1	
2	
3	
4	Onset of the aerobic nitrogen cycle during the Great Oxidation Event
5	
6	
7 8	Aubrey L. Zerkle ^{1*} , Simon W. Poulton ² , Robert J. Newton ² , Colin Mettam ¹ , Mark W. Claire ^{1,3} , Andrey Bekker ⁴ , and Christopher K. Junium ⁵
9	
10 11	¹ Department of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, KY16 9AL, Scotland, UK
12	
13	² School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, England, UK
14	
15	³ Blue Marble Space Institute of Science, P.O. Box 88561, 98145, Seattle, WA, USA
16	
17 18	⁴ Department of Earth Sciences, University of California-Riverside, Riverside, CA, 92521, USA
19	
20	⁵ Department of Earth Sciences, Syracuse University, Syracuse, NY, 13244, USA
21	
22	
23	
24	
25	
26	resubmitted to Nature on 17th November, 2016
27	*corresponding author az29@st-andrews.ac.uk

28	The rise of oxygen on early Earth (~2.4 Ga ago) ¹ caused a reorganization of
29	marine nutrient cycles ^{2,3} , including that of nitrogen, which is important for controlling
30	global primary productivity. However, current geochemical records lack the temporal
31	resolution to directly address the nature and timing of the biogeochemical response to
32	oxygenation ⁴ . Here we couple records of ocean redox chemistry with nitrogen isotope
33	$(\delta^{15}N)$ values from ~2.31 billion-year-old shales ⁵ of the Rooihoogte and Timeball Hill
34	formations in South Africa deposited during the early stages of Earth's first rise in
35	atmospheric oxygen ⁶ . Our data fill a ~400 million-year gap in the temporal $\delta^{15}N$ record ⁴
36	and provide evidence for the first pervasive aerobic marine nitrogen cycle. The
37	interpretation of our nitrogen isotope data in the context of Fe speciation and carbon
38	isotope data suggests biogeochemical cycling across a dynamic redox boundary, with
39	primary productivity fuelled by chemoautotrophic production and a nitrogen cycle
40	dominated by nitrogen loss processes utilizing newly available marine oxidants. This
41	chemostratigraphic trend constrains the onset of widespread nitrate availability
42	associated with ocean oxygenation. The rise of marine nitrate could have allowed for the
43	rapid diversification and proliferation of nitrate-utilizing cyanobacteria and,
44	potentially, eukaryotic phytoplankton.
45	

48	Nitrogen (N) is an essential element for all living organisms, required alongside
49	carbon (C) and phosphorus (P) for the formation of nucleic acids and proteins. As a result, N
50	and P are the principal limiting nutrients controlling autotrophic CO ₂ fixation, which in turn
51	regulates climate, weathering, and the redox state of Earth's surface on geologic timescales.
52	The marine nitrogen cycle is driven largely by biological processes. The primary
53	source of N to the biosphere is nitrogen fixation, the conversion of atmospheric N_2 to organic
54	nitrogen in its bioavailable form (ammonium, NH_4^+). In the modern oceans, ammonium is
55	oxidized via the stepwise process of nitrification, producing nitrite (NO_2^{-}) and nitrate (NO_3^{-}) .
56	Nitrate (and nitrite) can be assimilated into organic matter, by both oxygenic
57	photoautotrophic bacteria (cyanobacteria) and eukaryotic phytoplankton. Fixed nitrogen is
58	mostly recycled in the water column, but some sinks to the sediments where it is buried
59	and/or remineralized. Some bioavailable nitrogen in the modern oceans is returned to the
60	atmosphere as N_2 via denitrification (the reduction of NO_3^-) and anaerobic ammonium
61	oxidation (anammox, the oxidation of NH_4^+ with NO_2^-) in oxygen-minimum zones ⁷ .
62	Each of these transformations can affect the ratio of nitrogen isotopes ($\delta^{15}N =$
63	$({}^{15}N/{}^{14}N)_{sample}/({}^{15}N/{}^{14}N)_{atmospheric N2} - 1$, measured in permil, ‰), producing fractionations
64	between reactant and product N species ⁸ . Nitrogen fixation produces small negative
65	fractionations from atmospheric N ₂ , resulting in organic δ^{15} N values of -4 to 0‰ ⁹ .
66	Denitrification and anammox preferentially return the lighter isotope to the atmosphere,
67	leaving the residual nitrate and nitrite enriched in ¹⁵ N by 10-25‰ ^{8,10} . Large fractionations can
68	also be produced by nitrification and biological assimilation ¹¹ (and possibly by dissimilatory
69	nitrate reduction to ammonium ¹²). However, these fractionations are not expressed in most
70	modern environments, since nitrification and the recycling of fixed N compounds occur
71	rapidly and nearly quantitatively. Hence, nitrogen loss via denitrification and anammox
72	dominates the modern nitrogen isotope signal, resulting in sedimentary organic matter with

average δ^{15} N values of 7‰¹³, due to the uptake of ¹⁵N-enriched residual nitrate by primary producers.

