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Abstract

This thesis describes the development and deployment of honeypot systems to mea-

sure real-world cybercriminal activity in online accounts. Compromised accounts ex-

pose users to serious threats including information theft and abuse. By analysing the

modus operandi of criminals that compromise and abuse online accounts, we aim

to provide insights that will be useful in the development of mitigation techniques.

We explore account compromise and abuse across multiple online platforms that

host webmail, social, and cloud document accounts. First, we design and create re-

alistic decoy accounts (honeypots) and build covert infrastructure to monitor activity

in them. Next, we leak credentials of those accounts online to lure miscreants to the

accounts. Finally, we record and analyse the resulting activity in the compromised

accounts.

Our top three findings on what happens after online accounts are attacked can

be summarised as follows. First, attackers that know the locations of webmail ac-

count owners tend to connect from places that are closer to those locations. Second,

we show that demographic attributes of social accounts influence how cybercrimi-

nals interact with them. Third, in cloud documents, we show that document content

influences the activity of cybercriminals. We have released a tool for setting up web-

mail honeypots to help other researchers that may be interested in setting up their

own honeypots.
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Impact Statement

It is hard for researchers to study what happens to online accounts during illicit ac-

cesses unless such researchers are in control of a large online service. The resulting

research gap inspired us to develop new ways to make it possible for researchers to

carry out such studies. To this end, we designed, developed, and deployed honey-

pot systems across various online services. Our approach enables us to obtain and

analyse primary data from compromised accounts, and will help other researchers

to achieve similar results.

It is important for defenders to understand the behaviour of attackers at all times

to keep defence mechanisms up to date. In view of this, it is possible to commer-

cialise our work by building custom honeypot services for organisations that wish to

protect their online assets from cybercriminals. Such honeypot systems will be de-

ployed along with “tripwire” mechanisms to raise alerts when criminals gain access

to privileged information. These systems would provide useful real-time information

about attacker behaviour and such information can be used to train and improve de-

tection and mitigation systems. Similar to our approach, CounterCraft, a European

company, has built a commercial “Cyber Deception Platform” that deploys decoy on-

line assets (for instance, virtual machines, documents, and mobile apps) to deceive

attackers and collect valuable threat intelligence and protect organisations.1 This

shows that our honeypots indeed possess potential commercial value.

We have disseminated some of our findings to the security community. In other

words, we presented peer-reviewed papers at international conferences, workshops,

symposia, and invited talks (including a 2016 guest lecture in UCL’s Crime Science

1https://www.countercraft.eu/
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MSc programme). In addition to expanding the security community’s knowledge of

malicious activity, we also released an open-source tool for deploying webmail hon-

eypots,2 which researchers in Utrecht University (the Netherlands) are now using to

carry out further research. These demonstrate the growing impact of our work on

the academic community, in terms of contributions to practical knowledge and tools

to make online activity safer for everyone.

Outside academic circles, the general public has benefited from our work via

considerable press coverage by BBC News3 and other news outlets. This has

helped to raise public awareness about what happens to compromised accounts and

ways to stay safe online. In 2016, the author presented our work at the UK Home

Office (the government department responsible for security). Similarly, the author

presented our work to industry experts, government agencies, and academics at

the 2017 Academic Centres of Excellence in Cyber Security Research conference

in Nottingham (UK). Finally, our work on social honeypots has won a “Secure the

Internet” grant from Facebook.4 Our work on webmail honeypots was a finalist in

the 2017 Europe Cyber Security Awareness Week in Valence (France). Once again,

these demonstrate the impact of our work on various sectors outside academia, to-

wards solving real-world problems and engaging with the general public to reduce

cybercrime.

2https://bitbucket.org/gianluca_students/gmail-honeypot
3https://www.bbc.co.uk/news/technology-37510501
4https://research.fb.com/facebook-awards-more-than-800000-in-secure-the-internet-

grants/
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Chapter 1

Introduction

“Hardware is easy to protect: Lock it in a room, chain it to a desk, or buy a

spare. Information poses more of a problem. It can exist in more than one

place; be transported halfway across the planet in seconds; and be stolen

without your knowledge.”

– Bruce Schneier

Total global spending on cybersecurity from 2017 to 2021 will likely exceed 1

trillion dollars, according to a 2018 report by Cybersecurity Ventures.1 This shows

the massive impact (and cost) of cybercrime on organisations and individuals alike.

A 2014 study revealed that unauthorised parties had gained access to online ac-

counts that belonged to 30% of participants [85]. Recent colossal data breaches

further highlight the magnitude of cybercrime and its effects — these incidents in-

clude Yahoo (3 billion compromised accounts), Adult Friend Finder (412.2 million

compromised accounts), and eBay (145 million compromised accounts).2

Malicious online activity perpetrated by cybercriminals include email spamming [48],

malware dissemination [26, 1], phishing [47], information theft [25, 90], social spam-

ming [45, 93, 108, 98], unauthorised crawling [57], account hijacking [25, 41] and

Denial-of-Service attacks (DOS) [9], among others. To facilitate such activity, cyber-

criminals rely on an underground ecosystem of interconnected merchants trading
1https://cybersecurityventures.com/cybersecurity-market-report/
2https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-

of-the-21st-century.html
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fake and compromised accounts, botmasters in control of massive botnet infrastruc-

ture, malware developers and distributors, and other actors [92, 98, 26]. To mitigate

malicious online activity, it is important to disrupt the operations of the underground

ecosystem. This requires a deep understanding of that ecosystem.

It is difficult to study the activity of criminals that specialise in stealing and selling

online accounts, without being in charge of an online service, for instance, Google

or Facebook. In other words, it is difficult for researchers to gain access to private

compromised accounts to study the behaviour of criminals in them. Hence, there is

limited research literature in this space (in Chapter 2, we discuss this in detail). The

rare exceptions are studies that analysed publicly available account information, for

instance, posts made on Twitter by compromised accounts [41, 42].

To close this research gap, we develop new ways and infrastructure (honeypot

systems) to study compromised accounts without being in control of the online ser-

vices that host them. We focus on hijacked webmail accounts, social accounts,

and cloud documents. To this end, we construct realistic decoy accounts and doc-

uments, which we refer to as honey assets (honey accounts or honey documents).

We deploy those honey assets, record accesses to them using our honeypot in-

frastructure, analyse the resulting data, and draw inferences on malicious activity in

compromised accounts. By relying on honey assets instead of real accounts that

belong to real users, we ensure that no harm happens to anyone during our experi-

ments. We discuss ethical considerations in more detail in Chapter 4 (Section 4.4.5),

Chapter 5 (Section 5.4.5), and Chapter 6 (Section 6.4.5) respectively.

In this thesis, we present multiple findings that provide the research community

with a better understanding of what happens when online accounts are attacked. For

instance, we discovered that attackers that know the locations of webmail account

owners tend to connect from places that are closer to those locations. We infer that

this is an attempt to evade current security mechanisms employed by online ser-

vices to discover suspicious logins. Also, in webmail and social accounts, search

terms revealed that behavioural modelling could work in identifying anomalous be-

haviour in online accounts. In webmail accounts, we observed that search terms

17



mostly contained financial/sensitive information while search terms recorded in so-

cial accounts indicated less interest in financial information. In cloud documents, we

discovered that the activity of cybercriminals varied, depending on sheet content.

For instance, we recorded more modifications in sheets containing cryptocurrency

information than sheets containing traditional banking information.

Other observations in Chapters 4 (webmail accounts), 5 (social accounts), and 6

(cloud documents) include activity timing, modifications made to online assets, and

differences in account activity depending on demographic attributes of online ac-

counts, among others. In Chapter 7, we discuss the implications of those findings.

Our work contributes to the security community by shining light on the activity

of cybercriminals and providing new ways to study compromised online accounts.

We discuss existing research literature, point out research gaps, and present our

honeypot approach to studying online accounts. We also describe our experiments,

present our findings and what they imply, and highlight what remains to be done.

We are hopeful that this work will provide new insights, tools, and techniques for

online service providers, fellow researchers, and other parties seeking to mitigate

cybercrime and make online activity safer for everyone.

1.1 Thesis statement

There is limited research work on activity within online accounts after criminals gain

access to them. This is because it is hard to study online accounts without being

in control of a large online service (say Facebook or Gmail), with the exception of

publicly available account data (for instance, Twitter). Through the lenses of hon-

eypots, we can provide a deeper understanding of what happens to such accounts,

provide tools and techniques for researchers to carry out further studies, and bridge

the existing research gap. Our findings will also provide insights that can be used to

improve detection and mitigation systems that protect online users from cybercrimi-

nals.
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1.2 Contributions

Overall, this thesis makes the following contributions:

• To achieve the goal of understanding malicious activity in online accounts, we

propose a systems-based life cycle approach to the development and deploy-

ment of honeypots, and identify a set of minimum requirements, with careful

consideration for research ethics to avoid harming people.

• We design and develop a system to monitor activity in Gmail accounts towards

understanding malicious activity in compromised webmail accounts. We pub-

licly release the source code of our system3 to allow other researchers to

deploy their own Gmail accounts for related studies. To the best of our knowl-

edge, it is the first publicly available Gmail honeypot infrastructure.

• We design and develop another system to instrument and monitor compro-

mised social accounts on Facebook, and perform large-scale experiments to

observe differences in account activity per demographic attributes of the ac-

counts.

• We introduce some improvements to the cloud document monitor system orig-

inally proposed in a 2016 USENIX workshop paper [62]. To understand what

happens to compromised cloud documents, we then create and deploy Google

spreadsheets containing fake banking records and cryptocurrency information

(fake financial details).

• We present detailed analysis of activity in compromised webmail accounts,

social accounts, and cloud documents. We also discuss the implications of

our findings, especially for online services seeking to improve their detection

and mitigation techniques and systems.

Parts of the work in this thesis have been peer-reviewed and presented in top

conferences and workshops. In addition, some parts have received considerable
3https://bitbucket.org/gianluca_students/gmail-honeypot
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press coverage on BBC News,4 Huffington Post,5 and The State of Security,6 among

other news outlets. This shows that our work has contributed to the research com-

munity and increased the awareness of the general public about compromised on-

line accounts. Overall, this will lead to safer online activity for everyone.

1.3 Peer-reviewed papers

As we previously mentioned, parts of the work in this thesis have been published in

peer-reviewed conferences and workshops, in collaboration with other researchers.

Some aspects of our honeypot infrastructure and findings appear in the following

papers.

• Adrian Bermudez Villalva, Jeremiah Onaolapo, Gianluca Stringhini, Mirco Mu-

solesi. Under and over the surface: a comparison of the use of leaked account

credentials in the Dark and Surface Web. In Crime Science (Journal), 2018.

• Emeric Bernard-Jones, Jeremiah Onaolapo, and Gianluca Stringhini. BABEL-

TOWER: How Language Affects Criminal Activity in Stolen Webmail Accounts.

In Companion Proceedings of The Web Conference (WWW), 2018.

• Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. What Happens

After You Are Pwnd: Understanding the Use of Leaked Webmail Credentials

in the Wild. In ACM Internet Measurement Conference(IMC), 2016.

• Martin Lazarov, Jeremiah Onaolapo, and Gianluca Stringhini. Honey Sheets:

What Happens to Leaked Google Spreadsheets? In USENIX Workshop on

Cyber Security Experimentation and Test (CSET), 2016.

Collaborators. In Chapters 4, 5, and 6, we mention our academic and non-academic

collaborators, and acknowledge their contributions in detail.
4https://www.bbc.co.uk/news/technology-37510501
5https://www.huffingtonpost.co.uk/entry/what-hackers-actually-do-with-your-

stolen-personal-information_uk_58049f32e4b0e982146cd18f
6https://www.tripwire.com/state-of-security/security-data-protection/heres-what-

happens-after-your-webmail-account-is-compromised/
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1.4 Scope of work

In this thesis, our scope of work encompasses studying malicious activity within

compromised assets (with specific focus on online accounts and cloud documents)

to shed light on the modus operandi of criminals that connect to stolen accounts.

Our work does not directly study sales of stolen information (products and prices),

or activity that is external to the accounts under study. Those topics are outside

the scope of this work. Although we discuss possible ways to apply our findings

to the development of better automatic detection and mitigation systems, specific

implementations of such systems (machine learning approaches, for instance) are

outside the scope of this work. Instead, we focus on exploring new ways and sys-

tems to study malicious activity in online accounts.

1.5 Thesis outline

The remainder of this thesis is organised as follows. In Chapter 2, we discuss ways

through which criminals steal online accounts, how they misuse the stolen accounts,

and victimise online users. We also discuss existing research literature, identify re-

search gaps, and discuss the justification for our research approach (honeypots).

Chapter 3, which strongly interconnects the remaining chapters, provides a high-

level discussion of our honeypot approach, with focus on minimum requirements

and our honeypot development life cycle. We also discuss merits and limitations of

our approach, in addition to alternative methods. The next three chapters build on

the approach proposed in Chapter 3. Chapter 4 presents our Gmail honeypot. It

also describes our experiments on compromised Gmail accounts and resulting find-

ings. Similarly, Chapter 5 presents our large-scale Facebook honeypot, experiments

on compromised social accounts, and our resulting findings. Chapter 6 presents our

cloud document honeypot, experiments on compromised cloud spreadsheets, and

our findings. Finally, in Chapter 7, we discuss the implications of our findings and

suggest ways to improve existing detection and mitigation systems of online ser-
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vices. We also discuss implementation-specific limitations of our honeypots and

potential future work.
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Chapter 2

Literature Review

In this chapter, we explain various ways by which cybercriminals gain illegitimate

access to online accounts and misuse them. We also discuss how to detect such

malicious activity. Finally, we explore the role of decoy accounts in understanding

what happens to compromised accounts.

2.1 Stealing online accounts

Cybercriminals can gain access to online accounts using various methods and tools.

These include botnets, data breaches, and account hijacking. We will focus on them

since they are particularly relevant to the work in this thesis.

2.1.1 Via botnets

A botnet is a huge network of compromised computers (also known as bots) that

receive instructions from one or more Command-and-Control (C&C) servers under

the control of a botmaster [90]. The legitimate administrators and users of such

compromised computers are usually oblivious to the fact that their machines have

become members of the bot network. Botnets are often used to send spam [59]

and steal sensitive information in bulk, for instance, online banking credentials [19].

Cybercriminals also use botnets to stage Distributed Denial-of-Service (DDoS) at-

tacks on victims’ network infrastructure, as seen in the 2016 Mirai DDoS attack on
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Brian Krebs’ cybersecurity blog.1 Common means by which vulnerable machines

are “enlisted” into botnets include drive-by downloads [67] and malware delivered

through phishing or spam emails [1]. Communication links between bots and C&C

servers are usually established via IRC, HTTP, or P2P channels, depending on the

organisation of the botnet [90]. Bots are not always desktop or laptop computers —

social accounts [21] and IoT devices [9] can be enlisted as bots as well.

A socialbot is software that masquerades as a real user in an Online Social Net-

work (OSN) [21]. Socialbots post messages, upload content, and send connection

requests to other accounts on OSNs. Similar to the traditional botnets explained

earlier, socialbots are also controlled by botmasters. When socialbots infiltrate so-

cial graphs of unsuspecting victims, they have the ability to harvest personal data of

their victims (by scraping their profile pages) [21]. Such valuable data can be used

or sold by the botmaster for further nefarious operations, including spamming [44],

phishing [93], and identity theft [18]. Socialbots have allegedly been involved in at-

tempts to sway elections2 and dissemination of fake news [113, 111, 112]. These

show that socialbots, like traditional botnets, have the capacity to inflict substantial

harm on victims.

