (where it is the head). To avoid recurring computations, the semi-naı̈ve

evaluation of Datalog programs keeps track of the previous, current, delta and new

knowledge of a recursively defined relation as depicted in Figure 2.1. The general

observation is that only new knowledge in the previous iteration (i.e. delta knowl-

edge) can generate new knowledge in the current iteration. Hence, for each iteration

in a fixed-point iteration relations are sliced into (1) current knowledge, which in-

cludes the previous knowledge describing the knowledge of the previous iteration

and the delta knowledge that is the new knowledge of the previous iteration, and

(2) in the new knowledge gathered in the current iteration. With this partitioning

of relations, the fixed-point will converge faster, however, with the disadvantage

of keeping track of previous, current, delta, and new knowledge of a relation by

copying data.

To avoid computing all recursively defined relations in a single fixed-point, the
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Figure 2.1: The semi-naı̈ve algorithm splits recursively defined relations into subsets per
fixed-point iteration called previous, current, delta, and new knowledge

semi-naı̈ve algorithm computes the data dependencies between relations in form

of a precedence graph. Strongly-connected components of the precedence graph

resemble mutually recursive relations and are computed by a Tarski-Knaster style

fixed-point algorithm. The strongly-connected component graph of the precedence

graph represents a partial order dictating orders among components in the graph.

For example, a relation in component C1 that requires another relation in compo-

nent C2 for its evaluation, will enforce the semi-naı̈ve algorithm to compute the

component C2 prior to component C1.

Example 5 (Semi-naı̈ve Bottom-up Evaluation). Observed when we apply the semi-

naı̈ve algorithm to Example 2 we compute only new information in the ∆ relations.

We have only one component. We first compute path from the non-recursive rule

and the we compute only new knowledge, i.e., tuple (1,3).

∆path0 : {(1,2), (2,3)}

∆path1 : {(1,3)}

In the case we have more tuples to compute, we would never recompute (1,3).

Algorithm 1 computes the strongly connected component graph in the first

step. The collection of relations I represent relations that have been computed so

far and are stable.

Initially, the collection of already computed relations is empty (line 2). After

computing the SCC graph and initialising I, the SCC graph is traversed in topo-
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1 Compute SCC dependence graph G;
2 I := 〈〉;
3 foreach component C = [R1, . . . ,Rn] in G in topological order do
4 if C is recursive then

// iterate over all relations in C
5 for i=1 to n do
6 Ri := ∅; // Initialise relation Ri

// Iterate over all non-recursive rules of Ri
7 for j=1 to m do

// Eval non-recursive rules

8 Ri := Ri∪Eval( j)
i (I) ;

9 end
// Set new knowledge to current knowledge

10 ∆Ri := Ri;
// Set previous knowledge to empty set

11 Pi := ∅;
12 end

// Compute recursive rules until fixed-point is

reached.

13 while
n∑

i=1

|∆Ri| > 0 do

14 for i=1 to n // iterate over all relations in C
15 do
16 ∆R′i := ∅ ;
17 for j=1 to m // iterate over all recursive rules

of Ri
18 do
19 ∆R′i := ∆R′i ∪

⋃
1≤k≤n Eval( j)

i (I∪
〈R1, . . . ,Rk−1,∆Rk,Pk+1, . . . ,Pn〉) \Ri ;

20 end
21 end

// Update previous and current knowledge

22 for i=1 to n // iterate over all relations in C
23 do
24 Pi := Ri ;
25 Ri := Ri∪∆R′i ;
26 ∆Ri := ∆R′i ;
27 end
28 end
29 else

// Component is a single non-recursive relation

30 R1 :=
⋃

j Eval( j)
1 (I) ;

31 end
32 I := I∪〈R1, . . . ,Rn〉 ;
33 end

Algorithm 1: Semi-naı̈ve algorithm
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logical order (line 3), hence, ensuring that relations are computed before their use

(except mutually recursive ones). We assume n relations in a component where

1 ≤ n.

Case (recursive components): We first explain the recursive case of Algorithm 1,

defined in lines 4-31. Here we assume a recursive set of relations in a component.

First the previous knowledge Pi, current knowledge Ri and delta knowledge ∆Ri are

initialised for each relation R1 . . .Rn ∈C. The current (Ri) and delta knowledge (∆Ri)

for each relation in the component is initialised by the facts and the result of eval-

uating the non-recursive rules on the relations (line 10). The j-th facts/rule of the

i-th relation in the component C is evaluated by the evaluation function Eval( j)
i [I]

using the already computed relations I of the program. Since, the j-th rules are only

non-recursive rules for relation Ri, we can evaluate the j-th rule with I only. The

non-recursive evaluation of the component C iterates over all relations and over all

rules of a relation. After the end of the inner for-loop, the delta-knowledge and the

previous knowledge is updated for the fixed-point calculation. In the second part of

the evaluation of recursive component (line 15), a fixed-point is computed for the

mutual recursive rules in a component.

The while loop continues if new knowledge in the previous iteration could be

found, i.e.,
∑

1≤i≤n

|∆Ri| has to be greater than zero for another iteration of the fixed-

point calculation. Inside the fixed-point loop the new knowledge of the relations

in C are computed and stored in ∆R′i . The evaluation of a single recursive rule

requires to keep track of the positions of the recursively defined relations in a rule.

For each position a new relational algebra operation is issued. All relations before

the position use the current knowledge, for the position k the delta knowledge is

used, and for all succeeding positions the previous knowledge is used (cf. Chapter

12, page 314 [95]). After updating previous, current, and delta knowledge the next

iteration of the fixed-point loop is started.

Case (non-recursive components): In the non-recursive case of Algorithm 1, non-

recursive relations components will only contain a single relation R1, and the eval-

uation is straight-forward by evaluating all facts and rules of the relation. After
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computing the results of the relations R1, . . . ,Rn of the component C, the relations

are added to the collection of already computed relations I.

2.2 Partial Evaluation
In this section we give an overview of partial evaluation that is used in Chapter 3.

Partial evaluation follows from the observation that a one-argument function

can be obtained from one with two arguments by fixing one of the input arguments.

Partial evaluation performs this process to programs proceeding as follows: a partial

evaluator is given a subject program p together with part of its input data, in1. It

constructs a new specialised program pin1 which, when given p’s remaining input

in2, will yield the same result that p would have produced given both inputs in1 and

in2. We provide an example of this process below.

Example 6 (Partial Evaluation). Below we define a recursive program that com-

putes xn. The program contains two inputs, namely, x and n.

int f(n, x) {

if(n == 0) then return 1;

else if (even(n)) then return f(n/2,x) ˆ 2

else x * f(n-1,x)

Given we fix n = 5, we obtain the program below.

int f5(x) {

return x * ((x ˆ 2) ˆ 2)

}

We are able to precompute all expressions involving n, to unfold the recursive

calls to function f , and to reduce x∗1 to x. This optimisation was possible because

the program’s control is completely determined by n. If on the other hand x = 5 but

n is unknown, specialisation gives no significant speedup.

Lombardi was first to coin the term Partial Evaluation in 1964 in reference

to discussing Lisp’s ability to compute with incomplete information [96]. How-

ever, as a theory, partial evaluation has its foundations in Kleene’s s-n-m theo-
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rem [97]. Kleene proved that for any given Turing machine for a general m+n-

argument function f , and given values a1 to am of the first m arguments, there

exists a Turing machine for the specialised function g = fa1,...am which satisfies

g(b1, . . . ,bn) = f (a1, . . . ,am,b1, . . . ,bn) for all b1 to bn. Futamura [98] was the first to

use partial evaluation in the context of program transformation and considered the

application of the partial evaluator to itself, thus deriving compilers, compiler gen-

erators and compiler generator generators in form of semantic equations. The first

implemented partial evaluator can be traced to Redfun, a partial evaluator for Lisp.

This work also mentioned the possibility of a compiler generator (generator), simi-

lar to Futamura. Around the same time Turchin proposed the idea of partial evalua-

tion in the context of symbolic computation of functional languages. In the mid-80s

Jones, Sestoft, and Søndergaard developed implemented first self-applicable par-

tial evaluator written in Lisp and used as a compiler generator [99]. This line of

work propelled a wide variety of research and applications of partial evaluation.

These applications include parser and compiler generators [100], program transfor-

mations [96], abstract interpretation [101, 102], security analysis [103], implemen-

tation of Virtual Machines [104], and Model driven development [105, 106] among

many other applications. A particularly interesting application of partial evaluation

that is in the spirit of the approach presented in Chapter 3 is the partial evaluation

of interpreters in model driven development to turn an interpreter into a translator.

Here a partial evaluator is used to specialising a model interpreter with respect to a

model to create a compiled model interpretation. Another related approach is ob-

served in [104] allows uses to define languages solely by defining an interpreter.

The system then uses the interpreter and partial evaluation to perform compilation

independent of the language. Techniques relating to Datalog program transforma-

tion such as [42, 107] can be seen as instances of partial evaluation.

2.2.1 Trivial Partial Evaluation

A partial evaluator is typically denoted as a Mix operator defined in Definition 2.

The term Mix was given after mixed computation.
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Definition 2 (Mix operator). An operator Mix is a partial evaluator iff

∀p, s,d : ~p�(s,d) = ~~Mix�(p, s)�(d)

We say the program produced by ~Mix�(p, s) is the residual program.

A partial evaluator thus performs a mixture of code execution and code gen-

eration in the Mix operator. Thus the specialisation can be shown in our previous

example as the following equation: p5 = ~Mix�(p,5). The execution can be de-

scribed as the following equation: out = ~p5�(x).

2.2.2 Interpreter Partial Evaluation

A special case of partial evaluation that follows the work of Futamura [108] is when

the program that is being partially evaluated is an interpreter. It follows then that

we can construct a first Futamura projection:

Definition 3 (First Futamura Projection). Let int be an interpreter for the language

L itself written in the language M. Then, for an arbitrary program p written in L

and its input d we have:

~P�L(d) = ~int�M(p,d) = ~~Mix�(int, p)�M(d)

The implementation language of Mix is irrelevant for the purpose of this equa-

tion. The equation in particular means that the residual program, i.e., ~Mix�(int, p),

is an M-program with the same operational behaviour as the L-program p.

2.2.3 Considerations in Partial Evaluation

2.2.3.1 Online vs Offline

There are two approaches to partial evaluation: online and offline. An online partial-

evaluator is a non-standard interpreter. The treatment of each expression is de-

termined at partial evaluation time. Online partial evaluators in general are very

accurate but at the price of a considerable interpretive overhead. Offline partial

evaluators are structured with a preprocessing phase and specialisation phase. The
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preprocessing phase employs a binding-time analysis to determine for each expres-

sion whether it can be evaluated at partial-evaluation time or whether it must be

evaluated at run-time. Once this information is determined, the specialisation is

performed. The approach in Chapter 3 can be is offline (in a single specialisation

phase) as the static parts are known ahead of time.

2.2.3.2 Termination

In the case of unfolding calls during function specialisation, partial evaluation can

loop in two ways: either by unfolding infinitely many function calls or by creat-

ing infinitely many specialised functions. Both of these issues can be avoided by

defining a bound on the number of unfolded calls and the number of specialised

functions, but often this strategy appears unsatisfactory. Hence more sophisticated

techniques have been proposed, e.g., [109, 110]. As will be explained, in the ap-

proach of Chapter 3 termination issues do not manifest due the fact that we do not

unfold recursive rules, and instead, replace the rule with an interpreter definition

which has termination characteristics on Datalog’s finite domain.

2.2.3.3 Performance Benefits

It is not always apparent if partial evaluation is beneficial for a given application.

Given a time function t and a program p we say the execution time of p is t(p).

Therefore, for a fixed two input program p with static input s and dynamic input d,

the speedup function is defined as:

speedups(d) =
tp(s,d)
tps(d)

In general, if speedups(d) > 1 for all s, and d changes more than s then partial

evaluation is advantageous. In cases where, s and d both change frequently, the

time to do specialisation must be accounted for and thus we desire the following to

hold:

tmix(p, s) + tps(d) < tp(s,d)
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Remark. We note that many uses of partial evaluation are not motivated primarily

by performance [103, 105, 106]. For example, the approach taken in [105] use

partial evaluation as a method of correct compilation with respect to a model and an

interpreter. A virtue is that the method yields target programs that are always correct

with respect to the interpreter. Thus the problem of compiler correctness seems to

have vanished. This approach is clearly suitable for prototype implementation of

new languages from interpretive definitions (known as meta-programming in the

Prolog community).

Our approach uses both benefits of partial evaluation: On one hand we per-

form interpreter guided compilation, our residual program is correct by using an

interpreter. On the other hand, we remove expensive run-time aspects (e.g., virtual

dispatch) in the interpretor to produce faster residual programs.

2.3 Symbolic Solving of Horn Clauses

In this section, we provided background on the symbolic evaluation of recursive

constrained Horn clauses [33]. Unlike Datalog evaluation, we compute symbolic

formulae solutions to predicates instead of assigning sets of tuples to relations

names.

The use of logic to model programs has early roots that can be traced back to

Floyd’s seminal work Assigning Meaning to Programs [111]. This was followed

up by Tony Hoare’s, An Axiomatic Basis for Computer Programming [112]. Later,

in 1987, Blass and Gurevich [113] proposed Existential Positive Least Fixed-Point

Logic (E+LFP) to produce the partial correctness of simple procedural imperative

programs by satisfiability checking. In 1977, Clarke [114] established boundaries

for relative completeness. Reasoning about constrained Horn clauses is paramount

to the field of constraint logic programming [115]. Despite the fact that CLP is

typical targeted as a declarative programming language, the uses of CLP for static

analysis is extensive e.g., [116]. It relies on an execution engine that finds a set

of substitutions that are solutions to a query, which can be seen as an extension to

top-down engines found SLD resolution.
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A number of sophisticated methods have recently been developed for solving

Horn clauses in the context of static analysis and verification. The which can be

seen come in two main varieties: (1) Top-down derivations, in the spirit of SLD

resolution, start with a goal and resolve the goals with clauses. Derivations are

cut off by using cyclic induction or interpolants. If the methods for cutting off

all derivation attempts, one can extract models from the failed derivation attempts.

Examples of tools based on top-down derivation are [117, 118]. (2) Bottom-up

derivations, start with clauses that dont have uninterpreted predicates in the bodies.

They then derive consequences until sufficiently strong consequences have been

established to satisfy the clauses. Examples of tools based on bottom-up derivation

are [119, 49].

2.3.1 Constrained Horn Clauses (CHC)

2.3.1.1 Constraint Languages

We assume that a first-order vocabulary of interpreted symbols has been fixed, con-

sisting of a set of fixed-arity function symbols F , and a set of fixed-arity predicate

symbols P. Interpretation of F and P is determined by a class S of structures (U, I)

consisting of non-empty universe U, and a mapping I that assigns to each function

in F a function over U, and to each predicate in P a set-theoretic relation over U.

We assume an equation symbol = in P, with the usual interpretation. Given a count-

ably infinite set X of variables, a constraint language is a set Constr of first-order

formulae over F , P, X. For example, the language of quantifier-free Presburger

arithmetic has F = {+,−,0,1,2, . . . } and P = {=,≤, . . . }).

A constraint is called satisfiable if it holds for some structure in S and some

assignment of the variables X, otherwise unsatisfiable. We say that a set Γ ⊆Constr

of constraints entails a constraint φ ∈ Constr if every structure and variable assign-

ment that satisfies all constraints in Γ also satisfies φ; this is denoted by Γ |= φ. f v(φ)

denotes the set of free variables in constraint φ. We write φ[x1, . . . , xn] to state that a

constraint contains (only) the free variables x1, . . . , xn, and φ[t1, . . . , tn] for the result

of substituting the terms t1, . . . , tn for x1, . . . , xn. Given a constraint φ containing the

free variables x1, . . . , xn, we write Cl∀(φ) for the universal closure ∀x1, . . . xn.φ
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2.3.1.2 Horn Clauses

To define the concept of Horn clauses, we fix a set R of uninterpreted fixed-arity

relation symbols, disjoint from P and F . A constrained Horn clause (CHC) is a

formula H←C∧B1∧ · · ·∧Bn where:

• C is a constraint over F , P, X

• each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order

terms over F , X;

• H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms,

or is the constraint false.

Similarly to Datalog, H is called the head of the clause, C ∧ B1 ∧ · · · ∧ Bn the

body. In case C = true, we usually omit C. First-order variables in a clause are con-

sidered implicitly universally quantified; relation symbols represent set-theoretic

relations over the universe U of a structure (U, I) ∈ S . Notions like (un)satisfiability

and entailment generalise straightforwardly to formulae with relation symbols.

2.3.1.3 Solvability

A relation symbol assignment is a mapping S OL :R→Constr that maps each n-ary

relation symbol p ∈ R to a constraint S OL(p) = Cp[x1, . . . , xn] with n free variables.

The instantiation SOL(h) of a Horn clause h is defined by:

• S OL(C∧ p1(t̄1)∧ · · ·∧ pn(t̄n)→ p(t̄))=C∧S OL(p1)[t̄1]∧ · · ·∧S OL(pn)[t̄n] |=

S OL(p)[t̄]

• S OL(C∧ p1(t̄1)∧· · ·∧ pn(t̄n)→ f alse)=C∧S OL(p1)[t̄1]∧· · ·∧S OL(pn)[t̄n] |=

f alse

Definition 4 (Solvability). Semantic and syntactic solvability is defined as follows:

(i) AHC is called semantically solvable if for every structure (U, I) ∈ S there is

an interpretation of the relation symbols R as set-theoretic relations over U

such the universally quantified closure Cl∀(h) of every clause h ∈ HC holds
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in (U, I). In other words, if the structure (U, I) can be extended to a model of

the clausesHC.

(ii) AHC is called syntactically solvable if there is a relation symbol assignment

SOL such that for every structure (U, I) ∈ S and every clause h ∈ HC it is the

case that Cl∀(S OL(h)) is satisfied

Lemma 1. A set HC of Horn clauses is semantically solvable if and only if HC

does not have any counterexamples.

Proof. Counterexamples correspond to satisfying assignments of the expansion of

recursion-free unwinding ofHC, [120]. It is clear that ifHC is solvable, then every

recursion-free unwinding is solvable; for the converse, construct a solution of HC

as the union of minimal solutions of all recursion-free unwinding ofHC. �

Lemma 2. A set HC of Horn clauses has a closed ARG(S,E) (see Definition 5) iff

HC is syntactically solvable.

Proof. We show both cases for the iff: Case⇒: We define each relation symbol p as

the disjunction
∨

(p,Q)∈S
∧

Q. Given S is closed under the edge relation E, this yields

a solution for the set of Horn clauses HC Case ⇐: Suppose HC is syntactically

solvable, with each relation symbol mapped to a Constraint Cp. We can define

the mapping Π(p) = {Cp}, and construct the ARG with nodes S = {(p,Cp)} and the

maximum edge relation E, which is be definition closed. �

Remark. We note, if a set of Horn clauses is syntactically solvable, then it is also

semantically solvable. The converse is not true in general, because the solution need

not be expressible in the constraint language.

Example 7 (Greatest Common Divisor (GCD)). The example below shows a system

of constrained Horn clauses that compute the greatest common divisor of the first

and second argument and store the result in the third argument. The algorithm is

based on Euclid iterative GCD algorithm. The analysis property is expressed in the

final Horn clause. After invoking the gcd operation on equal positive numbers M
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and N, we wish to check whether it is possible for the result R is larger than M.

This error condition is encoded as a Horn clauses with false in its head.

(1) gcd(M,N,R)←M = N ∧R = M

(2) gcd(M,N,R)←M > N ∧M1 = M−N ∧gcd(M1,N,R)

(3) gcd(M,N,R)←M < N ∧N1 = N −M∧gcd(M,N1,R)

(4) f alse←M ≥ 0∧M = N ∧gcd(M,N,R)∧R > M

2.3.2 Craig interpolation

We assume familiarity with standard classical logic, including notions like terms,

formulae, Boolean connectives, quantifiers, satisfiability, structures, models. For an

overview, see, e.g., [121]. The main logics considered in this Chapter 5 are classical

first-order logic with equality (FOL) and Presburger arithmetic (PA).

Given any logic, we distinguish between logical symbols, which include

Boolean connectives, equality �, interpreted functions, etc., and non-logical sym-

bols, such as variables and uninterpreted functions. If s̄ = 〈s1, . . . , sn〉 is a list of

non-logical symbols, we write φ[s̄] (resp., t[s̄]) for a formula (resp., term) contain-

ing no non-logical symbols other than s̄. We write s̄′ = 〈s′1, . . . , s
′
n〉 (and similarly s̄′′,

etc.) for a list of primed symbols; φ[s̄′] (t[s̄′]) is the variant of φ[s̄] (t[s̄]) in which

s̄ has been replaced with s̄′. With a slight abuse of notation, if φ[x1, . . . , xn] is a

formula containing the free variables x1, . . . , xn, and t1, . . . , tn are ground terms, then

we write φ[t1, . . . , tn] for the formula obtained by substituting t1, . . . , tn for x1, . . . , xn.

An interpolation problem is a conjunction A[s̄A, s̄] ∧ B[s̄, s̄B] over disjoint

lists s̄A, s̄, s̄B of symbols. An interpolant is a formula I[s̄] such that A[s̄A, s̄]⇒ I[s̄]

and B[s̄, s̄B]⇒¬I[s̄]; the existence of an interpolant implies that A[s̄A, s̄]∧B[s̄, s̄B]

is unsatisfiable. Graphically, an interpolantion problem A∧B with an interpolant I

can be represented by the Venn diagram in Figure 2.2.

We say that a logic has the interpolation property if also the opposite holds:

whenever A[s̄A, s̄]∧B[s̄, s̄B] is unsatisfiable, there is an interpolant I[s̄]. For sake of
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Figure 2.2: Graphic representation of interpolation problem A∧B with interpolant I

presentation, we only consider logics with the interpolation property (see e.g., [122]

for unhandled logics); however, many of the results hold more generally.

We represent binary relations as formulae R[s̄1, s̄2] over two lists s̄1, s̄2 of sym-

bols, and relations over a vocabulary s̄ as R[s̄, s̄′]. The identity relation over s̄ is

denoted by Id[s̄, s̄′].

Practically interpolants can be computed using a wide range of mecha-

nisms, including resolution proof annotations [123], constraint solving [124] and

SAT/SMT solving (using the unsat core) [125]. We have described binary in-

terpolants. In fact a taxonomy of interpolants have been described by Ruemmer

etal. [126], including inductive sequences of interpolants, tree interpolants and DAG

interpolants. In any case, these interpolants can be solved by repeated computations

of binary interpolants.

2.3.3 Solving Recursive Horn Clauses via Predicate Abstraction

Solutions for systems of Horn clauses as described in Example 7, can be constructed

using a predicate abstraction based algorithm [119, 127]. Predicate abstraction de-

picted in Figure 2.3, computes a sound over-approximation of a transition system

(represented by Horn clauses) and verifies whether an error state is reachable in the

abstract system. If no error occurs in the abstract system, the algorithm reports that

the original system is safe. Otherwise, if a path to an error state (counterexample)

is been found in the abstract system, the corresponding concrete path is checked. If

this latter path corresponds to a real execution of the system, then a real error has

been found and is reported. Otherwise, the abstraction is refined in order to exclude

the counter example, and the procedure continues.
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Figure 2.3: Predicate abstraction counter-example guided approach

By refinement we understand the process of enriching the predicate mapping

used to construct the abstract system. The goal of refinement is to prevent spurious

counterexamples (paths to an error state) from appearing in the abstraction. A key

difficulty in the predicate abstraction approach is to automatically find predicates to

make the abstraction sufficiently precise. A breakthrough technique [128, 129] is

to generate predicates based on Craig interpolants [46] derived from the proof of

unfeasibility of a spurious trace. To this end, an effective technique used in many

predicate abstraction tools is that of interpolation.

Example 8 (Solving GCD). We return to the system of Horn clauses in Example 7.

In this example, the abstraction of Horn clauses starts with a trivial set of predi-

cates, each one assigned to f alse. We assume this to be a valid approximation and

try to prove otherwise. Due to the existence of a clause that has a concrete satisfi-

able formula in its body (e.g. M = N∧R = M), we rule out f alse as the approxima-

tion of gcd. In the absence of other candidate predicates, the approximation true

is used (unassigned predicates). Using this approximation, we find that the error

clause is no longer satisfied. At this point the algorithm checks whether a true error

is reached by directly chaining the clauses involved in computing the approximation

of predicates. This amounts to checking whether the following recursion-free subset

of clauses has a solution:

gcd(M,N,R)← M = N ∧R = M

f alse← M ≥ 0∧M = N ∧gcd(M,N,R)∧R > M
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The solution to above problem is any formula I(M,N,R) such that

I(M,N,R)←M = N ∧R = M

f alse←M ≥ 0∧M = N ∧ I(M,N,R)∧R > M

This is in fact an interpolant of M = N ∧R = M and M ≥ 0∧M = N ∧R > M.

A valid interpolant is P1(M,N,R) |= M ≥ R. Choosing this interpolant eliminates

the current contradiction for Horn clauses and P1 is added into a list of abstraction

predicates for the relation gcd. Because the predicates approximating gcd are now

updated, we consider the abstraction of the system in terms of these predicates. The

predicate P1 is not a conjunct in a valid approximation for gcd in the second clause,

so the following recursion-free unfolding is not solved by the approximation so far:

gcd(M,N,R)←M = N ∧R = M

gcd′(M,N,R)←M > N ∧M1 = M−N ∧gcd(M1,N,R)

f alse←M ≥ 0∧M = N ∧gcd′(M,N,R)∧R > M

Again an interpolant is used to update the set of predicates, and the process is

repeated until 1) a genuine counter-example is found, or, 2) with our approximation

we can not find a path to the head f alse. By following this approach eventually we

will obtain an approximation of gcd(M,N,R) assigned to (M = N)→ (M ≥ R) which

will be a solution to these Horn clauses and hence we will prove safety.

2.3.3.1 Predicate Abstraction in Eldarica

We now describe in detail how the above process works in general on recursive

constrained Horn clauses in the algorithm of the Eldarica tool. For readability we

present a simplified version of some aspects of the algorithm, which can be found

in full in [127]. In Chapter 5 we investigate how to improve the performance and

convergence of such algorithms by improving the interpolants a theorem prover
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produces. We also note the technique described in Chapter 5, can be used in various

other methods that use Craig interpoalants e.g., [130, 131, 132] including top-down

algorithms [132, 130] which use interpolants as a subsumption mechanism.

We first define the abstraction of the set of Horn clauses, namely, an abstract

reachability graph (ARG). An ARG, is defined in Definition 5 and represents an

over-approximated representation of our system of Horn clauses. The construction

of the ARG is guided by the the mapping Π : R→ 2P which maps relation symbols

to a set of predicates that approximate the relation symbol.

Definition 5 (Abstract Reachability Graph (ARG)). An ARG is a hyper-graph (S,

E) where:

• S ⊆ {(p,Q) | p ∈ R,Q = Π(p)} is the set of nodes, each a pair consisting of

relation symbol and a set of predicates

• E ⊆ S ∗ ×HC× S is a hyper-edge relation, which each being labelled with a

clause. For example, let E((s1, . . . , sn),h, s) then each Bi is pi(t̄i) in h, i.e., the

body relational symbols and H is p(t̄), and Q = {φ ∈ Π(p) | C∧Q1[t̄1]∧ · · · ∧

Qn[t̄n] |= φ[t̄]}. Qi[t̄i] is the predicate Qi instantiated for the arguments t̄i.

The algorithm in Algorithm 2 follows the predicate abstraction approach. It

explores unwindings of Horn clauses and attempts to either find an real counter

example or by a CEGAR algorithm, build on the predicate mapping Π in order to

construct a closed ARG.

To find the solvability or unsolvability of HC Algorithm 2 selects a node and

clause and builds an ARG until it finds a clause with a false head. It proceeds to

build an ARG by adding edges that don’t lead to false to an initially empty graph

until it find a system of Horn clause that lead to the error, i.e., a clause with false

as its head. The algorithm will build a potential interplation problem, or set of

clauses forming a counter example, cex and determine if they are satisfiable or

not. If they are satisfiable then it represents a real counter-example, i.e., a witness

to the unsolvability of HC, otherwise we have a real interpolation problem, and

we call an interpolating theorem prover to extract an interpolant, which we use to
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update Π and we remove the clauses in cex from the ARG. For certain logics, such

as Presburger, the number of iterations, and its termination largely depends on the

choice of interpolants we obtain from a theorem prover, i.e., the predicates we have

in Π. Note, for infinite domain logics there are not termination guarantees in the

procedure. In Chapter 5 we investigate this issue in detail.

// Empty ARG

1 ARG(S = ∅,E = ∅)
2 Function Solve is
3 while true do
4 select clause h = (C∧ p1(t̄1)∧, . . . ,∧pn(t̄n)→ H) ∈ HC;
5 and select node = (p1,Q1), . . . , (pn,Qn) ∈ S ;
6 s.t. ¬∃ edge = (((p1,Q1), . . . , (pn,Qn)),h, s) ∈ E and

C∧Q1[t̄1]∧ · · ·∧Qn[t̄n]¬ |= f alse;
7 if such clause and nodes no not exist (closed) then
8 returnHC solvable
9 end

10 if H = f alse then
11 cex = getCEX(h,node);
12 if cex is unsat then

// Interpolation problem

13 preds = Interpolate(cex);
14 add preds to Π;
15 delete cex clauses from (S ,E);
16 end
17 else

// Real counter example

18 HC unsolvable, return cex;
19 end
20 end
21 else

// Add edge to ARG

22 Let H = p(t̄);
23 Q = {φ ∈ Π(p) | {C}∪Q1∪ · · ·∪Qn |= φ};
24 e = (((p1,Q1), . . . , (pn,Qn)),h, (p,Q));
25 S = S ∪{(p,Q)};
26 E = E∪ e;
27 end
28 end
29 end

Algorithm 2: Algorithm for solving recursive Horn clauses
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In this chapter we present a Datalog analysis framework that synthesises high

performance analysers from a Datalog specification using partial evaluation. Much

of this chapter based on work published for the compiler and verification tools

community in Computer Aided Verification (CAV) [31], Compiler Construction

(CC) [40], the Symposium on Principles and Practice of Parallel Programming [51],

and the Soufflé tutorial [133] at Programming Language Design and Implementa-

tion (PLDI). This chapter described the overall architecture of Soufflé and its use

of novel compilation techniques such as partial evaluation to produce fast and mem-

ory efficient static analysers that are used for several industrial applications, that we

further expand in Chapter 6.

3.1 Design Goals

Datalog is a multifaceted language. On the one hand, it is viewed as an unusually

powerful query language by the database community [134] and on the other hand,

a limited but a tractable logic, by the formal methods community [72, 44]. For

that reason, apart from databases querying [85, 86, 135], Datalog has been used

for a diverse range of applications, that including Data Integration [65], Declarative

Networking [67], Program Analysis [44], Network Analysis [72], Software Engi-

neering [71]. While a use case does not impact the general semantics of Datalog,

each use case has subtle differences in its ruleset and dataset characteristics that

benefit from the different Datalog engine design choices.

In this thesis chapter, we describe the design and implementation of the

Soufflé Datalog engine that targets static analysis. To obtain high performance,

the design of Soufflé re-evaluates the core of the Datalog evaluation paradigm. As

a result, we propose novel evaluation techniques, optimisations and extend the Dat-

alog language for improved usability for specifying static analyses in Datalog. The

result, is a robust production-strength tool that has been successfully used as a core

static analysis engine in several large-scale industrial projects, including security

analysis of Amazon virtual networks and program analyses for the Oracle JDK™.

Both of these use cases are further explored in Chapter 6.
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3.1.1 Performance

The major feature of the design of Soufflé centres around the observation that, in

the case of static analysis, the Datalog rules are a design-time artefact. That is,

when a static analysis is employed, it is reasonable to assume that the Datalog rules

(static analysis specification) will remain largely constant. On the other hand, the

input tuples (EDB) that represent the system to be checked (e.g., a Java program)

by the static analysis will vary considerably as a static analysis is built to analysers

many different systems. Therefore we use Datalog as an input logic specification

to synthesise C++ analysers that adhere to this specification. Our framework uses

partial evaluation as a core mechanism to perform the synthesis. The approach

taken by Soufflé hence provides a best of both worlds solution, incorporating the

performance of low-level hand-crafted analysers with the usability of DSL-based

analysers [136, 37, 41].

3.1.2 Expressibility

Soufflé provides a balance between expressiveness and performance. While most

of the language constructs are included in the definition of stratified Datalog, which

can be evaluated efficiently, advanced features, such as arithmetic functors and data

structure constructors, are provided to allow users to break out of the finite world

assumption. These constructs are add-ons, and users can continue to use the ba-

sic Datalog if such levels of expressibility are not required. When high-levels of

expressivity are required, e.g., to verify more precise properties in programs, we

employ techniques can described in Chapter 5.

3.1.3 Usability

Another major design goal of Soufflé is to provide practical usability. We do this by

employing two main design decisions. Unlike most Datalog engines that are geared

towards high performance, we do not necessitate user annotations (e.g., indexing) to

achieve high performance. Instead, we employ auto-optimisations to avoid manual

user intervention wherever possible. This is particularly important for the static

analysis use case. Unlike database queries, the size of the rulesets in static analyses
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can run to hundreds or even thousands [28] of items. In Chapter 4 we elaborate

on an important auto-optimisation that makes Soufflé unique compared to existing

Datalog engines. Another aspect of usability that is provided by language constructs

that allow modular specifications and promote code reuse, in addition to other good

software engineering practices. Since static analysis rulesets are significantly larger

than traditional database queries, this becomes a crucial usability feature.

3.2 Framework Overview

This section provides an overview of the Soufflé framework. In later sections we

elaborate on individual components and stages. The overall paradigm employed

in Soufflé is depicted in Figure 3.1. Here the Soufflé paradigm (Figure 3.1b) is

contrasted with to the standard Datalog-paradigm used by typical Datalog engines

for static analysis. In the standard Datalog-based static analysis setup, an analysis

specification is defined by a, Datalog program, i.e., a set of Datalog rules. An input

system to be analysed is translated to a set of facts (i.e., the EDB), by an extractor,

e.g., Soot [137]. A Datalog engine then computes the analysis result from both the

Datalog rules and input facts and produces a set of derived relations (IDB) from

which the analysis answer can be obtained. The Soufflé approach, depicted in

Figure 3.1b first creates an analyser from the Datalog rules. This analyser can then

be executed to read in a set of EDB relations, for a matching schema and computes

the set of IDB output relations.

To efficiently implement the approach, as shown in Figure 3.1b, Soufflé em-

ploys a multi-stage partial evaluation pipeline to translate Datalog rules to efficient,

parallel C++ code. A notable advantage of this approach is that, after each partial

evaluation is performed, further optimisation opportunities arise. As a result, an ef-

ficient static analyser is produced that correctly implements the logic specification

and performs on a par with hand-crafted alternatives.

The stages of partial evaluations, are depicted as a hierarchy in Figure 3.2a.

Here each stage in the hierarchy is formalised as a first-order Futamura projec-

tion [98] equation. The Futamura projection produces specialised code with respect
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Figure 3.1: Datalog analysis paradigms

to an interpreter that computes the same results as if the input source program was

evaluated with the interpreter. For example, Figure 3.2 derives a first-order Futa-

mura projection. It asserts the equivalence between an interpretation and an execu-

tion of a partially evaluated program.

In terms of implementation, each stage is mapped to a translator component

in the Soufflé architecture, as depicted in Figure 3.3. For each stage, a new lan-

guage representation is needed, i.e., AST, RAM, or templatised C++, to model the

analysers at a level of granularity required at that stage of specialisation.

Datalog to AST: The framework proceeds by first parsing and translating a Datalog

specification is into an abstract syntax tree (AST). In this translation step, semantic

checks are conducted, including the asserting the relation symbols are used cor-

rectly, type checks for proper use of variables, and checks for cyclic, non-stratified

negations among many other semantic checks. After the semantic checks are per-

formed, several optimisations are applied to enable improved performance.

AST to RAM: Next, the AST which represents a declarative Datalog program is

specialised into an imperative Relational Algebra Machine (RAM) program. The
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lowering from a declarative Datalog program to an imperative RAM program is

performed by re-interpreting the semi-naı̈ve evaluation as a translation scheme [90]

and applying a specialisation via a first-order Futamura projection. The RAM rep-

resentation of an input program offers ample opportunity to apply optimisations.