75 Beaumont and Robert² were the first to suggest a secular trend in the nitrogen isotope values of organic N for Archean and early Proterozoic sediments. They noted that the δ^{15} N of 76 kerogen in Archean cherts centered at ~0% (ranging from -6 to +13%), while the δ^{15} N of 77 78 early Proterozoic kerogens centered at \sim 5‰, with a total range similar to that in Phanerozoic sediments (~0 to 10‰) (Fig. 1). Our statistical treatment of the temporal δ^{15} N record 79 80 (Extended Data Fig. 1) alongside more recent compilations¹⁴ supports this shift, which occurs 81 broadly coeval with the Great Oxidation Event (GOE) from 2.45-2.32 billion-years-ago (Ga)^{1,15}, although its precise timing remains poorly constrained. As such, the secular rise in 82 δ^{15} N is commonly interpreted to reflect the transition from an anaerobic nitrogen cycle 83 84 dominated by reduced N species (N_2 and NH_4^+), to a modern-style aerobic nitrogen cycle 85 with nitrate as a significant component of dissolved inorganic nitrogen. Small (~2 to 5‰) positive excursions in δ^{15} N within older (~2.6-2.5 Ga) sedimentary rocks have been 86 87 interpreted to represent the temporary onsets of nitrification/denitrification during transient or 88 localized oxygenation events, which were apparently not sufficiently widespread or longlived for the signal to persist^{16,17}. Alternatively, these small and short-lived positive shifts in 89 δ^{15} N recorded exclusively in deep-water facies could reflect the incorporation of 15 N-enriched 90 NH₄⁺ produced by partial nitrification, assimilation of ¹⁵N-depleted NH₄⁺ in shallow waters, 91 or nitrogen redox cycling independent of surface oxygenation^{4,18,19}. To date, however, no 92 93 records of contemporaneous shallow-water sediments linked directly to records of ocean or 94 atmospheric oxygenation have been available to test these alternatives. 95 Here we examine the response of the nitrogen cycle to changing atmosphere and 96 ocean redox conditions during deposition of ~2.31 Ga siliciclastic rocks, filling a ~400

97 million-year gap in the temporal δ^{15} N record (Fig. 1), in sediments contemporaneous with the

98	early stages of the GOE. We focus our analyses on the Rooihoogte and Timeball Hill (R-TH)
99	formations, present in drill core EBA-2 in the Potchefstroom Synclinorium, South Africa
100	(Extended Data Fig. 2 and 3). The R-TH form the basal part of the Pretoria Group in the
101	Transvaal basin, and were deposited on a palaeo-delta slope open to the ocean ¹ . U-Pb zircon
102	ages for the tuffs in the lower TH give an age of $2.310 \pm 0.009 \text{ Ga}^5$. Atmospheric oxygen
103	content is constrained by the transition from mass-independent to mass-dependent
104	fractionation of sulfur isotopes recently placed within shales of the Rooihoogte Formation ⁶
105	(Fig. 2), indicating a rise in atmospheric O_2 levels to greater than 1 ppm ²⁰ . $\delta^{34}S$ data for
106	sedimentary sulfides in the R-TH also indicate a significant rise in seawater sulfate ^{1,6} ,
107	consistent with an increase in oxidative weathering of sulfide minerals on the continents.
108	Additional sample information and discussion of post-depositional alteration is available in
109	the Methods and Extended Data Figures 4 and 5.
110	We used a well-established sequential iron extraction technique ²¹ (the ratio of highly
111	reactive to total Fe, Fe_{HR}/Fe_T , and the ratio of Fe in pyrite to highly reactive Fe, Fe_{Py}/Fe_{HR}) to
112	assess the redox state of the water column during R-TH deposition. Large variations in iron
113	speciation indicate highly dynamic seawater redox conditions during deposition of the
114	Rooihoogte and the lower \sim 20 m of the TH formations (Fig. 2), with fluctuations between
115	oxic, ferruginous (anoxic and Fe(II)-rich), and euxinic (anoxic and sulfide-rich) states. The
116	rapid changes in water column chemistry suggest that deposition occurred close to a redox
117	interface (chemocline) between oxygenated surface-waters and anoxic deep-waters that were
118	episodically driven euxinic, possibly by variations in organic carbon delivery or seawater
119	sulfate availability. These data also imply the existence of a transiently sulfidic shelf
120	underlying an oxygenated surface ocean, similar to the redox stratification suggested for the
121	Late Archean ²² . Fluctuations in Fe speciation records are accompanied by a significant
122	increase in total organic carbon (from <1 to ~4%) and a decrease in $\delta^{13}C_{\text{org}}$ (from -32 to -

123 36‰) across the R-TH boundary (Fig. 2), consistent with chemoautotrophic carbon fixation
124 at or near a chemocline²³.

The δ^{15} N of both bulk nitrogen, δ^{15} N_{bulk}, and extracted kerogen, δ^{15} N_{org}, show a high 125 126 degree of variability across this same interval (Fig. 2). When interpreted within the context of 127 the Fe speciation data, these values are consistent with a marine nitrogen cycle developed across a dynamic redox boundary. δ^{15} N values of 6.0 ± 0.5% in the lower part of the section 128 are similar to those of modern marine organic matter¹³, which reflect a nitrogen cycle 129 130 dominated by N loss via denitrification and anammox in oxygen minimum zones²⁴. Nitrogen 131 isotope values vary from 1.4 to 12‰ across the R-TH boundary, consistent with a variable 132 input from similar chemotrophic communities across a shifting redox interface. These 133 changes could reflect imbalances in ammonium supply and nitrification-denitrification 134 resulting from periodic upwelling of nutrients and high organic productivity. On a stratified 135 Paleoproterozoic marine shelf, uptake of ammonium from anoxic deep waters would have produced ¹⁵N-depleted biomass just below the chemocline. Nitrification with newly available 136 marine oxidants would have further enriched residual ammonium in ¹⁵N across the redox 137 interface. Higher δ^{15} N in oxygenated shallow waters could result from the uptake of this ¹⁵N-138 139 enriched ammonium, or by nitrate assimilation once nitrate levels rose high enough to support partial denitrification. The δ^{15} N stabilizes at near modern values (7.2 ± 1.0‰) up-140 141 section in the lower TH, in association with Fe speciation data indicative of the onset of 142 pervasively oxygenated shallower water conditions. Oxygenation of surface waters would 143 have supported widespread nitrification and further enhanced nitrate availability. Notably, within the context of the global δ^{15} N record (Fig. 1), the R-TH succession 144 145 records the first clear evidence for a long-lived aerobic nitrogen cycle in the sedimentary 146 record. The ~2.31 Ga R-TH section, deposited at the heart of the GOE and coincident with the permanent loss of mass independent S isotope fractionation⁶, is bracketed by evidence for 147