Existing botnet mitigation techniques include infiltration and hijacking [90] which

enable defenders to learn about and take over botnet communications, towards dis-

rupting the cybercriminal operation(s) behind the botnet. Both mitigation techniques

are costly and time-limited in the face of advanced botnets, since they usually involve

reverse engineering malware binaries and communication protocols [90]. These are

non-trivial tasks, and botnets continually evolve in ways that defeat existing counter-

measures.

2.1.2 Via data breaches

Another way through which cybercriminals compromise online accounts is by mount-

ing information-stealing attacks on vulnerable servers and terminals, often resulting

1https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
2http://uk.businessinsider.com/twitter-russia-facebook-election-accounts-2017-10
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in massive data breaches. The techniques they employ include SQL injection [46],

password guessing [103], and social engineering attacks [37], for instance, by trick-

ing employees of the target organisation to give up their authentication credentials.

Recent massive data breaches include Yahoo (3 billion compromised accounts),

Adult Friend Finder (412.2 million compromised accounts), and eBay (145 million

compromised accounts) incidents.3 Given the scale, severity, and frequency of data

breaches in recent times, it is important for the security community to find lasting

solutions to this ongoing problem. This constitutes the primary motivation for the

work in this thesis towards understanding what cybercriminals do with stolen online

accounts. In other words, since data breaches cannot be completely mitigated yet,

it is important for the security community to understand what cybercriminals do with

stolen accounts, post-compromise, to help develop better detection and mitigation

systems.

Data breaches are often compounded by the problem of password reuse across

various online services [35]. Also, as the security community knows quite well,

strong passwords place heavy burdens on users and this leads to usability issues [55,

66]. This has brought about a situation in which users often opt for memorable

but weak passwords to secure their accounts. The combined problem of password

reuse and weak passwords makes it easy for criminals to breach accounts across

multiple services, even the ones that did not suffer direct data breaches. Exist-

ing countermeasures include cryptographic hashing [80], password managers [86],

multi-factor authentication [32], public-key authentication [81], and proximity authen-

tication [88].

2.1.3 Via account hijacking

As explained earlier, online accounts are valuable resources and are attractive tar-

gets in the eyes of cybercriminals. They hijack accounts to gain access to the wealth

of information stored in them. Webmail accounts, for instance, often become “hubs”

3https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-
of-the-21st-century.html
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that accumulate sensitive information like credit card details, password reset infor-

mation, and government identification documents, as a result of regular everyday

use (see Figure 2.1). The immediate implication is that a successful attack on a

webmail account can lead to a chain of further attacks on other accounts linked to

that webmail account.

Automated hijacking is usually carried out using botnets (as described in Sec-

tion 2.1.1), while manual hijacking is facilitated mostly by low-volume spearphishing

attacks on unsuspecting victims [25]. When manual hijacking attacks succeed, the

cybercriminal usually performs a quick assessment of the stolen accounts to de-

termine their value and decide what to do with them — usually to sell the account

credentials in an underground market or discard them, depending on the perceived

value of each account. Hijacked accounts can also be used to send spam and phish-

ing messages to exploit the existing trust between the victim and their contacts. This

is because spam filters are more likely to allow messages from known contacts to

pass through them [41, 25].

According to Bursztein et al. [25], detecting manual hijacking activity is more dif-

ficult than detecting automated hijacking activity. This is because manual hijacking

is a low-volume activity and manual hijackers mimic normal users. Thus, it is diffi-

cult to tune error rates of automatic detection systems to discover manual hijacking

incidents. In addition, manual hijackers are usually skilful enough to know how to

evade detection. In Chapter 4, we show this in detail. It further highlights the need to

study the modus operandi of manual hijackers closely — this is the main motivation

underpinning our work.

2.2 Misuse and abuse

We have discussed how cybercriminals perpetrate information theft via botnets, data

breaches, and manual hijacking, and how they harm victims. In this section, we dis-

cuss ways by which cybercriminals misuse online accounts and abuse their victims.
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Webmail
accounts

Bank account 
details
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Cloud storage 
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Other 
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Figure 2.1: Webmail accounts, like most types of online accounts, accumulate sen-
sitive information with regular use. This sensitive information attracts cybercriminals
seeking to steal and monetise sensitive personal information.

27



2.2.1 Information theft and misuse

As we mentioned earlier, criminals leverage botnet infrastructure or mount phishing

attacks [47] to steal sensitive information from victims. For instance, the Zeus mal-

ware family (also known as Zbot) [19] steals login credentials and sends them to

C&C servers. Other information-stealing malware include Corebot and Dridex. As

of 2015, Dridex likely brought about losses amounting to 100 million dollars world-

wide.4 This shows the magnitude of harm that results from information theft and

highlights the importance of further studies in this space, to mitigate harm. After

stealing sensitive information from victims, cybercriminals stockpile that information

for later use, or sell it via dark markets [31], underground forums [69], and paste

sites, among other outlets. Illicit uses of stolen information include spamming (for

instance, using stolen authentication credentials), spearphishing attacks [94] (aided

by knowledge of private information), and blackmail attacks,5 among others.

2.2.2 Spam

Spam, which can be defined as unsolicited messaging, is a problem that has plagued

online services for a long time, including but not limited to webmail services [39] and

social networks [93]. These services attract many users and collect huge quan-

tities of personal and sensitive data, as we explained in Section 2.1.3. This, in

turn, attracts cybercriminals seeking treasure troves of sensitive data. To gain illicit

access to this treasure, they leverage botnets to send bulk unsolicited messages

(spam) usually containing malicious payloads to unsuspecting victims. Sometimes,

they send targeted malicious messages, for instance, during spearphishing attacks.

However, not all spam messages contain malicious payloads — some contain be-

nign newsletters, marketing offers, and other information from non-malicious enti-

ties. Spam distribution results in substantial earnings for cybercriminals — on the

other hand, spam prevention efforts by the security community are disproportion-

4https://www.theguardian.com/technology/2015/oct/13/nca-in-safety-warning-after-
millions-stolen-from-uk-bank-accounts

5https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
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ately costly, according to a 2013 study by Anderson et al. [7].

2.2.3 Scams

The main motive of cybercriminals has shifted from mischief and fun to financial

gain [53]. One of the ways by which cybercriminals obtain such illicit gain is by

scamming unsuspecting victims. This brings the infamous 419 scams to mind. A

419 scam is any scheme designed to fleece people of their money, as defined in

Section 419 of the Nigerian Criminal Code [100]. A classic 419 scam starts with

a message from a scammer to the potential victim, usually describing immense

wealth (fictional) that would purportedly benefit the victim. Once the scammer gains

the trust of the potential victim, the scammer asks the victim to pay a “small” fee to

process a big “reward.” When the victim pays the fee, then the scam is complete.

The scammer will not communicate with the victim anymore. Even if the scammer

resumes communication, it will usually be an attempt to coax the victim into sending

more money [40]. These operations are mostly carried out manually and often rely

on the victim’s greed or pity to succeed [56].

Apart from 419 scams, there are other popular variants of online scams, includ-

ing dating scams or romance scams that leverage dating websites. Cybercriminals

target them, set up fake profiles, and seduce vulnerable users seeking companion-

ship [107]. When they gain the trust of their victims, the scammers make demands

for funds to handle spurious matters, including visa processing and flight tickets.

Some scammers request expensive flower baskets [52].

Scam letters were initially sent via snail mail (post) long before the era of the

Internet. With the proliferation of electronic communication via the Internet, 419

scam messages are now sent en masse to potential victims via email and fax [40].

Online scams cause heavy financial and psychological losses to victims, and are

not fully understood yet [52, 68].
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2.2.4 Cyberbullying

Social networks have evolved from online venues where users connect with friends,

loved ones, and strangers alike, to colossal platforms and ecosystems comprising

marketplaces, news outlets, and much more. Users spend a lot of time interacting

on these platforms. Some users make a living from their presence on social net-

works, for instance, Instagram celebrities with millions of followers. However, social

networks are also known to attract toxic behaviour and cyberbullying.

Previous studies have investigated the roles of cyberbullies, victims, bystanders,

and how they interact [4, 11, 38]. Other studies explored the detection of cyber-

bullying in social networks [72, 71, 73], toxic online forums [17, 50] and gaming

communities [20]. The effect of anonymity on toxic online behaviour has also been

investigated [17, 51, 77]. It is important to note that toxic behaviour is not contained

within toxic online communities. For instance, there is evidence that coordinated

attacks originate from 4chan.org (an online forum) towards users of other services.

Hine et al. [50] studied this problem and proposed an algorithm to detect such coor-

dinated attacks.

2.3 Detecting malicious activity

The problem of malicious activity in online accounts has generated a lot of interest

in the research community. In this section, we review key studies that focus on the

detection and mitigation of malicious activity in online accounts.

2.3.1 Understanding manual hijacking

Bursztein et al. [25] investigated manual hijacking of accounts rather than automatic

hijacking by botnets. They show that manual hijacking is not common, and demon-

strate that phishing is the primary method that manual hijackers use to acquire user

credentials. The study illustrates the importance of decoy account credentials in un-

derstanding malicious activity. Other studies have also leveraged decoy credentials
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and fake documents to study malicious activity [36, 62], and we discuss them further

in Section 2.4.

Cybercriminals prefer to operate from compromised accounts (rather than fake

accounts) since malicious activity is harder to detect in compromised accounts that

belong to real users. Egele et al. [41] presented COMPA, a tool that detects mali-

cious activity in online social networks by building statistical models of normal be-

havioural patterns of users. Deviations from such behaviour can then be used to

detect compromised accounts.

Similarly, Stringhini et al. [94] developed a tool for the detection of spearphishing

attacks based on behavioural modelling of senders. The tool looks out for anoma-

lous email sending behaviour and writing habits, rather than checking the email con-

tent for suspicious words like traditional spam filters do. To understand the phishing

ecosystem, Han et al. [47] deployed sandboxed phishing kits, recorded live interac-

tions of various parties with the kits, and shed light on the phishing life cycle.

2.3.2 Understanding spam

Thomas et al. [99] studied Twitter accounts under the control of spammers. They

discussed the modes of operation of cybercriminals that disseminate spam. They

also reported that the majority of spam accounts rely on unsolicited mentions and

hashtags to reach audiences that are wider than their limited social connections. In

addition, they identified an emerging ecosystem of social spamming services (in-

cluding affiliate programmes). However, the study did not propose detection mech-

anisms to discover the operations of spammers, despite pointing out that the un-

derground spamming ecosystem is largely undisturbed by Twitter’s current defence

mechanisms. Stringhini et al. [93] studied social spam using 900 honeypot pro-

files and presented a tool for spam detection on Facebook and Twitter. In addi-

tion, [106, 21, 63, 13, 98] studied the problem of social spam and [14] applied ma-

chine learning techniques to distinguish legitimate users from video spammers and

content promoters on YouTube, a popular online video social network.

Similarly, Stringhini et al. [92] studied the email spam ecosystem by advertising
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unique honeypot email addresses on the web. The study described the relationships

among various actors in the spam landscape (deduced from statistical correlation),

namely email harvesters, spammers, and botmasters. Stone-Gross et al. [91] stud-

ied a large-scale spam operation by analysing 16 C&C servers of Pushdo/Cutwail

botnet. Other studies in email spam literature explored network-level spam detec-

tion approaches [48], statistical/machine-learning approaches [83, 39, 95], and the

underground ecosystem that drives spam [91].

Detecting fake accounts. Fake accounts play a major role in the problem of spam.

Wang et al. [104] proposed the use of patterns of click events to spot fake accounts,

otherwise known as Sybils, in online services by building clickstream models of real

users and fake accounts. They trained machine learning tools to spot fake accounts

based on those clickstream models. Yang et al. [109] and Cao et al. [27] also pro-

posed ways to uncover fake accounts on social networks.

2.3.3 Defeating information theft

Stone-Gross et al. [90] hijacked the Torpig botnet for ten days by taking advantage

of weaknesses in communication protocols of the botnet. Their method of sinkholing

all data sent from bots to the C&C server they hijacked is similar to our approach of

sinkholing all emails sent from honey webmail accounts in Chapter 4. In 2012, Liu et

al. [65] studied content privacy issues in Peer-to-Peer (P2P) networks by deploying

honey files containing honey account credentials in P2P shared spaces. They mon-

itored download events and concluded that attackers that downloaded the honey

files had malicious intentions to make economic gain from the private data they ob-

tained. They employed a similar approach to ours — in this thesis, we place decoy

account credentials in strategic locations for cybercriminals to find and misuse them.

However, they studied P2P networks while this thesis focuses on online accounts.
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2.4 Honeypot boulevard

In this thesis, we employ honeypots, having observed the importance of well-designed

honeypots in previous work. Hence, instead of exposing real users to malicious ac-

tivity and potentially harming them in the process, we instead set up realistic hon-

eypots and lured cybercriminals to them, to measure malicious activity in the wild.

Next, we present an overview of honeypots and how they have evolved over time.

2.4.1 What is a honeypot?

A honeypot is a resource designed to receive unauthorised interactions. Unlike

other security mechanisms that are designed to keep attackers away from protected

assets, the value of a honeypot lies in its misuse by attackers [87]. Any attempt

to access a honeypot should be considered suspicious [79]. Honeypots can be

physical or virtual. A physical honeypot is a computer with its own IP address, while

virtual honeypots are simulated atop real machines — the TCP/IP stack of the virtual

machine (VM) is designed to appear similar to a real machine [79].

In addition to physical and virtual machines, files and online accounts can also

be deployed as honeypots, as we did in Chapters 4, 5, and 6. A honey file is a

bait file that triggers alarms when accessed, and it masquerades as a normal file

with some inherent value [110]. Honey files are usually positioned in regular user

file spaces, along with bait, for instance, attractive file names like passwords.xls

or account details.txt (to lure attackers). Attacker operations will then be logged

during accesses to honey files [84, 65].

Honeypots have been around for ages. In the 1980s, Stoll [89] tracked down a

German hacker who remotely gained unauthorised access to a computer network at

the Lawrence Berkeley National Laboratory (LBNL). To achieve this, Stoll deployed

a honeypot, among other tools. Similarly, in the 1990s, Cheswick led a hacker on a

wild goose chase by tricking the hacker into believing they had accessed password

files and vulnerable assets on an AT&T gateway machine [28].

Recent honeypots are more advanced. For instance, honeypots have been suc-
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cessfully deployed to study malware in the wild [10, 105], infiltrate botnets [90], and

track social spam [106, 63]. According to Spitzner [87], honeypots can also be used

to mitigate insider threats in organisations. This shows that honeypots are useful in

the study of malicious activity targeting online accounts and users, and it justifies

our use of honeypots.

2.4.2 Selected honeypot studies

Honeypots are usually built to deceive attackers and they can be used to detect

unauthorised access to privileged information, record the behaviour of attackers af-

ter gaining such unauthorised access, or both. In this section, we present a se-

lection of studies that illustrate deception-based techniques and honeypot usage in

prior work.