Unlike the case for the AST level, mid-level optimisations may target details of the

evaluation process not visible in the declarative specification. Among the most im-

portant optimisations at this stage is join scheduling. Here, Soufflé employs the

scheduler infrastructure too discover advantageous loop orders in the RAM using

instance specific cost models.

RAM to Templatised C++: The next stage translates the RAM program to tem-

platised C++. Here, a second specialisation is performed with respect to a RAM

interpreter. The specialisation converts a simple traversal over relations to indexed

searches that are derived from the input RAM program. The main challenge of this

translation step is in the generation of efficient, high performance C++ code for

processing and storing information into in-memory relations. In our framework, we

obtain adequate performance by heavy use of C++ templates, tailored to relational

algebra operations and efficient use of data structures including various types of

index schemes. For specific instances of relations and operations we permit cus-

tomisations of the code in the templates to achieve maximal performance. Thus,

essentially, a large part of the actual code generation is deferred to the final trans-

lation, i.e., the C++ compiler that translates the heavily templatised input program

to an executable program. The technique of scripting the generation of code using

C++ templates is also known as template meta-programming [138]. For example,

if the actual type of an object is known at compile-time the dynamic dispatch is

converted to a static call, vastly improving vastly the performance of the compiler.

In our specific use case, the meta-programming becomes a partial evaluator that

pushes computations from runtime to compile-time.

Compilation: In the final stage, the resulting C++ code is compiled into a binary

executable. The C++ compiler unfolds the template, producing highly efficient

assembly code that is specialised for a given input program. Using C++ makes the
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C++ specialisation:
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Figure 3.2: Application of Futamura’s projection

Datalog compilation independent of the actual target architecture.
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Figure 3.3: Soufflé architecture

3.3 Frontend
This section describes the Soufflé frontend, i.e., the Soufflé language and the con-

version from syntax to an optimised abstract syntax tree (AST).

3.3.1 Extending Datalog for Static Analysis

The Soufflé language was designed with large industrial static analyses in mind.

While the language implements the basic features of Datalog e.g., Datalog with

stratified negation and aggregation (See [139, 90], [41] and [37]), the fact remains

that Datalog was originally designed with database querying in mind. Non-trivial

static analyses, on the other hand, require additional features to better express static

analysis specifications as well as to aid in user productivity. Therefore the stan-

dard Datalog language is extended to accommodate large-scale static analysis use
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cases [140]. In addition, the language design decisions take into account the fact

that Soufflé, unlike most Datalog engines, synthesises an analyser and as such,

does not dynamically execute queries. Therefore, considerations such as a solid I/O

systems, static typing etc., are paramount to its design. The non-standard features

of Soufflé are summarised below.

3.3.1.1 Type System

Types for logic programming are non-standard; however, for large Datalog speci-

fications a rich type system is paramount. Large projects typically require several

hundreds of relations (e.g. Doop) and tool support is needed to ensure that pro-

grammers don’t bind wrong attribute types. For this reason, Soufflé provides a

type system that is static. All attributes in a relation declaration need to be typed

and these types are then enforced at translation time. We avoid dynamic checks at

runtime as evaluation speed is paramount in static analyses.

Soufflé’s type system is built with two primitive types, namely, the symbol

type and the number type. The symbol type is defined as the universe of all strings.

Internally, it is implemented by an ordinal number which can be accessed using

the ord(<string>) construct. The number type is the universe of all numbers, i.e.,

simple signed numbers set to 32 or 64 bit. Symbol and number types can be declared

with .number_type <name> or .symbol_type <name> constructs, respectively.

In addition, Soufflé provides the means for defining user-defined types using the

.type directive. Moreover, Soufflé allows the user to construct type hierarchies

via union types using the following syntax:

.type <ident> = <ident1> | <ident2> | . . . | <identk>

For example, the code .type A = B | C, creates a type A that is either a B

or C but not both.

3.3.1.2 Functors

The Soufflé language has the ability to perform computations in numerical do-

mains. Support for functors is thus provided to aid in computations in this domain,

including arithmetic, bit-vectors etc. For example, the rule P(a+1):- G(a) is valid
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in Soufflé. Additionally, several string functors are supported such as concatena-

tion, length and substring. Functors significantly extend the Datalog semantics,

allowing non-terminating Datalog programs, i.e., infinite relations can be defined.

However, the underlying evaluation algorithm remains the same since properties

such a monotonicity still hold, i.e., we have infinite, chains of increasing sets of

tuples.

Functors can have several practical benefits for static analysis, including deal-

ing with arithmetic operations in networks (See chapter 6), context increments in

points-to analysis [28] among many other applications. However, they must be used

sparingly when the semi-naı̈ve evaluation algorithm is used, due to their potential

to cause non-termination. In Chapter 5 we provide an approach to solving Horn

clauses with numerical constraints using model checking techniques that is a poten-

tial candidate for rules that require heavy use of functors and numerical constraints.

3.3.1.3 Records

Relations are two dimensional structures in Datalog. Large-scale problems often

require more complex structures. The Soufflé language has the ability to construct

objects that break out of the flat Datalog world. A data structure can be generated

using records with the following syntax:

.type <name> = [<name1>: <type1>, . . ., <namek> : <typek>]

This construction can be used to form lists, trees and other data structures.

Using logic rules, these data structures can be augmented, traversed, etc., similar to

functional programming. In addition, records can be very powerful for implement

complex domains of computation e.g., intervals.

.type list = [val: number , tail: list]

.type tree = [val: number , l: tree, r: tree]

Data structures are implemented by providing a hidden reference type in a re-

lation for each data structure type. This translates the elements of a data structure

into a number. During evaluation, if an element does not exist, it is created on

the fly. Semantically, data structures are relations containing references that grow
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Ref next x
1 0 10
2 1 20
3 2 30

l
1
2
3

L IntList

References

Figure 3.4: Relational representation of a list using records

monotonically and structural equivalence is determined by identity with new ele-

ments created on the fly. We note however, that Datalog lookup for data structures

comes at the cost of performance, as an extra lookup is necessary. For example, the

program below builds a list of numbers:

.type IntList = [next: IntList, x: number]

.decl L(l: IntList)

L([nil,10]). L ([r1,x+10]) :- L(r1), r1=[r2,x], x <

30.

.decl Flatten(x: number)

Flatten(x) :- L([_,x]).

Figure 3.4 illustrates the layout of a list in a in-memory relation. Here,

intList is a set of references (Ref field) that is used to as a value in the next

field that is itself of type intList. In this way we can build/traverse the list data

structure.

As we can see in extended example in Figure 3.5, records can have practical

benefits such as defining traces, usage in context sensitive points to analysis [28],

and even the potential to define lattices (See Chapter 7).

3.3.1.4 Components

Large logic programs often have little structure. Such programs consist of unstruc-

tured sets of rules. For large-scale static analyses specifications this creates serious

software engineering challenges. To rectify this, Soufflé provides support for com-

ponents. Components provide support for encapsulation, i.e., separation of con-

cerns, replication of code and adaption of code. Components can be seen as a form

of meta semantics for Datalog. Similar to C++ templates, the templatised Datalog
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code is expanded at translation time but generates new instantiations of the tem-

platised code substituted with input values. Components are first defined with the

following syntax:

.comp <name>[<params, . . .>][:<super−name>1[<params, . . .>],. . .

,<super−name>k [<params,. . .>]]{<code>}

To use a component, a component needs to be instantiated:

.init <name> = <name>[<params,. . .>]

Each component instantiation has its own name to create a namespace and

type and relation definitions inside the component inherit the namespace. Note that

definitions permit embedded component definitions as well. Similar to classes in

C++, this results in an embedded namespace. The translation of components to

standard Datalog is shown in the example:

.symbol_type s

.decl A(x:s, y:s) .input A

.comp myC {

.decl B(x:s, y:s) .output B

B(x,y) :- A(x,y). }

.comp myCC: myC {B(x,z) :- A(x,y), B(y,z).}

.init c = myCC

// outer scope: no name space

.decl A(x:s, y:s) .input A

// name scoping

// B is declared inside myC/myCC

.decl c.B(x:s, y:s) .output c.B

c.B(x,y) :- A(x,y).

c.B(x,z) :- A(x,y), c.B(y,z).

Here, two components are defined where one component inherits from another.

Component myCC adds an additional rule to myC. We instantiate myCC and label it as

c. Soufflé then instantiates the rules from both components using c as a prefix.



78 Chapter 3. Synthesising Static Analysers From Logic

Example 9. In Figure 3.5, we extend the Datalog static analysis of Example 1.1

with an extended static analysis that uses Soufflé language extensions. While the

static analysis in Example 1.1 gives us a list of insecure nodes, we may desire more

information, such as a program trace. Using standard Datalog, this can be awk-

ward to define. A user would be required to define several new relations and rules,

many of which are redundant. However, using Soufflé’s extensions we can use

components to extend the analysis and encode traces into a list data structure.

We first wrap the analysis of the motivating example in a Base component.

Here we can instantiate the analysis of different types of data. The analysis is

instantiated in the second file with the line .init A1 = Base<Node1> where the

type Node1 is given as an argument. In the analysis of analysis2.dl, we instantiate

the Derived analysis as an A2 object. The Derived component inherits from the

Base component, meaning that all rules are accessible to A2 as in A1. However,

the Derived component defines an additional analysis. This analysis keeps track

of the trace of all insecure nodes (in case several exist) and the length of edges

traversed up to a user specified value of K. To do this, we define a constructor in

the line .type Tr = [v : N, tail: Tr]. Note that this is a recursive list-

like definition. Also note that, when we instantiate A2, we instantiate it with a super

set type Node, which is a union of types Node1 and Node2 and a value K. The

derived analysis contains two rules. The first rule represents the base case, and

here we add s as the head of the list and keep the tail as nil (empty list). We

initialise the edge size as 0. The next rule, increments the edge by 1 and adds a

node to the head of the list, if it is not a protected node.

�

3.3.2 Datalog to AST Transformation

The first stage of the pipeline in Figure 3.3 is the construction of the AST. This pro-

cess is described in more detail in Figure 3.6. Here, a Datalog program along with

configuration parameters is parsed using standard bottom-up parsing techniques and

then converted into an AST translation unit. An AST translation unit represents an

AST with its translation state, i.e., its symbol table, set of transformations, debug
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// file analysis1.dl

.type Node1

.comp Base<N> {

// Interface

E(s:N,d:N)

.input E

S(s:N)

.input S

P(node:N)

.input P

I(node:N)

.output

I("s").

I(y) :- I(x), E(x,y),

!P(y).

}

// file analysis2.dl

#include "analysis1.dl"

.type Node2

.type Node = Node1 | Node2

.comp Derived<N, K> : Base<N> {

.type Tr = [val : N, next: Tr]

T(v: number, ls: Tr)

.output T

T(0, ["s", nil]).

T(v+1, [y, r1]) :-

T(v, r1),

v < K,

r1 = [x, tail]

E(x,y), !P(y).

}

.init A1 = Base<Node1>

.init A2 = Derived<Node, 10>

Figure 3.5: Extended static analysis from example 1.1

and error reports.

Soufflé contains a set of transformations that aim to produce more efficient

code. Where, improvements are always guaranteed, the transformation is executed

by default, otherwise users typically must specify its use when invoking Soufflé. As

in traditional compilers, Soufflé performs AST semantic checks. These transform-

ers, do not transform the code per say, but instead perform various semantic analysis

such as consistency checks, reporting an error if the AST representing the Datalog

program is malformed. Likewise, Soufflé performs a lowering high-level ASTs

(e.g., defining templates and components) and converts these high level syntactic

features to low-level ASTs, i.e., vanilla Datalog. However, several transformer tar-

get performance. The key transformations are summarised below.

• Nullary relations transformation: this transformer avoids computation of a

derived relation if only an existence of a tuple is required

• Constant propagation: this transformer forward propagates constant values

within and among rules

• Alias elimination: this transformer unifies variables according to equality

constraints
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• Rule elimination: this transformer eliminates rules that are positive empty

relations in bodies as the entire rule is not computed in this case.

• Relation elimination: this transformer eliminates relations and their rules if

they do not contribute towards result

• Magic set transformation: syntactic top down propagation of queries [42].

Given literals in rules the literals are propagated from head to body thus re-

sulting in more efficient evaluation.

DL

User 
Config

Parser
AST 

Translation Unit

...

AST 
Translation Unit

Transformer 
A

Transformer 
K

……..

Figure 3.6: Soufflé architecture

3.4 Logic Specialisation
In this section, we describe the process of specialising Datalog (as an AST) into a

RAM program. This is the first specialisation of the pipeline in Figure 3.3. The

purpose of this step is to produce an imperative representation of the Datalog code,

remove any interpreting overhead and enable further optimisations. To do this, we

employ partial evaluation to inject aspects of the evaluation algorithm into each

clause of the Datalog program.

3.4.1 Mechanisms for Datalog Evaluation

We first detail Datalog’s evaluation mechanism, for which we propose a variation

to the standard semi-naı̈ve algorithm to achieve greater efficiency.

3.4.1.1 Relaxed Semi-naı̈ve Algorithm

The existing Datalog evaluation algorithms were designed in the 80s and 90s with

a focus on minimising computation time but do not consider data transfer as a cost
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caused by copying large temporary tables for recursively defined relations. As

a consequence, the presented standard semi-naı̈ve algorithm in Algorithm 1 (see

Chapter 2) does not perform well in regard to large-scale static analysis. The same

observation has been made in [94]. Typically, the relation sizes can be as large as

giga tuples. Hence, the book-keeping of the current, previous and delta knowledge

becomes prohibitive due to the involved copy operations, e.g., current knowledge of

the previous iteration becomes the previous knowledge of the current iteration and

so on. To overcome these book-keeping costs of the standard semi-naı̈ve algorithm,

(1) we introduce a slight computational deficiency by replacing the previous knowl-

edge by the current knowledge, and (2) we unroll the fixed-point iteration by two

iterations to eliminate the copy operation for new knowledge and delta knowledge,

i.e., a write-after-write dependency is resolved by this renaming.

The substitution of previous knowledge by current knowledge is performed by

replacing the evaluation Eval( j)
i [I ∪ 〈R1, . . . ,Rk−1,∆Rk,Pk+1, . . . ,Pn〉] by Eval( j)

i (I ∪

〈R1, . . . ,Rk−1,∆Rk,Rk+1, . . . ,Rn〉). The effect of this replacement is that more com-

putations may be required, however, the relations Pi can be omitted from the semi-

naı̈ve algorithm and no copy operation Pi := Ri; for all relations in C are required.

The loop unrolling approach rewrites the fixed-point loop of the semi-naı̈ve al-

gorithm as outlined in Algorithm 3. The original fixed-point loop is unrolled twice.

By unrolling the copy operations between delta and new knowledge can be elimi-

nated. In one unrolled iteration the relation ARi represents the delta of the previous

iteration and BRi the new knowledge. In the second unrolled iteration the roles of

ARi and BRi are swapped to new knowledge and delta knowledge, respectively. To

ensure correctness, we assume that in the initialisation phase the ∆Ri relations are

renamed to ARi so that the first unrolled iteration has initial data to process.

The proposed relaxed semi-naı̈ve algorithm reduces the book-keeping over-

heads, since for each relation one of the intermediate relations is omitted (i.e. previ-

ous knowledge) and two copy operations are eliminated minimising the data traffic

on the memory bus.

Lemma 3 (Correctness of Algorithm 3). Algorithm 3 produces the same result as
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1 for ever do
2 for i=1 to n do
3 BRi := ∅ ;
4 for j=1 to m j do
5 BRi := BRi∪

⋃
k Eval( j)

i (I∪〈R1, . . . ,Rk−1,ARk,Rk+1, . . . ,Rn〉) \Ri

;
6 end
7 end
8 if

∑n
i=1 |BRi| = 0 then

9 exit loop
10 end
11 for i=1 to n do
12 Ri := Ri∪BRi ;
13 end
14 for i=1 to n do
15 ARi := ∅ ;
16 for j=1 to m j do
17 ARi := ARi∪

⋃
k Eval( j)

i (I∪〈R1, . . . ,Rk−1,BRk,Rk+1, . . . ,Rn〉) \Ri

;
18 end
19 end
20 if

∑n
i=1 |ARi| = 0 then

21 exit loop
22 end
23 for i=1 to n do
24 Ri := Ri∪ARi ;
25 end
26 end
Algorithm 3: Improved semi-naı̈ve algorithm for reducing copy overheads

Algorithm 1.

Proof. The correctness of the computation will not be affected since the invariant

that the previous knowledge is a subset of the current knowledge is maintained. By

unrolling we only compute 2 staged delta computations that are chained and hence

do not affect the overall monotonicity of the computation. �

3.4.1.2 Clause Evaluation

The Eval function in Algorithms 1 and 3 evaluates a clause in a Datalog program.

In modern query systems, clause evaluation is often implemented by a variation of

a nested-loop join. For presentation simplicity, we partition the sequence of body
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atoms of a Datalog rule into positive (referred to as R+
i ) and negative (referred to

as R−j ) occurrences (i.e., negative if it is negated in the body), and restate the above

Datalog rule as:

R0(X0) :- R+
1 (X1), . . . ,R+

h (Xh),R−h+1(Xh+1), . . . ,R−d (Xd).

where h is the number of positive atoms.

However, we note that the ordering may change due to levelling optimisations

that hoist the negative predicates to outer loops for performance reasons.

1 for all t1 ∈ σϕ1(X1)(R+
1 ) do

2 for all t2 ∈ σϕ2(t1,X2)(R+
2 ) do

3 . . .
4 for all th ∈ σϕh(t1,...,th−1,Xh)(R+

h ) do
5 if σϕh+1(t1,t2,...,th)(R−h+1) = ∅ then
6 . . .

7 if σϕd(t1,t2,...,th)(R−d ) = ∅ then
8 if π(t1, . . . , th) < R0 then
9 add π(t1, . . . , th) to R0

10 end
11 end
12 end
13 end
14 end
15 end

Algorithm 4: Nested-loop joins for evaluating a Datalog rule

In the nested-loop joins, we iterate (denoted by the for all construct) over tu-

ples that are obtained from a primitive search, which will be defined shortly, on

a positive relation; this semantics comes from the implicit universal quantification

in a Datalog rule. Then, negative occurring atoms are tested for emptiness with

respect to primitive searches; this semantics stems from the implicit non-existence

quantification of attributes of negative body literals in a Datalog rule. Finally, the

most inner operation projects (denoted by π) the selected tuple into the head atom

if the tuple does not already exist in the relation. This existence check is performed

to ensure that tuples are not inserted twice into a relation; that is, it enforce the set
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semantics of the relations.

Definition 6 (Primitive Search). A primitive search has the following form:

σx1=v1,...,xk=vk(Ri) = {t ∈ Ri | t(x1) = v1, . . . , t(xk) = vk}.

Here, Ri is a relation and x1 = v1, . . . , xk = vk is a search predicate, where x1, . . . , xk

are attributes and v1, . . . ,vk are constants.

Note that, {x1, . . . , xk} does not necessary have to be the first k attributes of the

relation Ri. A primitive search extracts all tuples from a relation that adhere to the

search predicate. The constants v1, . . . ,vk in a primitive search σx1=v1,...,xk=vk(Ri) are

obtained either from Xi of the atom Ri(Xi) or from other tuples in relations further

up the nested-loop joins (i.e., R j for 0 < j < i). As an alternative notation, we denote

σϕ(t1,...,ti−1,Xi), where ϕ ≡ x1 = v1, . . . , xk = vk, as the substitution of t1, . . . , ti−1,Xi for

appropriate constants v1 to vk.

3.4.2 Relational Algebra Machine

Next, we define the Relational Algebra Machine (RAM) language. RAM is the tar-

get language of the first specialisation. RAM is an abstract machine that we have

developed for Soufflé that we use as a semantic model for evaluating translated

input programs. The machine is specifically tailored to execute relational algebra

programs that are produced by the semi-naı̈ve evaluation. The RAM program con-

tains relational algebra operations to compute results produced by clauses and has

the ability to efficiently model Datalog fixpoint evaluation schemes through im-

perative constructs including statement composition for sequencing the operations,

and loop construction with exit conditions. Additionally, RAM contains relation

management operations to keep track of previous, current and new knowledge as

required by efficient evaluation schemes such as the semi-naı̈ve evaluation.

3.4.2.1 Execution Model

The abstract machines operates solely on relations and have no notion of variables

and/or memory. Thus the evaluation of a RAM program entails maintaining a col-
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lection of relations 〈R1, . . . ,Rk〉 as a state for executing a RAM program. The re-

lations R1, . . . ,Rk are fixed throughout the execution of a RAM program, i.e., no

new relation is added to or deleted from the state whilst executing the program.

However, the contents of a relation may change. There is a set of relations that the

program operates on, some of which are pre-loaded with data, e.g., the tuples de-

fined by the facts in the original input program. We define the RAM state s as a map

between the relation names in the Datalog program and a sets of tuples the defining

the relation, i.e., (R1 7→ {t1, t2, . . . }, . . . ,Rn 7→ {t1, t2, . . . }). Given a state s, s[R] denotes

a map access, accessing the element mapped to R. The notation [R 7→ e] denotes a

map update, i.e., replacing the value mapped to R with e. Note, two Relations can

be simultaneously updated as follows: [R1 7→ e1,R2 7→ e2]. Maps are closed under

intersection, union, and compliment. τ denotes a variable to value set mapping. A

mapping is assigned by τ←t S where t is mapped in τ to a set of values S .

3.4.2.2 Syntax and Semantics

In the design of RAM, we attempt to limit expressivity in order to avoid errors in

translation and yet it must be expressive enough to model all required constructs.

Therefore, we should employ sufficient constructs to represent the Datalog evalu-

ation mechanisms described above. The RAM constructs are divided into control

flow statements, operations, relational management and values and conditions. The

control flow constructs allow a RAM program to model the iteration of the semi-

naı̈ve algorithm. Operations allow for the modelling of nested-loop joins for clause

evaluation and relational management allows modelling of the book-keeping as-

pects of the semi-naı̈ve algorithm.

Control Flow. The RAM syntax is defined in Figure 3.7. RAM has two statements

for control flow, i.e., sequences of statements, and a loop statement with multiple

exit statements. The sequencing of statements S 1;S 2 is necessary to order com-

putations of relations that depend on each other. The order among relations stems

from the strongly connected component graph of the dependencies between rela-

tions [90]. Loops constructions are necessary for computing fixpoints of recursively

defined relations. Mutually recursive relations are congregated in a single strongly
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S ∈ Stmt→ loopS 1; [exit C1; ] . . .S n; [exit Cn; ]end
S ∈ Stmt→ S 1;S 2

S ∈ Stmt→mergeR1 intoR2

S ∈ Stmt→ swapR1 , R2

S ∈ Stmt→ purgeR

S ∈ Stmt→ insertO
O ∈Oper→ searchRas t [where C]doO
O ∈Oper→ project (V1, . . . ,Vk) intoR

C ∈ Cond→C1 andC2

C ∈ Cond→ V1 relV2

C ∈ Cond→ notexistsR(V1, . . . ,Vk)

V ∈ Value→ R.v
V ∈ Value→ t(v)
V ∈ Value→ count(R)
V ∈ Value→ const

Figure 3.7: RAM BNF grammar definition

connected component and the computations of the clauses of the relations are iter-

ated until no further knowledge can be obtained. The semantic function for control

statements takes a function with a state s as an argument, which is defined as a map-

ping of the relation names to sets of tuples. The control flow loop is defined as the

least fixpoint of the function F : (S→S)→ (S→S), as shown below:

F (α)(s) =


α(S~S i�s) if ¬C~Ck�s for all Ck where k < i

s otherwise

Here, we execute a statement if all of its previous conditions didn’t trigger

an exit. The sequence statement is defined by the composition of two statement

executions. This type of control flow models the fixpoint characteristics of the loop

in the semi-naı̈ve algorithm.
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S~loopS 1; [exit C1; ] . . .S n; [exit Cn; ]end� ::= lfp(F )
S~S 1;S 2� ::= λs.S~S 2�(S~S 1�s)

S~mergeR1 into R2� ::= λs.s[R2 7→ s[R2]∪ s[R1]]
S~swapR1,R2� ::= λs.s[R1 7→ s[R2],R2 7→ s[R1]]
S~purge R� ::= λs.s[R 7→ ∅]

S~insertO� ::= λs.O~O�s τ′

O~searchRas t [where C]doO� ::=
λs.λτ.O~O�s (τ←t {v ∈ R | C~C�(v)})
O~project (V1, . . . ,Vk) intoR� ::=
λs.λτ.s[R 7→ (~V1�τ × . . . × ~Vk�τ)]

C~C1 andC2� ::= λs, τ.C~C1�τ, s∧C~C2�τ, s
C~V1 relV2� ::= λs, τ.V~V1�τ, s∧V~V2�τ, s
C~notexistsR(V1, . . . ,Vk)� ::=
λs, τ.(V~V1�τ s, . . . ,V~Vk�τ s) < s[R]

V~R.v� ::= λs, τ.R.v
V~t(v)� ::= λs, τ.τ(t)(v)
V~count(R)� ::= λs, τ.card(s[R])
V~const� ::= λs, τ.const

Figure 3.8: RAM semantics

Relational Management. The RAM statements for relational management are de-

fined as the next three constructs in Figures 3.7 and 3.8. The statement merge adds

all of the tuples of relation R1 to relation R2. The statement purge deletes all tuples

in relation R. The statement swap swaps the contents of two relations. Statements

can be sequenced by a semicolon S 1;S 2 such that S 1 is executed prior to S 2.

Example 10 (Semi-Naive). Here we show how we can describe a semi-naı̈ve itera-

tion using RAM.
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1 insert (number(0)) into I

2 merge I into ∆I;

3 loop

4 . . .

5 exit I’ , ∅;

6 merge I’ into I;

7 swap ∆I, I’;

8 purge I’

9 end loop;

�

Nested-Loop Joins. The insert statement is used to model rule evaluation. To evalu-

ate inserts, we instantiate a new loop state τ′, where the prime denotes a new empty

map. This map stores tuple names to sets of tuples. An important feature of a RAM

program is its ability to express nested-loop joins. To implemented nested-loop

joins an insert statement contains a relational algebra operation O, that combines

cross-product, selection and projection operations.

The operations in an insert are defined in the next two lines in Figure 3.7 and

3.8 which defines their syntax and semantics, respectively. The search traverses

over all tuples in relation R, and tests whether, for a tuple t, the condition C holds.

If it holds, the attached operation O is executed recursively, passing on the currently

selected tuple of the traversal and the selected tuples of the outer traversals. If the

condition does not hold, the operation O is skipped and the next tuple is assessed

until the end of the relation is reached. The condition C is referred to as a primitive

search condition. It is a restricted formula, as defined in Definition 6, consisting of

a conjunction of equality predicates with right-hand-side attribute variables t.v from

the tuple t ∈ R in the search, and left-hand-side constant t j.v j obtained from a tuple

from further up the nested-loop join. In the semantics of Figure 3.8 a search updates

the nested-loop state by mapping the tuple t to the filtered tuples of the search.

The project operation selects a set of attribute variables ti.vi, . . . , tk.vk from

the tuples in the relations in the nested-loop join and projects their values onto the

target relation R1. In the semantic definition, we now update the global state, as the
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relation projected onto may not be in the nested-loop join traversal. The syntax of a

condition used for the search operation as well as other statements is listed next in

Figures 3.7 and 3.8.

A condition can be a conjunction of conditions, a binary relation over two

values, for which rel is either one of the following binary relations: =, ,, <, ≤, >

and ≥, or a check on whether the tuple (V1, . . . ,Vk) can be found in relation R and

represents an existence check of a tuple in a relation. We refer the reader to [141] to

see that relational algebra is indeed expressed in the semantics of RAM operations.

A value can have the following syntax and semantics defined in the remaining

of the definitions of Figures 3.7 and 3.8. Here, a value can be a reference to an

attribute variable of a relation R.v, a tuple value t.v, a number of tuples in a relation

or a constant value. We further clarify the semantics of nested-loop joins with an

example:

Example 11 (RAM Nested-Loop Join). Consider a non-recursive Datalog rule

P(x,y) :- R1(x,y),R2(y, x).

We can evaluated this rule with a cascading searches (forall loops) on R1 and R2

with a primitive equality on the attributes of R1, R2. This can be represented as the

following RAM program:

1 search R1 as t do

2 search R2 as t1 where R2.x = t1(y) ∧ R2.y = t1.x do

3 project (t.x, t.y) into P

4 end

5 end

�

3.4.3 Partial Evaluation of Datalog

To obtain a RAM program from a Datalog program we employ a partial evaluation

mechanism. This step is characterise by the following equation:
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PRAM = Mix1(Intdl
RAM,Pdl)

Here, Pdl denotes a Datalog program that models e.g., a static analysis. Intdl
RAM

is the operational semantics of the language of Pdl via an interpreter e.g., semi-

naı̈ve algorithm for Datalog in the language of RAM. PRAM is a program in the

same language as the interpreter such that given the same input, the same result is

produced as for Pdl interpreted by Intdl
RAM.

The semi-naı̈ve [90] algorithms depicted in Algorithm 1 are defined with two

input parameters, namely, the Datalog program Pdl and the set of input relations,

which we denote as EDB and one output, i.e., the set of output relations, denoted

as the IDB. The partial evaluation process merges the fixpoint aspects of the Data-

log interpreter, which can be defined using RAM and specialised nested-loop joins

for each evaluated rule. For each call to the Eval, a concrete instantiation of a

nested-loop join described in RAM is syntactically substituted into the RAM fix-

point algorithm.

The specialisation is depicted in Fig. 3.9. We assume a single recursive rule

rule that we wish to be specialise. The semi-naı̈ve algorithm is depicted in RAM

and its LOOP-NEST function dynamically evaluates a rule via a nested-loop join.

The Mix function inserts the specialised nested-loop join code for the rule into the

interpreter to update a single relation in the IDB. This process in done for all rules in

the Datalog program resulting in a RAM program consisting of several RAM loop

statements with many insert statements for rules in a given SCC.

Example 12 (Motivating Example (Cont.)). The RAM program for the recursively

defined rule in our motivating example is shown in Fig. 3.10. The set I is thereby

supported by two auxiliary sets I′ and ∆I. The set I′ represents the newly gained

knowledge within an iteration of the fix-point computation and set ∆I represents

the newly gained knowledge over the previous iteration. The fix-point computation

is performed in the loop from line 3 to line 13. The first Section of the loop body

(lines 4 - 8) computes I′ using ∆I as an input. The loop starting in line 5 iterates

over all nodes in ∆I and the nested-loop starting in line 5 iterates over all edges
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C++ specialization:
PC++=Mix(Int<>,PC++<> )

RAM specialization:
PC++<> =Mix(IntRAM,PRAM )

Datalog
specialization:

PRAM =Mix(Intdl,Idb)

(a) Specialization Hierarchy

result = JIntK(Source, Input)
= JSourceKInt(Input)
= JMix(Int, Source)KInput
= JProgKInput

Fig. 4: Application of Futamura’s Projection

semantics. This provides us with interpreters to use in order to perform partial evaluation
and ensure the correctness of the produced analyser.

In Fig. 3 we present our specializaton Framework. The framework operates using a
three staged partial evaluation heirarchy as depicted in Fig. 4a. Each stage produces an an-
alyzer with increased semantic granularity eventually producing a low-level analyser com-
parable to one written by hand. The invariant of our framework is semantic correctness
between specializations and the expectation that each specialization improve perofrmance,
i.e., JProgKInput to perform faster than JIntK(Source,Input) given that Source is
static. They advantage of our stages approach is that we leverage the partial evaluation per-
formed at a previous stage to enable key optimisations that cannot be performed at previous
stages.

The specialization proceeds as follows: we first specialize a Datalog program with re-
spect to an evaluation algorithm which we view as an interpreter. This specialization results
in a, primitive program – implemented in the RAM language, a language containing control-
flow and relational algebra operations. The key to this phase is we go from a declarative to
imperative view of the program. In other words, Datalog describes what the analysis should
do and RAM describes how it is done. As a consequence of this transformation, we are able
to perform several key optimisations at this stage. A major optimisation here is determining
the best ordering nested loop joins. Next, we specialize the RAM program with a relational
algebra interpreter that incorporates the chosen semantics of the relational algebra, e.g., set
or bag semantics. The second specialization produces a templatized C++ program. More im-
portantly, at this stage we obtain information on how the relations are used in the relational

Figure 3.9: Datalog specialisation process

1 insert (number(0)) into I
2 merge I into ∆I;

3 loop
4 insert
5 search ∆I as t0
6 search E as t1
7 where t1.s=t0.c0 and (t1.d) < P and (t1.d) < I
8 project (t1.d) into I’
9 exit I’ , ∅;

10 merge I’ into I;
11 swap ∆I, I’;

12 purge I’
13 end loop;

Figure 3.10: Running example: RAM program

in the control flow graph. If any of those edges links some node x to a previously

discovered insecure node y present in ∆I, where x is not a protect call itself and

has not been marked as insecure before, node y is add to the newly deduced set of

insecure nodes I′. In the last two statements of the loop body (i.e. lines 10 and 11)

the newly gained knowledge of relation I′ is added to relation I and I′ becomes ∆I.

The fixed-point calculation terminates if no new insecure nodes could be identified.

�

3.4.4 Nested Loop-Join Scheduling

The Datalog specialisation opens up many opportunities for important optimisations

relating to nested-loop joins. Firstly, search conditions are hoisted to the outer-most
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loop where they are still admissible in order to prune the iteration spaces effectively.

This technique is also referred to as levelling [79]. Additionally, loops in the nested-

loop join which have primitive searches subsumed by another loop can be coalesced

into a single loop. The most impactful optimisation is the choice of good nested-

loop join order. Here a scheduler (See Figure 3.3) selects a loop order, minimising

the iteration space of the nested-loop join with the aid of a query planner [90]. After

the translation to nested-loop joins we proceed to other optimisations in later spe-

cialisations like index selection. This optimisation has no baring on the semantic

correctness of the evaluation and thus is a safe optimisation to perform, however, the

analyser performance can be significantly impacted by the choice of loop schedule,

and hence care must be taken when performing this optimisation. Unfortunately,

this is an NP-Hard problem [142]. Several, solutions exist in the database literature

mainly based on cardinality estimation [143]. However, cardinality estimation have

mixed performance results [144]. In Soufflé a scheduling framework is employed

to perform a variety of cardinality and cost estimations statically. An advantage of

the staged specialisation architecture that is employ in Soufflé is that retain sev-

eral schedules can be synthesised for a negligible synthesis time cost. In ongoing

work (see Chapter 7) we are investigated auto literal scheduling combining with the

technique of Chapter 4.

Example 13 (Motivating Example (Cont.)). Consider the RAM program in Fig-

ure 3.10. An alternative version is to generate a scan on the E relation and a

search on the I relation. This makes no different on the semantics of the RAM pro-

gram, however, may impact efficiency. Say we have a metric that dictates that a

rule is evaluated faster if smaller relations are in outer loops and large relations in

inner loops (this a common metric) then if I is larger generally than E, we could

improve performance by the changing the RAM program in Figure 3.10. �

3.5 Relational Algebra Specialisation
In this Section we describe the third stage in Figure 3.3. In this stage, we further

specialise Datalog program from its RAM representation to a C++ program.
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3.5.1 RAM Interpreter

The RAM interpreter implements the RAM semantics of Figure 3.8. At this point,

the Datalog program can be either evaluated using the RAM interpreter or be fur-

ther specialised. We opt for the latter due to the fact that interpretation has several

performance bottlenecks:

(i) any further optimisations needed for performance, require conditional checks

at run-time. In other words, they must be performed dynamically, which

results in slowdowns compared to further specialised programs

(ii) the AST traversal infrastructure relies on dynamic dispatch calls which result

in lookup overheads

For this reason, the interpreter mode in Soufflé is mainly used for executing small

Datalog programs or for testing purposes. The cost of interpretation is particularly

highlighted by the search operation: for a typical program analysis in Section 4.4, a

search operation is often executed many billions of times for large static analyses.