148	only t	ransient aerobic nitrogen cycling in older sediments (from ~ 2.7 to 2.5 Ga ^{16,17,19}), and
149	the cle	ear isotopic imprint of aerobic nitrogen cycling in records from younger sediments
150	depos	ited after $\sim 2.0 \text{ Ga}^{25-28}$, as confirmed by statistical analysis of the global database
151	(Exter	nded Data Fig. 1). Available data suggests that earlier transient oxygenation events were
152	insuff	icient to establish the modern nitrogen cycle, as marine nitrate was not pervasive in the
153	ocean	s before the GOE ^{16,17} . In addition, δ^{15} N values > 2‰ are typical for the remainder of the
154	Preca	mbrian record (Fig. 1), indicating that aerobic nitrogen cycling became at least locally
155	wides	pread enough to impart a long-lived isotopic imprint on marine $\delta^{15}N$ during the GOE.
156		The build-up of a significant marine nitrate reservoir would have provided an
157	impor	tant evolutionary driver, as prokaryotes and eukaryotic phytoplankton that were able to
158	utilize	e nitrate as a primary nutrient source could have diversified to fill this new ecological
159	niche.	The co-occurrence of this event with other geochemical changes indicative of the first
160	signif	icant oxygenation of Earth's atmosphere provides a crucial constraint on the
161	surpri	singly rapid response time of the global biosphere to this major transition in Earth
162	surfac	e chemistry.
163		
164	Refer	ences
165	1	
1.((-	Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117-120 (2004).
166	2	Bekker, A. <i>et al.</i> Dating the rise of atmospheric oxygen. <i>Nature</i> 42 7, 117-120 (2004). Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts:
166		
		Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts:
167		Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? <i>Precambrian Research</i> 96 , 63-82
167 168	2	Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? <i>Precambrian Research</i> 96 , 63-82 (1999).
167 168 169	2	 Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? <i>Precambrian Research</i> 96, 63-82 (1999). Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early

173	5	Rasmussen, B., Bekker, A. & Fletcher, I. R. Correlations of Paleoproterozoic
174		glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian
175		Supergroups. Earth and Planetary Science Letters 382, 173-180 (2013).
176	6	Luo, G. et al. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Science
177		<i>Advances</i> 2 , 1-9 (2016).
178	7	Dalsgaard, T., Thamdrup, B., Farias, L. & Revsbech, N. P. Anammox and
179		denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology
180		and Oceanography 57, 1331-1346 (2012).
181	8	Wada, E. in Isotope Marine Chemistry (eds E. D. Goldberg, Y. Horibe, & K.
182		Saruhashi) 375-398 (Uchida Rokakuho, 1980).
183	9	Zerkle, A. L., Junium, C. K., Canfield, D. E. & House, C. H. Production of 15N-
184		depleted biomass during cyanobacterial N2-fixation at high Fe concentrations.
185		Journal of Geophysical Research 113 (2008).
186	10	Brunner, B. et al. Nitrogen isotope effects induced by anammox bacteria. Proceedings
187		of the National Academy of Sciences 110, 18994-18999 (2013).
188	11	Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation associated with
189		ammonium uptake by a marine bacterium. Limnology and Oceanography 37, 1447-
190		1459 (1992).
191	12	McCready, R. G. L., Gould, W. D. & Barendregt, R. W. Nitrogen isotope
192		fractionation during the reduction of NO3- to NH4+ by Desulfovibrio sp. Canadian
193		Journal of Microbiology 29 , 231-234 (1983).
194	13	Peters, K. E., Sweeney, R. E. & Kaplan, I. R. Correlation of carbon and nitrogen
195		stable isotope ratios in sedimentary organic matter. Limnology and Oceanography 23,
196		598-604 (1978).

197	14	Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian
198		sedimentary rocks: Assumptions and perspectives. Chemical Geology 429, 93-110
199		(2016).

- Farquhar, J., Zerkle, A. L. & Bekker, A. Geological constraints on the origin of
 oxygenic photosynthesis. *Photosynthesis Research* 107, 11-36 (2011).
- Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence
 for an aerobic nitrogen cycle in the latest Archean. *Science* 323, 1045-1048 (2009).
- 204 17 Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the
 205 Archaean ocean. *Nature Geoscience*, doi:DOI: 10.1038/NGEO633 (2009).

206 18 Thomazo, C., Ader, M. & Philippot, P. Extreme 15N-enrichments in 2.72-Gyr-old

- sediments: evidence for a turning point in the nitrogen cycle. *Geobiology* 9, 107-120
 (2011).
- Busigny, V., Lebeau, O., Ader, M., Krapez, B. & Bekker, A. Nitrogen cycle in the
 Late Archean ferruginous ocean. *Chemical Geology* 362, 115-130 (2013).
- 211 20 Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in
 212 Archean sediments: Strong evidence for an anoxic Archean atmosphere. *Astrobiology*213 2, 27-41 (2002).
- 214 21 Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure

for iron: implications for iron partitioning in continentally derived particulates.