Virvilis et al. [101] broadly explored deception as a defence approach, compared

Advanced Persistent Threats (APTs) to insider attackers, and discussed the use of

deception methods to detect sophisticated attackers. Achleitner et al. [2] and Chiang

et al. [29] developed systems to disrupt reconnaissance activity (scanning) originat-

ing from attackers (APTs, for instance) within a network. Bowen et al. [23] proposed

a way to automatically generate and inject decoy network traffic to ensnare and un-

cover eavesdroppers on a computer network. Bowen et al. [24] leveraged decoy

credentials, also known as honeytokens, to “bait and delude” information-stealing

malware to reveal itself. Bercovitch et al. [15] developed HoneyGen, a tool that au-

tomatically generates realistic honeytokens based on rules derived from real tokens.

HoneyGen requires a high-quality input database of real tokens. Bowen et al. [22]

developed a deception system based on decoy documents and decoy credentials, to

discover insider attackers that attempt to exfiltrate sensitive information. They also

formalised a set of properties (requirements) towards the design and implementation

of honeypots.

Vrable et al. [102] built a prototype honeypot system that was able to run tens of

thousands of virtual honeypots on a few physical servers. Alata et al. [5] recorded

and studied the activity of attackers that gained access to a compromised machine
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via Secure Shell (ssh). They tried to distinguish between human attackers and au-

tomated programs by analysing the way attackers entered commands in the ssh

terminal. Chin et al. developed HoneyLab, an infrastructure that allows various enti-

ties to deploy honeypots on shared computing infrastructure [30]. Mulliner et al. [70]

proposed HoneyDroid, an Android-based honeypot that runs on real mobile phone

hardware. Nazario [74] developed a virtual web client honeypot that can carry out

dynamic analysis of JavaScript and Visual Basic Script, among others.

Kedrowitsch et al. [60] explored ways to improve Linux sandboxes for analy-

sis of evasive malware. Barron and Nikiforakis [12] deployed honeypot machines

and observed how system properties of those machines influenced the behaviour

of attackers. Similarly, online accounts can be repurposed to study the operations

of cybercriminals that interact with them. For instance, honeypots based on on-

line accounts have been deployed to study social spam in OSNs [106, 63, 93] and

email spam [92]. DeBlasio et al. [36] studied compromised websites by registering

on those websites using honey webmail accounts. They monitored illegitimate ac-

cesses to the honey accounts that happened as a result of data breaches on those

websites. They observed attackers that leveraged the problem of password reuse

across online services. Other studies also investigated the behaviour of criminals in

compromised webmail and cloud document accounts via honeypots [25, 76, 62].

The vast majority of existing research literature focuses on detecting malicious

accesses, as these studies show, along with the ones mentioned previously in this

chapter. On the other hand, the core of our work in this thesis focuses on analysing

malicious activity, that is, post-compromise attacker behaviour.

2.4.3 Honeypots in politics

During the 2017 presidential campaign in France, the Macron campaign organisa-

tion devised an ingenious way to defeat hackers that sought to compromise their

webmail accounts. The campaign organisation turned their own webmail accounts

into a “tarpit” defence system by pre-stuffing those accounts with useless data (that

is, useless for hackers). Thus, they wasted the resources of hackers that eventu-
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ally breached those accounts.6 This further highlights the validity of the honeypot

approach to studying malicious activity in the wild. Those webmail accounts can be

thought of as “time-wasting” honeypots, since they were deployed to anticipate hack-

ers and waste their time. In contrast, our webmail honeypots (in Chapter 4), which

predate the Macron honeypots, primarily track the actions of criminals in compro-

mised webmail accounts — time wasting is an optional feature.

2.5 Research problem

There are many aspects of cybercrime that are not yet fully understood. We are

particularly interested in this question — what do cybercriminals do with compro-

mised accounts? They are hard to detect by existing automated scanning systems.

As we stated earlier, this is because their interactions are manual and stealthier

than automated activity, due to human intelligence and adaptation [52, 25]. As a re-

sult, cybercriminals appear to be winning the attackers-defenders game since they

continue to make profits while forcing corporations and governments to make huge,

disproportionate investments in security mechanisms [54]. A recent study reports

that “indirect and defence costs” of cybercrime are at least times ten of cybercrimi-

nals’ earnings [7]. To help mitigate the problem, our work focuses on understanding

what cybercriminals do with compromised accounts. Our work will help to reduce

the costs incurred by law enforcement agencies and corporations in the pursuit of

better security, by providing a deeper understanding into the modus operandi of

cybercriminals that attack online accounts.

2.6 Conclusion

In this chapter, we explored the literature on how cybercriminals gain illicit access to

online accounts, and how they abuse and misuse such accounts. We also reviewed

previous work to highlight techniques for detecting and mitigating malicious activity

6https://www.theregister.co.uk/2017/05/08/team_macron_pre_hack_opsec
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in accounts, and noted that it is hard to detect manual hijacking attacks. It is also

hard to study online accounts without being in control of a large online service.

Finally, we described the role of honeypots in understanding malicious activity and

provided a strong basis for our work.
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Chapter 3

Honey Assets Method

In Chapter 2, we discussed previous work on understanding malicious activity in

online accounts and pointed out a research gap. We also presented an overview of

honeypots, how they have been employed in previous work, and why we chose to

rely on honeypots to shed light on activity in compromised online accounts and cloud

documents. We present details of our honey assets method in this chapter. Honey

assets refer to the fake entities that were exposed (intentionally) to cybercriminals

during experiments, for instance, webmail credentials and accounts in Chapter 4,

social credentials and associated accounts in Chapter 5, and finally, cloud docu-

ments and links that point to them in Chapter 6. Our honey assets method forms

a strong link that interconnects those chapters. Later, in Chapters 4, 5, and 6, we

present specific honeypot instances based on this approach.

3.1 Criminals, visitors, or both?

Our work involves building and deploying bait resources (honey assets) and ob-

serving accesses and activity in them. Depending on the dissemination vectors

employed to expose credentials of honey assets, it is reasonable to expect a wide

variety of visitors to honey assets, ranging from curious “benign” visitors to the ones

with criminal intentions, for instance, visitors that intend to derive illicit profit from

stolen accounts. This brings the following question to mind: what is the correct ter-
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minology for visitors to honey assets? Even though our work is not a discourse in

legal terminologies, we defer to Section 1 of the UK Computer Misuse Act 19901

which states that a party is guilty if they knowingly attempt to gain unauthorised

access to computer resources (paraphrased). In view of this, all “visitors” that inten-

tionally connect to our honey assets are potential criminals. However, as we stated

previously, there is the possibility that not all parties that connect to our honey assets

have criminal intentions. Hence, we refer to them mostly as “visitors” and sometimes

as “criminals” or “cybercriminals.” Despite this relaxed nomenclature, it is important

to note once again that unauthorised accesses to computer resources are unlawful

and we do not condone such accesses in any way.

A possible alternative point of view to distinguish benign visitors from malicious

visitors is to specify a threshold based on activity level. Visitors that carry out further

actions on honey assets after initially accessing them can be considered to be ma-

licious. For example, visitors that edit payment information on compromised payroll

sheets can be considered to be more malicious than the ones that perform no ac-

tion after accessing such compromised information. However, this approach is not

robust since it is possible that the visitors that perform no action after access have

made copies of the information they gained access to, for later use, while the ones

that carried out actions may have done so out of curiosity. In fact, there might be

visitors with good intentions that will delete sensitive content from the compromised

documents to protect victims (by limiting the exposure of compromised content).

It is therefore obvious that specifying an activity threshold to distinguish benign

visitors from criminals will not work well. Hence, in this thesis, we rely on the UK

Computer Misuse Act 1990, as earlier described, and refer to all parties that ac-

cessed our honey assets as “criminals” or “visitors” (interchangeably).

1https://www.legislation.gov.uk/ukpga/1990/18/contents
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3.2 System requirements

We identified the following minimum requirements for our honey assets — they have

to be Accessible, Realistic, Measurable, Ethical, and Robust (ARMER).2 We explain

these requirements next.

Accessible. When creating honey assets, it is essential to ensure that they will

be accessible to the intended audience and researcher(s) that will build the required

honey assets. In other words, honey assets are best built and deployed on platforms

that the intended audience (cybercriminals) already has access to, or can gain ac-

cess to, without much hassle. The same applies to the builder of honey assets

(the chosen platform must be accessible to the researcher that intends to carry out

studies using honeypots). Examples of accessible platforms include free webmail,

social, and dating services.

Realistic. For honey assets to be convincing to the target audience, they have

to be designed and built to look similar to real-world examples. For instance, a

honey webmail account, despite being fake, must look like a webmail account that

belongs to a real user (we achieved this in Chapter 4, for instance). It is therefore

important to pay particular attention to the content and presentation of honey assets.

It is necessary to source content for honey assets from data sources that resemble

content from real users. Thus, at a glance, honey assets derived from such content

will appear believable to cybercriminals and other visitors that gain access to the

honey assets. This will help to reduce potential bias that may arise if honey assets

appear to be “weird,” since such weirdness may affect the behaviour of visitors to

them. It is also possible to generate realistic decoy data by leveraging existing tools

built for that purpose, for instance, HoneyGen [15].

Measurable. It is important to create honey assets in a way that the researcher

managing them can easily collect data from them and perform measurements. This

is achievable by relying on a combination of intrinsic tools, for instance, Google

2ARMER is a memorable acronym, nothing more. It has no relation to weaponry.
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Apps Script3 in Gmail accounts (see Chapter 4), and extrinsic tools, for instance,

scripts developed by the researcher to connect to honey assets and record activity

information. Choices and decisions surrounding honey assets depend heavily on

this requirement — it is pointless to build and deploy honey assets if it will be hard or

impossible to collect activity information from them. However, the instrumentation of

decoy assets must be carried out in a “hidden” way so that attackers cannot easily

observe the presence of such instrumentation tools, since honeypots are designed

to deceive attackers into believing they are interacting with real assets.

Ethical. It is necessary to ensure that honey assets are designed, built, and de-

ployed in an ethical manner. The main ethical goal to consider is to ensure minimal

harm to the intended audience for honey assets, for instance, by isolating poten-

tially harmful honeypot environments. For instance, the researcher must keep all

recorded activity data safe and not de-anonymise visitors to honey assets. Also, if

experiments involve running live malware samples (for instance, in Chapter 4), ad-

equate care must be taken to ensure that those malware samples do not harm any

internal or external parties, by following standard practices in malware research [82].

Researchers that build social honeypots should pay particular attention to [34, 97].

It is also important to protect the researcher responsible for honey assets. Honey

assets and honeypot systems must be designed in a way that minimises the possi-

ble harm that researchers may face, for instance, if their identities become known

during experiments. Hence, it is essential to take advantage of Virtual Private Net-

works (VPNs) and proxies, and incorporate them in honeypot infrastructure when

necessary. In Chapters 4, 5, and 6, we further discuss the steps we took to ensure

that our experiments were conducted in an ethical manner.

Robust. Honey assets and honeypot systems, as explored in this thesis, depend

on external platforms to function. For instance, studies on compromised webmail

accounts rely on accounts that are hosted by a webmail service, usually not un-

der the direct control of the researcher studying them. It is therefore necessary to

3https://developers.google.com/apps-script/overview
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build fault-tolerant honeypot systems and honey assets, so that changes in external

entities (webmail services, for instance) will not adversely affect experiments. How-

ever, sometimes it is impossible to build a honeypot that automatically adapts to all

changes in related external entities. The researcher responsible for the honeypot

system and honey assets must be ever ready to make minor changes to the honey-

pot to adapt to changes in such external entities. An example includes adding minor

updates to scripts that track a specific web page in a honey asset, for instance. If

the online service changes some elements of the user interface of that page, the

honeypot researcher will then have to update their script to match those changes.

In summary, it is necessary to build a robust honeypot and pay particular attention

to it during operation, to make minor changes when necessary.

3.3 Target population

Before designing and developing honeypot infrastructure, one of the key considera-

tions to keep in mind is the target population, in other words, the attackers/criminals

under study. It may be beneficial to customise the proposed honeypot infrastructure

to the target population. For instance, basic attackers may require less effort on

the part of the researcher, especially towards ensuring realism in the honey assets,

unlike sophisticated attackers with higher skill levels. This should influence design

choices, including how and where to source data for honey assets. For instance,

should we source high-quality data from related real-world activity4 or “garbage”

data5 from automated tools? Similarly, the target population should be factored into

design decisions on the scale of honey assets that will be deployed to study them

– a handful of hand-curated honey assets or a plethora of mass-generated honey

assets? It is up to the researcher to decide. It is important to note that these design

choices will also influence experimental design (for instance, where, when, and how

to leak honey credentials), and should be carefully analysed in advance.

4Example – we derived some data from real-world messages posted on Twitter in Chapter 5.
5Fake paper generator – https://pdos.csail.mit.edu/archive/scigen/

42



System 
design

Construction of 
honey assets

Safehouse 
building

Construction 
of monitor

Experiments

Data analysis

System 
testing

System 
maintenance

Figure 3.1: Our honeypot development life cycle inspired by the classic sys-
tems/software development life cycle (SDLC) [43]. It is important to note that the
steps are not necessarily sequential and iteration may be necessary across steps.

3.4 Honeypot development life cycle

In this section, we present our honeypot development life cycle as shown in Fig-

ure 3.1, inspired by the classic systems/software development life cycle (SDLC) [43].

Next, we explain all steps of the honeypot development life cycle. It is important to

note that those steps are not necessarily sequential and iterations may be necessary

across steps. This honeypot development life cycle has been successfully applied

to specific honeypot implementations in peer-reviewed work [76, 62, 16].

System design. This is the initial phase of the honeypot development process.

Following the ARMER requirements in Section 3.2, the honeypot researcher se-

lects honey asset types and hosting platforms. Other factors to consider include the

required scale of experiments, plans towards automation (especially if it is a large-

scale honeypot), and deployment platforms and outlets (for instance, where/how to
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leak honey credentials). This phase, like most phases of the honeypot development

life cycle, requires strict adherence to all ARMER requirements. This is also the

phase during which the researcher draws up detailed plans for experiments (how to

execute them).

Construction of honey assets. This is the phase during which the honeypot re-

searcher builds honey assets that will eventually be leaked to the intended audience,

for instance, webmail or social accounts. The researcher will also populate honey

assets with realistic data, or in the case of honey credentials, choose realistic cre-

dentials.

Safehouse building. Depending on the specific system design, it may be neces-

sary to build an intermediate data store to serve as an anonymous buffer for activity

data that will be recorded in honey assets. We call such an intermediate data store

a safehouse. For example, in Chapters 4 and 6, we created safehouse webmail ac-

counts to serve as buffers during data collection because our honey assets had the

capability to send out emails containing details of activity data, and it was necessary

to collect those emails via entities that were not obviously connected to us (specif-

ically, safehouse webmail accounts with pseudonymous usernames). Afterwards,

we collected activity data from safehouse webmail accounts and processed them

offline.

Construction of monitor. This phase involves the construction of “sensors” in

honey assets to record activity data, and “virtual telescopes,” which are monitor sys-

tems external to honey assets — they connect to honey assets and collect activity

data. Alternatively, sensors may send activity data to telescopes (or a safehouse, as

explained earlier). In this thesis, our sensors and telescopes often comprise suites

of scripts, servers, parsers, and offline data storage. We explain them in detail in the

following chapters.