3.5.2 C++ Representation

3.5.2.1 C++ Constructs

Specialised RAM programs are expressed in templatised C++. The C++ programs

have follow the control flow of RAM programs, as defined in the RAM interpreter

implementation. For example, the RAM loop, exit construct is implemented with a

for(;;) loop with break statements, merge and swap statements are implemented

with copy operations of a relation class, purge deletes a relation object on the heap,

nested-loop joins are implemented as a set of nested for loops, etc. that call search,

contains and insert operators implemented in the relation class.

3.5.2.2 Relations and Indexing

The design of the relations are crucial for high performance. To this end, Soufflé

assumes an execution model that keeps relations in-memory1, as depicted in Fig-

ure. 3.12. Here, a relation stores its tuples in a set of indexed data structures. This
1Given the increasing availability of memory in computers (e.g., terabytes of memory), this is a

viable option
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1 . . .
2 if ( keys == 0 ) { / / s e q u e n t i a l t r a v e r s a l o f r e l a t i o n
3 for ( R e l a t i o n : : i t e r a t o r i t = r e l −>b e g i n ( ) ; i t != r e l −>end ( ) ; ++ i t ) {
4 e n v i r o n m e n t [ l e v e l ]=* i t ;
5 if ( cond == NULL ) { / / no c o n d i t i o n
6 / / e v a l u a t e
7 . . .
8 } else if ( cond−> e v a l u a t e ( e n v i r o n m e n t ) ) { / / check c o n d i t i o n
9 / / e v a l u a t e

10 . . .
11 }

12 }

13 } else { / / i n d e x e d s e a r c h o f r e l a t i o n
14 if ( idx == NULL ) { / / has i n d e x e d be q u e r i e d b e f o r e ?
15 i d x = r e l −>g e t I n d e x ( keys ) ;
16 }

17 TupleElement t u p l e [ r e l −>g e t A r i t y ( ) ] ;
18 for ( s i z e t i =0; i < r e l −>g e t A r i t y ( ) ; i ++) {
19 if ( indexExpr[i] != NULL ) {
20 / / e v a l u a t e
21 . . .
22 }

23 }

24 Index : : i t e r a t o r i t ;
25 for ( i t = idx−>b e g i n ( t u p l e ) ; i t != idx−>end ( ) ; ++ i t ) {
26 e n v i r o n m e n t [ l e v e l ]=* i t ;
27 if ( cond == NULL ) { / / no c o n d i t i o n
28 / / e v a l u a t e
29 . . .
30 } else if ( cond−> e v a l u a t e ( e n v i r o n m e n t ) ) { / / check c o n d i t i o n
31 / / e v a l u a t e
32 . . .
33 }

34 }

35 }

36 . . .

Figure 3.11: Implementation of interpreting RAM search
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data model thus requires two abstract data types (ADTs) in form of C++ classes

to be defined as depicted in Figure. 3.13. Here, a Relation data structure which

serves as wrapper for its indexes, provides operations e.g., search operation, re-

quired for interfacing with a Relation irrespective of its underlying implementation

(e.g., B-Tree, Trie).

An important feature of the interface provided by the ADT is the search inter-

face that is parameterised by a lexicographical order. The advantage of the lexico-

graphical searches is that they are able to perform search operations more efficiency

than in RAM. RAM searches have abstract notions of relations, e.g., a set of tu-

ples. Thus they can be evaluated conducting a linear scan and checking the search

predicate against each tuple of the relation. However, the time complexity of linear

scan over a relation with n tuples is O(n), which is too costly for large relations

considering that each primitive search is invoked repeatedly many times. By apply-

ing an appropriate lexicographical order on tuples, a search can be performed with

O(log(n)) time complexity (c.f B-Tree) and each call to a search operations accesses

one of these indexes which contain specialised comparator functions.

4 | Copyright 2015, Oracle and/or its affiliates. All rights reserved. | CONFIDENTIAL – ORACLE INTERNAL

Data Structure for Relations

Relation = Table + Indices
• Table .. unordered list of unique tuples
• Index .. DS referencing tuples in table

Figure 3.12: Data structure layout of analyser

Example 14 (Lex Search). Consider a ternary relation R(x,y,z) where

R = {(1,2,3), (1,2,5), (2,3,3), (1,1,1)}.

ADT Rel〈arity, Index1〈`1〉, ..., Indexk〈`k〉〉

Data:
Index[size(L)] indexes;

Public Operations:
equalRange〈`〉(t)
insert(t)

ADT Index〈`〉
Data:

tuples size k
Public Operations:

range-search〈`〉(a, b)
insert(a)

Private Operations:
compare〈`〉(t1, t2)

(a) Relation Abstract Datatype (b) Index Abstract Datatype

Figure 3.13: Data structure scheme
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Assume we have a lexicographical order, x ≺ y and a call to a range search

equalRange< x,y> ((1,2)), then the result of the range search is {(1,2,3), (1,2,5)}.

�

Remark . The theoretical foundations of converting searches to indexes searches

can be found in Chapter 4, in particular we point the reader to Definition 7 and

Lemma 4 and its proof of correctness.

3.5.3 Partial Evaluation of RAM

The RAM program is specialised as follows: we use the RAM interpreter for an-

other partial evaluation step (See Figure 3.3). As before, the partial evaluation can

be characterised by the following first Futamura projection equation:

PC++<> = Mix2(IntRAM
C++<>,PRAM)

Here, a RAM program PRAM is transformed into to a range program PC++<>.

Using the RAM interpreter IntRAM
C++<> and PRAM, we execute Mix to specialises PRAM

such that we obtain PC++<>.

The partial evaluation defined above essentially strips unneeded code from the

interpreter and uses already known compile time information from the RAM pro-

gram to generate a C++ program that performs the computations of the interpret

instantiated for the given RAM program. This use of partial evaluation solves nu-

merous performance bottlenecks and thus improves the runtime for the generated

C++ code when compared to the interpreter. The key performance bottlenecks re-

solved by the partial evaluation are:

• The removal of conditions in the RAM instruction parsing. For example,

the search operation has an if-statement determining whether a relation is

traversed sequentially (i.e., no condition) or via an indexed search. Since the

condition is known at compile time it can be eliminated at compile time.

• The virtual dispatch in calls when traversing the RAM program. For example,

the virtual dispatch for subsequent search operations or project can resolved
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and nested-loop joins are constructed for all search/project operations of a

statement, since subsequent operations are known at compile time.

• Conditions and values are expanded in C++ code such that an optimising

compiler C++ can generate optimal code for evaluating conditions and val-

ues.

In the Figure 3.11 we illustrate the specialisation potential for searches. Here

we present a code snippet from the execute method in the search handling portion

of the interpreter. The highlighted lines indicate conditions known at compile time.

The execute method implements both sequential traversal of a relations for uncon-

ditional searches and indexed search that convert primitive search predicates to an

index in the presence of a conditional search. The specialisation phase collects all

conditions of the search operations and specifies an index on various attributes on

which the search is performed. The if-statement in line 2 decides whether the search

has an index or not based on the member variable keys whose bits corresponds to

attributes of relation rel. If the i-th bit is set, the i-th attribute is part of the index.

If no bit is set, the search is performed by traversing the relation rel sequentially

(cf. line 3 - 12) using a for-loop (cf. line 3). Each search operation has a level cor-

responding to the number of search operations that are prior to the current search

operation. The level is used to store the current tuple in the environment as shown

in line 4 so that subsequent evaluations of conditions/values can access the current

tuple of relation rel. After retrieving the current tuple of the relation, it is checked

whether a condition exists. If there is no condition associated to the search opera-

tion (cf. line 5), the next operation is executed (cf. line 6) that is stored with the

member variable op. If there is a condition, the condition is evaluated (cf. line 7)

and depending on the logical value of the condition the next operation is executed.

For indexed searches (cf. line 13 - 30), first we check if an index exists on

a relation. If an index does not exist, a new index for the attributes specified in

keys is created; otherwise the existing index is returned. In the next step (cf. line

15 - 19), the index expression is evaluated. The attributes that are not part of the

index have no index expression stored in indexExpr. In the for-loop of line 22,
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template<int . . . > struct Compara tor ;
template<int i , int . . . t a i l > struct Comparator< i , t a i l . . . > {

static bool cmp ( const t u p l e& a , const t u p l e& b ) {
return a [ i ] < b [ i ] | | ( a [ i ] == b [ i ] && Comparator< t a i l . . . > : :

cmp ( a , b ) ) ;
}

} ;
template<> struct Comparator<> {
static bool cmp ( const t u p l e &, const t u p l e &) { return true ; }

} ;

Figure 3.14: Implementation of comparison operator

the relation is traversed for the given index expression and the current tuple (cf.

line 23) is stored in the environment. In line 24, it is checked whether there is a

condition associated to the search operation. If not, the next operation is executed

(cf. line 25); otherwise the condition is evaluated (cf. line 26) and if the condition

evaluates to true the next operation is executed (cf. line 26). Conditions that can

be evaluated at compile time have been high-lighted in gray colour. For example,

for non-indexed searches two conditions (i.e. line 2 and 5) are checked although

the conditions can be decided as soon as the lowering of the Datalog program has

completed. Similarly, the conditions in line 12, 17 and 24 can be decided after

the lowering. A staged specialisation approach ensures that the generated code has

resolved the conditions and only the conditions remain that can only be resolved at

runtime. Similarly, the virtual dispatches of line 6, 7, 8, 12, 18, 25, 26, 27 calling

either the method execute() or evaluate() are expanded by the code generator by the

concrete loops or conditions to eliminate the runtime overheads of virtual dispatch.

This search thus becomes a part of the code of a data structure representing a

relation. Moreover, to implement indices from the previous step, we employ tem-

platised B-Trees that require a comparison function for two tuples in the relation.

The comparison function is implemented as a lexicographical order in the form of

a template as sketched in Figure 3.14.

The variadic template for the struct Comparator is parameterised by the

columns in order. E.g., the call Comparator<2,0>::cmp(a,b) compares the

tuples a and b by checking whether the third element of a is less than the
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third element of b. If the comparison results in a tie, the first elements of

both tuples are compared to determine the order between the two tuples a and

b. The operator is defined recursively: the base case is given by the struct

Comparator<> considering every tuple equal, and the inductive case by struct

Comparator<i,tail...>, comparing the i-th components and, if equal, dele-

gating the comparison to Comparator<tail...>. The expansion of the template

for a given instance such as Comparator<2,0> is performed at compile time and

delivers, in combination with function inlining, significant performance gains for

index construction and retrieval. Without applying meta-programming techniques

that rely on program specialisations, i.e., pushing computations from runtime to

compile time, these performance gains would not be achievable.

The partial evaluation step results in very large run-time improvements. While

for a single range search the improvement is quite small, on a typical Datalog pro-

gram, lex searches are a major bottle neck due to the large number of range searches

called. For example, a large program analysis benchmark could result in billions of

search calls.

Motivating Example (Cont.). The RAM code of the previous specialisation is not

optimal since it might have a worst-case complexity of O(n ·m) where n is the num-

ber of nodes in the control-flow graph and m is the number of edges in the control-

flow graph. To improve the performance of the program, we specialise the search

in line 6 of Figure 3.15 by employing an index in line 2 of Figure 3.15 for the first

attribute (0-th position). The index using a range search in line 19 filters out all

pairs in the edge relation whose source is not node u, i.e., all the edges are selected

which emanate of node u denoted by the set E(u, ).

3.5.4 Index Sets

A crucial performance question is the construction of the set of indexes for each

relation. Engines such as Logicblox/PA-Datalog [136] require manual index con-

struction if more than one index is required for a relation. The problem of automat-

ically inferring the best set of indexes is discussed in Chapter 4 of the thesis.

Example 15 (Motivating Example (Cont.)). Recall, to improve the performance of
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1 / / −− Tab le : E
2 ram : : R e l a t i o n <Auto , 2 , ram : : index <0>>* r e l 1 E ;
3 / / −− Tab le : I
4 ram : : R e l a t i o n <Auto , 1 , ram : : index <0>>* r e l 2 I ;
5 / / −− Tab le : d e l t a I
6 ram : : R e l a t i o n <Auto ,1>* r e l 3 d e l t a I ;
7 / / −− Tab le : new I
8 ram : : R e l a t i o n <Auto ,1>* r e l 4 n e w I ;
9 / / −− Tab le : P

10 ram : : R e l a t i o n <Auto , 1 , ram : : index <0>>* r e l 5 P ;
11 . . . .
12 . . . .
13 r e l 2 I −> i n s e r t ( 0 ) ;
14 r e l 3 d e l t a I −> i n s e r t A l l (* r e l 2 I ) ;
15 for ( ; ; ) {

16 if ( ! r e l 3 d e l t a I −>empty ( ) &&!r e l 1 E −>empty ( ) ) {
17 for ( const auto& env0 : * i t ) {
18 const Tuple<RamDomain ,2> key ( { env0 [ 0 ] , 0 } ) ;
19 auto r a n g e = r e l 1 E −>equalRange <0>( key ) ;
20 for ( const auto& env1 : r a n g e ) {
21 if ( ( ( ! r e l 5 P −> c o n t a i n s ( Tuple<RamDomain , 1 > ( { env1 [ 1 ] } ) ) ) &&
22 ( ! r e l 2 I −> c o n t a i n s ( Tuple<RamDomain , 1 > ( { env1 [ 1 ] } ) ) ) ) ) {
23 Tuple<RamDomain ,1> t u p l e ( { ( RamDomain ) ( env1 [ 1 ] ) } ) ;
24 r e l 4 n e w I −> i n s e r t ( t u p l e ) ;
25 }

26 }

27 }

28 }

29 if ( r e l 4 n e w I −>empty ( ) ) break ;
30 r e l 2 I −> i n s e r t A l l (* r e l 4 n e w I ) ;
31 {

32 auto r e l 0 = r e l 3 d e l t a I ;
33 r e l 3 d e l t a I = r e l 4 n e w I ;
34 r e l 4 n e w I = r e l 0 ;
35 . . .
36 }

37 }

Figure 3.15: Running example: range program C++

the Datalog program we employed an index on relation E resulting in significantly

reduced runtime complexity. Suppose we had another access to relation E on both u

and v attributes, i.e., E(u,v). A naive implementation would be to have two indices

defined by the lexicographical orders defined by the sequences of variables with

lexicographical orders u and u ≺ v, respectively. However, the minimal solution

would be to have only one index, namely, one with the lexicographical order u ≺ v

as it subsumes the index with only u. �
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3.6 Specialising Data Structures

The final phase of Soufflé yields a concrete analyser. Here the ADT of data struc-

tures are compiled with concrete data-structures implementations (e.g., B-Trees,

Tries, etc.). Therefore, if B-Trees are selected for each ADT, a specialised set of

B-Trees will be instantiated.

Among various types of balanced search trees, B-Trees, which were originally

designed for secondary storage data-structures, are known to be the most mem-

ory efficient and cache effective data-structures. Therefore, we employ in-memory

B-Trees as our primary data-structure for storing very large relations to obtain per-

formance. We have found that Tries exhibit good performance on relations with

small numbers of attributes. Both data-structures implement the same ADT and are

interchangeable. For relations with a large number attributes, the table is stored in

a blocked list and indices contain pointers pointing to the records in the list in order

to save memory.

In the case, no annotations are provided by the user in the Datalog program,

each concrete data structure implementations are inferred based on a heuristic cri-

teria.

Unfortunately, it is not possible to decide based on the dimensions of a relation

or the number of indices whether a B-Tree or Trie is better suited. It very much

depends on the spatial distribution of the stored data points. And this is only known

during execution. Thus, we argue, that we can only make a rough judgement to

prune the options. Larger dimensional data is less likely to be dense, thus we pick

B-Trees by default, Tries for lower-dimensional cases. But which option is best

depends on the analysis data, and is thus to be fine-tuned for relevant relations by

the user. From our empirical analysis, we derive the following decision table on

what concrete data-structure implements which logical relation:
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# of Number of Indices

attributes 0−1 ≥ 2

0 flag -

1−2 Trie Trie

3−5 B-tree B-tree

6+ B-tree blocked list + indirect B-tree index

3.7 Parallelisation
To exploit parallelism we extend RAM to include the parallel statement par. The

semantics of parS 1|| . . . ||S k endpar is that statements S 1, . . . ,S k are executed in par-

allel. The parallel statement is finished when all statements S 1, . . . , S k have been

terminated. The execution has three phases. In the first phase for each statement a

thread is spawned, in the second phase the threads execute the statements, and in the

third phase a barrier is imposed among all threads to ensure that the parallel state-

ment does not finish execution before all statements of the parallel statement have

terminated. The parallel execution assumes that there is no data race among relation

read/write accesses. The synthesis process is responsible for producing code that

does not contain races since the consistency is not enforced by the abstract machine.

Apart from specialised B-Tree and Trie data structures for non-parallel exe-

cution we fully support parallel execution. A Datalog program provides ample of

opportunities for parallelisation. The most relevant code portions to parallelise are

the executions of nested join loop. For instance, the nested-loop join:

1 forall ( x ∈ R1 )

2 forall ( ( y , z ,w) ∈ { ( y , z ,w) ∈ R2 | y = x ∧ w = x} )

3 if ( z ∈ R3 ∧ x < R0 )

4 R0 := R0 ∪ {x}

can be parallelised by partitioning the relation R1 and distributing the partition

among multiple, parallel resources. However, to be a valid transformation, all op-

erations conducted within the nested-loop join have to be thread safe. Note that
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scanning, querying and checking for memberships are pure read-only operations

which can always be processed safely in parallel. The only critical operation is the

insertion of new values into R0 in the innermost loop. This update operation on the

set-representation of R0 needs to be synchronised. However, the synchronisation

only needs to protect concurrent inserts. A protection against e.g., concurrent scan

and insert operations is not necessary since such combinations cannot occur in a

RAM program produced by the semi-naı̈ve evaluation strategy.

To protect concurrent inserts for B-trees, several strategies are available. The

simplest one is to protect concurrent insertion operations by locking the entire tree,

thus sequentialising updates. Unfortunately, this also severely limits the parallel ef-

ficiency of the resulting code since due to lock contention, threads block each other

in the execution of insert operations. Consequently, a locking strategy involving the

underlying data-structure on a finer granularity is required.

For Tries the synchronisation operation for insertions can be implemented us-

ing atomic updates, thus realising a lock-free data-structure. Whenever a new node

is inserted, a null-pointer somewhere in the structure will be atomically updated

to point to the new node. If the update fails, the insertion procedure is simply re-

started. This lead to a highly scalable parallel implementation. Moreover, we intro-

duce an alternative data-structure that is based on geometrically encoded Tries [145]

that further boost parallel performance.

For B-trees on the other hand, the synchronisation is a bigger challenge since

insertions are not restricted to updating a single memory location. In the general

case, keys and child pointers need to be shifted and potentially parent nodes split and

re-balanced. The application of a fine-grained read/write locking scheme protecting

all the nodes potentially affected by an insert operation and releasing locks as early

as possible provided acceptable scalability on desktop systems. However, on multi-

socket server systems the continued exchange of updates on the lock associated to

the root node over the inter-chip buses caused a severe slow-down in performance

and scalability. As a result, even with the fine-grained locking parallelism on multi-

socket systems did not provide any net gains in performance.
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To overcome this limitation we adapted an optimistic locking schema used in

databases [51]. In this approach, every node in the tree is annotated by a version

number which will be updated upon every modification. When a thread is reading

a node while navigating the B-tree during an insert operation, it is recording the

version number before starting its operation and comparing it after determining the

next node to navigate to. If the version number remained unchanged, it continues

by navigating to the resolved node. However, if the version number changed, some

other thread has modified the content of the processed node while the read operation

was in progress. Thus, the obtained result may be wrong. To correct, the thread

simply restarts the read operation on the same node again.

Compared to the fine-grained locking, the optimistic locking approach does not

update any memory location (or lock state) when there are no conflicts – which is the

case in the vast majority of node traversals. Thus, communication between sockets

is significantly reduced, leading to largely superior parallel scalability compared to

the fine-grained locking solution.

The semi-naı̈ve algorithm exposes a high-level of parallelism for Datalog pro-

grams as shown in the experiments. The parallelism can be exploited at various

levels of the evaluation. There is a multitude of various parallelisation efforts of

Datalog in the past [146, 147, 148, 149, 150, 151, 152] mainly focusing on rewriting

techniques and top-down evaluations. We devise new parallelisation strategies for

the semi-naı̈ve algorithm ranging from fine grain-parallelism evaluating relational

algebra operations to coarse-grain parallelism of components in the SCC graphs.

The strategy at hand depends on the Datalog program and the nature of the un-

derlying parallel computer architecture, e.g., distributed computer cluster, shared-

memory multi-cores computers, and hardware accelerators including GPGPUs. In

the following we list four parallelisation strategies found in Datalog programs using

the semi-naı̈ve algorithm for bottom-up strategies:

• Connected components in the SCC graph that are not dependent on each

other, can be evaluated in parallel. The SCC graph represents a partial order

that resembles a task dependency graph. The only condition for evaluating a
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component is that its predecessors must be computed prior to itself.

• The discovery of the new knowledge in a strongly connected component can

be parallelised, i.e., if a component contains more than one recursively de-

fined relation, the new knowledge for each of the relations in the component

is computable in parallel.

• For each relation in a fixed-point iteration, the rules are evaluated in paral-

lel. Using a thread safe insert operation in data structures such as [145], all

concurrently processed rules can be insert into the same result relation.

• A relational algebra statement is performed in parallel. There are no loop-

carried data-dependencies of the search operations in a relational algebra

statement. To avoid data races writing the result, we use concurrent insert

support from data structures [145].

3.7.1 Component Parallelism

One possibility to synchronise the evaluation of components in the SCC Graph are

barriers. For each component there exists a barrier that can be passed as soon as

all predecessor components in the SCC graph have been evaluated. However, our

abstract machine has no notion to express general task dependencies. Neverthe-

less, the parallel statement is an implementation of a barrier, i.e., all statements of

the parallel statement have to be finished before exiting the parallel statement. To

exploit the component parallelism with the parallel statement, the SCC graph is

converted to a series-parallel graph. The conversion gives an algebraic represen-

tation of the SCC graph using the sequence and parallel statement of the abstract

machine. The algorithms for converting a generic task graph to a series parallel

graph are introduced in [153, 154] such that the series-parallel graph still adheres

to the dependencies of the SCC graph. An example is demonstrated in Figure 3.16.

The SCC graph shows four components consisting of a single relation each. Rela-

tion B and C depend on A and the relation D depends on B, and C. By converting

the graph to a series-parallel algebraic representation as shown in the figure, the best
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A

B C

D

<A>;

par

<B> ||

<C>

endpar;

<D>

Figure 3.16: Example: Converting a SCC graph/task dependence graph to a series-parallel
graph. The components <A> to <B> are further expanded for evaluating the
relations in the components

possible coarse-grain parallelism in components is given. Note that graphs that are

not series-parallel graphs are approximated by a series-parallel graph, that adheres

to the original dependencies. The coarse-grain component parallelism is suitable

for clusters. However, the component parallelisation will be sensitive to the number

of parallel components in the SCC graph and the computation time of the compo-

nents. Since the SCC graphs depends on the Datalog program which is normally

small, the available parallelism will be limited by the program analysis itself rather

the input programs to be analysed.

3.7.2 Parallelising Relations in components

The fixed-point loop for a component permits the parallelisation in two parts: (1)

the computation of the new knowledge for each relation can be computed in parallel

since the computation does not cause a data-race, and (2) for all relations the new

knowledge can be merged in parallel to the current knowledge after computing the

new knowledge. For this parallelisation strategy only two synchronisation points are

required: the point after computing the new knowledge and the point after merging

the new knowledge with the current knowledge.

3.7.3 Parallelising Rules of a Relation

Parallelising the evaluation of rules of a relation is not for free. Each rule executed

in parallel requires its own new/delta relation that imposes book-keeping overheads.

After computing the rules in parallel, a merge operation filters out duplicates among

the result relations. The filtering incurs a sequential cost that cannot be parallelised
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and the parallelisation has to outweigh the costs of filtering. This strategy is suitable

for multi-cores with shared-memory architectures. Profile-guided compilation can

be used to guide the code generation, which rules should be parallelised (a benefit is

expected) and which are not. However, by exploiting thread-save concurrent inserts

the final merge phase is eliminated; all concurrent rules can insert into the same

relation.

3.7.4 Parallelising Relational Algebra Operations

This parallelisation strategy is not specific to our Datalog engine and there exists a

large body of related work (e.g., see [155]) to perform relational algebra operations

in parallel. Various fine-grain architectures ranging from multi-cores to hardware

accelerators including GPGPUs can be used to execute relational algebra operations

in parallel.

3.8 Experiments

In this section we present the overall performance results of Soufflé. We follow

these results up in Chapter 4 where we focus specifically on indexing schemes.

We perform an evaluation which compares Soufflé to a state-of-the-art Data-

log engine, namely, PA-Datalog. All experiments are performed on two industri-

ally motivated benchmarks. The experiments evaluate the Soufflé runtime, memory

usage, index data structure usage and performance improvements using parallelisa-

tion.

3.8.1 Experimental Setup

3.8.1.1 Platform

Our experiments were performed on a 4 Core, 8 Hardware Threads, Intel(R)

Core(TM) i7-7700K CPU at 4.20GHz with 64GB of physical RAM running Ubuntu

16.04.3 LTS on the bare-metal. The experiments were conducted in isolation with-

out virtualisation so that runtime results are robust. Soufflé executables were gen-

erated using GCC 7.3.1.
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Program #Rules #Relations
sec1 250 325
sec2 254 329
sec3 245 320

Table 3.1: Datalog program sizes for
cloud security analysis

Dataset #Facts
N1075 3,515
N2340 3,503
N3500 4,340
N3511 4,290
N9087 4,343

Table 3.2: Virtual network dataset sizes

Dataset # Facts Dataset #Facts
lu-index 4,396,394 pmd 8,388,217
lu-search 4,396,394 fop 8,769,560
bloat 4,468,277 xalan 8,670,966
eclipse 4,389,763 hsqldb 9,007,087
antlr 8,319,095 chart 8,743,728
jython 5,203,400

Table 3.3: DaCapo dataset sizes

3.8.1.2 Benchmarks

We perform our evaluations using two real-world sets of benchmarks: namely, net-

work analysis and program analysis benchmarks. These benchmarks are based on

the industrial case studies in Chapter 6. These use cases are of very large scale,

where the Datalog programs contain hundreds of rules and relations and produce

giga-tuple output relations.

Benchmarks-I: Cloud Security Analysis. The set of benchmarks are from sev-

eral reachability properties of Amazon virtual networks that are manually encoded

into Datalog. The benchmarks consist of three analysis workloads (i.e., three Data-

log programs), each encoding specific reachability properties and security queries.

We name these three programs as sec1, sec2, and sec3, where the numbers of

rules and relations of these programs are shown in Table 3.1. We evaluate the pro-

grams on five virtual network datasets that vary in complexity: networks N1075 and

N2340 have less complexity whereas networks N3500, N3511, and N9087 are more

complex in terms of their network connectivity. The EDB sizes (i.e., total number

of tuples in all input relations) of the five virtual network datasets are summarised

in Table 3.2.

Benchmark-II: Program Analysis. The second set of benchmarks are from the
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Doop program analysis library that performs points-to analyses for Java programs;

Doop is publicly available and open source [28]. Specifically, a Java program is

encoded as an EDB (i.e. input relations) and the points-to analysis is expressed as

a Datalog program. Doop’s points-to analysis has been used to analyse very large

libraries such as the Oracle JDK [31]; as a result, it requires very fast execution

and low memory footprints in order to be solved in a feasible time and with feasible

resources.

The Doop analysis workloads have different parameterisable precision, which

depend on (1) how concrete Java objects are abstracted to a finite set of objects

in a sound fashion and (2) how much context is stored for each variable. For

example, a context could be a trace over last few call-sites or receiver object of

a method call. In our testings, we use three representative precision settings, 1-

object-sensitive+1-heap (1o1h), 2-object-sensitive+2-heap (2o2h), and 3-object-

sensitive+3-heap (3o3h).

Each of these precision settings corresponds to a Datalog program containing

496 relations and 469 rules. However, increased precision leads to some relations

having more attributes and facts, and more complex rules. Each analysis program

will be applied to 11 datasets from the DaCapo06 benchmark suite [156], where the

sizes of these datasets are summarised in Table 3.3.

3.8.2 Experimental Results

3.8.2.1 Synthesis and Compilation

The analysis specified in Datalog has direct impact on the synthesis and compilation

in the Soufflé framework. In Figure 3.17 we compare synthesis (code generation)

and compilation times (compiling C++ to a binary) for each analysis benchmark.

We can see that synthesis is negligible compared to compilation, requiring approx.

0.1 seconds to generate C++ code. Compilation times for the analyses range from

1.8 - 2.8 minutes. These times are typical for large scale static analyses, however the

times vary depending on factors aside from code size, including number of unique

indexes, index sizes etc.
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Figure 3.17: Synthesis and compilation runtimes
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(f) Memory usage of 3o3h program

Figure 3.18: Doop program analysis experiments
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(e) Runtime of sec3 analysis

N10
75

N23
40

N35
00

N35
11

N90
39

0

2

4

6

0.
38

0.
35

4.
5

4.
6

3.
7

M
em

or
y

U
sa

ge
(G

B
)

Soufflé
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Figure 3.19: Network security experiments

3.8.2.2 Performance Comparison of Indexing Data Structures

In this section we compare different types if indexing data structures. Here we jus-

tify our use of B-Trees compared to hashed indexes that are used in engines such

as Flix [27] and µZ [37]. In Figure 3.20a and 3.20b we compare the average rel-

ative runtime, and memory usage respectively, of two hash maps implementations.

Values lower than 1 indicate slower performance and more memory usage than B-

Trees. We summarise the hashing data structures below:

• Unordered Hashset (hash): a hash-based data structure using STL’s unordered

sets promising fast lookups; must recursively hash each relation/tuple

• Ordered Hashset (rb): Similar to the above, but uses STLs ordered sets; based

on red-black trees
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The results show that both hashing implementations exhibit sub-par perfor-

mance in terms of speedup and memory usage compared to the B-Tree indexing

approach of Soufflé. Unordered hashing (hash) has its peak in performance, on

the 2o2h analysis but significantly drops off in runtime performance for the more

heavy weight 3o3h. The ordered hashing (rb) remains stable for all program anal-

yses, exhibiting a 100alternative approach consume a considerable amount of more

memory and appear to degrade as the size of IDBs increase (i.e., in more precise

analyses). Between datasets there was very little variation. We observed a runtime

standard deviations ranging from 0.03-0.01 (hash) and 0.01 (rb). For memory us-

age we observed a standard deviation ranging from 0.1 - 0.008 (hash) and 0.008

- 0.002 (rb). The results hold (both for runtime and memory) when the amount of

cores are increases, in fact the relative runtime performance of hashing degrades

very slightly compared to B-Trees when more cores are used.

The cloud security benchmarks similarity demonstrate the superior perfor-

mance of B-Trees compared to hashing. For all analyses, sec1, sec2 and sec3,

both hashing approaches perform slower than B-Trees and consuming more mem-

ory. However, there is more variability in the hash results, i.e., a large standard de-

viation. We therefore, break down the results further. For the dataset N-2340, hash

performs better for all analyses (sec1, sec2, sec3), rb performs very uniformly all

all datasets, 3.4x more runtime and 3.1x more memory usage. For N-1075, hash

performs at 1.5x slower (resp. 0.6) for sec1, 3.1x (resp. 0.32) for sec2 and 46.5x

(resp. 0.02) for sec3. Memory variance is small, ranging from 2.8x - 3.5x (resp.

0.35 - 0.2) more memory. rb ranges from 2.8x (resp. 0.2) to 2.8x (resp. 0.35) more

runtime and 2x (resp. 0.49) to 2.9x (0.34) more memory usage.

For the larger benchmarks on average sec1 took 1.8x (resp. 0.56) more run-

time and 2.5x (resp. 0.39) more memory. For sec2 and sec3, both hash and rb

timed outed out after 12 hours on larger datasets (N-3500, N-3511 and N-9087)

hence we do not include them in the results in Figure 3.20a and 3.20b.

Overall, as shown in Chapter 6, hashing has a place in Datalog engine de-

sign, when limited to small sized, less computationally intensive data processing
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Figure 3.20: Relative alternative indexing data structure comparison

(cf. 7.2.4 [52]).

3.8.2.3 Performance vs PA-Datalog

The results in Figures 3.18 and 3.19 show significant speedups using Soufflé com-

pared to PA-Datalog. For the 1o1h, 2o2h and 3o3h analyses speedups ranging

from 3.5-6.0, 5-9.2 and 5.4-6.8 are observed, respectively. Moreover, significant

memory improvements are observed. For the 1o1h, 2o2h and 3o3h, memory im-

provements of 3.9 - 4.7, 2.8 - 3.1 and 2-2.1 are observed. For the cloud security

benchmarks PA-Datalog was not able to compute the network benchmarks in un-

der 24 hours. We speculate this is due to a lack of code optimizations for the single

indexing regiment of PA-Datalog and its inability to find an appropriate dynamic

schedule. on analyses sec1, sec2, and sec3. Soufflé on the other hand, is able

to compute the benchmarks ranging from 136-176 seconds and 0.35-1.4 gigbytes

of memory on small benchmarks (N1075 and N2340) and 4710-5184 seconds and

3.7-14.1 gigabytes larger benchmarks (N3500, N3511, N9039).

3.8.2.4 Parallelism

We evaluate the performance of Soufflé with an increase in parallelism. We in-

crease the number of utilised cores/virtual threads in the computation and measure

the relative speed/memory usage improvement compared to a single core computa-

tion resulting from 2, 4, 6 and 8 threads. In Figure 3.21a,3.21b,3.21c the runtime
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Figure 3.21: Performance improvement of parallelisation for program analysis bench-
marks

improvements are shown for 2-8 core computations. The first observation is that

larger parallelism results in greater improvements for the more complex analyses

2o2h and 3o3h, than for 1o1h. Moreover, we can see that as more cores are used,

the improvement decreases.

The memory usage improvements are shown in Figure 3.21d,3.21e,3.21f. The

impact of parallel computation does not result in large memory usage variations,

with a slight increase in memory usage for more cores observed, likely resulting

from required overheads when utilising more than a single core.

For the cloud security benchmarks, a similar situation is observed. In in Fig-

ure 3.22a,3.22b,3.22c, the runtime improvements are shown. Benchmarks with the

N1075 dataset (the smallest dataset) shows no improvement with parallelism. The

other benchmarks show that as more cores are used, less runtime improvements

are observed. For these benchmarks there is little difference between 8 core and 6

core computations. Similar to the Doop benchmarks, Figure 3.21d,3.21e,3.21f show

little memory usages changes.
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Figure 3.22: Performance improvement of parallelisation for network analysis benchmarks

3.9 Discussion

3.9.1 Datalog Engines

Several engines such as [84, 45, 87, 68] claim to perform some compilation of

Datalog code. For example, Socialite [45] compiles Datalog to Java and in some

cases include parallelism to the semi-naı̈ve algorithm [45, 87]. The details of this

compilation in these engines are not described in detail in their publications. Our

understanding is that instead of using partial evaluation, they incorporate elements

of evaluation algorithms such as semi-naı̈ve in their generated code. Often the code

that is generated is then interpreted [68]. The work in [157] discuss the compilation

of Datalog using a push method, the method also uses elements of semi-naı̈ve and

nested loop joins but does not explicitly use interpreters and partial evaluation.

3.9.2 Partial Evaluation of Systems

Our approach to using partial evaluation strongly aligns with the approaches in

model-driven development [105, 106]. Here a model is a description of some de-

sired behaviour. Typically models are compiled into code that generates the de-

sired behaviour. Similar to our approach, in this work a model interpreter takes the
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model as an input and performs the behaviours specified in the model. Likewise,

the framework in [104] allows users to specify interpreters for which the system

compiles code derived automatically form the interpreter using partial evaluation.

In [158], an approach is described that uses partial evaluation to derive automati-

cally implementations of operating system components from generic specifications.

Similarly,the work in [159] uses partial evaluation to synthesise DSP circuits.