- 216 *Chemical Geology* **214**, 209-221 (2005).
- 217 22 Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean
 218 sulfidic sea stimulated by early oxidative weathering of the continents. *Science* 326,
 219 713-716 (2009).
- 220 23 Coetzee, L. L., Beukes, N. J., Gutzmer, J. & Kakegawa, T. Links of organic carbon
 221 cycling and burial to depositional depth gradients and establishment of a snowball

222		Earth at 2.3Ga. Evidence from the Timeball Hill Formation, Transvaal Supergroup,
223		South Africa. South African Journal of Geology 109, 109-122 (2006).
224	24	De Pol-Holz, R., Robinson, R. S., Hebbeln, D., Sigman, D. M. & Ulloa, O. Controls
225		on sedimentary nitrogen isotopes along the Chile margin. Deep-Sea Research Part Ii-
226		<i>Topical Studies in Oceanography</i> 56 , 1100-1112, doi:10.1016/j.dsr2.2008.09.014
227		(2009).
228	25	Godfrey, L. V., Poulton, S. W., Bebout, G. E. & Fralick, P. W. Stability of the
229		nitrogen cycle during development of sulfidic water in the redox-stratified late
230		Paleoproterozoic Ocean. Geology 41, 655-658 (2013).
231	26	Stueken, E. E. A test of the nitrogen-limitation hypothesis for retarded eukaryote
232		radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile. Geochimica et
233		<i>Cosmochimica Acta</i> 120 , 121-139 (2013).
234	27	Papineau, D. et al. High primary productivity and nitrogen cycling after the
235		Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian
236		Research 171, 37-56, doi:10.1016/j.precamres.2009.03.005 (2009).
237	28	Kump, L. R. et al. Isotopic evidence for massive oxidation of organic matter
238		following the Great Oxidation Event. Science 334, 1694-1696 (2011).
239	29	Farquhar, J., Zerkle, A. L. & Bekker, A. in Treatise in Geochemistry: Reference
240		Module in Earth Systems and Environmental Sciences Vol. 6 (eds H. D. Holland &
241		K. Turekian) 91-138 (Elsevier, 2014).
242		
243	Ackno	owledgements
244		This study was supported financially by Natural Environment Research Council

245 Fellowship NE/H016805 to AZ. We thank the Council for Geoscience in South Africa and

246	the staff at the National Core Library in Donkerhoek for facilitating access to the core
247	materials, and Misuk Yun for assistance with stable isotope analyses at U. Manitoba.
248	
249	Author contributions
250	AZ and SP conceived the study; SP and AB collected the samples; AZ, SP, RN, CM,
251	and CJ processed samples and performed geochemical analyses; MC provided statistical
252	analyses of the global database; AZ interpreted the data and wrote the manuscript with input
253	from all coauthors.
254	
255	Declaration of competing interests
256	The authors declare no competing financial interests.
257	
258	Figure Legends
258 259	Figure Legends Figure 1. Secular trend in sedimentary δ^{15} N over early Earth history, from Farquhar et al. ²⁹ ,
259	Figure 1. Secular trend in sedimentary δ^{15} N over early Earth history, from Farquhar et al. ²⁹ ,
259 260	Figure 1. Secular trend in sedimentary δ^{15} N over early Earth history, from Farquhar et al. ²⁹ , with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from
259 260 261	Figure 1. Secular trend in sedimentary δ^{15} N over early Earth history, from Farquhar et al. ²⁹ , with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from phyllosilicates. Red and purple data points are from this study, denoting kerogen and bulk
259 260 261 262	Figure 1. Secular trend in sedimentary δ^{15} N over early Earth history, from Farquhar et al. ²⁹ , with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from phyllosilicates. Red and purple data points are from this study, denoting kerogen and bulk
259 260 261 262 263	Figure 1. Secular trend in sedimentary δ^{15} N over early Earth history, from Farquhar et al. ²⁹ , with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from phyllosilicates. Red and purple data points are from this study, denoting kerogen and bulk rock analyses, respectively.
259 260 261 262 263 264	 Figure 1. Secular trend in sedimentary δ¹⁵N over early Earth history, from Farquhar et al.²⁹, with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from phyllosilicates. Red and purple data points are from this study, denoting kerogen and bulk rock analyses, respectively. Figure 2. Lithological and geochemical data for core EBA-2, illustrating the R-TH overlying
259 260 261 262 263 264 265	 Figure 1. Secular trend in sedimentary δ¹⁵N over early Earth history, from Farquhar et al.²⁹, with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from phyllosilicates. Red and purple data points are from this study, denoting kerogen and bulk rock analyses, respectively. Figure 2. Lithological and geochemical data for core EBA-2, illustrating the R-TH overlying the Great Chert Breccia (GCB), which developed at the top of the Malmani carbonate
259 260 261 262 263 264 265 266	 Figure 1. Secular trend in sedimentary δ¹⁵N over early Earth history, from Farquhar et al.²⁹, with references listed therein. "Mineral N" refers to nitrogen extracted as ammonium from phyllosilicates. Red and purple data points are from this study, denoting kerogen and bulk rock analyses, respectively. Figure 2. Lithological and geochemical data for core EBA-2, illustrating the R-TH overlying the Great Chert Breccia (GCB), which developed at the top of the Malmani carbonate platform. Data include Fe speciation, TOC, and δ¹³C_{org} spanning the section. Fe_{Py}/Fe_{HR} data

270 nano-EA analyses. For all data, errors are within the size of the symbols. The orange arrows
271 denote the disappearance of S-MIF in EBA-2⁶.