System testing. When honey assets and monitor infrastructure are ready, the hon-

eypot researcher has to test them in a controlled environment to ensure that all com-

ponents work as planned, and that the entire honeypot pipeline runs as expected.
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It might be necessary to make some adjustments during this phase. Note that the

honeypot researcher should not leak any live asset yet — this sole purpose of this

phase is to test components and the entire system prior to live deployment.

Experiments. After successfully testing the system, the honeypot researcher pro-

ceeds to leak honey assets to the intended audience while monitoring all honey

assets via the monitor infrastructure. Leaks must be carried out in a convincing man-

ner. For instance, while leaking honey assets, the researcher, within ethical bounds,

may carefully mimic known modus operandi of cybercriminals that distribute stolen

goods. In this thesis, we explain how we leaked honey assets at the beginning of

each experiment. The first asset leak signifies the beginning of experiments.

System maintenance. In the course of experiments, it may be necessary to ap-

ply changes to honey assets or monitor infrastructure, or both. For instance, as

explained earlier, changes in external platforms that host honey assets may ne-

cessitate minor updates in the monitor infrastructure. Similarly, cybercriminals that

visit honey assets may change the credentials of those honey assets and it may be

necessary to revert those credentials. These steps constitute system maintenance.

Depending on the specific honeypot design and implementation, this phase may not

always be necessary.

Data analysis. During and after experiments, the researcher analyses the data

collected from honey assets and draws inferences. This concludes the honeypot

development life cycle.

3.5 Potential alternatives

In this section, we discuss potential alternative approaches to understanding mali-

cious activity in online accounts and justify our use of honeypots instead of these

alternatives.

Alternative 1. An alternative to our honeypot approach will be to collaborate with

online services (for instance, by working on site with them and deploying honeypots
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from the inside). This has the advantage of better visibility and ease of access than

our approach can offer. It will likely translate into better nuance in research findings.

However, the downside is the possible loss of research independence. Also, such

experiments will be hard to replicate since they will be based on proprietary data

and systems. Finally, non-disclosure agreements (NDAs) may place dire constraints

on the dissemination of research findings.

Alternative 2. Another alternative will be to approach law enforcement agencies

with a view to interviewing suspects (or convicts) that have been involved in cyber-

crime. This will elicit information on their methods and activity, for instance, how long

they stay in stolen accounts, the content they pay particular attention to, and how

they launch and coordinate multi-step attacks. First, gaining such sensitive access

to participants will be hard for the average researcher. Second, an obvious problem

is that such findings will be based on self-reporting which is prone to overestimation

and underestimation [78], and may not be as reliable as collecting and analysing

data in the wild. Our honey assets method, despite its limitations, addresses this

problem by relying on primary data collected from accounts in the wild.

Alternative 3. It is possible to simulate compromised online accounts in a closed

or controlled environment in which crowdsourced participants, say Mechanical Turk

workers,6 will pretend to be criminals and will exhibit “criminal behaviour” during

their interactions with the accounts. This option was considered while laying out the

author’s initial research plan, but was quickly discarded, since the quality of find-

ings will be questionable. The behaviour of participants will differ from real criminal

behaviour. Our honey assets method addresses this problem by making criminals

believe they are interacting with real accounts. They also do not know that their

interactions will be recorded. This leads to realistic interactions.

Hence, we chose the honey assets method over other approaches.7 Besides,

the honey assets method provided an avenue for us to apply systems design and

engineering expertise towards bridging an open research gap.

6https://www.mturk.com/
7In other words, we chose the honeypot boulevard over other roads.
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3.6 Limitations of the honey assets method

First, as a researcher external to the online service that hosts honey assets, it is

difficult to scale up experiments using our honey assets approach because creating

many realistic assets takes a lot of time and effort. However, we succeeded in build-

ing a large-scale honeypot that comprised social accounts in Chapter 5 because we

received some help from collaborators in the online service that hosted our honey

assets. In other words, scaling up is not an issue if the service provider is closely

involved in creating and operating honeypots.

Second, sourcing realistic data for honey assets is hard. Depending on the spe-

cific honeypot implementation, it may be sufficient to use randomly-generated data

(for instance, fake financial data in Chapter 6). In other cases, it may be necessary

to use datasets generated during real human activity, which may be hard to obtain.

After obtaining such datasets, adequate care must be taken to remove all personally

identifiable information (PII) from them, prior to use, which is a non-trivial task.

Third, specific honeypot implementations are not platform-agnostic (but our honey

assets approach is platform-agnostic). This makes it impossible to reuse already

implemented honeypot tools on different platforms. For instance, we had to build

three different honeypot implementations for this thesis, instead of building one and

reusing it across three platforms. This implies that our honey assets method con-

sumes a lot of time and effort in building the required infrastructure and honey as-

sets.

Despite these limitations, the honey assets method presented in this chapter

has successfully produced honeypots on various platforms. This shows that our

approach is a viable one for researchers seeking to understand malicious activity in

online accounts.
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Table 3.1: While exploring related studies, we encountered other system require-
ments to build honeypot systems.

This thesis Bowen et al. [22] Chin et al. [30] Mulliner et al. [70] Vrable et al. [102]
Accessible Believable Scalability Monitoring Scalability
Realistic Enticing Flexibility Audit logging Containment
Measurable Conspicuous Attack containment Containment
Ethical Detectable Stealth Visibility
Robust Variability Resource management

Non-interference Ease of deployment
Differentiable

3.7 Additional requirements

While exploring related studies, we encountered other system requirements that

have been proposed to build honeypot systems. Table 3.1 shows those require-

ments listed alongside the ones we identified in this thesis (ARMER requirements).

Mulliner et al. [70] used the term “challenges” instead of “requirements,” but close

observation revealed that those challenges were equivalent to system requirements,

hence we included them. Common requirements across most of the studies include

containment,8 measurable, and accessible. Table 3.1 reveals synonyms and ex-

act matches for these requirements across most of the listed studies. Containment

dominates the table — this shows the importance of ensuring that honey assets are

designed and implemented in a way that minimises harm to all parties involved.

8Subsumed in the ethical requirement mentioned earlier in this chapter.
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Chapter 4

Hijacked Webmail Accounts

4.1 Contributions

First, we developed a system to monitor activity in Gmail accounts towards under-

standing malicious activity in compromised webmail accounts. We publicly released

the source code of our system1 to allow other researchers to deploy their own Gmail

accounts for related studies, and add to the understanding that the security commu-

nity has of malicious activity in online services. To the best of our knowledge, it is

the first publicly available Gmail honeypot infrastructure. Second, we deployed 100

honey accounts on Gmail and leaked credentials through various outlets — under-

ground forums, public paste sites, and virtual machines infected with information-

stealing malware. Third, we provide detailed measurements of the activity logged

by our honey accounts over a period of 7 months. The work in this chapter was origi-

nally presented in the 2016 ACM Internet Measurement Conference (IMC’16) by the

author of this thesis, and it appeared in IMC’16 conference proceedings. This work

has appeared on BBC News,2 Huffington Post,3 and The State of Security,4 among

other news outlets. It also emerged as a finalist in the Cyber Security Awareness

1https://bitbucket.org/gianluca_students/gmail-honeypot
2https://www.bbc.co.uk/news/technology-37510501
3https://www.huffingtonpost.co.uk/entry/what-hackers-actually-do-with-your-

stolen-personal-information_uk_58049f32e4b0e982146cd18f
4https://www.tripwire.com/state-of-security/security-data-protection/heres-what-

happens-after-your-webmail-account-is-compromised/
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Week Europe 2017 research competition. Via these, we have been able to increase

the awareness of the general public about malicious activity in online accounts.

Collaborators. We express our profound appreciation to Enrico Mariconti (UCL

PhD student) for his contributions to the design and implementation of the malware

honeypot infrastructure in Section 4.4.3 (Enrico and the author built it collabora-

tively). Enrico also helped to carry out statistical tests in Section 4.5.5. We thank

Mark Risher (Google) and Tejaswi Nadahalli (Google) for their support throughout

the project.

4.2 Overview

The wealth of information that users store in webmail accounts on services such as

Gmail, Yahoo! Mail, or Outlook, as well as the possibility of misusing them for il-

licit activities, attracts cybercriminals who actively engage in compromising such ac-

counts. They obtain credentials to victims’ accounts via phishing [37], infecting users

with information-stealing malware [90], or compromising large password databases,

leveraging the fact that people often use the same password across multiple ser-

vices [35]. Stolen credentials and data can be used privately by the cybercriminal or

sold in underground markets to other cybercriminals for profit [91].

Cybercriminals use compromised accounts in multiple ways. First, they can use

them to send spam [41]. This practice is particularly effective because the estab-

lished contacts of the account are likely to trust its owner, and are therefore more

likely to open the messages that they receive from them [58]. Similarly, the stolen

account is likely to have a history of good behaviour with the hosting service, and

malicious messages sent from it are less likely to be detected as spam, especially if

the recipients are within the same service (e.g., a Gmail account that sends spam to

other Gmail accounts) [96]. Alternatively, cybercriminals can use stolen accounts to

collect sensitive information about victims. Such information includes financial cre-

dentials, login information to other online services, and personal messages of the

victim [25].
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In general, it is difficult to study the activity of criminals in compromised online

accounts without being in control of a large online service, hence there is limited

research literature in this space (see Chapter 2 for a detailed coverage of related

literature). The rare exceptions are studies that look at information that is publicly

observable, such as messages posted on Twitter by compromised accounts [41, 42].

To close this gap, we present a system that is able to monitor the activity of attackers

in Gmail accounts.

We set up 100 Gmail accounts and populated them with data to look like web-

mail accounts that belong to employees of a fictional company. We refer to these

accounts as honey accounts. To understand how criminals use these accounts

after they are compromised, we leaked credentials to the accounts on multiple out-

lets, modelling different ways by which cybercriminals share and obtain access to

stolen credentials, namely public paste sites, underground forums, and information-

stealing malware. We then recorded activity in the honey accounts for 7 months.

Our analysis allows us to draw a taxonomy of different actions performed by vis-

itors on stolen Gmail accounts, and provides interesting insights into keywords that

visitors typically search for when looking for valuable information in these accounts.

We also show that visitors exhibit various skill levels depending on the outlet they

source stolen credentials from. Our findings complement what was reported in pre-

vious work on manual account hijacking [25], and show that the modus operandi of

miscreants varies considerably depending on how they obtain credentials to stolen

accounts. In summary, this chapter shines light on what happens within compro-

mised webmail accounts, and will be useful for other researchers and webmail ser-

vices in the quest for better detection and mitigation systems.

4.3 Background

4.3.1 Gmail accounts

In this chapter, we focus on Gmail accounts with particular attention to the actions

performed by cybercriminals when they gain access to a victim’s account. We made
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this choice over other webmail platforms because Gmail allows users to set up

scripts to augment the functionality of their accounts. It is therefore an ideal platform

for developing webmail-based honeypots. To ease the understanding of the rest of

this chapter, we briefly summarise the capabilities offered by webmail accounts in

general, and by Gmail in particular.

After authenticating to a Gmail account, a user is presented with a view of their

inbox. This contains all emails that the user has received and highlights the ones

that have not been read yet by displaying them in boldface font. Users have the

option to mark emails that are important and need particular attention by starring

them. Users are also given search functionality which allows them to find emails

of interest by entering related keywords. They can also organise emails by placing

related messages in folders or assigning descriptive labels to them. Such operations

can be automated by creating rules to automatically process received emails. When

writing emails, content is saved in a drafts folder until the user decides to send it.

Sent emails can be found in a dedicated folder and they can be also be searched by

the user.

4.3.2 Google Apps Script

Google Apps Script is a cloud-based scripting engine that can be used to augment

Google Apps and extend their functionality.5 It is JavaScript-based but runs on

Google Cloud, not client endpoints. It is possible to write scripts, otherwise known

as lightweight apps, to perform specified tasks when a condition is met or an event

happens. For instance, a time-driven trigger can be fired at a particular time of

day or an event-driven trigger fired by a file open event. When a trigger is fired,

the JavaScript function associated to that trigger will be executed, for instance, to

send an email to a specified address or carry out some computations. A detailed

treatment of triggers can be found in Google Apps Script documentation.6 Our web-

mail honeypot infrastructure relies on time-driven and event-driven triggers within a

5https://developers.google.com/apps-script/overview
6https://developers.google.com/apps-script/guides/triggers/
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hidden custom app to track and report accesses and changes in webmail accounts

to us. It is important to note the resource quotas and execution limits imposed by

Google on scripts.7 These quotas and limits must be considered and factored into

design decisions on projects that incorporate Apps Script, because exceeding them

will cause scripts to fail.

4.4 Method and experimental setup

In this section, we describe the process of creating and deploying honey accounts.

We also present a detailed explanation of how our webmail honeypot system works.

4.4.1 Honey accounts

Our honey accounts are webmail accounts instrumented with Google Apps Script to

monitor activity in them in a stealthy manner. The script, hidden in otherwise empty

Google spreadsheets, sends notifications to a webmail account under our control

(we refer to it as a safehouse webmail account), whenever an email is opened, sent,

or “starred.” In addition, each script sends copies of all draft emails in honey ac-

counts to the safehouse webmail account. We added a heartbeat message function

to each honey account to send a status notification once a day to the safehouse

webmail account, to attest that the account was still functional and had not been

blocked by Google. As we mentioned earlier, within each honey account, each script

instance was hidden in an otherwise empty and inconspicuous Google spreadsheet,

and authorised by the author prior to deployment.8 This made it unlikely for attackers

to find and delete them.

4.4.2 Data collection

In this section, we describe the main components of the webmail honeypot infras-

tructure that monitors honey accounts, as shown in Figure 4.1.

7https://developers.google.com/apps-script/guides/services/quotas
8We started all script instances prior to deployment and they continued running during experiments.
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Figure 4.1: Overview of the webmail honeypot infrastructure. Honey accounts send
activity records to us via the safehouse webmail account, mail server, and activity
downloader, for offline parsing.
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Safehouse webmail account. This is a regular webmail account that acts as a

safe haven for communications originating from the honey accounts. The script

that we hid in honey accounts sends notifications and heartbeat messages to the

safehouse webmail account, as described earlier. We periodically retrieve those

email notifications via an email client that runs the Post Office Protocol (POP) and

parse them offline.

Mail server. One of the main components of our infrastructure comprises a mod-

ified mail server. Unlike a regular mail server that forwards email messages, we

configured the mail server to receive emails and write them to disk only. It does

not forward them to the intended destination. In other words, it works as a sinkhole

mail server. To minimise abuse, we configured each honey account’s default send-

from address to an email address under our control (it points to our sinkhole mail

server). Hence, all emails sent from the honey accounts were delivered to the mail

server only, not to the intended destination, and we avoided the problem of spam

from honey accounts.

Activity downloader. Google Apps Script is powerful but does not provide all the

information required in this chapter. For example, it does not provide location infor-

mation and IP addresses of visitors to honey accounts. To track those accesses,

we set up an activity downloader, an external script that drives a web browser, pe-

riodically connects to each honey account, and records information about visitors

(cookie identifier, geolocation information, and times of accesses, among others).

It navigates to the visitor activity page of each honey account and downloads that

information to disk, for offline parsing. By collecting information from visitor activity

pages, we obtain location and system configuration information regarding accesses,

as provided by Google’s geolocation and system configuration fingerprinting system.