3.9.3 Methods of Synthesis of Analysers

In our context, program synthesis refers to the classical notion for it [160] i.e.,

constructing an executable program (i.e., program analyser) from a logical spec-

ification (i.e., in Datalog). We refer the reader to [161] for a survey of program

synthesis techniques and uses. While our framework can also be used to generate

C++ programs from Datalog specifications, our focus in this paper is efficient syn-

thesis of program analysers, i.e, we generate C++ programs that take a program as a

set of relations and produce analysis results in output relations. Several frameworks

have been cast as a synthesis of analysers and/or verifiers e.g.,[162, 163], and to

a lesser extent [164, 37, 30]. While our approach shares similarities of specifying

the analysis in a logical specification (Datalog Horn clauses) we generate a stand-

alone C++ analysis tool rather than solving clauses within the framework/engine

itself. As shown in our experiments, this results in significant performance gains.

The approach in [165], like us, uses partial evaluation of Datalog to improve per-

formance of logic engines. Additionally, several compilers perform efficient code

generation using synthesis techniques [166, 167]. This body of work, like our tech-

nique, synthesises efficient code form a logical specification; unlike our work, these

approaches generate general programs optimised at the assembly level, where as we

generate analysis tools optimised at the C++ level, adhering to a Datalog specifica-

tion.

3.9.4 Correctness

The correctness of our approach depends on the faithful implementation of the

RAM interpreter and the utilised C++ compiler. Proving the correctness of the
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analyser being correct to the Datalog specification is a monumental task, akin to

formal verification of compilers. Individual steps however can be reasoned with

given some assumptions. For example, given a Pdl be an arbitrary Datalog program

and a residual RAM program PRAM from Mix1 it can be seen that for all inputs, d,

~PRAM�IntRAM (d) = ~Pdl�Intdl(d). This can be shown by 1) demonstrating that non-

recursive operations can be modelled with RAM programs. The correspondence

between relational algebra and nested loop joins is well established (see [90, 168]).

It is easy to see, and that RAM operations are equivalent to nested loop joins. 2)

showing that the least fix point characteristics of semi-naı̈ve can be modelled in

RAM. By the semantics of the loop - exit construct (and book-keeping statements)

this can seen. We can also reason that the C++ with templates model the RAM. In-

tuitively, this can be seen however a formal proof would require the verification of

the code in the indexing scheme, C++ implementation of data structures modelling

relations etc. Without any clear semantics of C++ (with templates) a completely

formal proof is difficult. If it is deemed this avenue of research beneficial to the

community, we may pressure such proofs in the future.

3.9.5 Limitations

For the static analysis use case, Soufflé presents a clear advantage over evaluation

based approaches. However, for general Datalog programs Soufflé’s synthesis ap-

proach may result in worse performance. As we detail in Chapter 2, Section 2.2, if

specialisation (including C++ compilation) and runtime of the synthesised analyser

is greater than Datalog evaluation time of a program, partial evaluation obviously

is not worth it. For use cases when the ruleset of a Datalog program changes sig-

nificantly and evaluation time is small, Soufflé will perform worse than general

Datalog engines. For this Soufflé provides a RAM interpreter that allows small

Datalog programs to be interpreted. At a certain point however, it is beneficial for

the user to switch to synthesis/compilation mode, e.g., when the dataset becomes

large.
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In this chapter, we propose an automatic method of selecting and assigning

indexes to relations in order to speedup search operations in Datalog programs.

This work is aimed provides a theoretical perspective of the auto indexing technique

implemented in Soufflé. A large part of this chapter is described in [52] published

in Very Large Databases (VLDB).

4.1 Indexing in Datalog
Indexing is a crucial method of speeding up data retrieval in query engines e.g.,

DBMS [169], Datalog [45] and Prolog [170]. The need for indexing becomes in-

creasingly important for use cases such as static analysis. Since these use cases

consist of hundreds of rules and result in giga-tuple sized IDB relations [31, 28],

indexing is paramount to ensuring computations can be performed in a practical

amount of time. As a result, high-performance Datalog engines store relations as

in-memory, index-organised tables [136, 87].

4.1.1 Index Selection

The task selecting an appropriate index or set of indexes for a relation is non-trivial.

Each index that is assigned to a relation results in data being replicated and incurred

costs such as increased memory overhead, index maintenance etc.

The theory of the index selection has been formalised as the Index Selection

Problem (ISP) in the database literature. Index selection for relational database

management systems [171, 172, 173, 174] uses variants of the 0-1 knapsack prob-

lem, which has been shown to be NP-hard [175]. Deployed approaches such as

[176] use heuristics and integrate with what-if query optimisation calculations.

These techniques are surveyed in Bruno [177], but they are too computationally

expensive for large Datalog analyses. Essential differences include (i) indexes are

needed for both EDB and IDB relations, (ii) the Datalog relations are often wide

(not normalised), and thus they offer a very large number of possible indexes, and

(iii) the Datalog programs typically consist of hundreds of relations and hundreds of

deeply nested rules (see Table 3.1 in Section 4.4). As a result, the high performance

Datalog engines often require users to provide annotations to guide the choice of
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Access

Role Operation
a del
a insert
a select
rw insert
rw select
w insert
r select

Role

Name Role Doctor Role Patient
M.Smith a a
L.James rw r
N.Jones r rw
D.Cousins w n

Figure 4.1: EDB relations Access, Role

(r1) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, , “Con”),

!Role(uid, , ).
(r2) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, dbid, op),

Zone(dbid, “Doctor”), Access(l, op), !Role(uid, l, ).
(r3) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, dbid, op),

Zone(dbid, “Patient”), Access(l, op), !Role(uid, , l).
(r4) Err(s, e) :- Src(uid, s), Path(s, e), Sink(e, dbid, “Priv”),

Privileged(l1, l2), !Role(uid, l1, l2).

Figure 4.2: Datalog rules for vulnerability
detection

loop1: for all t1 ∈ Src do
loop2: for all t2 ∈ σx=t1(y)(Path) do
loop3: for all t3 ∈ σx=t2(y),z=“Con”(Sink) do
loop4: if σx=t1(x)(Role) = ∅ then

if (t1(y), t2(y)) < Err then
add (t1(y), t2(y)) to Err

end
end

end
end

end

Figure 4.3: Nested loop joins for Datalog
rule (r1)

Figure 4.4: Example Datalog analysis for vulnerability detection

indexes; for example, the Doop framework [28] uses a code-rewriting technique

that manually chooses an index for each relation and introduces “Opt” relations for

building multiple indexes on a relation. To allow widespread use of program analy-

sis, we must move beyond approaches that put the optimisation burden on the user,

who requires painstaking trial and error over hundreds of rules and annotations.

Example 16. To illustrate index selection in Datalog engines, we present an exam-

ple in Figures 4.1 and 4.2 that depicts a simplified Datalog analysis, used for de-

tecting the vulnerabilities of a web-based hospital management system. The source

code of the management system is converted into EDB relations, e.g., Src, Sink,

Role, Access, Zone, and Priv, where relations Role and Access for access pol-

icy are shown in Fig. 4.1. Datalog rules are constructed for the security analysis,

enumerating all possible vulnerability cases. This part of the ruleset is shown in
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Fig. 4.2; we omit the Datalog rules for computing the IDB relation Path that de-

fines the control flow of the source code. For example, the first rule asserts an error

if a user connects to a database via operations grouped as “Con” (i.e., connect) but

without a role. The results of the analysis, determining the set of error paths, are

stored in the IDB relation Err. �

4.1.2 Auto-Indexing

In this thesis chapter, we formulate an automatic indexing scheme for Datalog com-

putations, aiming to achieve the best performance/memory usage while not requir-

ing the intervention of end users. Our approach was motivated by experiences with

industry use cases involving large scale static analysis performed with the state-

of-art compilation-based Datalog engine Soufflé [31]. We found inadequate per-

formance until we introduced our new technique into Soufflé, however the ideas

should apply more broadly, to any engine that computes a Datalog program in suc-

cessive phases: initially there are analysis phases that consider only the rules and

produce code to perform a query evaluation plan resembling a nested loop join.

These are followed by an evaluation phase that executes the compiled query on the

facts, producing a materialised IDB considers only the rules. Our auto-indexing is

conducted at one of the analysis phases, and it chooses indexes that improve the

performance of the compiled code.

The key insights of this chapter are as follows. We identify that the com-

piled evaluation is built from frequently repeated calls to simple selections, each

on a single relation (which might be in EDB or in IDB). We call these primitive

searches, and a primitive search returns the tuples in a relation which satisfy a pred-

icate that involves testing some of the attributes for equality to a given value. For

example, Fig. 4.3 depicts the evaluation logic that is compiled for the Datalog rule

(r1) in Fig. 4.2 where the first, second, and third attributes of a relation are as-

sumed to be accessed by x, y, and z, respectively. There are three primitive searches

σx=t1(y)(Path), σx=t2(y),z=“Con”(Sink), and σx=t1(x)(Role), where the first one looks

up all tuples in relation Path whose first attribute value is equal to t1(y) — the sec-

ond attribute value of a tuple t1 from relation Src. Note that each primitive search
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is a very restricted kind of range query: for each attribute, we are either checking

equality to a value, or else we accept any value in that attribute.

The next insight is that the evaluation of a primitive search can be greatly sped

up if the relation has a clustered B-tree [178] index that covers the search predicate.

This means that the set of attributes where equality is checked, forms a prefix of the

sequence of attributes used to lexicographically define the index. For example, the

primitive search σx=v1,z=v3 is covered by the index ` = x ≺ z (that means, an index

using x followed by z as its key) but not by `′ = x ≺ y ≺ z. When a search is covered

by an index, the tuples that match the search are a contiguous part of the scan of the

index leaves. Accessing these can be much faster than a full table scan, which is

what an engine would use in the absence of an index. Because the relations are so

large, we find that queries are typically infeasible in practice unless there is some

index to cover every primitive search among the rules. On the other hand, each index

uses considerable space, and so we are driven to minimise the number of indexes

constructed. Thus we define an abstract task, the Minimum Index Selection Problem

(MISP), aiming to select the minimum number of indexes to cover all primitive

searches used in the ruleset. We notice that this can be significantly fewer than one

index for each primitive search on the relation. For example, the index ` = x ≺ y ≺ z

covers primitive searches σx=v1 , σx=v′1,y=v′2
, and σx=v′′1 ,y=v′′2 ,z=v′′3

.

Finally, we are able to solve the MISP efficiently, using a relationship between

the search space of indexes and the search space of search chains among lexico-

graphic orders. We prove that the optimal MISP solution can be constructed from

the optimal (i.e., with the minimum cardinality) search chains that cover all primi-

tive searches. Then we apply the combinatorial result of Dilworth’s theorem [179]

to compute the minimum number of search chains, and thus the minimum number

of indexes, in O(|S |2.5 + |S |2 ·m) time, for a set S of primitive searches on a relation

with m attributes. This is much faster than a brute force examination of all possible

sets of indexes on this relation, which would have a time complexity of O(2mm
).

We have implemented our index selection approach as the default indexing

technique of the Soufflé Datalog engine. We found that the computation over-
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Lex Search Predicate ρ(`,a,b)
Literal Primitive Search Lower Bound a Upper Bound b Naı̈ve `s Minimum `s
Role(v1, , ) σx=v1 〈v1,⊥,⊥〉 〈v1,>,>〉 x x ≺ y ≺ z
Role(v1,v2, ) σx=v1,y=v2 〈v1,v2,⊥〉 〈v1,v2,>〉 x ≺ y x ≺ y ≺ z
Role(v1, ,v3) σx=v1,z=v3 〈v1,⊥,v3〉 〈v1,>,v3〉 x ≺ z x ≺ z
Role(v1,v2,v3) σx=v1,y=v2,z=v3 〈v1,v2,v3〉 〈v1,v2,v3〉 x ≺ y ≺ z x ≺ y ≺ z

Table 4.1: Primitive and lex searches for relation Role in the nested loop joins for rules
(r1)–(r4) in Fig. 4.2

head for our index selection is negligible, i.e., no slowdowns were observed during

compilation. Using our technique, Soufflé has managed to efficiently compute pro-

gram analyses typically deemed too large for Datalog engines, and moreover, the

performance exhibited by Soufflé has been on a par with recent state-of-the-art

hand-crafted analyzers [180].

We remark that our scheme is based on clustered B-tree index structures kept

in-memory. If multiple indexes are needed, we materialise replicas of the relation so

that each index can be clustered. Experience with hash indexes in Soufflé has not

been encouraging (see Chapter 3), and the highly specialised nature of the primitive

searches are also not suited to spatial index structures such as R-trees.

4.2 Indexing Relations
In this section, we first introduce indexes to speed up primitive searches, and then

formally define our problem of minimum index selection.

After constructing the nested loop joins for all rules in a Datalog program, the

most critical factor to the performance of evaluating the Datalog program is how

the primitive searches are conducted. Obviously, a primitive search can be achieved

by conducting a linear scan of all tuples of the relation and checking the search

predicate against each tuple. However, the time complexity of linear scan over a

relation with n tuples is O(n), which is too costly for large relations considering that

each primitive search is invoked repeatedly many times. In this paper, we aim at

creating indexes for relations to speed up the primitive searches, and we study the

following problem whose formal definition will be given in Section 4.2.

Problem 1. Given the primitive searches in the nested loop joins of all rules in a
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Datalog program, we study the problem of creating indexes for relations to speed

up all the primitive searches.

4.2.1 From Primitive Search to Lex Search

Index-based Lex Search. To index on a relation, we first define an order among

tuples in a relation to make them comparable. Since a tuple may have several ele-

ments, an order of tuples is imposed by element-wise comparison using a sequence

over all attributes of the relation; that is, if the first elements of two tuples produce

a tie, the second elements are used and so forth. This comparison is known as a

lexicographical order. We denote an attribute sequence by ` = x1 ≺ x2 ≺ · · · ≺ xm

where ≺ denotes a chaining of elements to form a sequence. Then, given ` that is

formed by all attributes of a relation, a lexicographical order v` D×D is a total or-

der (i.e., reflexive, asymmetric, transitive) defined over the domainD of the relation

with respect to `. For two tuples a,b ∈ D, if (a,b) ∈ v` D×D, then we write a v` b

and we say that a is smaller than b with respect to `. Note that, (1) we have a v` a,

and (2) for any two different tuples a,b ∈ D, we have either a v` b or b v` a but not

both.

Given an ordered set of tuples, tuple lookups can be performed efficiently using

some notion of a balanced search tree, called an index, in which tuples can be found

in logarithmic time rather than in linear time. In this paper, we abstract away the

underlying implementation details of an index with an attribute sequence, and we

use ` to denote both an index and the attribute sequence based on which the index is

constructed. It is worth mentioning that different attribute sequences usually result

in different lexicographical orders, and thus different indexes. That is, for two tuples

a,b ∈ D and two attribute sequences ` and `′, it is possible that a v` b and b v`′ a.

For example, for a = 〈1,2〉 and b = 〈2,1〉 in R(x,y), we have a v` b and b v`′ a where

` = x ≺ y and `′ = y ≺ x.

Given an index `, we define a lex search as follows.

Definition 7 (Lex Search). A lex search σρ(`,a,b) is defined for a relation R ⊆D and
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its semantics is given by,

σρ(`,a,b)(R) = {t ∈ R | a v` t v` b}.

ρ(`,a,b) is a lex search predicate, where ` is an index on R, and the lower bound a

and the upper bound b are tuples inD.

Constructing Lex Searches from Primitive Searches. As lex searches can be ef-

ficiently conducted based on an index, we would like to transform each primitive

search σx1=v1,...,xk=vk(R) into an equivalent lex search σρ(`,a,b)(R). A lex search con-

tains two symbolic bounds a and b, as well as an index `, in the lex search predicate.

Thus, we need to construct a, b, and `, which will be discussed in the following.

We assume that the relation R has m attributes in total.

Firstly, we describe how to construct the lower bound a and the upper bound

b. If k = m, then all attributes of R are in the search predicate, and a = b and they

are trivially defined by the search predicate. Otherwise, the primitive search does

not specify all attributes of R in its search predicate, and unspecified values need

to be padded with infima and suprema values for lower and upper bounds, respec-

tively. We define an unspecified element for the lower/upper bound construction by

an artificial constant1 4, and let vk+1 = 4. We define a surjective index mapping

function i : {1, . . . ,m} → {1, . . . ,k +1} that maps the specified elements to their corre-

sponding constant values, and maps the unspecified elements to 4 (i.e., vk+1). The

construction of the lower and upper bound is performed by the functions lb and ub,

respectively,

a = lb(v1, . . . ,vk)

b = ub(v1, . . . ,vk)

that replace the unspecified 4 value with the infimum ⊥ j and the supremum > j of

the domain D j, respectively. Formally, the functions are defined as lb(v1, . . . ,vk) =

1We assume that 4 is not element of any of the domains Di.
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〈v′1, . . . ,v
′
m〉 where

v′j =


vi j if vi j , 4

⊥ j otherwise

and ub(v1, . . . ,vk) = 〈v′′1 , . . . ,v
′′
m〉 where

v′′j =


vi j if vi j , 4

> j otherwise

Secondly, we prove in Lemma 4 that given a = lb(v1, . . . ,vk) and b =

ub(v1, . . . ,vk), we have σx1=v1,...,xk=vk(R) = σρ(`,a,b)(R) if the k-th prefix of l is

{x1, . . . , xk}. Before that, we first define prefix set.

Definition 8 (Prefix Set). Given an attribute sequence (i.e., an index) ` = x1 ≺ x2 ≺

· · · ≺ xm, the k-th prefix of ` is {x1, . . . , xk} if k ≤ m, and it is {x1, . . . , xm} otherwise.

Lemma 4. Given a = lb(v1, . . . ,vk), b = ub(v1, . . . ,vk), and an index ` whose k-th

prefix is {x1, . . . , xk}, then

σx1=v1,...,xk=vk(R) = σρ(`,a,b)(R),

holds for any R ⊆D.

Proof. Without loss of generality, we assume that x1, . . . , xk are the first k attributes

of the relation R. Note that, if this is not the case, then we can conceptually reor-

ganise the columns of R.

We prove the lemma by induction on k. For the base case k = 1, it is trivial that

{t ∈ R | t(x1) = v1} = {t ∈ R | lb(v1) v` t v` ub(v1)}

holds for ` whose first attribute is x1, since lb(v1) = 〈v1,⊥2, . . . ,⊥m〉 and ub(v1) =

〈v1,>2, . . . ,>m〉. Assuming that this holds for k = n, we will show that it also holds
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for k = n + 1. By the induction hypothesis, we know that

{t ∈ R | t(x1) = v1, . . . , t(xn) = vn} =

{t ∈ R | lb(v1, . . . ,vn) v` t v` ub(v1, . . . ,vn)}

holds for index ` whose n-th prefix is {x1, . . . , xn}. Now, consider

{t ∈ R | lb(v1, . . . ,vn,vn+1) v`′ t v`′ ub(v1, . . . ,vn,vn+1)}

where the (n + 1)-th prefix of `′ is {x1, . . . , xn, xn+1}, we can rewrite it as

{t ∈ σxn+1=vn+1(R) | lb(v1, . . . ,vn) v` t v` ub(v1, . . . ,vn)}

where ` is obtained from `′ by swapping xn+1 with the attribute at position n + 1.

This is because

lb(v1, . . . ,vn,vn+1) = 〈v1, . . . ,vn,vn+1,⊥n+2, . . . ,⊥m〉

ub(v1, . . . ,vn,vn+1) = 〈v1, . . . ,vn,vn+1,>n+2, . . . ,>m〉

lb(v1, . . . ,vn) = 〈v1, . . . ,vn,⊥n+1,⊥n+2, . . . ,⊥m〉

ub(v1, . . . ,vn) = 〈v1, . . . ,vn,>n+1,>n+2, . . . ,>m〉

As a result, we have

{t ∈ R | lb(v1, . . . ,vn,vn+1) v`′ t v`′ ub(v1, . . . ,vn,vn+1)} =

{t ∈ R | t(x1) = v1, . . . , t(xn) = vn, t(xn+1) = vn+1},

and the lemma holds. �

From Lemma 4, to transform a primitive search σx1=v1,...,xk=vk(R) into an equiv-

alent lex search, the index for the lex search can be any sequence of all attributes

of R such that the first k attributes are x1, . . . , xk in an arbitrary order. Thus, we also

use ` = x1 ≺ · · · ≺ xk which is only a subsequence of the attributes of R to denote an
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index, since the chaining order of the remaining attributes is irrelevant for the lex

search.

Example 17. Consider the primitive searches in the second column of Table 4.1,

their corresponding lex searches are illustrated in the third to fifth columns, where

the third column shows the lower bound a, the forth column shows the upper

bound b, and the fifth column shows the index `. Here, given a primitive search

σx1=v1,...,xk=vk(R), the index is selected as ` = x1 ≺ · · · ≺ xk. Thus, each lex search

uses a distinct index. �

Remarks. The lex searches σρ(`,a,b)(R) constructed from primitive searches

σx1=v1,...,xk=vk(R), as discussed in above, are in a special form. That is, for any

attribute xi ∈ {x1, . . . , xk} we have a(xi) = b(xi) = vi, and for any attribute xi ∈

AR\{x1, . . . , xk} we have a(xi) = ⊥i and b(xi) = >i. Thus, the results of a lex search

form a consecutive interval in the lexicographical order of all tuples of R with re-

spect to `. As a result, any one-dimensional order-based index (e.g., B-tree) can

be used to implement `, and a lex search can be executed in linear-log time in the

size of the output in the worst case, i.e., O(|σρ(`,a,b)(R)| logn) where n is the number

of tuples in the relation R. It is worth mentioning that for general range searches,

we will need a multi-dimensional index (e.g., R-tree) to implement `, which has a

higher time complexity and runs slower than one-dimensional index such as B-tree.

Thus, in this paper we only consider the special range searches, which we refer to

as lex searches. Lex searches can be supported by one-dimensional indexes.

On the other hand, it is easy to construct an example such that the k-th prefix

of ` is not {x1, . . . , xk}, and the results of σx1=v1,...,xk=vk(R) do not form a consecutive

range in the lexicographical order of all tuples of R with respect to `. Thus, this

primitive search cannot be transformed into a lex search using index `, and thus

cannot be sped up by `. For example, for R(x,y) = {〈1,1〉, 〈1,2〉, 〈2,1〉} and ` = x ≺ y,

we have σy=1(R) = {〈1,1〉, 〈2,1〉}which is the first and third tuple in the lexicograph-

ical order `. In view of this, we say that an index covers a primitive search if it can

be used to speed up the primitive search by the special range search. We have the

following corollary.
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Corollary 1 (Index Cover). An index ` covers a primitive search σx1=v1,...,xk=vk(R)

for all R ⊆D if and only if the k-th prefix of ` is {x1, . . . , xk}.

As the lex search that is transformed from a primitive search is uniquely deter-

mined by the index and the primitive search, we focus our discussions on indexes

rather than lex searches in the remainder of the paper.

4.2.2 Minimum Index Selection

Due to the lower look-up time complexity of lex searches compared with that of

linear scan, indexes are essential for efficient Datalog program computations. How-

ever, when constructing indexes, the question remains: what is the best set of in-

dexes needed to cover all primitive searches for a given relation. In this Section we

define the minimum index selection problem.

Before formally defining our problem, we first establish some additional no-

tations. Firstly, we abstract a primitive search σx1=v1,...,xk=vk as its set of search

attributes, which we refer to as a search and is denoted by s = {x1, . . . , xk}. This is

because the constants v1, . . . ,vk are irrelevant to index creation. Secondly, given a

set S of searches and a set L of indexes on a relation R, we would like to know

whether L can cover S . Note that, since all primitive searches with the same set of

attributes (i.e., the same search) can be covered by the same index, in the following

when referring search set we use the set-based semantics. We formalise this via the

l-cover predicate.

Definition 9 (l-cover). Given a set S of searches and a set L of indexes on a

relation R, we define a predicate l-coverS (L) which is true if for every search s ∈ S ,

there exists an index ` ∈ L that covers s.

Then, based on the definition of l-cover, we would like to find the smallest set

of indexes that cover a search set S . The rationales of minimising the number of

indexes are as follows. Firstly, following Corollary 1, an index represented by an

attribute sequence ` may cover a multitude of searches assuming the elements of its

prefixes coincide with the attributes of the searches. For example, two searches s1 =

{x} and s2 = {x,y} on a relation can be covered by the same index `= x≺ y. Secondly,
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for a search that can be covered by multiple indexes, the benefits of the different

indexes are the same, i.e., they will result in the same running time. Thirdly, the

fewer the indexes, the lower the creation and maintenance costs of these indexes.

As indexes and searches on different relations are independent, we consider

each relation separately. We formulate our problem as follows.

Problem 2 (Minimum Index Selection Problem (MISP)). Given a set S of

searches on a relation R, the minimum index selection problem is to find a set of

indexes with the minimum cardinality such that all searches of S are covered by the

index set, i.e.,

fS = arg min
L:l-coverS (L)

|L|.

Example 18. Continuing Example 17, the set of searches in Table 4.1 is S ={
{x}, {x,y}, {x,z}, {x,y,z}

}
. It can be covered by two indexes `1 = x ≺ y ≺ z and

`2 = x ≺ z, which is shown in the sixth column of Table 4.1; this is smaller than

the four indexes used in Example 17. Indeed, two is the smallest number of indexes

to cover S , since it is easy to see that {x,y} and {x,z} cannot be covered by the same

index.

4.3 Computing The Optimal MISP
In this Section, we propose an algorithm to solve MISP optimally in polynomial

time. We begin with discussing the inviability of a brute-force approach.

4.3.1 Inviability of a Brute-force Approach

Before presenting our algorithm, we discuss the size of the search space of MISP.

If it is very large, then a brute-force algorithm is not viable, especially for high

performance engines.

Given a set S of searches on a relation R, let A be the set of attributes of R

that are relevant for the searches, i.e., A =
⋃

s∈S s. We use LA to represent the set

of all possible permutation/sequences that may be formed by the elements of A,

i.e., LA =
⋃

X⊆A,X,∅Pm(X). Here, Pm(X) denotes the set of permutations of a set

X which is the set of all possible sequences formed by all elements of X such that
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each element occurs exactly once. Now, we bound |LA|. Although constructing a

closed form is hard, it can be bounded by the following lemma.

Lemma 5. Given a set A of m attributes (i.e., A = {x1, . . . , xm}), the cardinality of

the set LA of all sequences of A is bounded by

m! ≤ |LA| ≤ e ·m!.

Proof. The lower bound is given by |Pm(A)| = m!, since Pm(A) ⊆ LA. The upper

bound is computed as follows,

|LA| =

∣∣∣∣∣∣∣∣
⋃

X⊆A,X,∅

Pm(X)

∣∣∣∣∣∣∣∣ =
∑

X⊆A,X,∅

|X|!

=
∑

1≤i≤m

(
m
i

)
i! = m!

∑
1≤i≤m

1
(m− i)!

= m!
∑

0≤i≤m−1

1
i!

≤ m!
∑
i≥0

1
i!

= e ·m!

where the second equality follows from the fact that, for any X ⊆ A and Y ⊆ A with

X , Y , we have Pm(X)∩Pm(Y) = ∅. �

Note that, the absolute error of the over-approximation of |LA| is small, i.e.,

e ·m!− |LA| = m!
∑

i≥m
1
i! =

∑
i≥0

m!
(i+m)! ≤

∑
i≥0

1
i! = e. The values of |LA| and the

relative error ε =
e·m!−|LA|
|LA|

of its over-approximation, for m varying between 1 and

9, is given in the table below:
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m |LA| ε ·100

1 1 171.828

2 4 35.914

3 15 8.731

4 64 1.936

5 325 0.367

6 1956 0.059

7 13699 0.008

8 109600 0.001

9 986409 ≈ 0.000

Recall that, MISP searches for the smallest subset of LA that covers all prim-

itive searches on a relation. Thus, a brute-force approach would require to iterate

through all subsets of LA. Then, the search space of a brute-force approach is

2LA = {L | L ⊆ LA}, and its size is |2LA | = 2|LA|. Using the approximation of |LA| in

Lemma 5, we obtain a complexity of O(2e·m!).

Theorem 2. A brute-force approach for MISP exhibits a worst-case time complexity

of O(2mm
).

Proof. As discussed above, the time complexity of a brute-force approach for MISP

is O(2e·m!). Then, this theorem follows from Sterling’s approximation of m!. Note

that, the approximation becomes more precise for a large m. �

As a result, a brute-force approach becomes intractable very quickly. For ex-

ample, for a relation with 4 attributes, a brute-force MISP algorithm has to test

264 ≈ 1.8×1019 different subsets of LA for coverage and minimality.

4.3.2 Computing MISP via Chain Cover

In view of the inviability of a brute-force approach, we propose to solve MISP via

computing a chain cover of the searches. In the following, we first formulate the

minimum chain cover problem (MCCP) and prove that an optimal MISP solution

can be obtained from an optimal MCCP solution. Then, we propose a polynomial-

time algorithm MinIndex that solves MISP optimally.
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4.3.2.1 Minimum Chain Cover Problem

We define a search chain C as a set of searches {s1, . . . ,sk} that subsume each other

and form a total order, i.e., C ≡ s1 ⊂ s2 ⊂ · · · ⊂ sk. A search chain is related to an

index as follows.

Lemma 6. Given a search chain C = s1 ⊂ s2 ⊂ · · · ⊂ sk, we can construct an index

to cover all searches of C.

Proof. We prove this lemma by constructing such an index that covers all searches

of C. Let si − si−1 denote the set of attributes of si that are not in si−1. Then, it is

easy to see that any index conforming with s1 ≺ (s2−s1) ≺ · · · ≺ (sk−sk−1) is such an

index, i.e., attributes of si+1−si appear later than attributes of si−si−1. Note that, the

attributes of s1 and the attributes of si− si−1 can be ordered arbitrarily, respectively,

within their sets of attributes. �

Following Lemma 6, we say that a search chain C covers all its searches, i.e.,

C covers s for every search s ∈ C. Then, we would like to know whether a set C

of search chains can cover all searches in a search set S . We formalise this via the

c-cover predicate.

Definition 10 (c-cover). Given a set S of searches and a set C of search chains on a

relation R, we define a predicate c-coverS (C) which is true if for every search s ∈ S ,

there is a search chain C ∈ C that covers s, i.e.,

c-coverS (C) = ∀s ∈ S : ∃C ∈ C : s ∈C.

Now, we are ready to define our minimum chain cover problem, which aims to

find the smallest set of search chains to cover all searches in a given set of searches.

Problem 3 (Minimum Chain Cover Problem (MCCP)). Given a set S of searches

on a relation R, the minimum chain cover problem is to find the minimum set gS of

search chains to cover S , i.e.,

gS = arg min
C:c-coverS (C)

|C|
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The rationality of defining MCCP is that given a setC of search chains covering

all searches in a search set S , we can construct a set of indexes of cardinality |C| to

cover S by following Lemma 6. Thus, the smaller the cardinality of C the better.

Moreover, there is a one-to-one correspondence between solutions of MISP

and solutions of MCCP, as proved by the following lemma.

Lemma 7. Given any search set S on a relation R, there is a one-to-one correspon-

dence between search chains C that cover S and indexes L that cover S , such that

|C| = |L|.

Proof. Following from Lemma 6, we know that given any set C of search chains

that cover S , we can construct an index set of cardinality |C| to cover S . Thus, what

remains to be proved in this lemma is that given any index `, we can construct a

search chain C to cover all searches that are covered by `.

Given an index ` and a set S of searches, we let S ` denote the subset of S that

are covered by `. We will show that S ` is a search chain. Firstly, it is easy to see

that for any s,s′ ∈ S `, we have |s| , |s′|. Secondly, following Corollary 1, we know

that for any s,s′ ∈ S `, we have either s ⊂ s′ or s′ ⊂ s, since the k-th prefix of ` is a

subset of a (k + 1)-th prefix of `.

Thus, the lemma holds. �

Following from Lemma 7, we have the following corollary, which states that

we can obtain an optimal MISP solution from an optimal MCCP solution.

Corollary 2. Given any search set S on a relation R, an optimal MISP solution can

be obtained from an optimal MCCP solution.

4.3.2.2 A Polynomial-time MISP Algorithm

We have shown in Corollary 2 that we can obtain an optimal MISP solution from

an optimal MCCP solution. The good news is that MCCP can be solved optimally

in polynomial time by the Dilworth’s Theorem [179], which states that in a finite

partial order, the size of a maximum anti-chain is equal to the minimum number

of chains needed to cover its elements. An anti-chain is a subset of a partially
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Figure 4.5: Running example of computing MCCP for searches {x}, {x,y}, {x,z}, and
{x,y,z}.

ordered set such that any two elements in the subset are unrelated, and a chain is a

totally ordered subset of a partial ordered set. Although Dilworth’s Theorem is non-

constructive, there exists constructive versions that solve the minimum chain cover

problem either via the maximum matching problem in a bipartite graph [181] or

via a max-flow problem [182]. Both problems are optimally solvable in polynomial

time.

The general idea of computing a minimum chain cover for a search set S is as

follows. Firstly, a bipartite graph G = (U,V,E) is constructed such that there is a

vertex in both U and V for each search s ∈ S , and there is an edge between s ∈ U

and s′ ∈ V if s is a proper subset of s′ (i.e., s ⊂ s′). Then, there is a one-to-one

correspondence between sets of search chains of S and matchings of G. Recall that,

a matching of G is a setM of edges of G such that each vertex of U and V appears

at most once inM. For example, given a matchingM⊆ E, a set of search chains of

cardinality |S | − |M| can be constructed. Specifically, chains are constructed from

the matching set by finding the searches that start a chain, i.e., are the smallest

element of a chain and do not have a predecessor. As a result, a minimum set of

search chains can be constructed from a maximum matching of G. The pseudocode

of computing a minimum chain cover is shown in Algorithm 5.

Then, given a set C of search chains that cover the search set S , a set L of

indexes of the same cardinality as C can be constructed to cover S by following

the proof of Lemma 6. The pseudocode is shown in Algorithm 6, and denoted by

MinIndex.
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Input: A set S of searches
Output: A minimum chain cover C of S

1 M←MaximumMatching(S ,S , {(s,s′) ∈ S ×S | s ⊂ s′});
2 Initialize C to be the empty set;
3 for all u1 ∈ S s.t. @(u0,u1) ∈M do
4 Find max. set {(u1,u2), (u2,u3), . . . , (uk−1,uk)} ⊆ E ;
5 Add u1 ⊂ u2 ⊂ u3 ⊂ · · · ⊂ uk−1 ⊂ uk to C ;
6 end
7 return C

Algorithm 5: MinChainCover(S )

Input: A set S of searches
Output: A minimum set L of indexes to cover S

1 C←MinChainCover(S );
2 Initialize L to be the empty set;
3 for all s1 ⊂ s2 ⊂ · · · ⊂ sk−1 ⊂ sk ∈ C do
4 Add to L an arbitrary index conforming with

s1 ≺ s2− s1 ≺ · · · ≺ sk − sk−1;
5 end
6 return L

Algorithm 6: MinIndex(S )

The correctness of MinIndex (Algorithm 5 and Algorithm 6) directly follows

from Corollary 2 and the Dilworth’s Theorem [179]. Let m be the number of distinct

attributes in S ; note that, m is at most the number of attributes in a relation. Then,

the time complexity of MinIndex is bounded by the following theorem.

Theorem 3. The time complexity of MinIndex (Algorithm 5 and Algorithm 6) is

O(|S |2.5 + |S |2 ·m).

Proof. The time complexity follows from the facts that, constructing the bipar-

tite graph G takes O(|S |2 ·m) time, computing the maximum matching in G takes

O(|S |2.5) time, and both constructing chain cover from matchingM and construct-

ing indexes from chain cover take O(|S | ·m) time. �

Note that, as both |S | and m are not large in practice (e.g., they are at most

hundreds), the running time of MinIndex usually is negligible compared with the

total running time of a Datalog program.

Example 19. Consider the search set S = {{x}, {x,y}, {x,z}, {x,y,z}} in Table 4.1
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that needs to be covered by the smallest set of indexes. First, we construct a bi-

partite graph with nodes in S in both partitions. The edge set is given by the

strict subset relationship between a search pair, i.e., ({x}, {x,y}), ({x}, {x,z}), ({x},

{x,y,z}), ({x,y}, {x,y,z}) and ({x,z}, {x,y,z}). The bipartite graph is depicted in

Fig. 4.5a, and the matching set of the maximum matching solution is depicted in

Fig. 4.5b. The solution of the maximal matching algorithm is given by the matching

set,M = {({x}, {x,y}), ({x,y}, {x,y,z})}. With Algorithm 5 we obtain a chain cover C

containing the following chains, {x} ⊂ {x,y} ⊂ {x,y,z} and {x,z} that are depicted in

Fig. 4.5c.