272

273 **METHODS**

274 Statistical analysis of δ^{15} N database

Previous studies have utilized age-binned means of the δ^{15} N database over hand-275 picked geologic intervals to propose changes in this proxy with time^{2,4,14,30}. These studies 276 have provided a qualitative indication that the δ^{15} N record appears to vary systematically over 277 278 geologic time; however, they are not statistically robust, because two samples drawn from a 279 single population will often express different means due to random noise. A Student's T-test 280 is a more statistically robust method for determining if two (otherwise normally-distributed) 281 sample sets are likely to arise from the same population, which is considered the null 282 hypothesis. We therefore performed 754 independent two-tailed T-tests spanning every possible time-weighted binning of the δ^{15} N database, assuming unequal variances in the 283 284 sample sets. In all but a few cases at the extremes (where the bin sizes of one of the sample 285 sets were small), the null hypothesis was rejected at greater than 99% confidence and so the 286 divided sample sets are shown to arise from populations with different means and variances. 287 The sample sets are defined as ranging from the first database entry from the 288 Proterozoic, at 0.70 Ga, to the entry with the age shown on the horizontal axis of Extended 289 Data Figure 1, and then from the subsequent entry to our final database entry, with age of 290 3.80 Ga. Extended Data Figure 1 shows the "false-positive" probability that the two samples 291 sets arise from populations of the same mean and variance. Using this method, datasets at 292 2.31 Ga (this study), 2.50 Ga, and 2.70-2.80 Ga are demonstrated to be the most statistically 293 meaningful pivot-ages which separate the database into distinct samples sets.

294	As discussed in the manuscript, the large number of database entries from ~2.50 Ga
295	stem from predominantly deep water environments which show small stratigraphic shifts in
296	δ^{15} N interpreted to reflect temporary localized nitrification/denitrification in an otherwise
297	reducing ocean ^{16,17,19} . As a result, the global database may be slightly biased toward results
298	showing an "oxic" nitrogen cycle at this time period. The data presented in this study are
299	from unequivocally oxic shallow waters, and the statistical analysis confirms that our new
300	data provide a stronger statistical power in separating the data sets, even given the bias in the
301	database at 2.50 Ga. As we note in the main text, additional $\delta^{15}N$ data from shallow water
302	depositional environments in this crucial interval are required to test alternative hypotheses.
303	Although beyond the scope of this current study, we additionally note that the most
304	statistically meaningful separation of the δ^{15} N database occurs when the sample sets are split
305	between $0.70 - 2.71$ Ga and between $2.75 - 3.80$ Ga. The statistical power for this split is
306	driven primarily by the predominance of extremely $^{15}\text{N}\text{-enriched}\ \delta^{15}\text{N}$ measurements
307	(upwards of +55‰, dominantly in kerogens) from this time period. The origin of these
308	extreme values is highly debated, with hypotheses including the onset of partial
309	nitrification ¹⁸ , and effects from ammonia degassing under highly alkaline conditions ³¹ .
310	Regardless, it is clear the \sim 2.70 Ga data do not represent a modern-style aerobic N cycle, as
311	no such extreme values are seen anywhere in the modern Earth system. These statistical
312	analyses therefore demonstrate that the nitrogen cycle underwent massive changes in both the
313	early Neoarchean ³¹ and at the GOE, with the data from this study forming the key pivot point
314	for the latter.
015	

315 Fe and C analyses

316 Iron speciation was determined by means of the sequential extraction technique 317 described in Poulton and Canfield²¹, with a RSD of <5% for all extraction steps. TOC was 318 measured on a Leco analyzer after decarbonation by treatment with 20% HCl, with a 1σ of 319 0.05%. $\delta^{13}C_{org}$ was measured at the SIFIR Laboratory at the University of Manitoba. A

320 calibration line was calculated by least squares linear regression of analyses of two

321 international standards (USGS40, USGS41) performed at the beginning, middle and end of

322 each run. Replicate analyses of international standard USGS Green River shale SGR-1b

323 $(\delta^{13}C_{org} = -29.3 \pm 0.1\% \text{ VPDB})$ alongside unknown samples yielded the results of $\delta^{13}C_{org} = -$

324 29.5±0.2‰ (n=29).

325 Kerogen-N isotope analyses

Kerogen was extracted following a method modified from McKirdy and Powell³² in 326 327 the Geobiology laboratory at the University of St Andrews. Approximately 100-200 mg of 328 bulk rock powders were decarbonated twice with 10% (v/v) HCl overnight at 40°C in a clean 329 hood, then transferred to Teflon beakers in a dedicated fume cupboard, where 5mL of 10% 330 HCl + 2mL of concentrated HF was added and volatilized at 40°C. Residues were rinsed 5x 331 with Milli-Q water. Chloroform was added to the residue, shaken, and allowed to settle in 332 separation funnels for ~ 30 minutes. Heavy minerals that sank to the bottom were first 333 removed, and then floated kerogen was transferred to a Teflon beaker, dried in a clean hood, 334 and stored in an anaerobic chamber until analysis. A subset of samples were also extracted 335 commercially at Global Geolab Ltd, using techniques similar to those above, except that 336 kerogens were separated out by heavy liquid separation with zinc bromide instead of chloroform. Repeat extracts of the same sample (all plotted in Fig. 2) had consistent $\delta^{15}N_{org}$ 337 338 values between labs, generally within 1‰ (Source Data). Kerogen N isotope ratios ($\delta^{15}N_{org}$) were measured using a Eurovector 3028HT 339 340 elemental analyser fitted with a Costech Zero Blank autosampler coupled to an Isoprime 341 isotope ratio mass spectrometer, at the University of Leeds. Columns with reagents were

342 fitted to the EA along with either a high-resolution CN GC column (Elemental Microanalysis

E3037), or a NCH column (Elemental Microanalysis E3001), as below. A magnesium

perchlorate-carbosorb trap was used to trap water and CO₂. The setup was leak checked and then the combustion and reduction furnaces were heated to operating temperatures and left purging with He overnight. The combustion furnace was held at 1020°C and the reduction furnace at 650°C. The GC column was baked at 190°C with He flowing overnight, and then its temperature was reduced to the normal running temperature (80°C for the NCH column, and 110°C for the high resolution CN column).