Health inspector. To check that honey accounts were up and running, we period-

ically ran the health inspector on offline activity reports to check for recency (with

emphasis on heartbeat messages9 that were sent by honey accounts daily). Out-

9Trivia — Heartbeat messages that arrive at the safehouse webmail account from our honey ac-
counts contain the string “ALIVE” to indicate good health.
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of-date heartbeat messages indicate dead accounts (that is, blocked by Google) or

hijacked accounts (someone changed their passwords).

We believe that our honey account and monitoring framework unleashes multiple

possibilities for researchers who want to carry out further studies on the behaviour

of attackers in webmail accounts. For this reason, we released the source code of

our system publicly.10 In addition to the work in this chapter, our webmail honeypot

infrastructure was also employed in [16] to study the effects of language differentia-

tion on the activity of cybercriminals in webmail accounts (not included in this thesis).

This demonstrates the versatility of our system.

4.4.3 Experiment setup

In line with the honey assets method proposed in Chapter 3, we first set up honey

accounts on Gmail and then leaked them through multiple outlets often used by

cybercriminals.

Creating honey accounts. We created 100 Gmail accounts and assigned random

combinations of popular first and last names to them, similar to the approach in [93].

It is important to note that creating these accounts is a manual process. Google

rate-limits the creation of new accounts from the same IP address by presenting

a phone verification page after a few accounts have been created. These factors

imposed limits on the number of honey accounts we succeeded in creating. We

then populated the freshly-created accounts with emails from the public Enron email

dataset [61]. This dataset contains emails sent by executives of Enron, an energy

corporation, and was publicly released as evidence during Enron’s bankruptcy trial.

This dataset is suitable for our purposes since the emails in it are typical emails

exchanged by corporate users. To make the honey accounts believable and avoid

raising suspicion from cybercriminals that connect to them, we mapped distinct re-

cipients in the Enron dataset to our fictional honey profiles (that is, the fictional “own-

ers” of the honey accounts), and replaced first names and last names in the dataset

with honey first names and last names. In addition, we changed all instances of
10https://bitbucket.org/gianluca_students/gmail-honeypot
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“Enron” to a fictional company name that we came up with. In order to have re-

alistic email timestamps, we translated the old Enron email timestamps to recent

timestamps slightly earlier than our experiment start date. For instance, given two

email timestamps t1 and t2 in the Enron dataset such that t1 is earlier than t2, we

translated them to more recent timestamps T1 and T2 such that T1 corresponds to

an earlier time than T2. We then scheduled those emails to be sent to the recipient

honey accounts at times T1 and T2 respectively. We sent 200 – 300 emails from the

transformed Enron dataset to each honey account while populating them.

Leaking account credentials. To achieve our objectives, we had to entice cy-

bercriminals to interact with the honey accounts. To this end, we selected paste

sites and underground forums as appropriate venues for leaking account creden-

tials, since they tend to be misused by cybercriminals for dissemination of stolen

credentials. In addition, we leaked some credentials through malware since this is

a popular way by which professional cybercriminals steal credentials and compro-

mise accounts [19]. We divided the honey accounts into groups and leaked their

credentials in different locations as shown in Table 4.1. We leaked 50 accounts, in

total, via the paste sites listed in Table 4.2. For 20 of them, we leaked basic cre-

dentials (username and password pairs) on the popular paste sites pastebin.com

and pastie.org. We leaked 10 account credentials on Russian paste websites

(p.for-us.nl and paste.org.ru). For the remaining 20 accounts, we leaked user-

name and password pairs along with UK and US location information of the fictional

owners that we associated with the honey accounts. We also included date of birth

information for each fake person. We leaked 30 account credentials on underground

forums (listed as outlets 5 – 8 in Table 4.2). For 10 of them, we specified only user-

name and password pairs, without additional information. In a manner similar to

the paste site leaks described earlier, we appended UK and US location information

to underground forum leaks, and claimed that the fictional account owners lived in

those locations. We also included date of birth information for each fake person.

For forum leaks, we used the forums listed in Table 4.2. We selected them be-

cause they were open for anybody to register and were highly ranked in Google
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Table 4.1: Honey account groupings showing the number of account credentials we
leaked via each outlet type.

Group Accounts Leak outlet
1 30 paste websites (no location)
2 20 paste websites (with location)
3 10 forums (no location)
4 20 forums (with location)
5 20 malware (no location)

search results. We acknowledge that some underground forums are not open and

have a strict vetting policy to let users in [91]. Unfortunately, however, we did not

have access to any private forum. The same approach of studying open under-

ground forums has been used in previous work [3]. While leaking credentials on

underground forums, we mimicked the modus operandi of cybercriminals that was

outlined by Stone-Gross et al. [91]. They showed that cybercriminals often post a

sample of their stolen datasets on forums to show that the accounts are real, and

promise to provide additional data in exchange for a fee. We recorded the messages

that we received on underground forums, mostly enquiries about obtaining the full

dataset, but we did not respond to them.

Finally, to study the activity of criminals that obtain credentials through information-

stealing malware, we leaked credentials of 20 accounts to information-stealing mal-

ware. To this end, we selected malware samples from Zeus family, one of the most

popular information-stealing malware families [19], as well as samples from Corebot

family. We provide detailed information about our malware honeypot infrastructure

(sandbox) in the next section.

The reason for leaking different accounts on different outlets is to study dif-

ferences in the behaviour of cybercriminals that gain access to stolen credentials

through different sources. Similarly, we provide decoy location information in some

leaks and not in others, to observe differences in malicious activity depending on

the amount and type of information available to cybercriminals. As we show in Sec-

tion 4.5, accesses to honey accounts were heavily influenced by the presence of

additional location information in leaked credentials.
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Table 4.2: To lure visitors to the honey accounts, we leaked account credentials
through paste sites, underground forums, and information-stealing malware. We
chose these paste sites because they allow public pastes, and the forums because
joining them does not require introductions or vetting.

Outlet Type URL or name
1 Paste site pastebin.com

2 Paste site pastie.org

3 Paste site p.for-us.nl

4 Paste site paste.org.ru

5 Forum offensivecommunity.net

6 Forum bestblackhatforums.eu

7 Forum hackforums.net

8 Forum blackhatworld.com

9 Malware Zeus infostealer
10 Malware Corebot infostealer

Malware honeypot infrastructure. Our malware sandbox system works as follows.

A local web server entity manages honey credentials (usernames and passwords)

and infomation-stealing malware samples. The host machine creates a Virtual Ma-

chine (VM) which contacts the web server to request an executable malware file

and a honey credential file. The structure is similar to the one explained in [59]. The

malware file is then executed in the VM (that is, the VM infects itself with malware),

after which a script drives a browser in the VM to login to Gmail using the previously

downloaded credentials. This exposes the honey credentials to malware that is al-

ready running in the VM, and leads to credential theft. After some time, the infected

VM is deleted and a fresh one is created. This new VM downloads another malware

sample and a different honey credential file, and repeats the infection and login op-

eration. To maximise the efficiency of our configuration prior to the experiment, we

carried out a test without the Gmail login process, to select only samples whose

C&C servers were still up and running.

4.4.4 Threats to validity

We acknowledge that seeding honey accounts with emails from the Enron dataset

may introduce bias into our results, and may make the honey accounts less believ-

able to visitors. However, it is necessary to note that the Enron dataset is the only
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large publicly available email corpus, to the best of our knowledge. To make the

emails believable, we changed names, dates, and company name in the emails,

using automatic search-and-replace string processing techniques. In the future, we

will work towards obtaining or generating a better email dataset. Also, some visitors

may notice that the honey accounts did not receive any new emails during the pe-

riod of observation, and this may affect the way visitors interact with the accounts.

Another threat is that we only leaked honey credentials through the outlets listed

previously (namely paste sites, underground forums, and malware), therefore our

results reflect the activity of participants present on those outlets only. Finally, since

we selected underground forums that are publicly accessible, our observations may

not reflect the modus operandi of actors who are active on closed forums that re-

quire vetting to join. Despite these factors, our approach provides valuable insights

into what happens in compromised webmail accounts and provides a robust way for

other researchers seeking to carry out related experiments.

4.4.5 Ethics

The experiments in this chapter require some ethical considerations. First of all, by

granting cybercriminals access to our honey accounts, we incur the risk that those

accounts will be used to harm third parties. To minimise this risk, we configured the

accounts in a way that all emails would be forwarded to a sinkhole mail server under

our control, and never delivered to the outside world. We also established a close

collaboration with Google and made sure to report any malicious activity that needed

attention to them. Although the suspicious login filters that Google typically uses

to protect their accounts from unauthorised accesses were disabled for our honey

accounts, all other malicious activity detection algorithms were still in place, and in

fact, Google suspended a number of accounts that engaged in suspicious activity. It

is important to note, however, that our approach does not rely on help from Google

to work. Our main reason for seeking Google’s help to disable suspicious login filters

was to ensure that all accesses got through to the honey accounts (most accesses

would be blocked if Google did not disable the login filters). This does not directly
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affect our methodology, and as a result does not reduce the wider applicability of our

approach. It is also important to note that Google did not share with us any details

on the techniques used internally for the detection of malicious activity on Gmail.

Another point of risk was ensuring that the malware in our VMs did not harm third

parties. To mitigate this risk, we followed common practices [82] such as restricting

the bandwidth available to our virtual machines and sinkholing all email traffic sent

by them. Finally, our experiments involved deceiving cybercriminals by providing

them fake accounts that contained fake personal information. To ensure that our

experiments were run in an ethical fashion, we obtained ethics approval from UCL

beforehand.

4.5 Data Analysis

We monitored activity in the honey accounts for 7 months, from 25th June, 2015 to

16th February, 2016. In this section, we first provide an overview of our findings

and then discuss a taxonomy of the types of activity that we observed. We focus on

the differences in modus operandi shown by cybercriminals who obtain credentials

to accounts from various outlets. We then investigate if cybercriminals attempt to

evade location-based detection systems by connecting from locations that are closer

to the places that account owners typically connect from. We also develop a metric

to infer keywords that attackers search for when looking for interesting information

in an email account. Finally, we analyse how certain types of cybercriminals appear

to be stealthier and more advanced than others.

Cookies and accesses. Google records each unique access to a Gmail account

and labels that access with a unique cookie identifier. These unique cookie identi-

fiers, along with more information including times of accesses, are included in visitor

activity pages of Gmail accounts. Our scripts (previously described in Section 4.4)

extract this data. For the sake of convenience, we will use the terms “cookie” and

“unique access” interchangeably in the remainder of this chapter.
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4.5.1 Activity overview

We created, instrumented, and leaked 100 Gmail accounts for our experiments. To

avoid biasing the results, we removed all accesses made to honey accounts by IP

addresses from our honeypot infrastructure. We also removed all accesses that

originated from London (UK) where our monitoring infrastructure was located. After

this filtering operation, we observed 326 unique accesses to the accounts, during

which 147 emails were opened, 845 emails were sent, and 12 unique draft emails

were composed by visitors. In total, 90 accounts received accesses, comprising 41

accounts leaked to paste sites, 30 accounts leaked to underground forums, and 19

accounts leaked through malware. 42 accounts were blocked by Google during ex-

periments because of suspicious activity. We were able to record activity in those

accounts for some time before Google blocked them. 36 accounts were hijacked

by visitors, that is, the passwords of such accounts were changed by visitors. As a

result, we lost control of those accounts. We did not observe any attempt by attack-

ers to change the default send-from addresses of our honey accounts. However,

assuming that happened and attackers started sending spam messages, Google

would block such accounts since we asked them to monitor the accounts with partic-

ular attention. A dataset containing parsed metadata of accesses to honey accounts

is publicly available.11

4.5.2 Taxonomy of account accesses

From the activity observed in honey accounts, we devised a taxonomy of attack-

ers/visitors based on unique accesses to the accounts. We identified four types of

visitors (described next).

Curious. These accesses constitute the most basic type of access to stolen ac-

counts. After getting hold of account credentials, people connect to those accounts

to check if the credentials truly work. Afterwards, they do not carry out any additional

action. The majority of observed accesses belong to this category, accounting for

11http://dx.doi.org/10.14324/000.ds.1508297
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224 accesses. We acknowledge that this large number of curious accesses may

be due in part to experienced attackers avoiding interactions with the accounts after

logging in, probably after careful observations indicating that the accounts do not

look entirely real. This could potentially introduce some bias into our results.

Gold diggers. When connecting to a stolen account, attackers often want to un-

derstand its worth [25]. For this reason, after logging into honey accounts, some

attackers search for sensitive information such as other login credentials and finan-

cial attachments. They also seek information that may be useful in spearphishing

attacks. We call these accesses “gold diggers.” Previous research has shown that

this practice is quite common for manual account hijackers [25]. In this paper, we

confirm that finding, provide a methodology to assess the keywords that visitors

search for, and analyse differences in modus operandi of gold digger accesses for

credentials leaked through various outlets. In total, we observed 82 accesses of this

type.

Spammers. One of the main capabilities of webmail accounts is email sending.

Previous research has shown that large spamming botnets have code in their bots

and C&C infrastructure to take advantage of this capability, by having the bots con-

nect directly to compromised accounts and send spam [91]. Accesses belong to

this category if they send any email. We observed 8 accounts that recorded such

accesses. This low number of accounts shows that sending spam is not one of

the main purposes that cybercriminals use compromised accounts for, when stolen

through the outlets that we studied.

Hijackers. A stealthy criminal is likely to keep a low profile when accessing a stolen

account to avoid raising suspicion. Less stealthy miscreants, however, might lock

the legitimate owner out of their account by changing their password. We call these

accesses “hijackers.” In total, we observed 36 accesses of this type. A password

change prevents us from reaching the account’s visitor activity page, therefore we

are unable to collect information about accesses to the account afterwards.

It is important to note that the taxonomy classes that we described are not exclu-
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Figure 4.2: Distribution of types of accesses for various leak outlets. Most accesses
belong to the “curious” category. It is possible to spot differences in types of activities
for different leak outlets. For example, accounts leaked via malware do not present
activity of the “hijacker” type. On the other hand, hijackers are particularly common
among miscreants who obtain stolen credentials through paste sites.

sive. For example, an attacker might use an account to send spam emails (“spam-

mer” category) and then change the password of that account (“hijacker” category).

Such overlaps occurred often in the accesses recorded in our honey accounts. It is

interesting to note that there was no access that behaved exclusively as “spammer.”

Miscreants that sent spam through our honey accounts also acted as “hijackers” or

“gold diggers.”

We set out to understand the distribution of different types of accesses in ac-

counts that were leaked through various outlets. Figure 4.2 shows a breakdown of

this distribution. Visitors who gain access to stolen accounts through malware are

the stealthiest and never lock the legitimate owners out of their accounts. Instead,

they limit their activity to checking if the credentials are real or searching for sensi-

tive information in the accounts, possibly in an attempt to estimate the value of the

accounts. Accounts leaked through paste sites and underground forums revealed

the presence of hijackers. 20% of the accesses to accounts leaked through paste

sites, in particular, belong to this category. Accounts leaked through underground

forums, on the other hand, recorded the highest percentage of gold digger accesses

(about 30% of all accesses).
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4.5.3 Timing of activity

Here we provide a detailed analysis of unique accesses that were recorded in the

honey accounts, with emphasis on their timing.