Then, Algorithm 6 converts the chain cover to indexes. The first chain is

converted as follows: {x} ⊂ {x,y} ⊂ {x,y,z} ⇒ {x} ≺ {x,y} − {x} ≺ {x,y,z} − {x,y}

⇒ x ≺ y ≺ z. The second chain consists of a single element {x,z}. This chain in-

duces two possible indexes, i.e., x ≺ z and z ≺ x, and the choice is arbitrary to find

an optimal solution for the MISP problem.

4.4 Experiments
In this Section, we evaluate our auto-indexing scheme by measuring an implemen-

tation of it, and also some alternative schemes, in a production-strength Datalog

engine Soufflé [31]. The outcome of our evaluations is to validate the following

claims.

Claim-I: Negligible Index Selection Overhead. The time taken for selecting the

indexes using our auto-indexing scheme does not substantially slow down

the compilation phase compared to alternative indexing schemes.

Claim-II: Significant Performance Impact. Our auto-indexing scheme provides a

good combination of fast runtime evaluation and low memory footprint.

Claim-III: Competitive with Hand Optimisations. Our auto-indexing scheme de-

livers runtime evaluation speed and memory usage that compare well with

what can be obtained by hand optimisations.
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Figure 4.6: Soufflé code generation and compilation time

4.4.1 Experimental Setup

4.4.1.1 Platform

Our experiments were performed on a 4 Core, 8 Hardware Threads, Intel(R)

Core(TM) i7-7700K CPU at 4.20GHz with 64GB of physical RAM running Ubuntu

16.04.3 LTS on the bare-metal. The experiments were conducted in isolation with-

out virtualisation so that runtime results are robust.

4.4.1.2 Compared Indexing Schemes

We compare the following three indexing schemes, all implemented by us in

Soufflé.

• Auto: our auto-indexing scheme presented in Algorithm 6.

• Maximal: one index for each distinct search on a relation.
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• Single: only one index for each relation. To choose the best index for a rela-

tion R for a given workload, we first count the frequency of each individual

search S on R which is obtained by instrumenting the search pattern while

executing the Datalog program once. Then, the best single index is selected

as the one whose set of covered searches has the maximum total frequency.

This can be computed in quadratic time to the number of searches by dynamic

programming (cf. Chapter 12, [183]); we omit the details.

Intuitively, these two alternative indexing schemes, Maximal and Single, should

be especially good for the execution speed and the memory efficiency, respectively.

However Maximal uses much memory for the numerous indexes, and Single doesn’t

cover every search, and thus could be very slow in evaluating the program. Our

experiments in Section 4.4.2.2 validate these expectations, and show that Auto of-

fers an excellent compromise, with runtime similar to Maximal and much less than

Single, and using memory similar to Single, and substantially less than Maximal.

In addition, for the workloads of one use-case from program analysis, we

also compare our auto-indexing scheme in Soufflé to another Datalog system

PA-Datalog2. Note that, the ruleset used with PA-Datalog has been heavily hand-

optimised through months of work by experts, specially for the use-case. Because

these are different engines, the comparison of speed and memory is not truly apples-

to-apples. Nevertheless, we will illustrate in Section 4.4.2.3 that our auto-indexing

scheme in Soufflé results in better performance than the state-of-the-art for hand-

optimised processing.

4.4.2 Experimental Results

We present experimental results to validate our claims in the following three sub-

sections.

4.4.2.1 Index Selection Overhead

Soufflé translates a given Datalog program into C++ code (called the code gener-

ation phase), compiles the C++ code into binary executable code (called the code

2PA-Datalog is a variant of Logicblox Version 3 optimised for program analysis
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Figure 4.7: Experimental results for cloud security analysis

compilation phase), and then execute the binary code on the EDB (i.e., input re-

lations) to compute the IDBs (called the code execution phase). For more details

of Soufflé, please refer to [31, 40]. Index selection occurs in the code generation

phase.

In order to quantify the overhead of our Auto indexing scheme, we report the

code generation time as well as the code compilation time for all three indexing

schemes, Auto, Single, and Maximal, for both use cases in Fig. 4.6. Recall that

index selection occurs during code generation; however, different index choices

may lead to different work in the code compilation phase too.
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(c) Index distribution of sec3

Figure 4.8: Index Distributions

As shown in Fig. 4.6a and Fig. 4.6c, the code generation time of the three

indexing schemes are almost the same. Note that we have not included in the mea-

surement for Single the extra preliminary activities that collect statistic information

such as frequencies of searches. On the other hand, the code compilation time varies

slightly for different indexing schemes as shown in Fig. 4.6b and Fig. 4.6d, and the

more indexes to compile the longer the compilation time. The main reason is that

each index requires additional templatised comparator functions that the C++ com-

piler needs to unroll at template instantiation time. Thus, in this phase Auto was 4%

to 8% slower than Single, and 2% to 5% faster than Maximal. Overall we conclude

that the differences in generation and compilation effort among the three indexing

schemes are not significant, despite the computations needed to solve the MISP.
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Figure 4.9: Doop program analysis experiment results

4.4.2.2 Evaluation-time Performance

Eval-I: Running Time. The running time of the code execution phase for the three

cloud security analyses on VPC networks are illustrated in Figures 4.7a, 4.7c, and

4.7e, each showing the three alternative index selection approaches: Auto, Single,

and Maximal. Overall, both Auto is similar to Maximal and each outperforms

Single, in the running time. Indeed, due to the lack of indexes to speed up all

searches, Single takes an excessively long time (i.e., more than 24 hours) for pro-

cessing the three large VPC networks, N3500, N3511, and N9039. Thus, Single is

not able to process large-scale Datalog programs, and we omit from the figures the

results for Single on these three large VPC networks.

The running time of Auto is almost the same as that of Maximal, and in fact
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Auto is slightly faster, by 10% for sec1, 26% for sec2 and 13% for sec3. This is

because when execution involves both constructing the indexes as the facts are read

in, as well as doing the primitive searches. The latter aspect should in principle be

the same for Auto and Maximal, but Maximal takes more time while it construct

more indexes than Auto.

The running time of the execution phase for Auto, Single, and Maximal on the

three Doop program analyses are illustrated in Figures 4.9a, 4.9c, and 4.9e. The

general trend is similar to that for cloud security analysis. Although Single can

complete all the Doop program analysis, it takes significantly more time than Auto

and Maximal. The speedups of Auto over Maximal are 1.3 for 1o1h, 1.13 for 2o2h,

and 1.7 for 3o3h.

Overall, we find that Auto is even a bit faster than Maximal, and it is signifi-

cantly faster than Single. This validates our motivation to construct enough indexes

so that every search is sped up.

Eval-II: Memory Usage. Now, we evaluate the memory usage of Auto compared

to Single and Maximal. We define the memory usage improvement of an indexing

scheme A over another scheme B as the ratio of memory usage or B compared to

that of A.

The memory usages of Auto, Single, and Maximal for cloud security analy-

ses, sec1, sec2, and sec3, are shown in Figures 4.7b, 4.7d, and 4.7f. We see

that Single always consumes the smallest amount of memory, and Maximal always

consumes the largest amount of memory. The memory usage improvement of Auto

over Maximal can be up-to 6, e.g., see the memory usage for VPC networks N3500,

N3511, N9087 in Fig. 4.7b. When compared to the memory usage lower bound as

indicated by Single, Auto consumes at most two times more memory than the lower

bound. Figures 4.9b, 4.9d, and 4.9f show the memory usage of Auto, Single, and

Maximal for Doop program analysis. In general, the memory usage improvement of

Auto over Maximal is around 2, and Auto consumes only around 20% more memory

than Single.

Overall, Maximal consumes the largest amount of memory and Single con-
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sumes the smallest. The memory usage of Auto is not far from that of Single, and

much better than Maximal.

Eval-III: Distribution of Index Reduction. In this set of figures, we analyse the

number of indexes constructed for the various Datalog programs. Recall that, given

a set of searches S on a relation R, our Auto indexing scheme (i.e., Algorithm 5 and

Algorithm 6 in Section 4.3) computes the smallest set of indexes L to cover/speed

up all searches of S , while the Maximal indexing scheme constructs one index for

each search in S , and Single constructs one index for each relation. Thus, the reduc-

tion ratio for the number of indexes of Auto over Maximal will be upper bounded

by |S | for a relation (which is the reduction ratio for Single over Maximal).

The distributions of |S | among all relations that have at least two searches for

the three cloud security analyses, sec1, sec2, and sec3, are shown as blue squares

measured against the left-hand scale, in Figures 4.8a, 4.8b, and 4.8c, respectively.

We can see that more than 50 percent of the relations have only two searches, and

more than 80 percent of the relations have at most three searches; this means that

for 80 of the relations, |L|/|S| is at least 1/3. In order to quantify the reduction ratio

of Auto over Maximal, we define it as 1− |L|/|S |. The distributions of the reduction

ratio are shown as black line in Figures 4.8a, 4.8b, and 4.8c, measured against the

right-hand scale. We can see that, for 25 percent of the relations, there is no reduc-

tion (i.e., |S | = |L|), for another 25 percent of the relations, the reduction is around

50%, and for the remaining 50 percent of relations, the reduction is between 50%

and 70%. Finally, the distributions of the actual number of indexes |L| constructed

for the relations are shown as red diamond in Figures 4.8a, 4.8b, and 4.8c measured

against the left-hand scale. For cloud security analyses sec1 and sec3, the largest

number of indexes constructed for a relation is only two, while the largest number

searches on a relation is 9. For cloud security analysis sec2, the largest number of

indexes constructed for a relation is three, while the largest number searches on a

relation is 11. As shown in Fig. 4.10, similar results are also observed for the Doop

program analysis.
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Figure 4.10: Index distribution for Doop program analysis

4.4.2.3 Against PA-Datalog

We refer to the experiments from Chapter 3, Figure 3.18. Here, we measured the

heavily hand-optimised PA-Datalog system for the Doop program analysis. We

can see that, the Soufflé measurements that use Auto are consistently faster and

consumes much less memory than PA-Datalog. The running time improvement

ranges from 3–5x, and the memory usage improvement ranges from 2–5x.

This demonstrates that our Auto indexing scheme also works well compared

with hand optimisations.

4.4.2.4 Summary

Overall, the experimental results demonstrate the value of our Auto indexing

scheme for large-scale Datalog computation. On running time, the Single index

scheme is not able to compute some of our cloud security analyses within 24 hours.

As shown in Figures 4.8a, 4.8b, and 4.8c, 50 percent of the relations need at least

two indexes to cover all searches on a relation; thus, when only a single index is

constructed for a relation, the uncovered searches need to be computed by linear

scanning the entire relation. In addition, Auto also runs faster than Maximal, due to

a reduction in the index construction/maintenance cost. As for memory usage, Auto

consumes significantly less memory than Maximal, and only slightly more memory

than Single. That is, Auto combines the desirable aspects of Single (low memory)

and Maximal (speed) without the disadvantages of either. Finally, we have shown

that Auto obtains performance that compares well with that of hand-optimised so-
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lutions, constructed with great effort by experts.

4.5 Discussion

4.5.1 Index Selection in Datalog Engines

Datalog has been pro-actively researched in several computer science communi-

ties [184, 185, 186, 187], where a comprehensive introduction to Datalog can be

found in [90]. A recent introduction text for optimising SQL queries is given by

Bruno [177]. Driven by applications in data integration, networking, and program

analysis, Datalog has recently regained considerable interest, e.g., see [64] for a

survey of these developments. To facilitate these applications, general Datalog en-

gines have been developed. For example, Logicblox version 3 [30], µZ [37], bd-

dbddb [41], and Soufflé [31] are the state-of-the-art Datalog engines developed for

program analysis. As shown in [34], indexes can greatly improve the execution

efficiency of Datalog engines. However, the existing indexing scheme that uses

order-based indexes has the limitation of one index per relation. To circumvent

this limitation, a manual code-rewriting technique in the Doop3 framework [28]

was introduced that replicates a relation multiple times and creates a distinct index

for each replica. This manual index creation, although resulting in an enormous

speedup [34], requires end-users to be familiar with the underlying indexing mech-

anism of a Datalog engine. The manual code-rewriting technique is error-prone and

painstakingly slow optimising Datalog programs by trial and error with hundreds

of rules. The hand-optimised Datalog programs become obfuscated, and maintain-

ability and readability are hampered. In this paper, we for the first time study the

automatic optimal index selection problem for Datalog engines to accelerate their

executions. We implemented our indexing technique in Soufflé, which results in

significant runtime speedups. Our automatic index selection technique may also be

beneficial to other Datalog engines, since the overhead for computing the optimal

index selection is negligible while the selected indexes can significantly improve

Datalog program evaluations.

3Note that Doop uses PA-Datalog, which is a variant of Logicblox version 3.
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4.5.2 Index Selection in Relational Databases

In the context of relational databases, the problem of automatically selecting in-

dexes for a set of database queries, referred to in the literature as the index selec-

tion problem (ISP) [171, 172, 173, 174], is well studied and has been shown to be

NP-hard [175]. It is typically formulated as a variant of the 0-1 knapsack problem,

which balances the overall execution time of queries for an index configuration (i.e.,

a subset of indexes that influence the performance of a query) and the cost of index

maintenance. Our index selection problem differs from the classic ISP literature and

to the best of our knowledge is the first formulation of such a problem. Firstly, in

our case, we are restricted to support primitive searches only, which occur in equi-

joins and simple value queries. Secondly, the nature of Datalog restricts the search

predicate of each primitive search to be an equality predicate over the attributes

of the relation. Thirdly, we further have the assumption that each primitive search

benefits from being indexed, which is important for high-performance systems that

need to accelerate all searches. Thus, we formulate our problem as automatically

selecting the minimum number of indexes to cover all searches, and we present an

algorithm to solve it optimally in polynomial time. Our index selection technique

may be, in special cases, also applicable to general query engines that do not have

Datalog as a front-end language; for example, it could work for bottom-up engines

that use SQL defined queries.

4.5.3 Extensions

We discuss possible extensions of our auto-indexing scheme.

Single and Multiple Inequalities. Although we limited the search predicate in

our primitive search to be equalities of left-hand-side attributes and right-hand-side

constants, our techniques can be extended for inequality constraints on one attribute:

First, the bounds of the lex search predicate are to be adapted for the attribute of the

inequality. Second, the attribute has to be the last one among the attributes in the

search with respect to the lexicographical order. The ordering restriction is encoded

in the bipartite graph G = (U,V,E) by omitting edges in the standard construction.
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Specifically, there is an edge between S ∈ U and S ′ ∈ V if (1) S is a proper subset

of S ′, (2) S has no inequality, and (3) if S ′ has an inequality on attribute x, then S

does not have x.

To support multiple inequalities, we may need to resort to other forms of in-

dexes, e.g., the multi-dimensional index R-tree. For example, the general primitive

search σ1≤x≤3,2≤y≤4 can be translated into a range search in a multi-dimensional

space. However, multi-dimensional indexes are generally more expensive to build

and also more expensive to query. We leave the study of extending our techniques

to multiple inequalities, and also to richer variants of Datalog [57], as our future

work.

Loop Scheduling. Some Datalog engines such as Logicblox version 4 [136] use

a leapfrog join that, while requiring users to specify indexes manually, alleviates

users from specifying join order. Integrating our technique into such an engine is

not obvious as we assume a fixed literal order before our technique is applied. Typ-

ically, this can be identified using a profiler like Soufflé profiler, or alternatively,

loop schedules can be automated using heuristic techniques [142]. Our technique

then can compute the optimal index assignment for the given loop schedule. Dur-

ing performance tuning of large Datalog programs, only a few rules require manual

loop scheduling. Therefore, our preference is to fix loop orders rather than indexes

for a better user experience. Soufflé’s auto-scheduler typically resolves this auto-

matically for the user. Nevertheless, it will be an interesting future work to integrate

automatic loop scheduling and automatic indexing selection.

4.5.4 Limitations.

As we have shown, our indexing technique performs well use cases such as static

analyses, since they typically contain hundreds of rules and relations with complex

access patterns. However, for small Datalog programs with large inputs (as is typ-

ically for databases querying), our performance will be the same as the Maximal

indexing scheme. In the case that memory usage is paramount, it may be benefi-

cial to use the Single indexing scheme with manual literal scheduling using a light

weight profiler, such as the Soufflé profiler. It is therefore of no surprise that Data-
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log engines, designed for use cases similar to database querying, employ the Single

indexing scheme and require user annotations for any additional indexes.



Chapter 5

Symbolic Extensions
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In this chapter we describe a method of improving the performance of evaluat-

ing recursive Horn clauses on infinite domains and complex constraints. This work

is aimed at both the model checking and verification communities. Much of this

work has been published in the Acta Informatica journal [54], and Formal Methods

in Computer-Aided Design [53].

5.1 Symbolic Extensions
Static analyses such as var-points-to, do-privileged etc. are well suited to Datalog

based analysers due to the finiteness of the abstractions they represent. However,

often such abstractions are too imprecise for detecting general error conditions. An

example of the need for a deeper analysis is given below.

Example 20 (C Program). We consider an example inspired by the program dis-

cussed in the introduction of [188]. The example exhibits a situation that requires

the use of symbolic constraint solvers:

i = 0; x = j;

while (i<50) {i++; x++;}

if (j == 0) assert (x >= 50);

Here we have three variables, i, j and x. The while loop iterates as long as i is

less than 50, and we would like to asset that when j is equal to 0 then x is greater

than 50.

Given the language extensions in Soufflé, we can express the program above

in terms of constrained Horn clauses as follows:

P(1,i0,j0,x0):-i0=0,x0=j0.

P(1,i1,j0,x1):-P(1,i0, j0, x0),i1=i0+1,x1=x0+1, i0<50.

P(2,i1,j1,x1):-P(1,i1,j1,x1),i1>=50.

false:-x_1>=50,j1!=0, P(2,i1,j1,x1).

Each predicate denotes an invariant at a particular program location, e.g., P is

inductive invariant. To prove that the assertion holds, we must derive an inductive

invariant, i.e., non-false values for P. �
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While these extensions, when used with care, provided more expressiveness to

users when writing Datalog based static analyses, for examples as the one above,

Datalog evaluation methods such as semi-naı̈ve cannot effectively perform the anal-

ysis due to the domain of i, j and x being infinite (or impractically large). Datalog

evaluation techniques employed on this scenario would compute all the sets values

variables i, j and x can have at each loop iteration resulting in an impractical amount

of memory usage.

Instead, we employ an algorithm based on predicate abstraction and counter

example guided abstract refinement (CEGAR). The algorithm is described in Chap-

ter 2, Section 2.3. Recall, the algorithm starts with an abstract representation of

the system of Horn clauses using an accumulated set of predicates. The algorithm

extracts a counter-example from the abstract representation and determines if it is

spurious or not. If the counter-example is spurious, the algorithm further refines

the abstract representation and repeats the process, otherwise gives a user a counter

example as proof of an error. The counter example is checked for being spurious

using Craig interpolants. For example, we may check the following set of chained

clauses:

P(1,i0,j0,x0):-i0=0,x0=j0.

P(1,i1,j0,x1):-P(1,i0, j0, x0),i1=i0+1,x1=x0+1, i0<50.

P(2,i1,j1,x1):-P(1,i1,j1,x1),i1>=50.

false:-x_1>=50,j1!=0, P(2,i1,j1,x1).

In the example, we might consider the path to the assertion in which the loop

terminates after one iteration. This path could lead to an assertion violation if the

conjunction of assignments and guards on the path (in SSA form) is satisfiable:

The solution to P is precisely an interpolant of the conjunction:

i0 � 0∧ x0 � j∧ i0 < 50∧ i1 � i0+1∧ x1 � x0+1 (5.1)

∧ i1 ≥ 50∧ j � 0∧ x1 < 50 (5.2)
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In the interpolation problem above, it is easy to see that the formula is unsat-

isfiable, and that the path therefore cannot cause errors. To improve our approxi-

mation we obtain predicates that prevent the path from being considered again in

the CEGAR process. This is done by computing Craig interpolants for different

partitionings of the conjuncts; we consider the case (5.1)∧ (5.2), corresponding to

the point on the path where the loop condition is checked for the second time. An

interpolant is a formula I that satisfies the implications (5.1)→ I and (5.2)→ ¬I,

and that only contains variables that occur in both (5.1) and (5.2); a model checker

will use I as a candidate loop invariant.

The interpolation problem (5.1)∧ (5.2) has several solutions, including I1 =

(i1 ≤ 1) and I2 = (x1 ≥ i1 + j). What makes the example challenging is the fact that

a theorem prover is likely to compute interpolants like I1, recognising the fact that

the loop cannot terminate after only one iteration as obvious cause of infeasibility.

I1 does not describe a property that holds across loop iterations, however; after

adding I1 as a predicate, a model checker would have to consider the case that the

loop terminates after two iterations, leading to a similar formula i2 ≤ 2, and so on.

The evaluation will only terminate after 50 loop unwindings; in similar situations

with unbounded loops, picking interpolants like I1 will lead to divergence (non-

termination) of the CEGAR algorithm.

In contrast, the interpolant I2 encodes a deeper explanation for infeasibility, the

dependency between i, x, and j, and takes the actual assertion to be verified into

account. Since I2 represents an inductive loop invariant, adding it as predicate will

lead to significantly faster convergence of the CEGAR algorithm.

The above example highlights a major performance problem in CEGAR based

engines such as model checkers. The problem as highlighted in the thesis hypothe-

sis, stems from the fact that the theorem prover is agnostic to a given input. Hence,

similar in spirit to the evaluation in Chapter 3 we present a framework to specialise

the interpolants obtained from the theorem prover.

In our solution we modify the existing CEGAR loop as shown in Figure 5.1.

However, unlike the solution in Chapter 3 we do not use partial evaluation to syn-
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(a) Standard CEGAR Loop
(b) Modified CEGAR Loop

Figure 5.1: Architecture of Approach Compared to CEGAR

thesise a theorem prover, instead we create a template lattice that is constructed

manually or via a light weight static analysis (e.g., discover guards in loops). Us-

ing the templates we construct a lattice of abstract interpolation problems which

we explore for feasibility. The set of feasible abstract problems are selected and

given as input to a theorem prover which generates specialised interpolants that are

incorporated into the set of accumulated predicates in CEGAR algorithm.

Our approach enables an CEGAR based engine e.g., a model checker to steer

the theorem prover towards interpolants like I2. A major advantage is that our

approach is solver-independent and works by instrumenting the interpolation query,

and therefore does not require any changes to the theorem prover.

The essence of our approach is observation that it is possible to over-

approximate an interpolation problem. For instance, to obtain I2, we over-

approximate the interpolation query (5.1)∧ (5.2) in such a way that I1 no longer

is a valid interpolant:

(
i0 � 0∧ x0 � j′∧ i0 < 50∧ i′1 � i0+1∧ x′1 � x0+1∧ x′1− i′1 � x1− i1∧ j′ � j

)
∧

(
x1− i1 � x′′1 − i′′1 ∧ j � j′′ ∧ i′′1 ≥ 50∧ j′′ � 0∨x′′1 < 50

)
The rewriting consists of two parts: (i) the variables x1, i1, j are renamed to x′1, i

′
1, j′

and x′′1 , i
′′
1 , j′′, respectively; (ii) limited knowledge about the values of x1, i1, j is

re-introduced, by adding the grey parts of the interpolation query. Note that the

formula is still unsatisfiable. Intuitively, the theorem prover “forgets” the precise
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value of x1, i1, ruling out interpolants like I1; however, the prover retains knowledge

about the difference x1 − i1 (and the value of j), which is sufficient to compute

relational interpolants like I2.

The terms x1 − i1 and j have the role of templates, and encode the domain

knowledge that linear relationships between variables and the loop counter are

promising building blocks for invariants. Template-generated abstractions repre-

sent the most important class of interpolation abstractions considered in this paper

(but not the only one), and are extremely flexible: it is possible to use both tem-

plate terms and template formulae, but also templates with quantifiers, parameters,

or infinite sets of templates.

Templates are in our approach interpreted semantically, not syntactically, and

it is up to the theorem prover to construct interpolants from templates, Boolean

connectives, or other interpreted operations. To illustrate this, observe that the tem-

plates {x1− i1, i1} would generate the same interpolation abstraction as {x1, i1}; this

is because the values of x1 − i1, i1 uniquely determine the value of x1, i1, and vice

versa.

We have integrated interpolation abstraction into the model checker Eldar-

ica [189], which uses recursion-free Horn clauses (a generalisation of Craig in-

terpolation) to construct abstractions [119, 127]. Our experiments show that inter-

polation abstraction can prevent divergence and improve the speed of convergence

of the model checker in cases that are often considered challenging.

Despite a simple implementation (requiring approx. 1000 lines of Scala code),

interpolation abstractions are extremely flexible, and can incorporate domain-

specific knowledge about promising interpolants, for instance in the form of in-

terpolant templates used by the theorem prover. The framework can be used for a

variety of logics, including arithmetic domains or programs operating on arrays or

heap, and is also applicable for quantified interpolants.
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5.2 Interpolation Abstractions

5.2.1 Basic Definitions

Lattices. A poset is a set D equipped with a partial ordering v. A poset 〈D,v〉 is

bounded if it has a least element ⊥ and a greatest element >. We denote the least

upper bound and the greatest lower bound of a set X ⊆ D by
⊔

X and
�

X, respec-

tively, provided that they exist. Given elements a,b ∈ D, we say b is a successor

(resp. predecessor) of a if a v b but a , b, and immediate successor if in addition

there is no c ∈ D \ {a,b} with a v c v b (resp. immediate predecessor). Elements

a,b ∈ D with a @ b and b @ a are incomparable. An element a ∈ X ⊆ D is a maximal

element (resp., minimal element) of X if a v b (resp., b v a) and b ∈ X imply a = b.

A lattice L = 〈D,v〉 is a poset 〈D,v〉 such that at b =
⊔
{a,b} and au b =�

{a,b} exist for all a,b ∈ D. L is a complete lattice if all non-empty subsets X ⊆ D

have a least upper bound and greatest lower bound. A complete lattice is bounded by

definition. A non-empty subset M ⊆D forms a sub-lattice if atb ∈M and aub ∈M

for all a,b ∈M. A sub-lattice M ⊆ D is convex if a v c v b and a,b ∈M imply c ∈M.

A lattice is distributive if for all a,b,c ∈D, au(btc) = (aub)t(auc). A completely

distributive lattice is a complete lattice in which arbitrary joins (t) distribute over

arbitrary meets (u). A function f : D1→D2, where 〈D1,v1〉 and 〈D2,v2〉 are posets,

is monotonic if x v1 y implies f (x) v2 f (y) (resp., anti-monotonic) .

Stateless Logic. Some of the results presented in this paper require an additional

assumption about a logic:

Definition 11. A logic is called stateless if conjunctions A[s̄]∧ B[t̄] of satisfiable

formulae A[s̄], B[t̄] over disjoint lists s̄, t̄ of non-logical symbols are satisfiable.

Intuitively, formulae in a stateless logic interact only through non-logical sym-

bols, not via any notion of global state, structure, etc. Many logics that are rel-

evant in the context of verification are stateless, in particular quantifier-free first

order logic, Pressburger arithmetic, logics based on the theory of arrays, etc. An

example of a stateful logic is full FOL with equality. For instance, consider the

conjunction (∀x,y. x� y)∧ (∃x,y. x 6� y) in full FOL. Although the individual con-
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juncts ∀x,y. x� y and ∃x,y. x 6� y are satisfiable, their conjunction is not: the first

conjunct enforces a universe with only one element, whereas the second conjunct

requires at least two elements.

Other stateful logics are modal logics or separation logic; often, such logics can

naturally be made stateless by enriching its vocabulary. Statelessness is important in

this paper, since we use the concept of renaming of symbols to ensure independence

of formulae.

Interpolation Abstractions. This section defines the concept of interpolation ab-

stractions, and derives basic properties. Interpolation abstractions are represented

by transformations of the formulae to be interpolated; in the most general formula-

tion, this is represented via a pair of extensive functions on formulae:

Definition 12 (Interpolation abstraction). Suppose s̄ is a list of non-logical symbols,

for some arbitrary but fixed logic. An interpolation abstraction is a pair (TA,TB) of

functions mapping formulae to formulae, with the following properties: We call

A[s̄A, s̄]∧B[s̄, s̄B] a concrete interpolation problem, and TA(A[s̄A, s̄])∧TB(B[s̄, s̄B])

the corresponding abstract interpolation problem for the interpolation abstraction

(TA,TB).

In other words, interpolation abstractions define over-approximations of the

conjuncts to be interpolated. Assuming that the concrete interpolation problem is

solvable, we call the interpolation abstraction feasible if also the abstract interpola-

tion problem is solvable, and infeasible otherwise. A simple illustration of the ap-

proach is depicted in Figure 5.2. In Figure 5.2a an arbitrary interpolation problem

A∧ B is presented on its x and y dimensions. In Figure 5.2b an abstract interpola-

tion problem A]∧ B] is shown when the template x− y is applied. In Figure 5.2c

the effect of the abstraction is shown by demonstrating that an interpolant valid for

A∧B is no longer valid.

Example 21. An illustration is given in Figure 5.3. The concrete interpolation

problem is solvable since the solution sets A[s̄] and B[s̄] are disjoint, i.e., A[s̄]∧B[s̄]

is unsatisfiable. An interpolant is a formula I[s̄] that represents a superset of A[s̄],
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(a) Interpolation Problem
A∧ B on Dimensions x
and y

(b) Abstract Interpolation
Problem A] ∧ B] with
Template x− y

(c) Abstract Interpolation
Problem blocking of In-
terpolant x ≥ 4

Figure 5.2: Applying Template x− y to Interpolaiton Problem A∧B

A[s]
B[s]TA(A[s])

TB(B[s])

Figure 5.3: Illustration of interpolation abstraction, assuming that only common non-
logical symbols exist. Both concrete and abstract problem are solvable.

but that is disjoint with B[s̄]. By definition, the formula TA(A[s̄]) represents an

over-approximation of A[s̄]; similarly for TB(B[s̄]). This ensures the soundness of

computed abstract interpolants (see Lemma 8 below). In Figure 5.3, despite over-

approximation, the abstract interpolation problem is solvable, which means that the

interpolation abstraction is feasible. �

While there are many ways to construct interpolation abstractions, in the scope

of this paper we mainly concentrate on interpolation abstractions defined by means

of relations:

Definition 13 (Relation abstraction). Suppose s̄ is a list of non-logical symbols, and

s̄′ and s̄′′ fresh copies of s̄. An relation abstraction is a pair (RA[s̄′, s̄],RB[s̄, s̄′′])

of formulae with the property that RA[s̄, s̄] and RB[s̄, s̄] are valid (i.e., Id[s̄′, s̄]⇒
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RA[s̄′, s̄] and Id[s̄, s̄′′]⇒ RB[s̄, s̄′′]). A relation abstraction defines an interpolation

abstraction (TA,TB) by:

TA(A[s̄A, s̄]) = A[s̄A, s̄′]∧RA[s̄′, s̄], TB(B[s̄, s̄B]) = RB[s̄, s̄′′]∧B[s̄′′, s̄B] .

Thus, the relation abstraction of a concrete interpolation problem A[s̄A, s̄]∧

B[s̄, s̄B] is (
A[s̄A, s̄′]∧RA[s̄′, s̄]

)
∧

(
RB[s̄, s̄′′]∧B[s̄′′, s̄B]

)
.

Note that properties (i) and (ii) in Def. 12 are ensured by requiring that the rela-

tions RA[s̄′, s̄] and RB[s̄, s̄′′] subsume the identity relation (RA[s̄, s̄] and RB[s̄, s̄] are

valid).

Example 22. The interpolation abstraction applied in Example 20 is a relation

abstraction. The common symbols of the interpolation problem are s̄ = 〈x1, i1, j〉,

and the relation abstraction is defined by RA = (x′1− i′1 � x1− i1∧ j′ � j) and RB =

(x1− i1 � x′′1 − i′′1 ∧ j � j′′). �

Finally, we can state a (straightforward) result about the correctness of inter-

polants computed using interpolation abstractions:

Lemma 8 (Soundness). Every interpolant of the abstract interpolation problem is

also an interpolant of the concrete interpolation problem (but in general not vice

versa).

Proof. Suppose A′[s̄A′ , s̄] = TA(A[s̄A, s̄]) and B′[s̄, s̄B′] = TB(B[s̄, s̄B]). An abstract

interpolant only contains symbols from s̄ (due to property (iii) of Def. 12), i.e., is

of the form I[s̄]. It also satisfies A′[s̄A′ , s̄]⇒ I[s̄] and B′[s̄, s̄B′]⇒ ¬I[s̄], and thus

∃s̄A′ .A′[s̄A′ , s̄]⇒ I[s̄] and ∃s̄B′ .B′[s̄, s̄B′]⇒¬I[s̄]. Thanks to properties (i) and (ii)

in Def. 12, this yields the implications A[s̄A, s̄]⇒ I[s̄] and B[s̄, s̄B]⇒¬I[s̄]. �

5.2.2 Interpolant Lattices

Interpolation abstractions can be used to guide interpolation engines, by restricting

the space Inter(A[s̄A, s̄],B[s̄, s̄B]) of interpolants satisfying an interpolation problem.
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Recall that the set Inter(A[s̄A, s̄],B[s̄, s̄B])/≡ of interpolant classes (modulo logical

equivalence) is closed under conjunctions (meet) and disjunctions (join), so that

(Inter(A[s̄A, s̄],B[s̄, s̄B])/≡,⇒) is a lattice. Figure 5.4 shows the interpolant lattice

for Example 20; this lattice has a strongest concrete interpolant I⊥ and a weakest

concrete interpolant I>.1

For a feasible abstraction, the lattice
(
Inter(TA(A[s̄A, s̄′]), TB(B[s̄′′, s̄B]))/≡, ⇒)

of abstract interpolants is a sub-lattice of the concrete interpolant lattice. The sub-

lattice is convex, because if I1 and I3 are abstract interpolants and I2 is a concrete

interpolant with I1 ⇒ I2 ⇒ I3, then also I2 is an abstract interpolant. The choice

of the function TA in an interpolation abstraction constrains the lattice of abstract

interpolants from below, the function TB from above.

We illustrate two disjoint sub-lattices in Figure 5.4: the left box is the sub-

lattice for the abstraction (i′1 � i1, i1 � i′′1 ), while the right box represents the inter-

polation abstraction

(x′1− i′1 � x1− i1∧ j′ � j, x1− i1 � x′′1 − i′′1 ∧ j � j′′)

used in Example 20 to derive interpolant I2.

As the following lemma shows, there are no principal restrictions how fine-

grained the guidance enforced by an interpolation abstraction can be; however, since

abstraction is a semantic notion, we can only impose constraints up to equivalence

of interpolants:

Lemma 9 (Completeness). Suppose A[s̄A, s̄]∧B[s̄, s̄B] is an interpolation problem

with interpolant I[s̄] in a stateless logic, such that both A[s̄A, s̄] and B[s̄, s̄B] are

satisfiable (the problem is not degenerate). Then there is a feasible interpolation

abstraction, definable as a relation abstraction in the same logic, such that every

abstract interpolant is logically equivalent to I[s̄].

Proof. Choose the relation abstraction (I[s̄′]→ I[s̄], I[s̄]→ I[s̄′′]). Since I[s̄] is an

interpolant of the abstract interpolation problem, the abstract problem is solvable.
1In general, the interpolant lattice might be incomplete and not contain such elements.
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x1 � j + 1∧ i1 � 1

j 6� 0∨ i1 ≤ 49∨ x1 ≥ 50

i1 � 1

i1 ≤ 1

i1 ≤ 2

i1 ≤ 49

x1 � i1 + j

x1 ≥ i1 + j

j 6� 0∨ x1 ≥ i1

...

...

I1

I2

I⊥

I>

Figure 5.4: Parts of the interpolant lattice for the Example 20 (up to equivalence). The
dashed boxes represent the sub-lattices for the abstraction induced by the tem-
plate terms {i1} (left) and {x1− i1, j} (right).