350 Samples were prepared by weighing between 10 and 30 mg of kerogen into 8 x 5 mm 351 tin cups. These were loaded into the autosampler and purged for at least an hour before 352 analyses. Upon sealing the autosampler chamber and opening it to the main He flow, mass 28 was monitored until it returned to a stable background (less than 7e⁻¹¹ nA). Samples were 353 354 combusted in a pulse of pure oxygen (N5.0 grade, BOC, UK) and injected into a stream of 355 helium (CP grade, BOC, UK). The resulting gases were passed through chromous oxide and 356 silvered cobaltous oxide, fine copper wires, and a magnesium pechlorate/carbosorb trap 357 before entering the GC column. The mass 29/28 ratio of the sample N2 gas was measured 358 relative to a pulse of pure N₂ (Research grade, BOC, UK) and corrected to the AIR scale using the USGS-25 and USGS-26 ammonium sulfate standards, with $\delta^{15}N_{AIR}$ values of -359 360 30.1‰ and +53.7‰, respectively. Repeated runs of standard materials during each analytical session produced standard deviations of the raw $\delta^{15}N_{refgas}$ that were generally between 0.15 361 362 and 0.41‰, with the majority \leq 0.30‰. Data were corrected with bracketing standards using 363 a simple linear regression equation. Repeats of an in-house yeast standard (7.6 wt% N) gave a 364 long-term average value of $-0.8 \pm 0.31\%$ (1 σ , 37 runs with both NCH and high-resolution CN 365 GC columns), with in-run reproducibility always $\leq 0.2\%$ where 3 or more repeats were 366 measured during the same analytical session. A sample size test using the same yeast 367 standard determined that samples producing peak heights of < 1nA have larger variability, approaching the blank δ^{15} N value as their peak height decreased. Repeat analyses of the yeast 368

369	standard with peak height > 1 nA produced $\delta^{15}N_{refgas}$ values that differed by $\leq 0.1\%$.
370	Therefore, analyses that produced peak heights of $< 1nA$ were discarded in this study.
371	The analysis of organic materials with low concentrations of nitrogen can be
372	complicated by the production of CO gas (at masses 28 and 29) as a result of incomplete
373	combustion, which can alter the apparent ${}^{15}N/{}^{14}N$ ratio of the sample. We took the following
374	precautions to ensure that data were not affected by CO production during incomplete
375	combustion: 1) combustion tests using a low-N organic material (cornflower, 0.07 wt% N);
376	2) mass 30 monitoring; and, 3) use of NCH column to produce a better separation between
377	the N_2 and unwanted CO that might produce a secondary mass 28 peak for samples affected
378	by partial combustion.

379 Bulk-rock analyses

380 A subset of R-TH samples was analysed for bulk rock geochemistry (wt % K₂O) to 381 screen for post-depositional alteration at the University of St Andrews, using standard X-ray fluorescence (with 1 σ of 0.02 wt%). Bulk nitrogen content (% TN) and bulk $\delta^{15}N$ ($\delta^{15}N_{bulk}$, 382 383 without decarbonation) were measured at the SIFIR Laboratory at the University of Manitoba. Analyses were performed using a CostechTM 4010 Elemental Analyzer (EA) fitted 384 with a Costech Zero Blank autosampler and coupled to a Thermo FinniganTM Delta V Plus 385 386 isotope-ratio mass-spectrometer via an open-split interface (ConFlo III, Thermo FinniganTM). 387 A magnesium perchlorate-carbosorb trap was placed before the ConFlo III to remove 388 remaining water and CO₂. In order to improve the efficiency of sample combustion, 389 temperature in the oxidation column was raised to 1050°C, and a 'macro' O₂ injection loop 390 was utilized. The setup was leak checked and then the oxidation and reduction columns were 391 heated to operating temperatures and left purging with He overnight. The oxidation column 392 was held at 1050°C and the reduction column at 650°C. The ~3 m-long stainless steel GC 393 column was baked at 100-110°C with He flowing overnight, and then its temperature was

394 reduced to the normal running temperature (55°C). CO_2 level was monitored during 395 analytical sessions. Sample normalization was performed using the two-point calibration described in Coplen *et al.*³³, by analyzing two international standards (USGS40 and USGS41) 396 397 at the beginning, middle, and end of each analytical session. Two certified standards were additionally analyzed alongside with samples: B2153, soil, % TN = $0.13 \pm 0.02\%$, $\delta^{15}N_{air}$ = 398 399 $+6.70 \pm 0.15\%$ (Elemental Microanalysis); and SDO-1, Devonian Ohio Shale, % TN = 0.36 $\pm 0.01\%$, $\delta^{15}N_{air} = -0.8 \pm 0.3\%$ (USGS). The data obtained were % TN = 0.14 $\pm 0.00\%$ and 400 δ^{15} N_{air} values of +6.76 ± 0.02‰ (n=3) for B2153, and % TN = 0.37 ± 0.00% and -0.32 ± 401 402 0.02‰ (n=3) for SDO-1.

403 Nano-EA-IRMS analyses

A subset of extracted kerogens and bulk rock powders were also run for δ^{15} N by 404 nano-EA-IRMS at Syracuse University, following methods outlined in Polissar et al.³⁴ The 405 406 benefit of this approach is that it is specifically designed for analysis of as little as 0.5 mg of 407 kerogen and 50 nanomoles of N, thus limiting some of the complications associated with 408 achieving complete combustion on larger samples. Encapsulated sample powders were 409 evacuated to remove atmospheric N_2 present in capsule pore space and purged with Ar. 410 Sample combustion was performed in an Elementar Isotope Cube elemental analyser with 411 reaction conditions set at 1100°C and 650°C for the oxidation and reduction reactors, respectively. Oxygen flow was set a 30 ml*min⁻¹ and introduced to the helium stream for 90 412 413 seconds, initiating when the sample is dropped into the oxidation reactor. The EA is coupled 414 to an automated cryotrapping system that was build using a modified Elementar TraceGas 415 analyser. The generated N₂ gas was trapped in a silica gel-filled, stainless steel trap cooled in 416 liquid N_2 . Following complete collection of the N_2 peak from the high-flow EA, the He flow through the cryotrap was switched to a lower flow (2 ml*min⁻¹) via actuation of a VICI Valco 417 418 6-port valve. The trap was heated and N2 was released to a room temperature capillary GC-