Duration of accesses. For each cookie identifier, we recorded the time that the

cookie first appeared in a particular honey account as t0 and the last time it ap-

peared as tlast. From this information, we computed the duration of activity of each

cookie as tlast � t0. Note that tlast of each cookie is a lower bound since we cease

to obtain information about cookies if the password of the honey account that is

recording cookies is changed, for instance. Figure 4.3 shows Cumulative Distri-

bution Functions (CDFs) of the duration of unique accesses of different types of

visitors. The vast majority of accesses are very short, lasting only a few minutes

and never coming back. Spammer accesses, in particular, tend to send emails in

bursts for a certain period and then disconnect. Hijacker and gold digger accesses,

on the other hand, have a long tail of about 10% accesses that keep coming back

for several days in a row. The CDFs show that most curious accesses are repeated

over many days, indicating that the visitors keep coming back to find out if there is

new information in the accounts. This stands in conflict with the finding in [25] which

states that most cybercriminals connect to a compromised webmail account once, to

assess its value within a few minutes. However, [25] focused on accounts compro-

mised via phishing pages, while we look at a broader range of ways through which

criminals can obtain stolen credentials. Our results show that the modes of opera-

tion of cybercriminals vary depending on the outlets they obtain stolen credentials

from.

Time between leak and first access. Next, we studied how long it takes from the

time that credentials are leaked via different outlets until our infrastructure records

accesses from visitors. Figure 4.4 shows CDFs of the time between leak and first

access for accounts leaked through different outlets. Within the first 25 days after

leak, we recorded 80% of all unique accesses to accounts leaked to paste sites,

60% of all unique accesses to accounts leaked to underground forums, and 40% of
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Figure 4.3: CDFs of duration of unique accesses per activity type in our honey
accounts. The vast majority of unique accesses last a few minutes. Spammers tend
to use accounts aggressively for a short time and then disconnect. The other types
of accesses, and in particular curious ones, come back after some time, possibly to
check for new activity in the honey accounts.
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all unique accesses to accounts leaked via malware. A particularly interesting ob-

servation is the nature of unique accesses to accounts leaked via malware. A close

look at Figure 4.4 reveals rapid increases in unique accesses to honey accounts

leaked to malware, about 30 days after the leak, and also after 100 days (indicated

by two sharp inflection points).

Figure 4.5 sheds more light into what happened at those inflection points. It

reports the unique accesses to each honey account over time. Note that accounts

that were leaked on public outlets such as forums and paste sites can be accessed

by multiple visitors at the same time. Account credentials leaked through malware,

on the other hand, are available only to the botmaster that stole them, until they

decide to sell them or give them to someone else. Seeing bursts, in accesses to

accounts leaked through malware, months after the actual leak happened indicates

that the accounts were visited again by the same criminal who operated the malware

infrastructure, or that the accounts were sold on an underground market and that

another miscreant is now using them. This hypothesis is somewhat confirmed by

the fact that these bursts in accesses were the gold digger type (we checked), while

all previous accesses to the same accounts were of the curious type. In addition,

Figure 4.5 shows that the majority of accounts leaked to paste sites were accessed

within a few days of leak, while a particular subset was not accessed for more than

two months. That subset refers to the ten credentials we leaked to Russian paste

sites. Those honey accounts were not accessed for more than two months from

the time of leak. This either indicates that cybercriminals are not many on Russian

paste sites or they did not believe that the accounts were real.

4.5.4 System configuration of accesses

We observed a wide variety of devices and browsers in accesses to leaked ac-

counts by leveraging Google’s system fingerprinting information (available to us in-

side honey accounts).

Browsers. As shown in Figure 4.6, accesses to accounts leaked on paste sites
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Figure 4.4: CDFs of the time between first credential leak and first visit. Accounts
leaked through paste sites received accesses earlier than accounts leaked through
other outlets.

68



0 50 100 150 200

Time between leak and unique access (in days)

10

20

30

40

50

60

70

80

90

100

A
cc

ou
nt

ID

Malware
Paste Sites
Underground Forums

Figure 4.5: Duration between time of leak and unique accesses in accounts leaked
through various outlets. Accounts leaked via malware experienced a sudden in-
crease in unique accesses after 30 days and 100 days from the leak, indicating
that they had been sold or transferred to another party by cybercriminals behind the
malware C&C infrastructure.
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were made through a variety of popular browsers, with Firefox and Chrome taking

the lead. We also recorded many accesses from unknown browsers. It is possible

for an attacker to hide browser information from Google servers by presenting an

empty user agent and hiding other fingerprintable information [75]. About 50% of

accesses to accounts leaked through paste sites were not identifiable. Chrome and

Firefox take the lead in groups leaked in underground forums as well, but there is

less variety of browsers there. Interestingly, all accesses to accounts in malware

groups were made from unknown browsers. This shows that cybercriminals that

accessed accounts leaked through malware were stealthier than others.

Operating systems. While analysing the operating systems on devices used by

visitors, we observed that honey accounts leaked through malware mostly received

accesses from Windows computers, followed by Mac OS X and Linux. This is shown

in Figure 4.7. In the paste sites and underground forum groups, we observed a wider

range of operating systems. More than 50% of computers in the three categories

ran on Windows. It is interesting to note that Android devices were also used to

connect to honey accounts in paste site and underground forum groups.

The diversity of devices and browsers in paste site and underground forum

groups indicates a motley mix of cybercriminals with various motives and capa-

bilities, compared to the malware groups that are more homogeneous. It is also

obvious that attackers that steal credentials through malware make more effort to

cover their tracks by evading browser fingerprinting.

4.5.5 On the origins of accesses

We recorded origin locations in accesses that were logged by our infrastructure.

Our goal was to understand patterns in the locations of criminals. Out of the 326

recorded accesses, 132 came from TOR exit nodes. More specifically, 28 accesses

to accounts leaked on paste sites were made via TOR, out of a total of 144 accesses

to accounts leaked on paste sites. 48 accesses to accounts leaked on forums were

made through TOR, out of a total of 125 accesses made to accounts leaked on
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Figure 4.6: Browsers used during accesses to honey accounts.
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Figure 4.7: Operating systems used during accesses to honey accounts.
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forums. We observed 57 accesses to accounts leaked through malware and all ex-

cept one of those accesses were made via TOR. We removed these accesses from

the location analysis in this section — they do not provide information on the physi-

cal location of the visitors.12 After removing TOR exit nodes, 173 unique accesses

presented location information. To determine this location information, we used the

geolocation information provided by Google via visitor activity pages of honey ac-

counts. We observed accesses from a total of 29 countries. To understand whether

the IP addresses that connected to our honey accounts had been recorded in previ-

ous malicious activity, we ran checks against Spamhaus blacklist.13 We found 20 IP

addresses that accessed our honey accounts in the Spamhaus blacklist. Because of

the nature of this blacklist, we believe that the addresses belong to malware-infected

machines that were used by cybercriminals to connect to the stolen accounts.

One of our goals was to observe if cybercriminals would attempt to evade location-

based login risk analysis systems by tweaking access origins. In particular, we

wanted to assess if telling criminals the location of an account owner will influence

the location that they will then connect from. Despite observing 57 accesses to

honey accounts leaked through malware, we discovered that all these connections,

except one, originated from TOR exit nodes. This shows that malware operators that

accessed our accounts preferred to hide their location through the use of anonymis-

ing systems rather than modifying their access location based on knowledge of the

usual login location of the account owner (or both).

While leaking honey credentials, we chose London and Pontiac as our decoy UK

and US locations respectively. In other words, during leaks, we claimed that some

honey accounts belonged to fictional persons living in either London or Pontiac.

However, we realised that leaking multiple accounts with the same location might

raise suspicion. Hence, we chose various UK and US locations such that London

and Pontiac were the midpoints of those locations.

To observe the impact of knowledge of login location on the locations that cy-

12Strangely, TOR entries in visitor activity pages of honey accounts provided neither location infor-
mation nor IP addresses.

13https://www.spamhaus.org/
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bercriminals connect from, we calculated the median values of distances of the

locations recorded in unique accesses from the midpoints of the advertised de-

coy locations in our account leaks. For accesses A to honey accounts leaked on

paste sites, advertised with UK information, we extracted location information, trans-

lated them to geographical coordinates LA, and computed the dist paste UK vector

as distance(LA,midUK), where midUK are London’s coordinates. Distances were

measured in kilometres. We extracted the median values of all distance vectors and

plotted concentric circles on UK and US maps, by specifying those median distances

as radii of the circles, as shown in Figures 4.8 and 4.9.

Interestingly, we observe that connections to accounts with advertised locations

originate from places closer to our midpoints than accounts with leaked information

containing usernames and passwords only. Figure 4.8 shows that connections to

accounts leaked on paste sites and forums result in smaller median circles, that is,

the connections originate from locations closer to London, the UK midpoint. The

smallest circle is for the accounts leaked on paste sites, with advertised UK location

information (radius 1400 kilometres). In contrast, the circle of accounts leaked on

paste sites without location information has a radius of 1784 kilometres. The me-

dian circle of accounts leaked in underground forums, with no advertised location

information, is the largest circle in Figure 4.8, while the one of accounts leaked in

underground forums, along with UK location information, is smaller.

We obtained similar results in the US plot, with some interesting distinctions.

As shown in Figure 4.9, connections to honey accounts leaked on paste sites, with

advertised US locations, are clustered around the US midpoint, as indicated by the

circle with a radius of 939 kilometres, compared to the median circle of accounts

leaked on paste sites without location information, which has a radius of 7900 kilo-

metres. However, despite the fact that the median circle of accounts leaked in un-

derground forums with advertised locations is smaller than that of the one without

advertised location information, the difference in their radii is not as pronounced.

This again supports the indication that cybercriminals on paste sites exhibit more

location malleability, that is, they cloak their origins of accesses to appear closer

73



Median-dist-pastebin-noloc-CENT-UK
Median-dist-forum-noloc-CENT-UK
Median-dist-pastebin-UK
Median-dist-forum-UK

Figure 4.8: Distance of login locations from London, UK (advertised during creden-
tial leaks). Red lines indicate credentials leaked on paste sites with no location
information, green lines indicate credentials leaked on paste sites with location in-
formation, purple lines indicate credentials leaked on underground forums without
location information, while blue lines indicate credentials leaked on underground
forums with location information.
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Median-dist-pastebin-noloc-CENT-US
Median-dist-forum-noloc-CENT-US
Median-dist-pastebin-US
Median-dist-forum-US

Figure 4.9: Distance of login locations from Pontiac, MI (advertised during credential
leaks). Red lines indicate credentials leaked on paste sites with no location informa-
tion, green lines indicate credentials leaked on paste sites with location information,
purple lines indicate credentials leaked on underground forums without location in-
formation, while blue lines indicate credentials leaked on underground forums with
location information.
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to the account owner’s location if they know it. It also shows that cybercriminals

on underground forums are less sophisticated or care less than the ones on paste

sites.

Statistical tests. As explained previously, Figures 4.8 and 4.9 show that accesses

to leaked accounts happen closer to owners’ locations if such location information

is included in the leak. To confirm the statistical significance of this finding, we per-

formed a Cramer Von Mises test [33]. The Anderson version [8] of this test can be

used to understand if two vectors likely belong to the same statistical distribution or

not. The p-value has to be under 0.01 for us state that it is possible to reject the

null hypothesis,14 otherwise it is not possible to state with statistical significance that

both distance vectors belong to different distributions. The result of the test on paste

sites vectors (p-values of 0.0017415 for UK location information versus no known

location and 0.0000007 for US location information versus no known location) al-

lows us to reject the null hypothesis, thus we state conclusively that the two vectors

belong to different distributions, while we cannot say the same for tests on forum

vectors (p-values of 0.272883 in the UK case and 0.272011 in the US one). There-

fore, we conclusively state that criminals that use paste sites connect from closer

locations when location information is provided along with leaked credentials. We

cannot reach that conclusion in the case of accounts leaked to underground forums

although Figures 4.8 and 4.9 indicate some location effects as well.

4.5.6 The gold digger’s quest

Cybercriminals compromise online accounts because of the inherent value of target

accounts. Hence, they assess accounts to decide their value and what to do with

them. We decided to study the words that they likely searched for within the honey

accounts, in order to understand and potentially characterise anomalous searches in

the accounts. A limiting factor was that we did not have access to search logs of the

honey accounts, but only to the content of the emails that were opened by visitors.

To overcome this limitation, we employed Term Frequency–Inverse Document Fre-
14Null hypothesis — Both vectors of distances belong to the same distribution.
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quency (TF-IDF). TF-IDF can be used to rank words in a corpus by importance. We

relied on TF-IDF to infer the words that visitors searched for in the honey accounts.

TF-IDF is a product of two metrics, namely Term Frequency (TF) and Inverse Doc-

ument Frequency (IDF). It allows us to infer the words that visitors searched for, by

comparing important words in the emails opened by visitors to important words in

all emails within the honey accounts.

In its simplest form, TF is a measure of how frequently term t occurs in document

d, as shown in Equation 4.1. IDF is a logarithmic scaling metric of the fraction

of documents containing term t, as shown in Equation 4.2, where D is the set of

all documents in the corpus, N is the total number of documents in the corpus,

|d 2 D : t 2 d| is the number of documents in D that contain term t. Once TF and

IDF are known, TF-IDF can be computed by multiplying TF and IDF, as shown in

Equation 4.3.

tf(t, d) = ft,d (4.1)

idf(t,D) = log
N

|d 2 D : t 2 d| (4.2)

tfidf(t, d,D) = tf(t, d)⇥ idf(t,D) (4.3)

The output of TF-IDF is a weighted metric that ranges between 0 and 1. The

closer the weighted value is to 1, the more important the term is. We evaluated TF-

IDF on a text corpus comprising two documents, that is, all emails dA in the honey

accounts and all emails dR opened by visitors. The intuition is that words that have

high importance in the emails that have been opened by a visitor, but have lower

importance in the overall dataset, are likely to be keywords that visitors searched

for in the Gmail account. We preprocessed the corpus by filtering out all words that

have less than 5 characters and removing all known header-related words, for in-

stance “delivered” and “charset,” honey email handles, and also removing signalling
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Searched words TFIDFR TFIDFA TFIDFR � TFIDFA

results 0.2250 0.0127 0.2122
bitcoin 0.1904 0.0 0.1904
family 0.1624 0.0200 0.1423
seller 0.1333 0.0037 0.1296
localbitcoins 0.1009 0.0 0.1009
account 0.1114 0.0247 0.0866
payment 0.0982 0.0157 0.0824
bitcoins 0.0768 0.0 0.0768
below 0.1236 0.0496 0.0740
listed 0.0858 0.0207 0.0651

Common words TFIDFR TFIDFA TFIDFR � TFIDFA

transfer 0.2795 0.2949 -0.0154
please 0.2116 0.2608 -0.0493
original 0.1387 0.1540 -0.0154
company 0.0420 0.1531 -0.1111
would 0.0864 0.1493 -0.0630
energy 0.0618 0.1471 -0.0853
information 0.0985 0.1308 -0.0323
about 0.1342 0.1226 0.0116
email 0.1402 0.1196 0.0207
power 0.0462 0.1175 -0.0713

Table 4.3: Top 10 words sorted by TFIDFR � TFIDFA (upper part) and top 10
words sorted by TFIDFA (lower part). The words in the upper part are the ones that
have the highest difference in importance between the emails opened by visitors and
emails in the entire corpus. Hence, they are the words that visitors likely searched
for while looking for sensitive information in the stolen accounts. The words in the
lower part, on the other hand, are the ones that have the highest importance in the
entire corpus.

information that our monitoring infrastructure introduced into the emails. After run-

ning TF-IDF on the remaining terms in the corpus, we obtained their TF-IDF values

as vectors TFIDFA and TFIDFR, the TF-IDF values of all terms in the corpus

[dA, dR]. We proceeded to compute their difference as TFIDFR � TFIDFA. The

top 10 words by TFIDFR � TFIDFA compared to the top 10 words by TFIDFA

are presented in Table 4.3. Words that have TFIDFR values that are higher than

TFIDFA values will rank higher in the list, and those are the words that visitors

likely searched for.