Further, assume that I′[s̄] is an arbitrary abstract interpolant, i.e.,

A[s̄A, s̄′]∧ (I[s̄′]→ I[s̄]) ⇒ I′[s̄] and (I[s̄]→ I[s̄′′])∧B[s̄′′, s̄B] ⇒ ¬I′[s̄] .

By rewriting the left-hand sides of the entailments, we can conclude I[s̄]⇔ I′[s̄].

We only show one of the directions:

A[s̄A, s̄′]∧ (I[s̄′]→ I[s̄]) ⇔ (A[s̄A, s̄′]∧¬I[s̄′])∨ (A[s̄A, s̄′]∧ I[s̄])

⇔ A[s̄A, s̄′]∧ I[s̄]

From (A[s̄A, s̄′]∧ I[s̄])⇒ I′[s̄], it follows that I[s̄]⇒ I′[s̄], since A[s̄A, s̄′] is satis-

fiable and does not contain any symbols from s̄, and the considered logic is state-

less. �

5.3 A Catalogue of Interpolation Abstractions
This Section introduces a range of practically relevant relation abstractions, mainly

defined in terms of templates as illustrated in Example 20. For any interpolation

abstraction, it is interesting to consider the following questions: (1) provided the
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concrete interpolation problem is solvable, characterise the cases in which also the

abstract problem can be solved (how coarse the abstraction is); (2) provided the

abstract interpolation problem is solvable, characterise the space of abstract inter-

polants. The first point touches the question to which degree an interpolation ab-

straction limits the set of proofs that a theorem prover can find. We hypothesise

(and explain in Example 20) that it is less important to generate interpolants with

a specific syntactic shape, than to force a theorem prover to use the right argument

for showing that a path in a program is safe.

We remark that interpolation abstractions can also be combined, for instance

to create abstractions that include both template terms and template predicates. In

general, the component-wise conjunction of two interpolation abstractions is again

a well-formed abstraction, as is the disjunction.

5.3.1 Finite Term Interpolation Abstractions

The first family of interpolation abstractions is defined with the help of finite sets T

of template terms, and formalises the abstraction used in Example 20. Intuitively,

abstract interpolants for a term abstraction induced by T are formulae that only use

elements of T , in combination with logical symbols, as building blocks (a precise

characterisation is given in Lemma 11 below). For the case of interpolation in

EUF (quantifier-free FOL without uninterpreted predicates), this means that abstract

interpolants are Boolean combinations of equations between T terms. In linear

arithmetic, abstract interpolants may contain equations and inequalities over linear

combinations of T terms.

The relations defining a term interpolation abstraction follow the example

given in Example 20, and assert that primed and unprimed versions of T terms have

the same value. As a consequence, nothing is known about the value of unprimed

terms that are not mentioned in T .

Definition 14 (Term interpolation abstraction). Suppose s̄ is a list of non-logical

symbols, s̄′ and s̄′′ fresh copies of s̄, and T = {t1[s̄], . . . , tn[s̄]} a finite set of ground
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terms. The relation abstraction (RT
A[s̄′, s̄],RT

B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

ti[s̄′] � ti[s̄], RT
B[s̄, s̄′′] =

n∧
i=1

ti[s̄] � ti[s̄′′]

is called term interpolation abstraction over T .

Term abstractions are feasible if and only if a concrete interpolant exists that

can be expressed purely using T terms:

Lemma 10 (Solvability). Suppose A[s̄A, s̄]∧ B[s̄, s̄B] is an interpolation problem,

and T = {t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The abstract interpolation

problem for the abstraction (RT
A[s̄′, s̄],RT

B[s̄, s̄′′]) is solvable if and only if there is a

formula I[x1, . . . , xn] over n variables x1, . . . , xn (and no further non-logical symbols)

such that I[t1[s̄], . . . , tn[s̄]] is an interpolant of A[s̄A, s̄]∧B[s̄, s̄B].

Proof. “⇐”: I[t1[s̄], . . . , tn[s̄]] is also an abstract interpolant, which implies that the

abstract interpolation problem is solvable.

“⇒”: suppose the abstract interpolation problem

A[s̄A, s̄′]∧
n∧

i=1

ti[s̄′] � ti[s̄]

 ∧
 n∧

i=1

ti[s̄] � ti[s̄′′]∧B[s̄′′, s̄B]

 (5.3)

is solvable, which means that (5.3) is an unsatisfiable formula. Then also the fol-

lowing formula is unsatisfiable (for fresh variables x1, . . . , xn):

A[s̄A, s̄′]∧
n∧

i=1

ti[s̄′] � xi

 ∧
 n∧

i=1

xi � ti[s̄′′]∧B[s̄′′, s̄B]

 (5.4)

Namely, suppose (5.4) is satisfied by the model S . The model can be extended

to a model S ′ of (5.3) by interpreting the symbols s̄ with the same value as the

symbols s̄′.

Given that (5.4) is unsatisfiable, due to the interpolation property there is

an interpolant I[x1, . . . , xn] for (5.4). By the substitution theorem, then also

I[t1[s̄], . . . , tn[s̄]] is an interpolant for (5.3). Finally, by Lemma 8, I[t1[s̄], . . . , tn[s̄]]

is also an interpolant of the original interpolant problem A[s̄A, s̄]∧B[s̄, s̄B]. �
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Example 23. Consider the interpolation abstraction used in Example 20, which is

created by the set T = {x1 − i1, j} of terms. The abstract interpolation problem is

solvable with interpolant x1 ≥ i1 + j, which can be represented as (x1− i1) ≥ ( j) as

a combination of the template terms in T . �

It would be tempting to assume that all interpolants generated by term inter-

polation abstractions are as specified in Lemma 10, i.e., constructed only from T

terms and logical symbols. In fact, since our framework restricts the space of inter-

polants in a semantic way, only weaker guarantees can be provided about the range

of possible interpolants; this is related to the earlier observation that interpolation

can only be restricted up to logical equivalence:

Lemma 11 (Interpolant space). Suppose the abstract interpolation problem for the

relation abstraction (RT
A[s̄′, s̄],RT

B[s̄, s̄′′]) is solvable, and the underlying logic is

EUF or PA. Then there is a strongest abstract interpolant I⊥[t1[s̄], . . . , tn[s̄]], and a

weakest abstract interpolant I>[t1[s̄], . . . , tn[s̄]], each constructed only from T terms

and logical symbols. A formula J[s̄] is an abstract interpolant iff the implications

I⊥[t1[s̄], . . . , tn[s̄]]⇒ J[s̄]⇒ I>[t1[s̄], . . . , tn[s̄]] hold.

Proof. Again consider the interpolation problem (5.4), and observe that there is

a strongest interpolant I⊥[x1, . . . , xn] and a weakest interpolant I>[x1, . . . , xn]. (For

EUF, this is because there are only finitely many interpolants up to equivalence; for

PA, this holds due to the quantifier elimination property).

We show that I⊥[t1[s̄], . . . , tn[s̄]] is the conjectured strongest interpolant. (The

proof for the weakest interpolant I>[t1[s̄], . . . , tn[s̄]] is symmetric.) Suppose J[s̄] is

any abstract interpolant, which means

A[s̄A, s̄′]∧
n∧

i=1

ti[s̄′] � ti[s̄]

 ⇒ J[s̄]

and therefore alsoA[s̄A, s̄′]∧
n∧

i=1

ti[s̄′] � xi

 ⇒
 n∧

i=1

xi � ti[s̄] ⇒ J[s̄]


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Since left-hand and right-hand side only share the (uninterpreted) symbols x1, . . . , xn,

and I⊥[x1, . . . , xn] is the strongest formula over those symbols implied by the left-

hand side, this entails:

I⊥[x1, . . . , xn] ⇒

 n∧
i=1

xi � ti[s̄] ⇒ J[s̄]


and therefore I⊥[t1[s̄], . . . , tn[s̄]]⇒ J[s̄]. �

Example 24. Again, consider Example 20, and the interpolant lattice as shown

in Figure 5.4. The strongest abstract interpolant for the interpolation abstraction

induced by T = {x1− i1, j} is x1 � i1 + j, the weakest one j 6� 0∨ x1 ≥ i1. �

5.3.2 Finite Inequality Interpolation Abstractions

In the case of a logic with arithmetic operators, for instance linear rational arith-

metic or Presburger arithmetic, it is possible to define interpolation abstractions on

the basis of inequalities instead of equations, to achieve more fine-grained control

over interpolants. Inequality interpolation abstractions can specify that interpolants

can only give upper bounds (or only lower bounds) on the value of some term t,

i.e., t can only occur on the left- or right-hand side of inequalities ≤, and not as part

of equations. This degree of control is highly useful for model checking applica-

tions, where it is well-known that the quality of interpolants can be improved by

abstracting equations to inequalities.

Definition 15 (Inequality interpolation abstraction). Suppose s̄ is a list of non-

logical symbols, s̄′ and s̄′′ fresh copies of s̄, and T = {t1[s̄], . . . , tn[s̄]} a finite set

of ground terms. The relation abstraction (R≤T
A [s̄′, s̄],R≤T

B [s̄, s̄′′]) defined by

R≤T
A [s̄′, s̄] =

n∧
i=1

ti[s̄′] ≤ ti[s̄], R≤T
B [s̄, s̄′′] =

n∧
i=1

ti[s̄] ≤ ti[s̄′′]

is called inequality interpolation abstraction over T .

Intuitively, the terms T can only occur only the right side of inequalities ≤

in interpolants, i.e., in the form of lower bounds. To specify upper bounds, it is
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possible to specify negative terms −t ∈ T ; when including both t and −t in T , ar-

bitrary occurrences of t in an interpolant are possible (also within equations). This

shows that inequality interpolation abstractions strictly subsume term interpolation

abstractions in the presence of arithmetic.

To characterise solvability, assume that interpolants only contain inequalities ≤

(and no ≥ or equations �), and that no inequalities occur underneath negation ¬. An

occurrence of a term is then called positive if the term (or a positive multiple of the

term) is on the right-hand side of ≤, and negative if it is on the left-hand side.

Lemma 12 (Solvability). Suppose A[s̄A, s̄]∧B[s̄, s̄B] is an interpolation problem in

PA, and T = {t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The abstract interpolation

problem for the abstraction (R≤T
A [s̄′, s̄],R≤T

B [s̄, s̄′′]) is solvable if and only if there is

a formula I[x1, . . . , xn] over n variables x1, . . . , xn, all occurring only positively in

I[x1, . . . , xn], such that the formula I[t1[s̄], . . . , tn[s̄]] is an interpolant of A[s̄A, s̄]∧

B[s̄, s̄B].

Proof. “⇐”: as for Lemma 10, it can be observed that I[t1[s̄], . . . , tn[s̄]] is also an

abstract interpolant, which implies that the abstract interpolation problem is solv-

able.

“⇒”: again, as for Lemma 10, we consider the modified interpolation problem

A[s̄A, s̄′]∧
n∧

i=1

ti[s̄′] ≤ xi

 ∧
 n∧

i=1

xi ≤ ti[s̄′′]∧B[s̄′′, s̄B]


As a constructive way of showing the existence of interpolants I[x1, . . . , xn] of the

desired form, the interpolating PA sequent calculus from [190] can be used. To

this end, first assume that the conjuncts A[s̄A, s̄],B[s̄, s̄B] are normalised in such a

way that no equations, no quantifiers (or divisibility constraints), and no negations

occur. Then, construct an interpolating proof by strictly ordering the applied rules:

(i) eliminate all Boolean operators, (ii) apply arithmetic rules to the literals obtained

from A[s̄A, s̄′], B[s̄′′, s̄B], (iii) finally, resolve with the inequalities ti[s̄′] ≤ xi and

xi ≤ ti[s̄′′] to obtain conflicts and close proof goals.
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By checking the individual proof rules in [190], we can observe that the re-

sulting interpolant I[x1, . . . , xn] will only contain variables x1, . . . , xn in positive po-

sitions. �

5.3.3 Finite Predicate Interpolation Abstractions

In a similar way as sets of terms, also finite sets of formulae induce interpolation

abstractions. Template formulae can be relevant to steer an interpolating theorem

prover towards (possibly user-specified or quantified) interpolants that might be

hard to find for the prover alone. The approach bears some similarities to the con-

cept of predicate abstraction in model checking [191, 129], but still leaves the use

of templates entirely to the theorem prover.

Definition 16 (Predicate interpolation abstraction). Suppose A[s̄A, s̄]∧B[s̄, s̄B] is an

interpolation problem, and Pred = {φ1[s̄], . . . ,φn[s̄]} is a finite set of formulae. The

relation abstraction (RPred
A [s̄′, s̄],RPred

B [s̄, s̄′′]) defined by

RPred
A [s̄′, s̄] =

n∧
i=1

(
φi[s̄′]→ φi[s̄]

)
, RPred

B [s̄, s̄′′] =

n∧
i=1

(
φi[s̄]→ φi[s̄′′]

)
is called predicate interpolation abstraction over Pred.

Intuitively, predicate interpolation abstractions restrict the solutions of an inter-

polation problem to those interpolants that can be represented as a positive Boolean

combination of the predicates in Pred (i.e., by combining elements of Pred using

∧ and ∨, without negations ¬). Note that it is possible to include the negation of a

predicate φ[s̄] in Pred if negative occurrences of φ[s̄] are supposed to be allowed in

an interpolant (or both φ[s̄] and ¬φ[s̄] for both positive and negative occurrences).

Lemma 13 (Solvability). Suppose A[s̄A, s̄]∧ B[s̄, s̄B] is an interpolation problem,

and Pred a finite set of predicates. If the underlying logic is stateless, then the

abstract interpolation problem for (RPred
A [s̄′, s̄],RPred

B [s̄, s̄′′]) is solvable if and only

if A[s̄A, s̄]∧ B[s̄, s̄B] has an interpolant I[s̄] that is a positive Boolean combination

of predicates in Pred.
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Proof. “⇐”: via Boolean reasoning, it can be shown that the interpolant I[s̄]

also is a solution of the abstract problem
(
A[s̄A, s̄′]∧RPred

A [s̄′, s̄]
)
∧

(
RPred

B [s̄, s̄′′]∧

B[s̄′′, s̄B]
)
.

“⇒”: suppose
(
A[s̄A, s̄′]∧RPred

A [s̄′, s̄]
)
∧

(
RPred

B [s̄, s̄′′]∧ B[s̄′′, s̄B]
)

is unsatisfi-

able. As a constructive way to show the existence of an interpolant that is a positive

Boolean combination of Pred predicates, we use the propositional interpolating cal-

culus from [192, Fig. 1]. Thanks to proof-confluency, we can start by splitting all

implications from RPred
A [s̄′, s̄] and RPred

B [s̄, s̄′′], using rules or-left, not-left. After

that, all sequents containing complementary formulae φi[s̄] can be closed with the

rule close-lr; this leads to positive occurrences of φi[s̄] in the interpolant.

All other sequents have the form . . . , bA[s̄A, s̄′]cL,bB[s̄′′, s̄B]cR,BP ` AP, . . .

where AP is a set of formulae of the form bφi[s̄′]cL, and BP a set of formu-

lae bφ j[s̄′′]cR. Since the sequent is valid by assumption, and since the underlying

logic is stateless, at least one of A[s̄A, s̄′]∧¬AP and B[s̄′′, s̄B]∧BP is unsatisfiable.

In the first case, the sequent can be closed with interpolant false, in the latter case

with interpolant true. �

We remark that the implication ⇐ holds in all cases, whereas ⇒ needs

the assumption that the logic is stateless. As a counterexample for the stateful

case, consider again the interpolation problem (∀x,y. x� y)∧ (∃x,y. x 6� y) in full

FOL. The abstract interpolation problem is solvable even for Pred = ∅ (with inter-

polant ∀x,y. x� y), but no positive Boolean combination of Pred formulae is an

interpolant.

The interpolant space can be characterised as for term interpolation abstrac-

tions (Lemma 11):

Lemma 14 (Interpolant space). Suppose the abstract interpolation problem for the

relation abstraction (RPred
A [s̄′, s̄],RPred

B [s̄, s̄′′]) is solvable, and the underlying logic

is stateless. Then there is a strongest abstract interpolant I⊥[s̄], and a weakest

abstract interpolant I>[s̄], each being a positive Boolean combination of predicates

in Pred. A formula J[s̄] is an abstract interpolant iff the implications I⊥[s̄] ⇒

J[s̄]⇒ I>[s̄] hold.
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Proof. As in the proof Lemma 11, but with Boolean variables instead of x1, . . . , xn.

�

5.3.4 Quantified Interpolation Abstractions

The previous Sections showed how interpolation abstractions are generated by fi-

nite sets of templates. A similar construction can be performed for infinite sets of

templates, expressed schematically with the help of variables; in the verification

context, this is particularly relevant if arrays or heap are encoded with the help of

uninterpreted functions.

Example 25. Suppose that the binary function H represents heap contents, with

heap accesses obj.field translated to H(obj,field), and is used to state an interpola-

tion problem:

(
H(a, f ) � c∧H(b,g) 6� null

)
∧

(
b � c∧H(b,g) � null∧H(H(a, f ),g) � null

)
An obvious interpolant is the formula I1 =

(
H(b,g) 6� null

)
. Based on domain-

specific knowledge, we might want to avoid interpolants with direct heap accesses

H(·,g), and instead prefer the pattern H(H(·, f ),g). To find alternative inter-

polants, we can use the templates {H(H(x, f ),g), a,b,c}, the first of which contains

a schematic variable x. The resulting abstraction excludes I1, but yields the inter-

polant I2 =
(
b � c)→ (H(H(a, f ),g) 6� null

)
. �

Definition 17 (Schematic term abstraction). Suppose an interpolation problem

A[s̄A, s̄]∧B[s̄, s̄B], and a finite set T = {t1[s̄, x̄1], . . . , tn[s̄, x̄n]} of terms with free vari-

ables x̄1, . . . , x̄n. The relation abstraction (RT
A[s̄′, s̄],RT

B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

∀x̄i. ti[s̄′, x̄i] � ti[s̄, x̄i], RT
B[s̄, s̄′′] =

n∧
i=1

∀x̄i. ti[s̄, x̄i] � ti[s̄′′, x̄i]

is called schematic term interpolation abstraction over T .

Note that schematic term interpolation abstractions reduce to ordinary term

interpolation abstractions (as in Def. 14) if none of the template terms contains free

variables.
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Quantified abstractions are clearly less interesting for logics that admit quanti-

fier elimination, such as PA, but they are relevant whenever uninterpreted functions

(EUF) are involved.

Lemma 15 (Solvability in EUF). Suppose A[s̄A, s̄]∧ B[s̄, s̄B] is an interpolation

problem in EUF, T = {t1[s̄, x̄1], . . . , tn[s̄, x̄n]} a finite set of schematic terms, and f =

〈 f1, . . . , fn〉 a vector of fresh functions with arities |x̄1|, . . . , |x̄n|, respectively. The

abstract interpolation problem for (RT
A[s̄′, s̄],RT

B[s̄, s̄′′]) is solvable if and only if

there is a formula I[ f1, . . . , fn] (without non-logical symbols other than f̄ ) such that

I[t1[s̄, ·], . . . , tn[s̄, ·]] is an interpolant of A[s̄A, s̄]∧B[s̄, s̄B].

The expression I[t1[s̄, ·], . . . , tn[s̄, ·]] denotes the formula obtained by replacing

each occurrence of a function fi in I[ f1, . . . , fn] with the template ti[s̄, x̄i], substitut-

ing the arguments of fi for the schematic variables x̄i.

Proof. “⇐”: I[t1[s̄, ·], . . . , tn[s̄, ·]] is also an abstract interpolant, which implies that

the abstract interpolation problem is solvable.

“⇒”: observe that if the abstract interpolation problem is solvable, conjunc-

tion (5.5) is unsatisfiable:

(
A[s̄A, s̄′]∧ψA

)
∧

(
ψB∧B[s̄′′, s̄B]

)
(5.5)

where

ψA =

n∧
i=1

∀x̄i. ti[s̄′, x̄i] � fi(x̄i) ψB =

n∧
i=1

∀x̄i. fi(x̄i) � ti[s̄′′, x̄i]

An interpolant I[ f1, . . . , fn] can be computed from (5.5) using FOL interpolation

techniques. �

5.4 The Algebra of Interpolation Abstractions
It is frequently useful to construct new interpolation abstractions from existing

ones, for instance to combine term, inequality, and predicate interpolation ab-

stractions. Combination is possible through several algebraic operations. For in-
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stance, given two interpolation abstractions (TA,TB) and (T ′A,T
′
B), the composition

(TA,TB) ◦ (T ′A,T
′
B) constructs an abstract interpolation that composes the functions

in the abstractions component-wise. New interpolation abstractions can be con-

structed similarly from conjunction, disjunction, and complementation.

In the whole Section we fix some logic, as well as a list s̄ of common sym-

bols. In order to define algebraic operations on interpolation abstractions, it is first

necessary to introduce a notion of equivalence:

Definition 18 (Equivalent Interpolation Abstractions). Let (TA,TB) and (T ′A,T
′
B) be

two interpolation abstractions. We say that they are equivalent, written (TA,TB) ≡

(T ′A,T
′
B), if for any two equivalent formulae A≡ A′ it is the case that TA(A)≡ T ′A(A′),

and similarly for equivalent formulae B ≡ B′ it holds that TB(B) ≡ T ′B(B′).

Note that ≡ is not immediately an equivalence relation on interpolation ab-

stractions, since an interpolation abstraction is not necessarily equivalent to itself

(≡ is not reflexive): an abstraction might map equivalent, but syntactically distinct

formulae to non-equivalent formulae. We therefore focus on the set L of all self-

equivalent (or extensive) interpolation abstractions, for the fixed logic and sym-

bols s̄. In particular, relation abstractions (Def. 13) are all self-equivalent. Since ≡

is an equivalence relation on L, we can in the next paragraphs consider the set L/≡

of equivalence classes.

We can observe that the set L is closed under the operations conjunction ∧L,

disjunction ∨L, complementation ¬L, identity IL, top >L and composition ◦L, de-

fined as:

IL :=
(
λA.A, λB.B

)
>L := (λA. true, λB. true)

(TA,TB)◦L (T ′A,T
′
B) :=

(
λA.TA(T ′A(A)), λB.TB(T ′B(B))

)
(TA,TB)∧L (T ′A,T

′
B) :=

(
λA.TA(A)∧T ′A(A), λB.TB(B)∧T ′B(B)

)
(TA,TB)∨L (T ′A,T

′
B) :=

(
λA.TA(A)∨T ′A(A), λB.TB(B)∨T ′B(B)

)
¬L(TA,TB) :=

(
λA.¬TA(A)∨ IL, λB.¬TB(B)∨ IL

)
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All operations can be extended to the equivalence classes in L/≡, since ≡ is a

congruence relation. The resulting algebra L = 〈L/≡,∧L,∨L,¬L, IL,>L,◦L〉 forms a

bounded distributive lattice where IL is the bottom element, >L is the top element

and all elements are ordered by implication: (TA,TB)⇒ (T ′A,T
′
B) if TA(A)⇒ T ′A(A)

and TB(B)⇒ T ′B(B) for all formulae A,B. Since the lattice is also complemented, it

forms a Boolean algebra. L further has the structure of a monoid:

Lemma 16 (Monoid Algebra). L is a monoid under ◦L and IL.

Proof. Since ◦L is defined as component-wise composition of two functions, and

general function composition is associative, ◦L is associative. By definition IL a

tuple of identity functions and hence is an identity element for all elements in L. �

5.5 Exploration of Interpolants
In a typical application scenario of our interpolation abstraction framework (e.g., in

a model checker), we will not consider just a single fixed interpolation abstraction,

but rather a whole family of such abstractions. Working with multiple interpolation

abstractions turns out to be meaningful for several reasons: (i) for each interpo-

lation problem we might want to compute multiple different interpolants, which

can be achieved by successively applying several interpolation abstractions; (ii) by

ranking interpolation abstractions, the quality of resulting interpolants can be con-

trolled. For instance, in the Example 20, we consider interpolant I2 constructed

using templates {x1− i1, j} as “better” than interpolant I1 for the template i1; (iii) ev-

ery individual interpolation abstraction is feasible for some interpolation problems,

and infeasible for others. This necessitates the definition of a whole family of ab-

stractions, so that some feasible abstractions can be picked for every interpolation

problem.

To formalise this concept of interpolant exploration, we arrange families of in-

terpolation abstractions as abstraction lattices, and present search algorithms on

such lattices. As described, interpolation abstractions have algebraic properties

that can be used when defining such abstraction lattices. Abstraction lattices are

equipped with a monotonic mapping µ to interpolation abstractions (TA,TB), or-
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dered by component-wise implication. The following paragraphs focus on the case

of finite abstraction lattices; the handling of infinite (parametric) abstraction lattices

is planned as future work.

Definition 19 (Abstraction lattice). Suppose s̄ is a list of non-logical symbols, for

some arbitrary but fixed logic. An abstraction lattice is a pair (〈L,vL〉,µ) consisting

of a complete lattice 〈L,vL〉 and a monotonic mapping µ from elements of 〈L,vL〉 to

interpolation abstractions (TA,TB) over s̄, with the property that µ(⊥) = (IdA, IdB)

is the identity abstraction (i.e., IdA(A) = A and IdB(B) = B for all formulae A,B).

Given an interpolation problem A[s̄A, s̄]∧B[s̄, s̄B], the elements of an abstrac-

tion lattice that map to feasible interpolation abstractions form a downward closed

set; an illustration is given in Figure 5.5, where feasible elements are shaded in gray.

Provided that the concrete interpolation problem is solvable, the set of feasible ele-

ments in the lattice is non-empty, due to the requirement that µ(⊥) = (IdA, IdB).

Particularly interesting are maximal feasible interpolation abstractions, i.e., the

maximal elements within the set of feasible interpolation abstractions. Maximal fea-

sible abstractions restrict interpolants in the strongest possible way, and are there-

fore most suitable for exploring interpolants; we refer to the set of maximal feasible

elements within an abstraction lattice as abstraction frontier.

5.5.1 Construction of Abstraction Lattices

When working with interpolation abstractions generated by templates, abstraction

lattices can naturally by constructed as the powerset lattice of some template base

set (ordered by the superset relation); this construction applies to term, inequality,

and predicate templates. Further, the operations introduced in Section 5.4 can be

used to combine simple lattices into more sophisticated ones; for instance, a useful

construction is to form the product of two lattices, defining the mapping µ as the

pairwise conjunction, disjunction, or composition of the individual mappings µ1,µ2.

Example 26. An abstraction lattice for the Example 20 is (〈℘(T ),⊇〉,µ), with base

templates T = {x1 − i1, i1, j} and µ mapping each element to the abstraction in
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∅

{x1− i1}

{ j, i1}

{x1− i1, i1, j}

{i1} { j}

{x1− i1, i1} {x1− i1, j}

Figure 5.5: The abstraction lattice for the running example. The light gray shaded elements
are feasible, the dark gray ones maximal feasible.

Input: Interpolation problem P = A[s̄A, s̄]∧B[s̄, s̄B], abstraction lattice
(〈L,vL〉,µ)

Result: Set of maximal feasible interpolation abstractions
1 Frontier← ∅;
2 while ∃ feasible abs ∈ L, incomparable with all x ∈ Frontier do
3 Frontier← Frontier∪{maximise(P,abs)};
4 end
5 return Frontier;

Algorithm 7: Exploration algorithm

Def. 14. Note that the bottom element of the lattice represents the full set T of tem-

plates (the weakest abstraction), and the top element the empty set ∅ (the strongest

abstraction). Also, note that µ(T ) is the identity abstraction (IdA, IdB), since T is a

basis of the vector space of linear functions in x1, i1, j.

The lattice is presented in Figure 5.5, with feasible elements in light gray. The

maximal feasible elements {i1} and {x1− i1, j}map to interpolation abstractions with

the abstract interpolants I1 and I2, respectively, as illustrated in Figure 5.4. Smaller

feasible elements (closer to ⊥) correspond to larger sub-lattices of abstract inter-

polants, and therefore provide weaker guidance for a theorem prover; for instance,

element { j, i1} can produce all abstract interpolants that {i1} generates, but can in

addition lead to interpolants like I3 = ( j 6� 0∨ i1 ≤ 49). �
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Input: Interpolation problem P = A[s̄A, s̄]∧B[s̄, s̄B], feasible abstraction
abs ∈ L

Result: Maximal feasible abstraction
1 while ∃ feasible immediate successor fs of abs do
2 pick element middle such that fs vL middle vL >;
3 if middle is feasible then
4 abs← middle;
5 else
6 abs← fs;
7 end
8 end
9 return abs;

Algorithm 8: Maximisation algorithm maximise(P,abs)

5.5.2 Computation of Abstraction Frontiers

In the case of abstraction lattices that are Boolean lattices, like the one in Figure 5.5,

the computation of abstraction frontiers can be carried out using algorithms for the

well-known problem of computing minimal unsatisfiable subsets (e.g., [193]). Such

algorithms do not immediately carry over, however, to non-Boolean lattices, which

can also be relevant abstraction lattices. We therefore present a binary search-based

algorithm to compute abstraction frontiers of arbitrary finite abstraction lattices. In

later Sections, this algorithm will be extended to also take costs into account, as a

means to rank interpolation abstractions.

The search is described in Algorithms 7 and 8. Algorithm 7 describes the

top-level procedure for finding maximal elements in an abstraction lattice. The

algorithm repeatedly checks whether feasible abstractions abs ∈ L exist that are in-

comparable with the maximum feasible abstractions found so far, i.e., such that no

x ∈ Frontier with abs vL x or x vL abs exists (line 2). Suitable methods for com-

puting such incomparable elements can be defined based on the shape of the chosen

abstraction lattice; for instance, if the abstraction lattice is a Boolean lattice, finding

incomparable abstractions amounts to solving the well-known problem of finding

minimal hitting sets for the Frontier [194] (a hitting set is a set that has elements

in common with every set in the Frontier). As long as incomparable elements can

be found, they are maximised by calling the maximise function (described in Algo-

rithm 8), and added to the frontier.
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In Algorithm 8 we describe the procedure for finding a maximal feasible ab-

straction mfa with the property that abs vL mfa. In each iteration of the maximisa-

tion loop, it is checked whether abs has any feasible parents (line 1); if this is not the

case, abs has to be maximal feasible and is returned. Otherwise, in the loop body

the algorithm executes a binary search on the set of elements in between abs and

>. The algorithm depends on the ability to efficiently compute (random) middle

elements between two elements a @ b of the lattice (line 2); again, this functionality

can best be implemented specifically for an individual lattice, and is not shown here.

It should be noted that checking the feasibility of an interpolation abstrac-

tion (TA,TB), for an interpolation problem A[s̄A, s̄]∧ B[s̄, s̄B], can be done by a

simple check whether the conjunction TA(A[s̄A, s̄])∧ TB(B[s̄, s̄B]) is unsatisfiable

(assuming a logic with the interpolation property). Repeating this check for a large

number of abstractions can be optimised with the help of incremental SMT: typi-

cally, only a small part of the formula TA(A[s̄A, s̄])∧TB(B[s̄, s̄B]) will actually de-

pend on the abstraction (TA,TB), in particular for relation abstractions. Common

conjuncts can therefore be factored out and handed over to an SMT solver upfront.

Lemma 17 (Correctness of exploration algorithm). When applied to a finite ab-

straction lattice, Algorithm 7 terminates and returns the set of maximal feasible

elements.

Proof. To see that the returned Frontier only contains maximal feasible abstrac-

tions, note that algorithm maximise(P,abs) only returns abstractions that are feasi-

ble, and only abstractions without feasible successors (i.e., maximal feasible ones).

The returned Frontier contains all maximal feasible abstractions, since any miss-

ing maximal feasible abstractions mfa < Frontier would have to be incomparable

with the elements in Frontier (due to maximality), and thus the loop condition in

Algorithm 7, line 2 holds.

Algorithm 7 terminates, since the considered abstraction lattice is finite, and

the set Frontier grows by one element in every iteration of the while loop. Namely,

assume that in some iteration an abstraction maximise(P,abs) is produced that is

already an element of Frontier; in this case, abs vL maximise(P,abs) cannot have
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been incomparable with Frontier. Algorithm 8 terminates since finite lattices have

finite height, and abs grows strictly in every iteration of the while loop. �

A useful refinement of the exploration algorithm is to canonise lattice elements

during search. Elements a,b ∈ L are considered equivalent if they are mapped to

(logically) equivalent abstraction relations by µ. Canonisation can select a repre-

sentative for every equivalence class of lattice elements, and search be carried out

only on such canonical elements.

5.5.3 Guiding Interpolant Exploration with Costs

Given an abstraction frontier, it is possible to compute a range of interpolants solv-

ing the original interpolation problem. However, for large abstraction frontiers this

may be neither feasible nor necessary. It is more useful to define a measure for the

quality of interpolation abstractions, again exploiting domain-specific knowledge,

and only use the best abstractions for interpolation.

To select good maximal feasible interpolation abstractions, we define an anti-

monotonic cost function cost : L → N that maps elements of an abstraction lat-

tice (〈L,vL〉,µ) to a natural number, with lower values indicating that an inter-

polation abstraction is considered better. The anti-monotonicity property (∀a,b ∈

L. a vL b⇒ cost(a) ≥ cost(b)) encompasses that coarser abstractions (higher up in

the lattice) have lower cost. In the case of abstractions constructed using a pow-

erset lattice over templates (L = ℘(T )), it is natural to assign a cost to every el-

ement in T (cost : T → N), and to define the cost of a lattice element A ∈ L as

cost(A) =
∑

t∈A cost(t). Similarly, for product lattices the cost function can be com-

puted as the sum of the costs of the components.

Our abstraction lattice in Figure 5.5 has two maximal feasible abstractions, {i1}

and {x1 − i1, j}, which result in computing the interpolants I1 and I2, respectively.

We can define a cost function that assigns a high cost to {i1} and a low cost to

{x1 − i1, j}, expressing the fact that we prefer to not talk about the loop counter i1

in absolute terms. More generally, assigning a high cost to variables representing

loop counters is a reasonable strategy for obtaining general interpolants (a similar

observation is made in [131], and implemented with the help of “term abstraction”).
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Once a cost function has been defined, the goal is to compute those abstrac-

tions from the Frontier set that have minimal cost. Naively, this can be done by

first computing the whole Frontier set, using Algorithms 7 and 8, and then remov-

ing those elements that are too costly; however, for realistic abstraction lattices this

procedure tends to be slow. Instead, it is possible to exploit costs already during

search, eagerly pruning away those parts of the search space that cannot contain ab-

stractions with low cost. We describe an optimisation to the exploration algorithms

that uses costs to this effect in Algorithms 9 and 10.

Besides Frontier, in Algorithm 9 an additional set of costly abstractions

(CostlyAbs) is maintained. A costly abstraction c is one whose cost cost(c) has

been identified as being greater than the minimal cost of feasible abstractions, and

that has the property that none of its successors is feasible; as a consequence, the

part of the abstraction lattice above c cannot contain low cost frontier elements.

The generalised maximisation function (boundedMaximise, Algorithm 10) re-

turns either a maximal feasible abstraction m of minimal cost, or it returns a costly

abstraction c (which may or may not be feasible). Feasible abstractions of minimal

cost are added to the Frontier, while costly abstractions are added to the CostlyAbs

set. If a returned maximal feasible abstraction improves upon the current cost bound

(defined by the minCost variable), then the minCost variable is updated with the new

minimal cost, and all previous frontier abstractions are moved to CostlyAbs.

Like Algorithm 8, Algorithm 10 proceeds by increasing the abstraction abs

until an abstraction is reached whose successors are all infeasible. To this end,

the for loop (line 4) iterates over the immediate successors of abs; if a feasible

successor is found, the loop is left, while knowledge about infeasible successors is

used to improve the upperBound variable.

The algorithm maintains the invariant that abs, and all of its feasible successors

are below upperBound. If it is detected that cost(upperBound)>minCost, it follows

(thanks to anti-monotonicity of cost) that no feasible abstractions with low cost can

exist above abs, and the algorithm can return immediately. In this way, the search

space can be pruned significantly.



180 Chapter 5. Symbolic Extensions

In order to update the variable upperBound (line 8), the algorithm exploits the

fact that a feasible abstraction abs with an infeasible successor s has been found.

Given the pair abs, s, we call an element b ∈ L a feasibility bound if the following

properties are satisfied:

feasibilityBound(abs, s,b) ≡



abs is feasible and s is infeasible,

abs = sub, and

for every feasible abstraction x with abs v x

it holds that x v b .