419	column (JW CarboBOND, 25 m, 0.53 mm ID, 5 μ m), and ultimately to the IRMS. The
420	Elementar EA traps CO ₂ from combustion in a molecular sieve trap that is released to waste
421	or to the IRMS directly for $\delta^{13}C$ analyses. This ensures that CO_2is not trapped in the N_2
422	cryotrap and mitigates the potential for neo-formed CO within the ion source. All samples
423	were run in triplicate and blank-corrected using Keeling-style plots and normalized using the
424	2pt-correction scheme detailed in Coplen et al. ³³ Use of Keeling plots allows for simple
425	estimation of the influence of the N_2 procedural blank on samples and for high fidelity
426	measurements of $\delta^{15}N$ on the small sample sizes employed. Reproducibility of replicates
427	analyses of standards [IAEA N1 (0.4‰) and N2 (+20.35‰) and NIST Peach Leaves
428	(1.98%)] and samples was $\pm 0.26\%$.

IDMO T

429 Additional analyses and data fidelity

110

Nitrogen is preserved in the sedimentary rock record primarily as organic N or as ammonium substituting for potassium in phyllosilicates³⁵. The sedimentary N isotope values can be modified by a number of post-depositional processes, including diagenesis, burial, and metamorphism. Therefore, before interpreting sedimentary δ^{15} N data, it is first necessary to examine the possible impacts of post-depositional alteration on the primary signal. Here we examine trends in supplementary and bulk-rock data in order to validate our δ^{15} N dataset as representing a primary signal.

437 Degradation of organic matter during early diagenesis can offset primary δ^{15} N signals 438 by 2 to 3‰³⁶. High-pressure metamorphism does not impart significant δ^{15} N changes ³⁷, 439 although high-temperature metamorphism can increase δ^{15} N in ammoniated phyllosilicates 440 (and possibly N_{org}; but see Ader *et al.* ³⁸) due to volatilization of ¹⁵N-depleted nitrogen^{35,37}. 441 Since the R-TH has only experienced lower greenschist facies metamorphism²³, this 442 mechanism would be expected to produce at most a 1-2‰ positive shift in δ^{15} N_{org}. Cross-443 plots demonstrate no correlation between % N in kerogen (N_{org}) and δ^{15} N_{org} values (Extended 444 Data Fig. 4A), rendering no evidence for metamorphic devolatilization of ¹⁵N-depleted

445 nitrogen from organics. $\delta^{15}N_{bulk}$ and % total nitrogen (TN) show only a loose positive

446 correlation (with $R^2 = 0.34$; Extended Data Fig. 5A), in the opposite direction of what would

447 be expected from significant loss of ¹⁵N-depleted N from whole rocks via devolatilization.

448 Only a weak negative correlation exists between wt % TOC and $\delta^{13}C_{org}$ (R² = 0.42; Extended

449 Data Fig. 4C), also inconsistent with significant devolatilization of ¹³C-depleted carbon

450 during metamorphism. These data indicate that loss of N during metamorphism and deep

451 burial did not significantly alter the primary $\delta^{15}N$ (or $\delta^{13}C$) values.

452 Nitrogen isotope exchange can occur between rocks and N-containing compounds when fluids migrate during organic matter maturation³⁹. Similar to metamorphism, offset 453 during thermal maturation generally results from preferential volatilization of ¹⁵N-depleted 454 nitrogen from organic molecules. The $\delta^{15}N$ of the natural gas is highly variable, but can have 455 δ^{15} N as low as -12‰^{40,41}. Nitrogen isotope exchange during fluid migration would tend to 456 457 homogenize the isotopic composition of participating N pools, decreasing the isotopic range within the organic N pool and differences between organic and inorganic N pools³⁹. Bulk-458 rock $\delta^{15}N(\delta^{15}N_{bulk})$ covers the measured range of $\delta^{15}N_{org}$, but are generally more positive 459 than $\delta^{15}N_{\text{org}}$, inconsistent with complete isotopic homogenization. 460

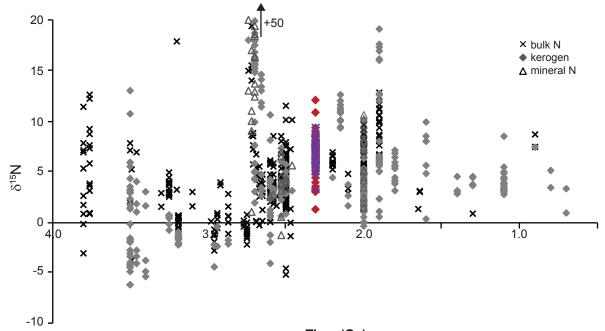
461 We observe only a very weak negative correlation between $\delta^{15}N_{bulk}$ and TOC:TN (R² 462 = 0.29; Extended Data Fig. 5B), suggesting that some ¹⁵N-enriched ammonium could have 463 been sorbed onto and/or incorporated into clay minerals in very low-TOC sediments,

464 presumably during exchange with post-depositional fluids. The % TN (but not $\delta^{15}N_{\text{bulk}}$)

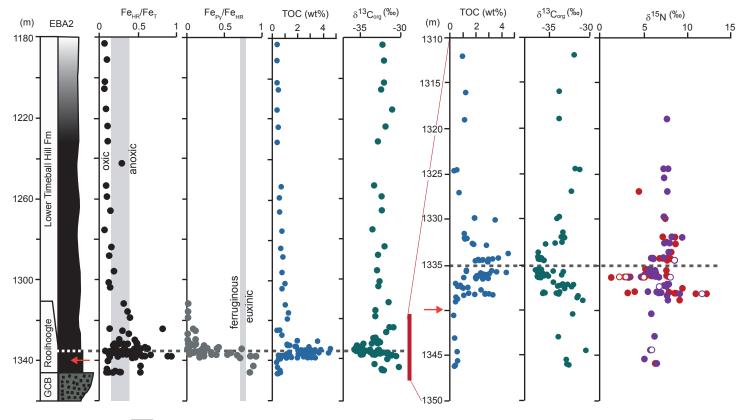
465 indeed shows a significant positive correlation with % K_2O ($R^2 = 0.81$; Extended Data Fig.