As seen in Table 4.3, the top 10 important words by TFIDFR�TFIDFA are sen-
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sitive words, such as “Bitcoin,” “family,” and “payment.” Comparing these words with

the most important words in the entire corpus reveals that visitors likely searched for

sensitive information, especially financial information. In addition, words with high

importance in the entire corpus (for example, “company” and “energy”), shown in the

lower part of Table 4.3, have much lower importance in the emails opened by visi-

tors, and most of them have negative TFIDFR � TFIDFA values. This is a strong

indication that the emails opened in honey accounts were not opened at random,

but were the result of searches for sensitive information.

Originally, the Enron dataset had no “Bitcoin” term. That term was introduced

into the opened emails document dR through the actions of one of the criminals that

accessed some honey accounts. The criminal attempted to send blackmail mes-

sages from some honey accounts to victims of the Ashley Madison dating website

scandal,15 requesting ransoms in Bitcoin in exchange for silence. In the process,

many draft emails containing Bitcoin information were created and abandoned by

the criminal, and other visitors opened them during later accesses. Hence, our hon-

eypot infrastructure picked up Bitcoin-related terms and they rank high in Table 4.3

(the upper part), showing that visitors indicated a lot of interest in those emails.

4.5.7 Sophistication of attackers

From the accesses recorded in honey accounts, we identified three peculiar be-

haviours of cybercriminals that indicate their level of sophistication: configuration

hiding — for instance by hiding user agent information, location filter evasion —

by connecting from locations close to the account owner’s location if known, and

stealth — avoiding clearly malicious actions such as hijacking and spamming. At-

tackers accessing honey accounts leaked via different outlets exhibit different types

of sophistication. Those accessing accounts leaked through malware are stealthier

than others — they do not hijack the accounts and they do not send spam from them.

They also access the accounts via TOR network and hide their system configura-

tion, for instance, their web browsers are not fingerprintable by Google. Attackers
15https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
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accessing accounts leaked on paste sites tend to connect from locations closer to

the account owners’ locations if known. They do so to evade detection. Attackers ac-

cessing accounts leaked in underground forums do not make significant attempts to

stay stealthy or to connect from closer locations. These differences in sophistication

can be used to characterise attacker behaviour in future work.

4.6 Interesting case studies

In this section, we present some interesting case studies that we encountered dur-

ing experiments. They help to shed more light on the actions of cybercriminals on

compromised webmail accounts.

First, attempts were made to send multiple blackmail messages to victims of the

Ashley Madison dating website scandal16 from three honey accounts. In the emails,

which were not delivered17 to the intended recipients, the blackmailer threatened

to expose victims unless they made some payments in Bitcoin to a specified Bit-

coin wallet. Tutorials on how to make Bitcoin payments were also included in the

messages. The blackmailer created and abandoned many drafts emails targeted at

more Ashley Madison scandal victims. Second, two honey accounts received notifi-

cation emails about the hidden Google Apps Script “using too much computer time.”

The notifications were opened by a visitor and we received notifications about the

opening of those “computer time” notifications. Finally, an attacker registered on a

carding forum using one of the honey accounts as registration email address. As

a result, registration confirmation information was sent to the honey account. This

shows that some of the accounts were used as stepping stones by cybercriminals

to perform further illicit activity.

16https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/
17Recall that we set up a mail sinkhole mechanism to trap outgoing emails in Section 4.4.

80



4.7 Summary

In this chapter, we presented our honeypot system that can monitor the activity of

cybercriminals who gain illicit access to Gmail accounts. Our system is publicly

available to encourage researchers to set up additional experiments and improve

the knowledge of our community regarding what happens to stolen webmail ac-

counts.18 We set up and ran experiments involving 100 honey accounts, leaked

them via paste sites, underground forums, and virtual machines infected with mal-

ware, and provided detailed analyses of the activity of cybercriminals and other vis-

itors to the accounts. Our findings will help the research community to gain better

understanding of the ecosystem of stolen online accounts, and potentially help re-

searchers and online services to develop better detection and mitigation systems to

make online accounts safer for everyone.

18https://bitbucket.org/gianluca_students/gmail-honeypot
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Chapter 5

Stolen Social Accounts

5.1 Contributions

First, we devised a method to instrument and monitor compromised social network

accounts, following the general honey assets approach proposed earlier in Chap-

ter 3. Second, we created, instrumented, and deployed more than 1000 Facebook

accounts in our experimental setup, incorporating age range and gender variations

in the accounts, to observe resulting differences in accesses. Third, we present de-

tailed measurements and analyses of accesses and actions performed by visitors in

Facebook accounts, and shed light on what happens in stolen social accounts. To

the best of our knowledge, this is the first large-scale Facebook honeypot to that ef-

fect. Our work in this chapter has won a “Secure the Internet” grant from Facebook.1

Collaborators. We express our heartfelt gratitude to Nektarios Leontiadis, De-

spoina Magka, and Mark Atherton (all in Facebook Inc.), henceforth referred to as

our Facebook contacts, for helping us to scale up experiments, especially during

the process of creating Facebook accounts. They also helped to establish friend

connections among the accounts. It is important to note that our Facebook con-

tacts did not share any proprietary data or methods with us before, during, or after

experiments.

1https://research.fb.com/facebook-awards-more-than-800000-in-secure-the-internet-
grants/
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5.2 Overview

Social accounts are almost indispensable in our daily lives. Discovering old and

new friends on Facebook, curating news on Twitter, and securing the next job on

LinkedIn are a few of the many activities that social accounts facilitate. It goes with-

out saying that individuals, businesses, and other entities find social accounts useful

for personal and commercial purposes. Like other types of online accounts, social

accounts accumulate personal information, sentimental value, and sometimes, fi-

nancial value, over time. Compared to webmail accounts (studied in Chapter 4),

social accounts provide features that transcend messaging.

How much latent value exists in a social account? Honan, staff at Wired Mag-

azine, learned the answer to that question in a terrifying way. In 2012, he was the

victim of a chain of attacks by hackers that sought to take over his Twitter account.

His Google and Apple ID accounts were also stolen during the attacks in which

he lost a lot of data.2 This clearly highlights the value of social accounts. It also

emphasises the importance of understanding what attracts cybercriminals to social

accounts and what they do within the accounts after breaking in. This knowledge

will help social network service providers to develop better detection and mitigation

systems.

Other problems plaguing social network platforms and their users include the

proliferation of misinformation and disinformation (also known as fake news) [112,

111, 113], fake accounts (also known as Sybils) [109], and hate speech and cy-

berbullying [50], among others. However, we do not study those problems in this

chapter. Instead, we focus on the problem of data breaches, specifically, credential

theft. We aim to understand what happens to social accounts after cybercriminals

acquire credentials to those accounts through illicit means. In other words, we seek

to understand their accesses and the actions they perform in the accounts. This will

help the security community in two ways. First, we will shed light on an understud-

ied domain (it is hard to study compromised accounts without being in control of a

2https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
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large online service, hence academic literature is sparse in this area). Second, our

findings will help online services to tune and improve their detection and mitigation

tools.

To this end, we built a system to understand what happens to Facebook accounts

post-compromise, by leveraging the general honey assets method in Chapter 3. We

then created and deployed 1008 realistic decoy Facebook accounts (for ethical rea-

sons, it is not possible for us to study accounts that belong to real persons, to avoid

harming them). To lure visitors into interacting with the accounts, we leaked cre-

dentials of a subset of the accounts on the Surface Web and Dark Web, mimicking

the modus operandi of cybercriminals that distribute stolen account credentials. We

monitored the accounts for one month, extracted comprehensive activity records of

people visiting the accounts, and analysed those records offline.

We observed 215 unique accesses to 235 accounts that resulted in 478 actions

in those accounts. We show the different types of actions that visitors performed in

the accounts, and analyse the search terms they entered in the accounts (this re-

veals the type of content that they were interested in). We also show the content that

they posted in the accounts. Finally, we present the locations that logins originated

from, and describe the devices that connected to the accounts. These detailed mea-

surements paint a picture of the activity of visitors in Facebook accounts, and will be

useful in developing better tools and techniques to secure social accounts.

Research questions. Our research questions are as follows. Will differences in ac-

count demographics (age and gender) affect the activity of visitors in compromised

social accounts? How long do they stay in social accounts after logging in? What is

the nature of content that they search for in social accounts? What is the nature of

content that they post in social accounts?

5.3 Background

In this section, we describe the features and functionalities of regular Facebook

accounts and a special type of sandboxed Facebook accounts.
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5.3.1 Facebook accounts

A potential Facebook user first creates an account and an associated profile. Af-

terwards, they can send friend requests to their peers. They can post updates on

their profile timeline, for instance, by writing text, uploading a photo, or posting a

URL (or a combination of those actions). Facebook also allows users to send pri-

vate messages to their friends via Messenger (Facebook’s messaging application).

Users can click like (and other reactions) on posts, photos, and other content of in-

terest to them. Facebook usage is not limited to individual users. Informal groups,

businesses, and corporate entities can also maintain Facebook presence by creat-

ing pages and groups. Users can search for, and connect to, friends, groups, and

pages they are interested in. These features, among others, highlight the social

nature of Facebook.

5.3.2 Whitehat accounts

In addition to regular accounts, Facebook provides sandboxed accounts that are

disconnected from regular accounts. These accounts, known as whitehat accounts,

have similar functionality and visual similarity to real accounts, but exist in an isolated

environment (a sandbox). Hence, they cannot connect to regular accounts. They

are often used for testing purposes, for instance, security vulnerability testing.3 Fig-

ure 5.1 shows the profile header of a whitehat account (one of the experimental

accounts deployed later in this chapter). It looks similar to the profile header of a

regular Facebook account. The inherent isolation of whitehat accounts makes them

particularly suitable for our studies into understanding malicious activity in compro-

mised social accounts, since it ensures that real users will not be harmed in any

way during experiments, and this matches our ethics requirement4 for studies of

this nature. We discuss these ethical considerations in Section 5.4.5.

Facebook also provides a dashboard for managing whitehat accounts. The dash-

board, which is accessible only from a real Facebook account, allows the account

3https://www.facebook.com/whitehat/info/
4Recall our ARMER requirements in Chapter 3. “E” stands for ethical.
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Figure 5.1: This is the profile header of a whitehat account. Similar to a regular
Facebook account, it features a profile photo, the name of the account owner, and
additional information about the account.

Figure 5.2: Facebook’s whitehat dashboard allows the manager of whitehat ac-
counts to reset passwords of accounts under their control.

manager to reset passwords of whitehat accounts under their control. Figure 5.2

shows an example whitehat dashboard.

5.3.3 Download Your Information (DYI)

A Facebook user may desire to download and review their own account data and ac-

tivity. To facilitate this, Facebook accounts present a built-in tool known as Download

Your Information (DYI)5 which allows users to request and download a compressed

archive containing their account data and activity over time. Alternatively, this data

can be downloaded in JavaScript Object Notation format (JSON). The DYI tool is

5https://www.facebook.com/help/1701730696756992
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Figure 5.3: An example home page in an uncompressed DYI archive downloaded
from one of our honey accounts. It is organised in clickable sections – the user can
click through those sections to view detailed information about them.

available via the Settings menu of Facebook accounts.

After requesting and downloading the compressed archive (DYI archive), the

user can then uncompress the archive offline and peruse its contents. It is usually

structured like an offline web site organised in directories (sections) and web pages

that can be viewed offline in a web browser. Those pages contain detailed account

and activity records about the user, for instance, uploaded photos, IP addresses, and

private messages. Figure 5.3 shows an example home page in an uncompressed

DYI archive downloaded from one of our honey accounts. It is organised in clickable

sections – the user can click through those sections to view detailed information

about them.

Given the wealth of activity information and account data present in DYI archives,

they play a central role in the honeypot infrastructure presented in this chapter, as

explained further in Section 5.4.2. In other words, we rely on DYI functionality in

Facebook accounts to retrieve activity data from honey accounts at the end of ex-

periments.
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5.4 Method and experimental setup

In this section, we describe our honey accounts. We also present the data collection

infrastructure that retrieves and processes data from honey accounts.

5.4.1 Setting up honey accounts

Demographics. Lévesque et al. [64] examined gender and age, among other

demographic factors, as risk factors in malware infections. Inspired by their ap-

proach, we designed personas around two demographic attributes, namely age

range (teen/adult) and gender (male/female). We wanted to observe differences

or similarities in the behaviour of visitors to the honey accounts, depending on the

demographic attributes of the accounts. To this end, we created 1008 profiles in

total, comprising equal numbers of female adult, male adult, female teen, and male

teen accounts.

Profile names and passwords. We assigned first and last names to the profiles by

generating random combinations of names using the API of Random User Genera-

tor.6 We then assigned passwords to the profiles by randomly selecting passwords

from the publicly available RockYou password list, comprising 32 million passwords

that were exposed during a December 2009 data breach.7 Finally, we created 1008

Facebook whitehat accounts based on the profiles described earlier. To increase the

realism of the accounts, we established friend connections among them to mimic the

social nature of real Facebook accounts.

Profile photos. We sourced profile photos for the accounts by downloading Cre-

ative Commons (CC) stock photos from Pixabay,8 Flickr,9 Pexels,10 and Unsplash.11

We chose only CC0-licensed photos from those sources, that is, the photos that can

be used for any purpose (they also do not require attribution). We manually matched

6https://randomuser.me/
7https://www.theregister.co.uk/2010/01/21/lame_passwords_exposed_by_rockyou_hack/
8https://pixabay.com/
9https://www.flickr.com/

10https://www.pexels.com/
11https://unsplash.com/
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photos to accounts, taking care to ensure that each profile photo represented the

previously designated demographic attributes of its host account. For instance, for a

female adult account, we chose a profile photo that shows an adult woman. Finally,

we uploaded the curated profile photos to honey accounts using a photo upload au-

tomation tool that we built for this purpose. Thus, at a glance, the demographic label

of any given account can be inferred by anyone that connects to the account.

Timeline data. To further mimic real Facebook accounts, we posted some con-

tent on the timelines of honey accounts. To this end, we collected publicly available

tweets containing popular hashtags using the Twitter Streaming API.12 These pop-

ular hashtags, identified in previous work [6], include #sports, #music, and #news,

among others. We removed personally identifiable information (PII) from the tweets

and wrote the sanitised text snippets on timelines of honey accounts using an au-

tomation tool that we built for this purpose. Hence, the honey accounts display

diverse content on topics that people usually post on social networks, and are more

convincing, as a result. We also considered populating the accounts with popu-

lar song lyrics, but discarded the idea because of copyright restrictions on musical

lyrics.