In other words, given a feasible abstraction abs with infeasible successor s of abs,

the predicate feasibilityBound provides an upper bound b for every feasible succes-

sor of abs. This implies that subsequent maximisation can ignore parts of the lattice

that are not underneath b.

The existence of upper bounds b is determined by the considered lattice. In

the special case that the abstraction lattice is a distributive lattice (e.g., a powerset

lattice), a simpler definition of feasibility bounds can be used:

feasibilityBounddist(abs, s,b) ≡


abs is feasible and s is infeasible,

abs = sub, and

b is a direct predecessor of > .

Since it can be observed that feasibilityBounddist(abs, s,b) implies the previous

predicate feasibilityBound(abs, s,b), for distributive lattices, the former can be used

as a more effective and sufficient condition.

Lemma 18 (Correctness of optimised exploration algorithm). When applied to a

finite abstraction lattice, Algorithm 9 terminates and returns the set of minimal

cost, maximal feasible abstractions.

Proof. Note that the outer loops of the algorithms have the following loop invari-
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ants:

Invalg9 = ∀x ∈ Frontier.
(
cost(x) = minCost∧ x is maximal feasible

)
∧∀x ∈ CostlyAbs.

(
cost(x) > minCost∧ all successors of x are infeasible

)
Invalg10 = ∀x ∈ L.

(
abs vL x∧ x is feasible ⇒ x vL upperBound

)
∧abs is feasible

It follows directly that Frontier in Algorithm 9 can only contain maximal feasi-

ble abstractions. Further, upon termination the Frontier contains all maximal feasi-

ble abstractions with minimal cost. Namely, assume that there is a maximal feasible

abstraction mfa < Frontier with cost(mfa) ≤minCost. As in the proof of Lemma 17,

it follows that mfa is incomparable with Frontier. Further, mfa cannot be above any

element in CostlyAbs, since successors of CostlyAbs are infeasible; mfa cannot be

below any element in CostlyAbs due to anti-monotonicity of cost. Therefore the

loop condition must be satisfied, contradicting the assumption that Algorithm 9 had

terminated.

Termination of Algorithm 9 can be shown like in the proof of Lemma 17.

Partial correctness of Algorithm 10 follows from its loop invariant. Termi-

nation is guaranteed since finite lattices have finite height, and abs grows strictly

in every iteration of the while loop while upperBound may only decrease strictly

with every iteration. Further, since the invariant holds that abs vL upperBound Al-

gorithm 10 terminates.

�

5.6 Experiments

5.6.1 Experimental Setup

5.6.1.1 Platform

The C program experiments below were done on an Intel Core i7 Duo 2.9 GHz with

8GB of RAM. The Petri net experiments with Eldarica were done on an Intel Core i5

2-core machine with 3.2GHz; Fast was run on an Intel Core i7 2-core machine with
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1.7GHz.

5.6.1.2 Benchmarks

To evaluate our technique we have integrated our technique into the Eldarica Horn

Clause model checker that utilises interpolants in its model checking algorithm. We

describe the two use cases for the two benchmarks below.

C Programs. We first investigate our approach using a fixed template on a set of C

program benchmarks. The C programs are converted into horn clauses. Our tech-

nique can be applied whenever interpolation is used by a model checker to eliminate

spurious counterexamples. To this end, it is necessary to select one or multiple ab-

straction points in the constructed interpolation problem (which might concern an

inductive sequence of interpolants, tree interpolants, etc.), and then to define an

abstraction lattice for each abstraction point. For instance, when computing an in-

ductive sequence I0, I1, . . . , I10 for the conjunction P1 ∧ · · · ∧ P10, we might select

interpolants I3 and I5 as abstraction points, choose a pair of abstraction lattices, and

add abstraction relations to the conjuncts P3,P4,P5,P6. We then use Algorithm 7

to search for maximal feasible interpolation abstractions in the Cartesian product

of the chosen abstraction lattices. With the help of cost functions, the best maxi-

mal feasible abstractions can be determined, and subsequently be used to compute

abstract interpolants.

We have integrated our technique into the predicate abstraction-based model

checker Eldarica [189], which uses Horn clauses to represent different kinds of ver-

ification problems [119], and solves recursion-free Horn constraints to synthesise

new predicates for abstraction [127]. As abstraction points, recurrent control loca-

tions in counterexamples are chosen (corresponding to recurrent relation symbols

of Horn clauses), which represent loops in a program. Abstraction lattices are pow-

erset lattices over the template terms

{
z | z a variable in the program

}
∪

{
x + y, x− y | x,y variables assigned in the loop body

}
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Petri Nets. We accommodate the analysis of Petri nets by using the CEGAR ap-

proach (Counter Example Guided Abstract Refinement) [191, 129] of Eldarica,

which provides a general framework for automatically computing inductive invari-

ants. In this approach, a finite set of formulas in a decidable logic, called predicates,

are used to transform a concrete system into an abstract one. Informally, the abstract

system is a finite graph; states are labeled by Boolean combinations of predicates;

actions are labelled by actions of the Petri net in such a way the finite graph sim-

ulates the Petri net. For Petri nets, Presburger arithmetic is a good candidate for

denoting predicates.

We apply the CEGAR loop exploration as previously presented, but inter-

polants are not computed directly from sequences of actions a1, . . . ,ak. In fact, as

previously mentioned, the quality of predicates generated by interpolation during

the execution of the CEGAR loop algorithm must be improved for analysing Petri

nets. Our approach to overcome this problem is based on different heuristics com-

bining linear algebra and acceleration techniques [195]. In the sequel, we present

three different heuristics.

Global-orthogonal-space heuristic (ABS (1)).

The computation of place invariants is a classical way for efficiently computing in-

variants of Petri nets. Place invariants are obtained by observing that if a vector t̄ is

orthogonal to v̄− ū for every action a = (ū, v̄) of the Petri net, then t̄ is orthogonal to

ȳ− x̄ for every marking ȳ reachable from x̄. That means the dot product of t̄ with

any reachable marking is a constant. Our first heuristic is based on the observation

that orthogonal vectors t are suitable templates to be used in combination with term

or inequality interpolation abstractions (Section 5.3.1 and 5.3.2). We first compute

a basis of the vector space orthogonal to all vectors v̄ j− ū j where a j = (ū j, v̄ j). This

basis is then completed as an orthogonal basis B of the whole vector space gener-

ated by the markings. Such a computation is performed with Gauss elimination in

polynomial time.

We then define an abstraction lattice using the powerset lattice for B (Def. 19),

with each node in the lattice mapping to an inequality interpolation abstraction for
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some subset of B. The abstraction lattice is equipped with a cost function (as in

Section 5.5.3) that maps orthogonal vectors t̄ to a small cost, and all other basis

vectors to a large cost. As a result, the search procedures from Section 5.5 are able to

systematically search for interpolation abstractions, and consequently interpolants,

that are defined using orthogonal vectors; such interpolants are likely to be invariant

under all or many actions of a Petri net.

Acceleration of individual recurring actions (ABS (2)).

Acceleration techniques compute reachability sets thanks to the exact effect of iter-

ating some sequences of actions. For instance, let us consider an action a = (ū, v̄),

and observe that for every natural number n ≥ 1, we have x̄
an

−−→ ȳ if and only if x̄ ≥ ū,

ȳ ≥ v̄, and ȳ + n.ū = x̄ + n.v̄. Our second heuristic is based on acceleration tech-

niques. Basically, rather than computing interpolants directly from a sequence of

actions a1, . . . ,ak, we compute interpolants I j[s j] thanks to the following formula,

where φacc
j [s̄ j−1,n j, s̄ j] is the formula s̄ j−1 ≥ ū j ∧ s̄ j ≥ v̄ j ∧ s̄ j + n j.ū j = s̄ j−1 + n j.v̄ j

encoding the effect of iterating n j times the action a j = (ū j, v̄ j).

(s̄0 = x̄∧φacc
1 [s̄0,n1, s̄1]∧ . . .∧φacc

j [s̄ j−1,n j, s̄ j])

∧(φacc
j+1[s̄ j,n j+1, s̄ j+1]∧ . . .∧φacc

k [s̄k−1,nk, s̄k]∧ s̄k = ȳ)

Note that ∃n j ≥ 1. φacc
j [s̄ j−1,n j, s̄ j] is an over-approximation of φ j[s̄ j−1, s̄ j], and can

in fact be mapped to an inequality interpolation abstraction by means of quantifier

elimination. As before, costs can be used to steer interpolant exploration towards

interpolants that are invariant under recurrence of the accelerated action.

Detection of increasing sequences (ABS (3)).

In our last heuristics, we abstract away the sequence a1, . . . ,ak of actions as a multi-

set. This abstraction basically extracts the Parikh image by counting the number of

times an action occurs. Informally, thanks to linear algebra methods, sub-multisets

of actions are computed in such a way that the effect of these actions is a non-

negative vector. More formally, we consider for each action a = (ūa, v̄a) a natural
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number na in such a way the following vector v̄ satisfies v̄ ≥ 0̄:

v̄ =
∑
a∈A

na(v̄a− ūa)

The computation of vectors v̄ satisfying v̄ ≥ 0̄ is motivated by the framework of ac-

celeration as previously mentioned. In fact, an action a = (ū, v̄) with a non-negative

effect v̄− ū can be iterated an arbitrary number of times. Following this observation,

we compute non-zero terms that maps a maximal (for the inclusion) set of vectors

v̄ as previously presented. This heuristics is a kind of mix of the two previously

given heuristics. It provides sets of terms that are used for computing inequality

interpolation abstraction.

5.6.2 Experimental Results

5.6.2.1 C Program Results

In Table 5.1 we evaluate the performance of our approach compared to Eldarica

without interpolation abstraction, the acceleration-based tool Flata [189], and the

Horn engine of Z3 [197] (v4.3.2). Benchmarks are taken from [196], and from a

recent collection of Horn problems in SMT-LIB format.2 They tend to be small

(10− 750 Horn clauses each), but challenging for model checkers. We focused on

benchmarks on which Eldarica without interpolation abstraction diverges; since

interpolation abstraction gives no advantages when constructing long counterexam-

ples, we mainly used correct benchmarks (programs not containing errors). Lattice

sizes in interpolation abstraction are typically 215−2300; we used a timeout of 1s for

exploring abstraction lattices. The letter after the model name distinguishes Correct

benchmarks from benchmarks with a reachable Error state. For Eldarica, we give

the number of required CEGAR iterations (N), and the runtime in seconds; for Flata

and Z3, the runtime is given. Items with “*” indicate a timeout (set to 10 minutes),

while - indicates inability to run the benchmark due to lack of support for some

operators in the problems.

Overall, interpolation abstraction only incurs a reasonable runtime overhead.

2https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
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The biggest (relative) overhead could be observed for the rate limiter example,

where some of the feasibility checks for abstraction take long time. Flata is able to

handle a number of the benchmarks on which Eldarica times out, but can overall

solve fewer problems than Eldarica. Z3 is able to solve many of the benchmarks

very quickly, but overall times out on a larger number of benchmarks than Eldarica

with interpolation abstraction.

The results demonstrate the feasibility of our technique and its ability to avoid

divergence, in particular on problems from [196].

5.6.2.2 Petri Net Benchmarks

In order to evaluate the efficacy of the different interpolation abstractions, we imple-

mented a Petri net checker on the basis of the model checker Eldarica and integrated

the three forms of abstraction defined above, i.e., ABS (1) is the global-orthogonal-

space heuristic, ABS (2) accelerates individual actions, ABS (3) detects increasing

sequences, ABS-all combines all abstraction methods.

For each benchmark, “U” denotes that the considered configuration is unreach-

able, while “R” represents reachable configurations. Items with “*” indicate a time-

out (set to 1 hour).

Experiments were done using a set of (bounded and unbounded) Petri net

benchmarks taken from the literature.

The results are given in Table 5.2, in terms of runtime and the required number

of CEGAR iterations. As can be seen, Eldarica without interpolation abstraction

performs poorly on Petri nets, and times out in many cases. The three interpolation

abstractions show complementary performance, and each of our benchmarks could

be solved using at least one of the heuristics. A combination of the interpolation

abstractions (ABS-all) is also able to solve all benchmarks, although not always

with the best runtime.

Finally, we compared to the acceleration-based model checker Fast [198]. Fast

checks reachability queries by first computing a closed-form representation of the

complete reachability set, and therefore has the same runtime for reachable as for

unreachable cases. Fast is able to solve all bounded Petri nets in very short time,



5.7. Discussion 187

but times out for a number of the unbounded ones. In particular, Fast fails for

the “Exponential” example, and has a reachability set that cannot be defined in

Presburger arithmetic.

5.7 Discussion

Compared to Chapter 3 the approach presented here takes a different approach to

specialisation. Instead of generating specialised machinery for computing an inter-

polant we instead guide the theorem prover by instrumenting the original problem

in order to guide the theorem prover to limit the interpolants that it can derive.

Our approach is very much related to a body of research that attempts to derive

better interpolants.

Syntactic restrictions of considered interpolants [188, 199], for instance limit-

ing the magnitude of literal constants in interpolants, can be used to enforce conver-

gence and completeness of model checkers. This method is theoretically appealing,

and has been the main inspiration for the work presented in this paper. In prac-

tice, syntactic restrictions tend to be difficult to implement, since they require deep

modifications of an interpolating theorem prover; in addition, completeness does

not guarantee convergence within an acceptable amount of time. We present an

approach that is semantic and more pragmatic in nature; while not providing any

theoretic convergence guarantees, the use of domain-specific knowledge can lead to

performance advantages in practice.

It has been proposed to use term abstraction to improve the quality of inter-

polants [131, 200]: intuitively, the occurrence of individual symbols in an inter-

polant can be prevented through renaming. Our approach is highly related to this

technique, but is more general since it enables fine-grained control over symbolic

occurrences in an interpolant. For instance, in Example 20 arbitrary occurrence of

the variable i1 is forbidden, but occurrence in the context x1− i1 is allowed.

The strength of interpolants can be controlled by choosing different interpola-

tion calculi [48, 201], applied to the same propositional resolution proof. To the best

of our knowledge, no conclusive results are available relating interpolant strength
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with model checking performance. In addition, the extraction of different inter-

polants from the same proof is less flexible than imposing conditions already on the

level of proof construction; if a proof does not leverage the right arguments why

a program path is infeasible, it is unlikely that good interpolants can be extracted

using any method.

In a similar fashion, proofs and interpolants can be minimised by means of

proof transformations [202, 203]. The same comments as in the previous paragraph

apply.

Divergence of model checkers can be prevented by combining interpolation

with acceleration, which computes precise loop summaries for restricted classes of

programs [204, 205, 196]. Again, our approach is more pragmatic, can incorpo-

rate domain knowledge, but is not restricted to any particular class of programs.

Our experiments show that our method is similarly effective as acceleration for pre-

venting divergence when verifying error-free programs. However, in contrast to

acceleration, our method does not support the construction of long counterexam-

ples spanning many loop iterations.

Templates have been used to synthesise program invariants in various contexts,

for instance [206, 207, 208], and typically search for invariants within a rigidly

defined set of constraints (e.g., with predefined Boolean or quantifier structure).

Our approach can be used similarly, with complex building blocks for invariants

specified by the user, but leaves the construction of interpolants from templates

entirely to the theorem prover.

A number of systems compute interpolants by means of constraint-based in-

terpolation, including CLP-Prover [209] and CSIsat [210]. This approach is similar

in spirit to the template methods discussed in the previous paragraph, and imposes

strong restrictions on the shape of considered interpolants. To the best of our knowl-

edge, no attempts have been made to exploit domain-specific knowledge to guide

constraint-based interpolation tools. Since our abstraction techniques are agnos-

tic to the underlying interpolation engine, they can also be used in the context of

constraint-based interpolation.
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The proposes of generating beautiful has interpolants has been proposed by Al-

barghouthi etal. [47]. Here interpolants with particularly simple shape and Boolean

structure are sought; empirically, interpolants of this kind were found to be ben-

eficial for the convergence of model checkers. Domain-specific knowledge is not

explicitly used when computing beautiful interpolants, but it is possible to use the

procedure in [47] in combination with our abstraction framework.
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Input: Interpolation problem P = A[s̄A, s̄]∧B[s̄, s̄B], abstraction lattice
(〈L,vL〉,µ)

Result: Set of all maximal feasible interpolation abstractions of minimal
cost

1 CostlyAbs← ∅;
2 Frontier← ∅;
3 minCost←∞;
4 while ∃ feasible abs ∈ L, incomparable with Frontier and CostlyAbs do
5 m or c← boundedMaximise(P,abs,minCost);
6 if m was returned, and cost(m) < minCost then
7 CostlyAbs← CostlyAbs∪Frontier;
8 Frontier← {m};
9 minCost← cost(m);

10 else
11 Frontier← Frontier∪{m} or CostlyAbs← CostlyAbs∪{c};
12 end
13 end
14 return Frontier;

Algorithm 9: Optimised Exploration Algorithm
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Input: Interpolation problem P = A[s̄A, s̄]∧B[s̄, s̄B], feasible abstraction
abs ∈ L, minimal cost bound minCost

Result:
m ∈ L s.t. abs vL m, m is maximal feasible, and cost(m) ≤ minCost or
c ∈ L s.t. abs vL c, cost(c) > minCost, and all successors of c are infeasible

1 upperBound←>;
2 while true do
3 fs← undef;
4 for all immediate successors s of abs, while fs is undefined do
5 if s vL upperBound then
6 if s is feasible then
7 fs← s;
8 else if ∃b. feasibilityBound(abs, s,b) then
9 upperBound← upperBoundub;

10 if cost(upperBound) > minCost then
11 return m← upperBound;
12 end
13 if upperBound is feasible then
14 return c← upperBound;
15 end
16 end
17 end
18 end
19 if fs is defined then
20 pick abstraction middle such that fs vL middle vL upperBound;
21 if middle is feasible then
22 abs← middle;
23 else
24 abs← fs;
25 end
26 else
27 if cost(abs) > minCost then
28 return c← abs;
29 else
30 return m← abs;
31 end
32 end
33 end
Algorithm 10: Optimised maximisation algorithm
boundedMaximise(P,abs,minCost)
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Benchmark Eldarica Eldarica-ABS Flata Z3
N sec N sec sec sec

C programs from [196]
boustrophedon (C) * * 10 10.7 * 0.1
boustrophedon expansed (C) * * 11 7.7 * 0.1
halbwachs (C) * * 53 2.4 * 0.1
gopan (C) 17 22.2 62 57.0 0.4 349.5
rate limiter (C) 11 2.7 11 19.1 1.0 0.1
anubhav (C) 1 1.7 1 1.6 0.9 *
cousot (C) * * 3 7.7 0.7 *
bubblesort (E) 1 2.8 1 2.3 77.6 0.3
insdel (C) 1 0.9 1 0.9 0.7 0.0
insertsort (E) 1 1.8 1 1.7 1.3 0.1
listcounter (C) * * 8 2.0 0.2 *
listcounter (E) 1 0.9 1 0.9 0.2 0.0
listreversal (C) 1 1.9 1 1.9 4.9 *
mergesort (E) 1 2.9 1 2.6 1.1 0.2
selectionsort (E) 1 2.4 1 2.4 1.2 0.2
rotation vc.1 (C) 7 2.0 7 0.3 1.9 0.2
rotation vc.2 (C) 8 2.7 8 0.2 2.2 0.3
rotation vc.3 (C) 0 2.3 0 0.2 2.3 0.0
rotation.1 (E) 3 1.8 3 1.8 0.5 0.1
split vc.1 (C) 18 3.9 17 3.2 * 1.1
split vc.2 (C) * * 18 1.1 * 0.2
split vc.3 (C) 0 2.8 0 1.5 * 0.0
Recursive Horn SMT-LIB Benchmarks
addition (C) 1 0.7 1 0.8 0.4 0.0
bfprt (C) * * 5 8.3 - 0.0
binarysearch (C) 1 0.9 1 0.9 - 0.0
buildheap (C) * * * * - *
countZero (C) 2 2.0 2 2.0 - 0.0
disjunctive (C) 10 2.4 5 5.0 0.2 0.3
floodfill (C) * * * * 41.2 0.1
gcd (C) 4 1.2 4 2.0 - *
identity (C) 2 1.1 2 2.1 - 0.1
mccarthy91 (C) 4 1.4 3 2.4 0.2 0.0
mccarthy92 (C) 38 5.6 7 8.7 0.1 0.1
merge-leq (C) 3 1.1 7 7.0 15.7 0.1
merge (C) 3 1.1 4 4.5 14.7 0.1
mult (C) * * 15 52.8 - *
palidrome (C) 4 1.4 2 2.1 - 0.1
parity (C) 4 1.6 4 2.9 0.8 *
remainder (C) 2 1.1 3 1.6 - *
running (C) 2 0.9 2 1.7 0.2 0.1
triple (C) 4 2.0 4 5.1 - 0.1

Table 5.1: Comparison of Eldarica without interpolation abstraction, Eldarica with
ABStraction, Flata, and Z3
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Benchmark Eldarica ABS (1) ABS (2) ABS (3) ABS-all Fast
N sec N sec N sec N sec N sec sec

Bounded Petri nets
Basic ME U 3 1.3 3 1.55 3 1.3 3 1.3 3 1.7 <1
IFIP U 12 2.3 2 1.7 12 4.3 10 4.6 2 1.8 <1
L6000 U * * 17 16.5 8 4.7 * * 3 4.0 <1
Long 1 U * * 1 1.2 7 7.1 * * 1 1.2 <1
Long 2 U * * 1 1.4 10 11.1 13 15.4 1 1.4 <1
Long 3 U * * * * 10 11.5 8 8.2 11 19.2 <1
Long 4 U * * 1 2.8 9 11.2 103 79.6 1 3.0 <1
Manufacturing 3 U * * 323 802 441 2635 675 1946 354 1588 2.4
Manufacturing 9 R * * 232 801 264 632 560 3053 295 1515 10.8
Unbounded Petri nets
Alternating bit prot. R 64 14.8 16 10.5 44 17.5 35 15.2 16 14.7 4.5
FMS R 25 20.5 23 28.4 25 27.3 17 24.7 23 32.4 98.4
” U 18 9.8 2 7.0 13 17.6 18 10.7 2 6.7 37.4

FinkelKM R 16 5.8 15 8.9 16 11.6 17 11.6 15 22.7 5.7
” U 14 5.7 3 2.4 6 6.5 7 3.4 3 2.5 5.7

Finkel Counterex. R 12 2.3 10 3.5 12 2.3 12 2.6 10 3.6 <1
Kanban R 28 33.3 19 35.8 29 70.0 22 41.5 25 67.3 *
” U * * 1 3.9 * * * * 1 3.8 *

Mesh 2x2 R 75 52.3 64 82.9 60 56.6 68 102 65 105 97
” U 186 170 18 33.7 * * * * 18 37.8 97

Multipool U 56 423 1 5.4 * * * * 1 5.0 *
Pingpong U 3 1.4 2 1.5 2 1.4 2 1.3 2 1.5 <1
PNCSA Cover R 32 15.0 17 16.5 32 14.5 26 16.4 17 17.7 *
Exponential U * * 8 3.9 8 3.4 6 5.1 5 5.2 *
Language inclusion U * * * * 5 3.7 2 1.7 6 9.0 <1

Table 5.2: Comparison of tools for checking reachability in bounded and unbounded Petri
nets, on benchmarks taken from the literature.
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In this chapter, we describe several application areas of logic defined static

analysis. In particular, these real world use cases describe various applications of

logic defined static analysis in industrial settings. As a secondary consequence, this

chapter aims to further evaluate the scalability of tools that implement the tech-

niques of this thesis by showing their scalability in complex industrial settings.

The first use case we present, evaluates Soufflé as a computational backend

for verifying security properties on virtual networks. This use case was performed

in collaboration with Amazon Web Services (AWS). The second use case evaluates

Soufflé as a static analyser for performing points-to and security static analyses on

the Oracle JDK 7 code base. This case study was performed in collaboration with

Oracle Labs.

6.1 Use Case: Security Analysis of Amazon Net-

works
Computer networks are typically built from a variety of specialised heterogeneous

devices running complex distributed protocols. Network administrators, responsi-

ble for operability of a network, must configure and deploy every protocol sepa-

rately on each individual device. In an effort to simplify this task, software-defined

networking (SDN) [211] has been proposed as a modern alternative. Modern plat-

forms for cloud computing offer their users means of configuring private networks

in the style of SDN. This includes Amazon Virtual Private Cloud (Amazon vir-

tual) [212] networks, the networking layer for the Amazon Elastic Compute Cloud

(Amazon EC2) infrastructure. Administrators of virtual networks use a centralised

control panel or a specialised API to launch EC2 instances, set up subnets and route

tables, and configure connectivity and security settings of the network.

Despite the increase of usability provided by platforms such as Amazon EC2,

the virtual networks remain prone to misconfigurations. These misconfigurations

are caused by the complexity of large-scale enterprise networks and might lead

to downtimes and breaches of security. Discovering such misconfiguration in

industrial-size networks can be both extremely laborious and computationally in-
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tensive. Therefore, verifying the correctness of network configurations is an impor-

tant and challenging task. In this use case we investigate the use of Soufflé as a

tool for verifying various network configuration properties hold.

6.1.1 Reachability Properties for Virtual Networks

Figure 6.1 shows an example of a virtual network that consists of two subnets “Web”

and “Database” with three network instances in each of them. Each of the subnets

is assigned with a route table that configures the “Web” subnet to be accessible

from the internet and the “Database” to not be accessible from the internet. In

addition, each of the subnets is assigned with an access control list (ACL) that

contains their security access rules. In particular, one of the rules forbids SSH

access to the database servers directly or indirectly (via the web servers).

In a realistic setting, this network administrator may want to make sure that

this network retain certain properties after each change in its configuration. For

example, the network administrator may want to check the following property.

Example 27. All network instances in the subnet “Web” can access all network

instances in the subnet “Database”.

In addition, the network administrator might want to know which networking

components satisfy a given property, such as the ones in the following example.

Example 28. All network instances that have the port 22 (SSH) accessible from the

internet.

We will refer to questions that network administrators might want to answer,

such as the ones in Examples 27 and 28, as network questions. In particular, we will

refer to questions similar to Example 27 as boolean questions, because they expect

a true or false answer, and to questions similar to Example 28 as list questions,

because they expect a list of networking components as an answer.

6.1.2 EC2 Network Semantics

We answer network questions statically, that is, instead of sending packets in a

network, we build a model of the network and reason about this model. Our net-

work model consists of two parts, the formal specification and the snapshot of the
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Web Subnet - 
10.0.0.0/24

Database Subnet - 
10.0.1.0/24

ins-a ins-b ins-c

ins-d ins-e ins-f

Internet Gateway - 
igw-id

10.0.0.5 10.0.0.6 10.0.0.7

10.0.1.5 10.0.1.6 10.0.1.7

245.10.1.5 245.10.1.6 245.10.1.7

ACLs

In Out

In Out

100, 0.0.0.0/0, TCP, 80, A

110, 0.0.0.0/0, TCP, 443, A
120, 22.1.2.*, TCP, 22, A

…..
*, 0.0.0.0/0, TCP, *, D

100, 0.0.0.0/0, TCP, 80, A

120, 10.0.1.0/24, TCP, 445, A

*, 0.0.0.0/0, TCP, *, D
…..

110, 0.0.0.0/0, TCP, 443, A 110, 0.0.0.0/0, TCP, 443, A

*, 0.0.0.0/0, TCP, *, D *, 0.0.0.0/0, TCP, *, D

Figure 6.1: An example virtual network

network. The specification formalises the semantics of each of the components

available in the network. For example, the formal specification describes how a

route table directs network traffic in a subnet or in which order a firewall applies

rules in the access control list (ACL). The snapshot describes the topology of the

given network. For example, the snapshot contains the list of network instances,

subnets, and their route tables. Naturally, the formal specification in the model of

each particular virtual network is the same, whereas the snapshot differs. We ex-

press network questions in the language of many-sorted first-order logic. In the

remainder of this section we describe syntax and semantics of network models and

network questions.

6.1.2.1 Network Models

A network model is defined as a finite set of first-order Horn clauses. We disallow

function symbols and allow stratified negation. We assume the plain logic program-

ming semantics for these Horn clauses, defined in the standard way. In particular,

we make the closed-world assumption and treat negation as failure. In addition, our

network models use the theory of bit vectors to describe ports, IPv4 addresses, and

subnet masks.

A signature of the network model is a triple (T,C,P), where T is a set of types,

C is a set of constants, and P is a set of predicates. We assign each constant with a

type τ ∈ T and each predicate with a type τ1× . . .×τn (n ≥ 0), where τi ∈ T for each

1 ≤ i ≤ n. We assume a countable infinite set of variables. We assign each variable
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with a type τ ∈ T . We call a term of the type τ ∈ T a constant or a variable of that

type. We call an atom an expression of the form p(t1, . . . , tn), where n > 0, p ∈ P is a

predicate of the type τ1× . . .× τn, and each ti, 1 ≤ i ≤ n is a term of the type τi. We

call a literal an atom or its negation.

A rule is a Horn clause of the form A← L1∧ . . .∧Ln (n≥ 0), where A is an atom

which we call the head of the rule and each of B1, . . . ,Bn is a literal. If n = 0 and all

arguments of A are constants then we call such rule a fact. We call a definition of

the predicate p ∈ P the set of all rules in the network model that use p in their head.

We assume that the signature contains (i) types bits16 and bits32; (ii) 216

constants of the type bits16; (iii) 232 constants of the type bits32; (iv) predicates

bits16<, bits16≤, bits16+1, bits16−1 of the type bits16× bits16 with a special se-

mantics and (iv) predicate bits32∧ or the type bits32×bits32×bits32 with a special

semantics.

bits16 and bits32 represent the types of 16-bit and 32-bit vectors. The seman-

tics of the predicates is that of the correspondent operations over bit vectors defined

in the standard way.

We assume that for each type τ ∈ T the signature contains the equality predicate

=τ of the type τ×τ and the network model contains the rule =τ(X,X).

The network specification part of the model contains types, predicates, con-

stants, and rules that describe the semantics of the networking components in virtual

networks. For example, the specification defines the semantics of SSH tunnelling.

One network interface (ENI) can SSH tunnel to another ENI iff it can either con-

nect to it over SSH directly, or through a chain of one or more intermediate ENIs.

In order to express this concept, the specification contains predicates canSshTunnel

and canSsh, each of the type eni× eni, and the two following rules.

canSshTunnel(Eni1,Eni2)← canSsh(Eni1,Eni2).

canSshTunnel(Eni1,Eni2)← canSshTunnel(Eni1,Eni3)

∧ canSshTunnel(Eni3,Eni2).
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The specification of Amazon virtual networks that we used in this work con-

sists of approximately 50 types, 200 predicates, and over 240 rules.

The network snapshot part of the model contains constants and facts that de-

scribe the configuration of the networking components in a given Amazon vir-

tual network. For example, the snapshot of a network with a single instance

i-abcd1234 in a single subnet “Web” consists of the constants instanceabcd1234

and subnetWeb, and the fact

instanceHasSubnet(instanceabcd1234,subnetWeb).

6.1.2.2 Network Questions

We express network questions as formulas of many-sorted first-order logic with

the standard logical connectives ∨, ∧, ⇒, ⇔, ⊕, and equality. These formulas

only use types, constants, and predicates from the signature of the network model.

The formulas do not use any function symbols. We allow interpretation of these

formulas to use empty domains and otherwise assume the standard semantics of

many-sorted first-order logic.

We express boolean questions as closed formulas, that is, formulas in which

all occurrences of variables are bound by a quantifier. Conversely, we express list

questions as formulas with free variables. The answer to a boolean question is true

iff its correspondent formula is valid. The answer to a list question is the set of

variable substitutions that satisfies its correspondent formula.

The boolean question in Example 27 is expressed as the following formula.

(∀w : instance)(∀d : instance)

(instanceHasSubnet(w,subnetWeb)∧

instanceHasSubnet(d,subnetDatabase)⇒

instanceCanConnectToInstance(w,d))

(6.1)

The list questions in Example 28 is expressed as the following formula with
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the free variables i of the type instance and e of the type eni.

instanceHasEni(i,e)∧

reachablePublicTcpUdp(diringress,proto6,e,port22,

publicIp8:8:8:8,port40000)

(6.2)

All predicates and constants used in Formulas 6.1 and 6.2 are part of the sig-

nature of the network model. Constants subnetWeb and subnetDatabase are part of

the network snapshot, and all other predicates and constants are part of the network

specification.

6.1.3 Translating Virtual Networks in Datalog

6.1.3.1 Snapshot

Soufflé accepts definitions of typed relations, contains the predefined symbol and

numeric types, and accepts definitions of new types. The types in Soufflé are in-

terpreted under the open-world assumption. We model the types of the network

models, interpreted as finite domains, using Datalog relations with one argument.

Let τ be a type and c1, . . . ,cn (n ≥ 0) be constants of this type. We introduce a rela-

tion τ and add the facts τ(ci), 1 ≤ i ≤ n to the set of Datalog rules. We use literals of

the form τ(t) in every Datalog rule to guard the argument t of the type τ in the head

of the rule.

6.1.3.2 Rules

Let p(t1, . . . , tn)← L1∧ . . .∧Lm (n ≥ 0,m ≥ 0) be a rule in the network model, where

p is a predicate of the type τ1× . . .×τn and each of L1, . . . ,Lm is a literal. We translate

p to a Datalog relation R and translate this rule to the Datalog rule

R(t1, . . . , tn) :- τ1(t1) ∧ . . . ∧ τn(tn) ∧ L1 ∧ . . . ∧ Lm.

6.1.3.3 Questions

We automatically translate a network question expressed as a first-order formula φ

without function symbols to a Datalog query and a set of Datalog rules. We start by
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converting φ to a prenex disjunctive normal form that is

(∀x1 : τ1) . . . (∀xn : τn)(∃y1 : σ1) . . . (∃ym : σm)D,

where n ≥ 0, m ≥ 0 and D is a disjunction C1 ∨ . . .∨Ck (k ≥ 0) of conjunctions of

atomic formulas. Let z1 : υ1, . . . ,zl : υl (l ≥ 0) be all free variables of φ. Recall

that l = 0 for formulas expressing boolean network questions and l > 0 for formulas

expressing list network question. We introduce two fresh relations R and Q of the

types τ1 × . . .× τn ×υ1 × . . .×υl and υ1 × . . .×υl, respectively. The translated set of

Datalog rules consists of n + 1 rules: n rules of the form

R(x1, . . . , xn,z1, . . . ,zl) :- τ1(x1) ∧ . . . ∧ τn(xn) ∧

υ1(z1) ∧ . . . ∧ υl(zl) ∧Ci

for each 1 ≤ i ≤ k and the rule

Q(z1, . . . ,zl) :- υ1(z1) ∧ . . . ∧ υl(zl) ∧

¬R(x1, . . . , xn,z1, . . . ,zl).

Note that we can use each conjunction Ci in a Datalog rule because each literal in

Ci only contains variables and constants — there are no function symbols in φ and

they do not appear during a conversion to prenex disjunctive normal form. Finally,

the Datalog query is ¬Q(z1, . . . ,zl).

We translate types bits16 and bits32 to numeric types for 32 and 16-bit integers,

respectively, and translate the predicates over bit vectors into their correspondent

built-in Soufflé operations.

We illustrate our translation using examples from Section 6.1.1. We translate



6.1. Use Case: Security Analysis of Amazon Networks 203

Formula 6.1 that expresses a boolean network question to the Datalog rules

R(w,d) :- Instance(w)∧

¬InstanceHasSubnet(w,subnetWeb).

R(w,d) :- Instance(d)∧

¬InstanceHasSubnet(w,subnetDatabase).

R(w,d) :- Instance(w)∧ Instance(D)∧

InstanceCanConnectToInstance(w,d).

Q() :- ¬R(w,d).

and the Datalog query ¬Q(). Note that multiple rules in the definition of R appear

because of the translation to disjunctive normal form. We translate Formula 6.2 that

expresses a list network question to the Datalog rules

R(i,e) :- Instance(i)∧Eni(e)∧

InstanceHasEni(i,e)∧

ReachablePublicTcpUdp(diringress,proto6,

e,port22,

publicIp8:8:8:8,port40000).