466 5C), supporting incorporation of N into illites during K-metasomatism; however, there is no

467 correlation between $\delta^{15}N_{\text{bulk}}$ and % K₂O (R² = 0.10; Extended Data Fig. 5D), suggesting that


468 this exchange did not significantly affect bulk δ^{15} N values.

469	
470	Data Availability Statement
471	All data generated or analysed during this study are included as source data in this
472	published article.
473	
474	Extended Data Legends
475	Extended Data Figure 1. Results from statistical analysis of the $\delta^{15}N$ database, as detailed in
476	the Methods.
477	
478	Extended Data Figure 2. Stratigraphic context for the Rooihoogte and Timeball Hill
479	formations within the Eastern Transvaal basin, South Africa, and associated ages. "MIF"
480	denotes the disappearance of the mass independent fractionation of sulfur isotopes in the
481	underlying Duitschland Formation (now known to reappear in the Rooihoogte Formation ⁶).
482	Modified from Rasmussen <i>et al.</i> ⁵ .
483	
484	Extended Data Figure 3. Simplified geologic map of the Transvaal Supergroup outcrop area
485	(modified from Guo <i>et al.</i> ⁴²), showing the location of drill-core EBA-2. The core is currently
486	stored at the National Core Library at Donkerhoek, which is managed by the Council for
487	Geoscience in South Africa.
488	
489	Extended Data Figure 4. Cross-plots of kerogen N abundance (% N_{org}) and $\delta^{15}N$ ($\delta^{15}N_{org}$, in
490	‰), total organic carbon (% TOC) and organic $\delta^{13}C$ ($\delta^{13}C_{org}$, in ‰). For all datapoints, errors
491	are within the size of the symbols.


492

493	Extended Data Figure 5. Cross-plots of bulk-rock data, including A. bulk-rock $\delta^{15}N$ ($\delta^{15}N_{bulk}$,		
494	in ‰) versus total nitrogen (% TN), B. $\delta^{15}N_{bulk}$ versus TOC:TN atomic ratios, C. % TN		
495	versus K ₂ O content (%), and D. $\delta^{15}N_{bulk}$ versus K ₂ O content. For all datapoints, errors are		
496	within the size of the symbols.		
497			
498	Additional References		
499	30	Thomazo, C. & Papineau, D. Biogeochemical cycling of nitrogen on the early Earth.	
500		Elements 9, 345-351 (2013).	
501	31	Stueken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline	
502		lakes on late Archean continents. Earth and Planetary Science Letters 411, 1-10	
503		(2015).	
504	32	McKirdy, D. M. & Powell, T. G. Metamorphic alteration of carbon isotopic	
505		composition in ancient sedimentary organic matter: New evidence from Australia.	
506		<i>Geology</i> 2 , 591-595 (1974).	
507	33	Coplen, T. B. et al. New guidelines for delta C-13 measurements. Analytical	
508		Chemistry 78, 2439-2441, doi:10.1021/ac052027c (2006).	
509	34	Polissar, P. J., Fulton, J. M., Junium, C. K., Turich, C. H. & Freeman, K. H.	
510		Measurement of 13C and 15N isotopic composition on nanomolar quantitites of C and	
511		N. Analytical Chemistry 81, 755-763 (2009).	
512	35	Boyd, S. R. & Philippot, P. Precambrian ammonium biogeochemistry: a study of the	
513		Moine metasediments, Scotland. Chemical Geology 144, 257-268 (1998).	
514	36	Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments.	
515		Paleoceanography 27, doi:10.1029/2012pa002321 (2012).	

- Bebout, G. E. & Fogel, M. L. Nitrogen-isotope compositions of metasedimentary
- rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history. Geochimica et Cosmochimica Acta 56, 2839-2849 (1992).
- Ader, M., Boudou, J.-P., Javoy, M., Goffe, B. & Daniels, E. Isotope study of organic
- ntrogen of Westphalian anthracites from the Western Middle field of Pennsylvania
- (U.S.A.) and from the Bramsche Massif (Germany). Organic Geochemistry 29, 315-323 (1998).
- Schimmelmann, A. & Lis, G. P. Nitrogen isotopic exchange during maturation of organic matter. Organic Geochemistry 41, 63-70,
- doi:10.1016/j.orggeochem.2009.01.005 (2010).
- Hoering, T. C. & Moore, H. E. The isotopic compositions of the nitrogen in natural gases and associated crude oils. Geochimica et Cosmochimica Acta 13, 225-232, doi:10.1016/0016-7037(58)90024-3 (1958).
- Murty, S. V. S. Noble-gases and nitrogen in natural gases from Gujarat, India.
- *Chemical Geology* **94**, 229-240, doi:10.1016/0168-9622(92)90015-3 (1992).
- Guo, Q. J. et al. Reconstructing Earth's surface oxidation across the Archean-
- Proterozoic transition. Geology 37, 399-402, doi:10.1130/g25423a.1 (2009).

Time (Ga)

KEY: Chert breccia black shale to siltstone