Q(i,e) :- Instance(i)∧Eni(e)∧¬R(i,e).

and the Datalog query ¬Q(i,e).

6.1.3.4 Optimisations

Syntactic Inlining Transformation A common bottleneck in Datalog programs is

the case when very large relations are constructed only to be later constrained via

additional rules. This bottleneck may be regarded as bad programming practice,

however, it is often unavoidable when Datalog is used to construct libraries of rela-

tions as in this case study.

To understand this bottleneck, assume we have a relation R(x,y). In addi-
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tion to R, an extended interface may exist n the relation G, defined by the rule

G(w, x,y,z) :- R(x,y),D(w,z). Due to a lack of equality bindings, G will contain the

product of both relations. We then project values in G that have a equality binding

between the first and third, and second and fourth attributes. When evaluated we

will construct a very large relation G only to constrain it to build A.

To mitigate this bottleneck, rules can be propagated, i.e., the occurrences of a

relation can be replaced with its rule bodies. For each rule unification is necessary

to equate the different variable names in an occurring relation and the body of its

rule. We demonstrate this in the example below:

G(w, x,y,z) :- R(x,y),D(w,z).

A(x,y) :- G(x,y, x,y).

can be transformed into the rule below with the unification {w = y, x = z}:

A(x,y) :- R(x,y),D(y, x).

In the transformed program, the large relation G, does not need to be computed

before it is constrained in the proceeding rule, instead we substitute the body of the

rule and constrain before it is constructed. Despite its large optimisation potential,

rule propagation is limited in its use. For instance, input and output relations cannot

be propagated, rules that form a cycle in their precedence graph, and which are

composed entirely of propagated relations cannot be forward propagated (a rule

must be selected to be ignored to break the cycle), and relations that introduces new

variables in their rules but appear negated in a clause cannot be propagated.

Lemma 19 (Correctness of Inlining Transformation). The inlining transformation

is preserves the correctness of the Datalog program

Proof. Since the transformation can only be performed on sets of chained rules

with no-negated links, inlining is equivalent to repeated application of one step of

top-down resolution. �
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Existence Elimination Transformation A bottleneck occurs when we build large

relations and only need to assert the existence of an arbitrary element. For example,

we may have the Datalog program:

A(x) :- A(x),G(x).

A(x) :- B(x).

Q() :- A(x).

Again, in this case, A may be a very large relation and we want to avoid com-

puting the entire relation to assert that it has an element in it. For such problems,

magic set transformation is not possible and forward propagation, which in some

cases may alleviate the problem, is not sufficient for recursive rules. This problem

can be generalised for any relation where all of its variables are not in the head of a

rule and not bound in another body relation, i.e., they can be replaced by . In this

case, we make the observation that as the relation is used purely in an existential

fashion, and we can ignore recursive rules which do not need to be computed due

to the monotonicity of Datalog. Assuming we are in the realm of stratified Datalog,

then since a relation cannot appear negated when it is at the head of a clause, a re-

cursive rule will only produce a result if the relation already contains a tuple. Hence

this transformation, if applicable, results in the removal of all recursive rules of a

where relation A is the head. Moreover, this may result in additional relations being

reduces to existential form as recursive rules are removed. The example above can

be rewritten as follows:

A() :- B( ).

Q() :- A().

Here, we can treat A as a nullary relation which is true or false depending on

the existence of an element in B. Note that, if B is an IDB relation and not used in

any other way, the transformation can be applied to B.

Lemma 20 (Correctness of Existence Elimination). The existence elimination

transformation preserves the semantics of the Datalog program.
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Proof. Given the monotonicity property of the semi-naı̈ve algorithm, the cardinality

of a relation can only increase at each derivation. Also note, a rule cannot derive

new tuples if its body contains an empty relation. Hence, derived relation with has

a cardinality of greater than 1 in its initial delta (using the base case) or will always

have a cardinality of 0. �

6.1.4 Experiments

6.1.4.1 Experimental Setup

Table 6.1 provides characteristics each benchmark, namely, number of instances,

security groups and ENIs. Each query was chosen to test different performance

characteristics. The Query 1 is a list query with large outputs many literal bindings.

Query 2 is a boolean query for which magic set transformation cannot be applied.

The benchmarks are well distributed containing benchmarks of hundreds of mega

bytes in size, with thousands of instances, security groups and ENIs to very small

networks with a few instances. Each benchmark contains an L, M or S which

indicates the size of the snapshot file. Benchmarks with L are typically 100 MB

and up, M between 10 and 100 MB and S under 10 MB.

Platform. All experiments were run on an Intel(R) Core(TM) i5-6300U CPU @

2.40GHz with a 3072 KB cache and 4GB RAM.

Usage of Soufflé. In this use case Soufflé is used as a standalone tool for large

analyses and in the context of a wider tool configuration. When used standalone,

Soufflé can synthesise/compile the one off analysis and run on various virtual net-

works (see results in Chapters 3 and 4). However, Soufflé can also be used as a

backend in a wider tool. In this case, synthesis/compilation becomes part of the

overall computation (no longer static), however, even in this case we show that

Soufflé can exhibit superior performance when compared to a state-of-the-art tool

such as µZ. When we analyse small inputs, Soufflé uses its RAM interpreter. When

the input is large then the synthesis/compilation payoff becomes apparent. In prac-

tice, once an analysis is compiled it can be cached if used again and this elevating

the synthesis/compiler overhead.
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Figure 6.2: Souffle Usage Setup

6.1.4.2 Experimental Results

Figure 6.4 describe a comparison of Soufflé compiler and interpreter modes with

µZ. Each mark on the plot represents a relative performance value categorised by

the size of the snapshot. The plot is broken down into 4 regions:

• (I) This region represents values where both the Soufflé compiler and inter-

preter perform better than µZ

• (II) This region represents values where only the Soufflé interpreter performs

better than µZ

• (III) This region represents values where only the Soufflé compiler performs

better than µZ

• (IV) This region represents values where both the Soufflé compiler and in-

terpreter are worse than µZ

As we can see in Figure 6.4, the vast majority of networks are in region (I), i.e.,

both compilation and interpretation is better than µZ. Region (II) contains small net-

works for which the compilation overhead was larger than interpretation however,

these are still faster than µZ. Likewise, region (III) contains several larger networks

that performed only better than µZ by compilation. Finally, region IV) contains

a single small network that performed better than Soufflé. A similar pattern can

be seen in the memory consumption. The majority of networks are in region (I),
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Snapshot Inst Eni Sec
E0L08 599 2163 27
E0L44 990 9037 28
E0L22 2090 670 26
E0L30 7508 7577 26
E0L47 8908 1062 26
P1L330373 2116 2719 129
P1L462867 4 8 4988
P1M129317 3 38 382
P1M098640 1 1439 1
P1M859061 420 422 887
P1M428430 285 561 5
P1M010523 323 324 627
P1M324161 1196 1415 38
P1M770416 545 557 12
P1S070558 117 165 214
P1S525513 93 170 328
P1S347551 37 38 266
P1S631835 85 87 173
P1S648048 233 271 47
P1S667073 208 210 301
P2L925140 204 204 1459
P2L442575 870 873 1563
P2L841010 1268 1277 1565
P2M891395 1269 1481 39
P2M020210 795 795 1

Snapshot Inst Eni Sec
P2M230611 1471 3636 23
P2M795879 1453 1458 21
P2M843408 170 170 292
P2M250969 1299 3426 22
P2M109765 510 1815 21
P3M560333 588 596 21
P3M314888 340 430 11
P3M268929 693 2348 110
P3M826964 297 585 115
P3M176043 1218 1230 327
P3M775196 1218 1439 28
P3M305648 1211 1432 1155
P3S939726 45 538 120
P3S404527 15 1045 27
P3S797642 100 112 5
P3S032196 188 188 4
P3S328003 22 23 38
P3S187363 192 217 38
P2S736402 116 133 7
P2S129854 262 308 142
P2S657349 322 358 91
P2S112918 80 89 3
P2S539114 73 127 329
P2S460944 279 321 39

Table 6.1: Virtual Network Benchmarks

with a few small networks in region (II) and a large network in region (III). Again

a single (the same) network can be found in region (IV). In Figure 6.3 we can see

the absolute execution times. The execution times range from 10 seconds to 450

seconds. Memory consumption is between 100 MB to 7.5 GB. Both the interpreter

and compiler typically perform better than µZ. Further, we can see that µZ times

out (due to running out of memory) more frequently than both the interpreter and

compiler, with the compiler running out of memory only once, compared to µZ 4

times and the interpreter 3 times. We can also see as the sizes of the networks get

larger and more memory is consumed, the very low memory overhead of Soufflé

becomes more noticeable in both modes.

When caching is added (avoiding re-compilation) when an analysis is invoked
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Figure 12: Relative Memory Usage for
list:atom/sg(Sg, VPC).
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Figure 13: Execution-Time for
list:instance-can-ssh-to-internet(I).
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Figure 14: Memory Usage for
list:instance-can-ssh-to-internet(I).
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Figure 15: Execution-Time for
list:can-ssh(I,J).

E
0L

55
08

P3
S0

32
19

6
P2

S7
36

40
2

P1
S6

31
83

5
P3

S9
39

72
6

P3
S7

97
64

2
P2

S4
60

94
4

P2
S1

12
91

8
P3

S1
87

36
3

P2
S1

29
85

4
P1

S6
48

04
8

P2
M

02
02

10
P1

S0
70

55
8

P2
S5

39
11

4
P3

S4
04

52
7

P3
M

82
69

64
P3

S3
26

00
3

P1
M

12
93

17
P1

M
09

86
40

P1
M

42
84

30
P1

M
77

04
16

P3
M

31
48

88
P2

S6
57

34
9

P1
S3

47
55

1
P3

M
17

60
43

P1
S5

25
51

3
P2

M
10

97
65

P1
S6

67
07

3
P2

M
84

34
08

P3
M

26
89

29
P1

L
46

28
67

P1
M

01
05

23
P1

M
85

90
61

P2
M

25
09

69
E

0L
07

44
P1

M
32

41
61

P2
M

89
13

95
P2

M
23

06
11

P2
M

79
58

79
P1

L
33

03
73

P3
M

77
51

96
P3

M
30

56
48

E
0L

23
22

P3
M

56
03

33
P2

L
92

51
40

P2
L

44
25

75
E

0L
15

30
E

0L
48

47
P2

L
84

10
10

0

2

4

6

8 Maximum Memory

Snapshot

M
em

or
y

U
sa

ge
(G

ig
a)

Z3

Interpreter

Compiler

Figure 16: Memory Usage for
list:can-ssh(I,J).
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Figure 17: Execution-Time for !ex
Eni:eni-has-sg(Eni, Sg).
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Figure 18: Memory Usage for !ex
Eni:eni-has-sg(Eni, Sg).
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(c) Runtime on Virtual Network Bench-
marks for Query 2
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Figure 15: Execution-Time for
list:can-ssh(I,J).
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Figure 16: Memory Usage for
list:can-ssh(I,J).
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Figure 17: Execution-Time for !ex
Eni:eni-has-sg(Eni, Sg).
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Figure 18: Memory Usage for !ex
Eni:eni-has-sg(Eni, Sg).

on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,
pages 196–206, 2016.
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(d) Memory Usage on Virtual Network
Benchmarks for Query 2

Figure 6.3: Performance on Virtual Network Benchmarks

several times, we can expect the Soufflé compiler to perform without compilation

overhead which on these benchmarks is approx. 10 seconds. Furthermore, as more

complex and larger virtual networks are analysed at Amazon, the Soufflé approach

will be come increasingly beneficial.

6.1.5 Discussion

Several tools have been developed [73, 213, 214, 215, 216, 217, 218, 219] in an

effort to verify various SDN components. These tools employ specialised algo-

rithms [216] as well as general purpose reasoning engines such as Datalog [37, 219],

BDDs [217], SMT [213, 214], and SAT [218, 215]. The most related of these to

our work is that of NoD/µZ [72, 37] and batfish [73]. NoD/µZ checks packet reach-
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Some recommnedatios for improvement include:

• Implementation of more optimizations either on the twelf or Datalog level

6

(a) Relative Runtime on Virtual Network
Benchmarks for All Queries

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(I)

(II)

(III)

(IV)

Interpreter

C
om

pi
le

r

Relative Execution

Large
Medium

Small

Figure 3: Relative Execution-Time for all queries

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(I)

(II)

(III)

(IV)

Interpreter
C

om
pi

le
r

Relative Memory Usage

Large
Medium

Small

Figure 4: Relative Memory Usage for all queries

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

(I)

(II)

(III)

(IV)

Interpreter

C
om

pi
le

r

Relative Execution

Large
Medium

Small

Figure 5: Relative Execution-Time for
list:instance-can-ssh-to-internet(I).

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(I)

(II)

(III)

(IV)

Interpreter

C
om

pi
le

r

Relative Memory Usage

Large
Medium

Small

Figure 6: Relative Memory Usage for
list:instance-can-ssh-to-internet(I).

• Faster execution time for the vast majority of query, benchmark combina-
tions

• Much lower memory consumption and low out of memory cases. It must
also be noted that Z3

• Active project, lead by world leading researchers in the area. Tiros can
benifit greatly from new innovations in Soufflé
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• An improved encoding of port ranges, the current encoding leads to redun-
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• Caching of precompiled objects hashed by query and configuration (e.g.,
transformation options)
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(f) Relative Memory Usage on Virtual
Network Benchmarks for Query 2

Figure 6.4: Relative Performance on Virtual Network Benchmarks
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ability and this the network is topology is encoded as part of the rules. We on the

other hand, encode the network as a set of input relations. Batfish employs a sim-

ilar encoding to NoD/µZ (and uses µZ) as an underlying engine and uses the SMT

capabilities of Z3 to find error traces. This approach has been further expanded

to synthesising EDB relations in Datalog using SMT [219]. This approach could

be used in conjuction with our approach to repair networks once they are found to

be incorrect. As our experiments demonstrate we scale significantly better to µZ

by combining the Soufflé interpreter and compiler. Incorporating error traces and

synthesis into Soufflé is left to future work.

Less related work includes SecGuru, which is a tool for the verification of

network connectivity policies at Microsoft Azure using Z3 [213]. Here two sets

of ACL rules from firewalls and calculate their semantic difference. Compared

to [213] which only talks about ACLs, they extended their work [214] with veri-

fication of routing tables and Border gateway Protocol (BGP). VeriCon [215] is a

verification tool for SDN controllers. VeriFlow [216] is a tool that checks network-

wide invariants in real-time, using a specialised algorithm. Anteater [218] is a data

plane verification using SAT. CrystalNet [220] is an emulation based tool for large

production networks such as those observed at AWS.
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6.2 Use Case: Program Analysis of the Java Develop-

ment Kit
Java is a leading programming language used in a variety of applications including,

internet programming, smartphone applications, financial systems and many more.

Java’s popularity and high usage has lead to it being a target to significant security

attacks [221] which cover a diverse range of attacks. Typically, a significant portion

of a Java applications functionality is contained as part of the Java library which

applications leverage to reuse core functionality.

While static analysis of Java applications have been readily documented [222],

to ensure correctness associated libraries must also be included in the analysis. This

however, poses several challenges including, the fact that the OpenJDK consists of

a very large codebase, with millions of variables/instructions and hundreds of thou-

sands of methods. Secondly, in a library code base application code is missing, and

must be safely over approximated. Moreover, the sheer complexity of the library

and the complex semantics of the Java programming language lends itself to am-

ple opportunity to various potential attacks/exploits that are regularly reported and

hence must be integrated into the static analyser used to ensure future versions of

the OpenJDK are secure.

6.2.1 Points-to Analysis

A fundamental requirement for static analysis of Java code is the consider the mem-

ory configuration. Since the heap is the primary structure for global program data,

pointer analysis forms the substrate of most inter-procedural static analyses.

While there exist a wide range of such static analyses [223, 7, 224], with their

rightful place in the axes of precision and performance/efficiency, for large indus-

trial code bases, techniques such as points-to analysis that exist on the scalable yet

less precise portion of the axes are general though of as more appropriate for indus-

trial scale static analysis applications. Points-to analysis limits itself to identifying

which objects can point to approximate the set of program objects that a pointer

variable or expression can refer to. In contrast to more precise approaches which are
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undecidable [223] or intractable [7], points-to analysis has polynomial time com-

plexity and hence can be encoded in Datalog. As a result, the use of points-to

analysis is suited to use cases where there is a strong bias for modest performance

cost, realistic scalability, and automated whole-program analysis efforts.

Anderson’s Points-to. The best-known family of points-to analyses are based on

work attributed to Andersen [224]. An Andersen-style analysis can be defined as

several subset constraints.

In the simplest form, Anderson style analyses are context insensitive, flow-

insensitive, field-insensitive. context-sensitivity refers to the ability of a program

analysis to distinguish between analysis results based on different calling contexts.

Flow-sensitivity refers to the ability to incorporate program control-flow in the anal-

ysis which can result in precision gains. Field-sensitivity refers to the ability of the

analysis to distinguish different fields of the same abstract object instead of com-

bining all fields together. Anderson analyses can incorporate the above consider-

ations to improve precision at the cost of performance. Another optional addition

to Andersen analyses is on-the-fly call-graph construction. This refers to the prop-

erty that a points-to analysis also infers simultaneously which methods are called

at each call-site. Incorporating call-graph construction typically improves analysis

precision.

Context Sensitivity. Points-to analysis is polynomial time decidable, however

within this complexity class, there is large manoeuvrability which can impact the

practicality of an analysis. Typically, precision can be tuned at the cost of modest

performance costs by increasing the context sensitivity of an analysis. Context sen-

sitivity may be perform in several ways: two aspects of context sensitivity is usu-

ally distinguished when selecting appropriate heuristics, namely, heap-sensitivity

and object-sensitivity. Both these are forms of context-sensitivity in the sense that

context refers only to a restriction of analysis results based on some program fac-

tor such as call sites. Heap-sensitivity attempts to reduce pollution of the analyses

abstract heap by differentiating between memory objects allocated by the same in-

struction. Object sensitivity is another form of context sensitivity that has emerged
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as the dominant flavor of context sensitivity for object-oriented languages such as

Java. It is similar to the call site context-sensitivity, though context is derived from

a calls receiver object, instead of the call instruction. Using receiver objects can

be beneficial, particularly for languages like Java which make heavy use of virtual

dispatch.

Through various experimentation a “sweet spot” of 2-object and 1-heap sen-

sitivity (2o2h) has been deemed as a good mix between precision and scalability

. Compared to a context-insensitive points-to a 2o2h removes 97false positives in

points-to on the OpenJDK and removes 49Soufflé and yet only results in modest

performance costs.

Flow Sensitivity. Another consideration in a large scale analysis is flow-sensitivity.

This type of analysis is relevant where analysis results encode temporal relation-

ships between results. For simplicity, it is common to develop an analysis which

does not track the order of instruction executions, in which case the program se-

mantics are to execute any instruction at any time. Flow-insensitivity is an over-

approximation which may conclude, for example, that data is shared between given

variables even if one did not hold the data at the time it was copied to the other.

A popular way to cheaply provide partial flow-sensitivity is to rely static single-

assignment(SSA) conversions. This partial flow sensitivity is assumed in the use

case industrial analyses.

6.2.2 Encoding Points-to in Datalog

We describe a Datalog encoding of a flow-insensitive, context-insensitive analysis

based on Anderson’s analysis.

The Datalog points-to analysis has two relations for computing a points-to

analysis, namely, a vP(v,h) relation which asserts that a variable v may point to a

heap object h and hP(h1, f, h2) which asserts that the field f of h1 may point to

h2.

To define Andersen analysis we encode four constructs into Datalog as follows:

Allocations are modelled by an initial allocation into a points-to relation vP.

The next rule models the effect of store instructions on the heap. Given a statement
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Java Code Datalog Encoding
Allocations h: v = new C() vP(v,h) :- "h: v = new C()".

Store v1.f=v2
hP(h1,f, h2) :- "v1.f=v2",

vP(v1, h1), vP(v2, h2).

Load v2=v1.f
vP(v2, h2) :- "v2=v1.f",

hP(h1,f,h2), vP(v1,h1).

Moves, Args v2=v1 vP(v2, h) :- "v2=v1", vP(v1,h).

Table 6.2: Points-to analysis Datalog Constraints

v1.f = v2, if v1 can point to h1 and v2 can point to h2, then h1.f can point to h2.

The next rule resolves load instructions. Given a statement v2 = v1.f, if v1 can point

to h1 and h1.f can point to h2, then v2 can point to h2. The last rule computes the

transitive closure over inclusion edges. If variable v2 can point to object h and v1

includes v2, then v1 can also point to h.

The first step in a Datalog analysis is to convert the Java source code into in-

put relations. For this simple example we assume four types of language constructs

as listed in Table 6.2. Allocation instructions are converted into a input relation

new(var: V, obj: O) which takes a variable and an object denoted by a in-

struction location. Stores are converted to an input relation store(dest: V,

field: F, src: V) which contains a destination variable, a field name and

source variable. Loads are converted to an input relation load(dest: V, src:

V, field: F) which contains a destination variable, a source variable and its

field name. Assigns are converted to an input relation assign(dest: V, src:

V) containing a destination and source variable. For variables, fields and objects

we declare respective types and encode the Datalog rules such that they reflect the

constraints in Table 6.2. The Datalog analysis is shown in Figure 6.5.

If the code in program in Figure 6.6a is converted into input relations and the

analysis in Figure 6.5 is executed the vP and hP relations compute the points-to

graph in Figure 6.6b where the dotted lines denote the vP and the full lines denote

hP.

This analysis can be extended by improving the precision of the analysis and by

expanding the constructs to include real world language constructs such as Arrays,
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.type V

.type F

.type O

new(var: V, obj: O)

.input

assign(dest: V, src: V)

.input

load(dest: V, src: V, field: F)

.input

store(dest: V, field: F, src: V)

.input

vP(var: V, heap: O)

.output

hP(base: O, field: F, target: O)

.output

vP(v, h) :- new(v, h).

vP(v1, h) :- assign(v1, v2), vP(v2, h).

vP(v2, h2) :- load(v1, v2, f),

vP(v1, v2), hP(v2, f, h2).

hP(h1, f, h2) :- store(v1, f, v2),

vP(v1, h1), vP(v2, h2).

Figure 6.5: Context-Insensitive, Flow-Insensitive Points-To Analysis

a: x = new Foo();

y = x;

if(cond) {

x = y;

} else {

b: z = new G();

z.f = y;

}

(a) Example Program

x

y

z

a

b

.f

(b) Points-To Graph
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Reflection etc. A comprehensive study of modelling points-to with Datalog is not in

the scope of this thesis and we refer the reader to the tutorial Pointer Analysis [225]

by Smaragdakis and Balatsouras.

6.2.3 Experiments

6.2.3.1 Experimental Setup

To evaluate Soufflé’s capability of handling large, industrial-scale analysis, we have

evaluated the application of a context-insensitive version of the points-to analysis on

the entire code base of the OpenJDK library containing 1.4M variables, 350K heap

objects, 160K methods, 590K invocations and 17K types. Table 6.3 summarises

the performance characteristics of various state-of-the-art tools for Datalog based

program analysis for the given problem statement. All of them have been processing

the same Datalog program comprising several dozen relations and rules producing

≈ 840M resulting tuples when being applied to the OpenJDK7 input set.

For µZ the size of the resulting Datalog query has been too large to obtain

results within a reasonable time (DNF = did not finish). Also, the SQL engine

based Datalog solver required a significant amount of computation time, rendering

it practically unsuitable for the development of real-world, large scale analysis. bd-

dbddb could handle the query within much more reasonable time scales. For this

real-world benchmark Soufflé is capable of computing the desired result more than

34x faster then the best state-of-the-art solver – a factor that moves the develop-

ment of more sophisticated large-scale static programming analysis from the realm

of academic exercises into practical reality.

Platform. The evaluations of the bddbddb, µZ and SQLite [79] and based analy-

sis have been conducted on a 8 core Intel Xeon E5-2690 v2 @ 3.0GHz, 128GB

RAM server system due to resource and licensing constraints, while the Soufflé

experiments have been conducted on a 4 core Intel i7-4790 CPU @ 3.6GHz, 32GB

RAM desktop system. However, the huge performance gap between the various

approaches are far beyond what can arise from the performance discrepancy of the

hardware.



218 Chapter 6. Industrial Applications

Usage of Soufflé. This use case demonstrates Soufflé’s usage as a development

framework for static analysis. Security analysis rely on points-to analyses that com-

pute an approximation of the memory configuration in which the potential heap ob-

jects that a given reference variable may point to at runtime are discovered. The

points to analysis is included into a security analysis using the include directive and

instantiated for use in the security analysis. The security analysis is then synthe-

sised into an analyser that can be used to perform the given security analysis on a

number of versions of the JDK.

6.2.3.2 Experimental Results

Our last experiment evaluates Soufflé’s capability of providing the computational

framework exceeding the practical capabilities of state-of-the-art solvers when pro-

cessing even more sophisticated large-scale analysis. To that end, we have been

processing a context-sensitive points-to analysis on OpenJDK7 build 147. The

context-sensitive analysis is a 2-Object-1-Heap points-to analysis [226] using an

open-world abstraction [227]. The evaluation has been conducted on a 8 core Intel

Xeon E5-2690 v2 @ 3.0GHz server system. Table 6.4 summarises the obtained

results.

Only Soufflé has been able to cope with the large-scale program analysis

problem for analysing context-sensitive points-to on the OpenJDK 7. In addition

Soufflé was able to compute a security analysis based on [24] in 17 seconds using

2.77 gigabytes of memory for the Java package of the OpenJDK 7 in 14 hours 27

minutes using 75.3 gigabytes of memory for the entire JDK 7.
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Tool Time [hh:mm::ss] Memory [GB]
bddbddb 0:30:00 5.7
µZ DNF DNF

SQLite 6:20:00 40.2
PA-Datalog 0:20:00 100

Soufflé (sequential) 0:01:15 7.5
Soufflé (parallel) 0:00:35 8.5

Table 6.3: Comparison of Datalog evaluation tools for a context-insensitive points-to anal-
ysis on the OpenJDK7 library.

Tool Time [hh:mm::ss] Memory [GB]
bddbddb DNF DNF
µZ DNF DNF

SQLite DNF DNF
PA-Datalog 15:30:00 450

Soufflé (parallel, 8 cores) 6:44:08 186GB

Table 6.4: Comparison of Datalog evaluation tools for a context-sensitive points-to analy-
sis on the OpenJDK7 library.

Comparison to Manual Implementation. Within recent work, the points-to prob-

lem over the OpenJDK library has been investigated in detail and a specialised,

graph based algorithm for its efficient computation has been devised [50] in Java.

In particular, the proposed solution comprises of specialised data structures to ef-

fectively represent and compute the points-to relation. The work has the ground-

breaking capability of obtaining the analysis results for the OpenJDK library in

under a minute. With our Datalog engine the same result on the same dataset can

be obtained utilising a general purpose analysis infrastructure within 35s on a com-

modity desktop system. This result provides an indication on the competitiveness

of Soufflé in regards to manually encoded static program analysis.

6.2.4 Discussion

Verifying OpenJDK using other than Datalog has been performed in [50], as ex-

plained above with similar times to Soufflé despite using a high specialised hand-

crafted graph algorithm. At Oracle Labs there is on-going research verifying large

code bases such as the OpenJDK using Soufflé, we point the user to the following

publications [228, 229].
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This thesis has explored the use of several techniques to improve the perfor-

mance of logic defined static analysis.

In Chapter 3 we introduced a framework that avoids evaluation of a logic lan-

guage but instead treats it as a logical specification to synthesise a parallel C++

analyser. They key insight into this approach is that through a staged partial eval-

uation, new optimisations can be performed as the fidelity of the analyser repre-

sentation increases. The approach has resulted in considerable performance gains

compared to state-of-the-art tools and is able to scale to complex analyses on code

bases typically deemed to large for logic defined static analyses.

In Chapter 4 we investigated several automatic indexing techniques for use in

query engines aimed at large scale computations such as Soufflé. In particular, we

presented an automated indexing approach that results in the minimal sized index

sets required to speedup data lookups. The approach presents a balance between

speed and memory usage and does not require manual user annotations as is typi-

cally needed in other state-of-the-art engines.

In Chapter 5 we investigated symbolic reasoning of horn clause programs as

is typically required when non-close world assumptions are present in the anal-

ysis. A large body of algorithms that solve recursive Horn clauses symbolically

rely on Craig interpolants for improved performance, e.g., CEGAR based predicate

abstraction algorithms. In this chapter we identify a significant performance bot-

tleneck: interpolation engines find interpolants agnostic to the larger Horn clause

problem. Since the space of interpolants is often large (sometimes infinite) inter-

polation engine have significant degrees of freedom for choosing an interpolant,

resulting in choices of interpolants for the given problem at hand. In Chapter 5 we

have proposed a mechanism and theory for guiding interpolation engines to find the

right interpolant, based on domain specific knowledge obtained from the problem.

This approach has resulted in the ability of algorithms that use interpolation to solve

recursive Horn clause problems with faster convergence and therefore speedups.

In Chapter 6 we evaluated Soufflé on two industrial use cases, namely program

analysis of the JDK 7 and security verification of Amazon virtual networks. The
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purpose of this evaluation was to demonstrate the scalability of our approach to

industrial sized use cases.

7.1 Future Work
The work presented in this thesis has several interesting branches for further inves-

tigation. In this section, a few key areas of future work are presented:

7.1.1 Further Language Extensions in Soufflé

In Chapter 3 we presented several non-standard language constructs not present

in other logic based languages. Among these are constructors which can be used

to create data structures such as lists and trees. It would be interesting to explore

extending these constructs to create lattice based analyses, as in logic tools such

as Flix [27]. The plan for this joint work with Tamas Szabo and Itemis AG is to

link up Soufflé to the IncA [29] tool and investigate both incremental analysis and

encoding abstract domains in Soufflé.

7.1.2 Partial Evaluation of Algorithms for constrained Horn

Clauses

The interpolation exploration technique of Chapter 5 was implemented in Eldar-

ica. Ideally, solving symbolic Horn clauses can be integrated into the Framework

presented in Chapter 3. Since techniques from model checking and constraint logic

programming use interpolation for improved performance, the technique of Chap-

ter 5 can be used on both algorithms. Moreover, work relating to partial evaluation

of Prolog programs [230] provides a good foundation for this extension.

Another area to explore is combining different algorithms for solving a set

of Horn clauses. At times, the precision and efficiency of the Datalog algorithm is

useful, however other times symbolic techniques are much more appropriate. While

some use cases contain characteristics that make the choice of algorithm obvious,

several use cases such as networking could benefit from a hybrid approach where a

portion of the problem is solved using Datalog algorithms and another portion by

symbolic techniques.
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7.1.3 Indexing with R+ Trees

The technique in Chapter 4 imposes syntactical limits on range searches. For ex-

ample, to support multiple inequalities, we may need to resort to other forms of

indexes, e.g., the multi-dimensional index R-tree. Assume the general primitive

search σ1≤x≤3,2≤y≤4. It can be translated into a range search in a multi-dimensional

space. However, as discussed in Section 4.2.1, multi-dimensional indexes are gen-

erally more expensive to build and also more expensive to query. Therefore, we

leave the study of extending our techniques to multiple inequalities, and also to

richer variants of Datalog [57], as our future work.

7.1.4 Interaction with Literal Scheduling and Index Selection

As stated in Chapter 4 some Datalog engines such as Logicblox version 4 [136]

use a leapfrog join that, while requiring users to specify indexes manually, alleviates

users from specifying join order. Integrating our technique into such an engine is

not obvious as we assume a fixed literal order before our technique is applied. Typ-

ically, this can be identified using a profiler like Soufflé profiler, or alternatively,

loop schedules can be automated using heuristic techniques [142]. Our technique

then can compute the optimal index assignment for the given loop schedule. Dur-

ing performance tuning of large Datalog programs, only a few rules require manual

loop scheduling. Therefore, our preference is to fix loop orders rather than indexes

for a better user experience. Soufflé’s auto-scheduler typically resolves this auto-

matically for the user. Nevertheless, there is ongoing work to integrate automatic

loop scheduling and automatic index selection.

Just as the Soufflé framework enables automatic and static index selection (as

shown in Chapter 4), a similar benefit can be performed for literal scheduling. Due

to the fact that Soufflé synthesises rules, at the RAM level by using cardinality ap-

proximations [143], we can derive, not one but several candidate literal schedules

and synthesise them all. Since cardinality estimations have been show to produce

significant error [144], giving a runtime option to apply several schedules with real

cardinality data (obviously available at runtime) can reduce this error. Furthermore,

since there is a dependence with the literal schedule and the minimal index sets size,
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we can incorporate our minimal index selection algorithm as an additional cost met-

ric for choosing a schedule. This is ongoing work, however not developed enough

for inclusion as a chapter in this thesis. The implementation requires, cardinality

guards to integrated into RAM, and modifications to the scheduling framework in

Soufflé.

7.1.5 Bottom-Up Guided, Top-Down Evaluation

We use Lemma 1 for a basis for additional work for developing an approach where

we annotate the domain of the Datalog computation to help guide Top-down per-

formance to discover minimal height proof derivations. For example, current work

with David Zhao and Bernhard Scholz proposes a data provenance technique using

this technique. However, this approach may be extended to a general evaluation

approach.

7.1.6 Synthesis, Abduction and Provenance

It would be beneficial to synthesise EDB data from a set of Datalog. The approach

in [219] proposes encoded Datalog and the Clark’s completion [231] into an SMT

solver to perform the synthesis. This approach, has limited scalability. It would

be interesting to investigate alternative approaches to this. This is very related to

Abductive Logic Programming, which requires significant increase in Datalog se-

mantic expressiveness.
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[105] William R. Cook and Ralf Lämmel. Tutorial on online partial evaluation. In

Proceedings IFIP Working Conference on Domain-Specific Languages, DSL

2011, Bordeaux, France, 6-8th September 2011., pages 168–180, 2011.

[106] A. Razavi and K. Kontogiannis. Partial evaluation of model transformations.

In 2012 34th International Conference on Software Engineering (ICSE),

pages 562–572, June 2012.

[107] Stefan Brass and Heike Stephan. A variant of earley deduction with partial

evaluation. In Wolfgang Faber and Domenico Lembo, editors, Web Rea-

soning and Rule Systems, pages 35–49, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[108] Yoshihiko Futamura. Partial evaluation of computation process. Systems,

Computers, Controls, 12(4):377–380, December 1971.

[109] Pär Emanuelson and Anders Haraldsson. On compiling embedded languages

in lisp. In Proceedings of the 1980 ACM Conference on LISP and Functional

Programming, LFP ’80, pages 208–215, New York, NY, USA, 1980. ACM.

[110] Arun Lakhotia and Leon Sterling. How to control unfolding when specializ-

ing interpreters. New Generation Computing, 8(1):61–70, Jun 1990.

[111] Robert W. Floyd. Assigning meanings to programs. Proceedings of Sympo-

sium on Applied Mathematics, 19:19–32, 1967.

[112] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, October 1969.

[113] Andrea Blass and Yuri Gurevich. Existential fixed-point logic. pages 20–36,

August 1987.

[114] Edmund Melson Clarke, Jr. Programming language constructs for which it

is impossible to obtain good hoare-like axiom systems. In Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’77, pages 10–20, New York, NY, USA, 1977. ACM.



242 Bibliography

[115] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings,

14th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-

guages, pages 111–119, New York, NY, USA, 1987. ACM.

[116] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. San-

tosa. TRACER: A symbolic execution tool for verification. In Computer

Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA,

USA, July 7-13, 2012 Proceedings, pages 758–766, 2012.
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and Philipp Rümmer. A verification toolkit for numerical transition systems

- tool paper. In FM, pages 247–251, 2012.

[190] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. An
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yond quantifier-free interpolation in extensions of Presburger arithmetic. In

VMCAI, LNCS. Springer, 2011.

[193] Joao Marques-Silva, Mikolás Janota, and Anton Belov. Minimal sets over

monotone predicates in boolean formulae. In CAV, pages 592–607, 2013.

[194] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[195] Laurent Fribourg. Petri nets, flat languages and linear arithmetic. In Marı́a

Alpuente, editor, Proc. of WFLP’2000, pages 344–365, 2000.

[196] Hossein Hojjat, Radu Iosif, Filip Konecný, Viktor Kuncak, and Philipp
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