5.4.2 Data collection infrastructure

In this section, we present the data collection infrastructure that we built to retrieve

activity data from honey accounts.

DYI feature. As described earlier, Facebook accounts, including whitehat accounts,

provide a feature for account owners to download a compressed archive containing

comprehensive records of their activity on Facebook. We rely on this feature to col-

lect activity records of visitors to honey accounts. Hence, at the end of experiments,

we downloaded each account’s DYI archive and parsed it offline. We then analysed

this data to gain insight into the modus operandi of visitors to compromised social

accounts.

12https://developer.twitter.com/en/docs
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DYI archive parser. As stated earlier, DYI archives comprise web pages containing

activity details for offline viewing. We built a parser to automatically extract and

categorise the data presented in those web pages. Some of these details include

login and logout information, device information, and password changes, among

others.

Account health inspector. Visitors sometimes hijack honey accounts during ex-

periments by changing the passwords of such accounts. It is therefore necessary to

keep track of the health status of accounts, to know the ones that are still accessible

and the ones that have been hijacked (in other words, unhealthy ). To this end, we

developed a tool (account health inspector) to periodically connect to all our honey

accounts and report their statuses. This inspector connects to each account, nav-

igates to its activity log page, and records that page for offline parsing. Note that

this is different from fetching a DYI archive. The inspector allows us to check two

things. First, we can verify that the accounts are healthy, and carry out remedial

actions otherwise, for instance, by resetting their passwords through the whitehat

dashboard. Second, the recorded activity provides some information about actions

in the accounts, but it is not as comprehensive as a DYI archive. Nevertheless, it

gives early insights into activity in the accounts, pending DYI downloads at the end

of experiments.

Email notifications. While setting up whitehat accounts, we associated certain

email addresses to the honey accounts. Those email addresses point to a mail

server under our control. On that mail server, we receive real-time email notifica-

tions from honey accounts about password changes, incoming friend requests, and

received private messages, among others.

In summary, DYI archives, account health inspector reports, and email notifica-

tions from the honey accounts provide us with a comprehensive view of honey ac-

counts. Figure 5.4 shows the interconnections among the above listed components

of our data collection infrastructure.
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Figure 5.4: Social honeypot infrastructure. Honey accounts report activity records
to us via the DYI downloader, mail server, and health inspector.

5.4.3 Leaking honey credentials

Stolen credentials are often distributed on paste sites and other outlets by cyber-

criminals [91]. Hence, we mimicked the credential-leaking approach to attract cy-

bercriminals to our honey accounts by leaking their credentials via paste sites on

the Surface Web and the Dark Web (see details in Table 5.1). These paste sites are

ideal outlets because they allow public pastes and show recent pastes to all visitors.

Besides, paste sites have successfully attracted visitors to honey assets in previous

work [76, 62, 16].

We did not leak the entire population of honey accounts. Instead, we leaked

two-thirds of them, in other words, only 672 credentials out of the entire set of 1008

credentials. We did this to observe if visitors will attempt to compromise the accounts

that were not leaked by leveraging existing friend connections among the accounts.

For instance, they might send phishing messages or malicious links to accounts that

we did not leak.
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Table 5.1: To lure visitors to honey accounts, we leaked account credentials through
paste sites on the Surface Web and the Dark Web. We chose these paste sites be-
cause they allow public pastes and successfully attracted visitors to honey accounts
in previous work [76, 62, 16].

Name Type URL
Pastebin Surface Web https://pastebin.com/

Paste.org.ru Surface Web http://paste.org.ru/

Stronghold Dark Web (via TOR) http://nzxj65x32vh2fkhk.onion/

Given the large number of credentials that we leaked (672 accounts), we divided

them into seven chunks, each chunk comprising a maximum of 100 credentials.

Note that the recent pastes feature of paste sites imposes a fading effect on the

visibility of leaks. Hence, to ensure that our leaks favour paste site visitors from

multiple timezones that differ from ours, we leaked credentials twice daily. Finally, to

ensure that the credentials were adequately exposed during leaks, we randomised

the order of credentials in each chunk prior to leaking them. Our assumption is that

most visitors that see the leaks will pay more attention to credentials at the top of

each chunk than the ones that appear later in the chunk. To compensate for this

potential effect, we ensured that the credentials appeared in a different (random)

sequence in each leak instance. This has an unintended positive effect — each leak

instance appears unique to the human eye due to the random order of elements.

5.4.4 Threats to validity

We acknowledge that there are some factors that may affect the validity of our find-

ings. First, the content of the honey accounts comprise stock photos and other

publicly available data, which might be obvious under close scrutiny. Also, a close

look might reveal that the honey accounts were created fairly recently — this can

possibly influence the credibility of our accounts. Second, recall that we used sand-

boxed accounts (whitehat accounts) that are disconnected from regular Facebook

accounts. A close observation may reveal the presence of features that differ slightly

from real accounts. However, this does not pose a major risk to experiments. Third,

we leaked credentials through paste sites only. Our findings may not be represen-
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tative of malicious activity in social accounts stolen via other outlets, for instance,

malware or underground forums. Despite these factors, this chapter offers insights

into malicious activity in stolen social accounts and will help in developing detection

and mitigation systems and techniques.

5.4.5 Ethics

We carefully considered the ethical implications of this study while setting up and

running experiments. First, we used accounts that are isolated from regular Face-

book accounts to avoid harming legitimate Facebook users. This sandboxing ap-

proach is in line with common practices in malware research, which is related to our

work [82]. Second, we used publicly available stock photos and tweets to populate

the accounts. We did this to ensure that no private information was leaked in this

study. Third, by leveraging the whitehat dashboard, we ensured that account pass-

words could be changed easily by us, to lock visitors out, if we observed attempts

to harm people via honey accounts. Fourth, we asked our Facebook contacts to

keep an eye on the accounts with a view to shutting down any account that violates

Facebook’s policies during experiments. Finally, since our experiments involved de-

ceiving criminals to interact with decoy accounts, we sought and obtained ethics

approval from UCL prior to starting experiments.

5.5 Data analysis

In this section, we provide an overview of the activity of visitors in honey accounts.

In detail, we discuss the types of accesses that visitors made to the accounts and

show differences in account activity. We also summarise the system configuration of

observed accesses (browsers, operating systems, and IP addresses of the devices

that connected to the accounts).
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Figure 5.5: This is an example of a defective honey account. It presents an infinite
spinning GIF, indicating page load, but never loads content. It was impossible to
download DYI archives from defective honey accounts, hence we excluded them
from data analysis.

5.5.1 Discarding defective accounts

As described in Section 5.4.2, our data collection process involves downloading DYI

archives from all honey accounts. While downloading those archives, we discovered

that 158 accounts were defective. They presented spinning GIFs, indicating infinite

page load, instead of presenting page content. It was impossible to download DYI

archives from those accounts so we excluded them from data analysis. Figure 5.5

shows an example of a defective account. We have reached out to our Facebook

contacts to look into the accounts. The presence of defective accounts reduced the

effective number of honey accounts under analysis from 1008 to 850 fully functional

accounts. These functional accounts comprise 428 adult accounts and 422 teen

accounts (from the age range point of view), or 427 female accounts and 423 male

accounts (from the gender point of view). Finally, the effective number of (functional)

leaked accounts reduced from 672 to 569 (after excluding the defective accounts).

5.5.2 Accesses and associated actions

Facebook accounts record unique accesses to accounts, and each access is la-

belled with a unique string identifier known as a cookie. Cookies can be found in the

login records section of DYI archives. An access is recorded when a visitor connects

to a honey account. Note that access identifiers (cookies) can persist across logins

into different accounts. For instance, if a visitor connects to account A and then

connects to another account B using the same device and browser within a short

time, the same cookie will be recorded in both accounts. After logging in, a visitor
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performs zero or more actions, for instance, sending a private message or writing a

status update. In other words, an access results in zero or more actions in a honey

account. In this chapter, we use the terms cookie and access interchangeably. We

observed various types of accesses in the accounts and named them according to

the action(s) they performed in the accounts. These types of accesses, codified into

a taxonomy of accesses, are described next.

5.5.3 Taxonomy of accesses

As earlier mentioned, accesses can be described by the action(s) linked to them.

We observed the following types of accesses in honey accounts. Note that we have

more access types listed here, for Facebook accounts, than Gmail accounts (pre-

sented in Chapter 4). This is because social accounts present more features and

nuance than webmail accounts.

Curious. A curious access is recorded when a visitor connects to a honey account

and does nothing. This implies that the visitor was likely just checking to see that

accounts are real. In other words, a curious access has no associated action.

Hijacker. A hijacker access is recorded when the password of a honey account (or

its email address) is changed.

Chatty. This type of access is recorded when a visitor sends private messages,

creates group chats, posts an update on the timeline of another account, or posts

on its own timeline.

Emotional. An emotional access is recorded during clicks on a Facebook “like”

button (or any other reaction) on photos and posts.

Gold digger. This type of access is recorded when a visitor enters search terms in

the search bar.

Profile editor. Profile editor accesses are recorded when a visitor edits the pro-

file of a honey account (for instance, by changing the profile photo or other profile

information about the account owner).
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Table 5.2: Summary of actions in honey accounts grouped by access type. Note that
the curious type is excluded from this table. This is because curious accesses do
not perform any action in honey accounts. Gold digger and friend modifier accesses
are responsible for the vast majority of recorded actions (they account for 47% and
22% of all actions respectively).

Access type Number of actions Percentage
Gold digger 224 46.86
Friend modifier 104 21.76
Chatty 90 18.83
Hijacker 31 6.49
Profile editor 15 3.14
Emotional 14 2.93
Total 478 100.00

Friend modifier. This type of access is recorded when a visitor adds or removes a

friend from a honey account.

These types of accesses are not mutually exclusive, except for the curious type.

A single access with one or more actions can have one or more access types, ex-

cluding the curious type, which is reserved for accesses that do not have any associ-

ated action. For instance, an access that is chatty can also be emotional, depending

on its actions.

5.5.4 Actions

In total, we observed 215 unique accesses to 235 accounts, which resulted in 478

actions in those accounts. Table 5.2 shows a summary of actions grouped by access

type. Recall that a unique access can be responsible for zero or more actions.

Table 5.2 excludes accesses of the curious type since they are not responsible for

any action. Gold digger and friend modifier accesses dominate the table of actions,

responsible for 47% and 22% of all actions respectively. Profile editor and emotional

accesses are the least active types. This shows that visitors are mostly interested

in searching for information through the Facebook search bar (details can be found

in Section 5.5.7), and adding or removing friends from accounts. Next, we study

the timing of activity in honey accounts, with particular emphasis on how long the

recorded accesses stayed connected to the accounts.

96



5.5.5 Timing of account activity

We set out to understand the time patterns of accesses to accounts. To this end,

we measured how long it took visitors to connect to the accounts after we leaked

account credentials, and how long they stayed connected to the accounts. These

measurements were carried out across all accounts, and also on groups of accounts

(by age range and gender), to observe differences in activity patterns across differ-

ent types of accounts. We present detailed measurements next.

Leaks to logins. Recall that we leaked credentials of honey accounts via paste

sites to attract visitors to them. To observe how long it took them to connect to

accounts after the leaks, we computed time lags between the first leak and the first

login (access) recorded in each account. Note that account credentials were leaked

simultaneously multiple times. In this analysis, we focused on the first leak (dated 1st

June, 2018). As the CDF in Figure 5.6 shows, accounts were mostly not accessed

instantly. Instead, visitors connected to them gradually for several days after the first

leak. 40% of the accounts were accessed in 350 hours or less, after the first leak (in

other words, within 15 days).

Access duration. To understand how long visitors stayed in honey accounts, we

computed the durations of their accesses. To achieve this, we recorded the time

that a cookie first appeared in an account as t0, and the last time it appeared in

that account as tlast. Given this information, access duration can be computed as

tlast � t0 for each access. Figure 5.7 shows CDFs of access duration grouped by

access type. Curious and emotional accesses tend to be short-lived compared to

the remaining types of accesses that stay connected to the accounts for longer pe-

riods of time. The CDFs in Figure 5.7 corroborate Table 5.2 — gold digger, friend

modifier, and chatty accesses spend more time in accounts and are responsible for

more actions than emotional and hijacker accesses, for instance. We also computed

access durations by age range to see if there were differences in access durations

in adult accounts compared to teen accounts. The CDFs in Figure 5.8 show that

visitors spend slightly more time in teen accounts than adult accounts. Finally, we
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Figure 5.6: CDF of the time difference between the first instance of credential leaks
(across all outlets) and first connections made to accounts by visitors. 40% of the
leaked accounts were accessed within 350 hours or less (in other words, within 15
days).
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Table 5.3: We conducted KS tests to compare access durations for each access
type to all access types combined.

Type (access durations) KS statistic P-value
Gold digger 0.3894438 0.0000618
Profile editor 0.8731884 0.0016149
Curious 0.1684783 0.0032443
Friend modifier 0.3826087 0.0058528
Chatty 0.3905797 0.0183591
Hijacker 0.2457181 0.4853071
Emotional 0.2862319 0.7395308

computed access durations by gender, to see if there were differences in access

durations in female accounts compared to male accounts. The CDFs in Figure 5.9

show that visitors spend slightly more time in female accounts than male accounts.

Statistical tests. To test the statistical significance of differences in access duration

by type, age range, and gender, we relied on the two-sided Kolmogorov-Smirnov

(KS) test. The null hypothesis is that both samples under examination belong to

identical statistical distributions. The output of the test is a KS statistic and p-value.

A small KS statistic or high p-value shows that we cannot reject the null hypothe-

sis. First, we tested the access durations of each access type against all access

durations, to see the access types for which we can reject the null hypothesis. As

Table 5.3 shows, gold digger accesses differ most from the distribution of all ac-

cesses (in other words, we can clearly reject the null hypothesis), while emotional

accesses differ least (we cannot reject the null hypothesis).

Next, we set out to determine whether adult and teen access durations belong to

the same distribution or not (null hypothesis — adult and teen access duration vec-

tors belong to the same distribution; statistic=0.055, p-value=0.992, cannot reject

null hypothesis). Likewise, we conducted another KS test to see if the female and

male access duration vectors belong to the same distribution or not (null hypoth-

esis — female and male access duration vectors belong to the same distribution;

statistic=0.102, p-value=0.532, cannot reject null hypothesis). In both tests, the null

hypothesis cannot be rejected.
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(a) All hours. (b) First hour only (in minutes).

Figure 5.7: CDFs of access duration per access type. 5.7a shows the entire duration
of experiments while 5.7b shows the first hour only. To enhance the visibility of the
curves, the y-axis of 5.7a shows only the 60th to the 100th percentile ticks, while
5.7b shows all percentile ticks. Curious and emotional accesses tend to be short-
lived compared to the remaining types of accesses that stay logged in longer.

(a) All hours. (b) First hour only (in minutes).

Figure 5.8: CDFs of access duration per age range. 5.8a shows the entire duration
of experiments while 5.8b shows the first hour only. They show that visitors spend
slightly more time in teen accounts than adult accounts. To enhance the visibility of
the curves, the y-axis of 5.8a displays only the 60th to the 100th percentile ticks.
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(a) All hours. (b) First hour only (in minutes).

Figure 5.9: CDFs of access duration per gender. 5.9a shows the entire duration
of experiments while 5.9b shows the first hour only. To enhance the visibility of the
curves, the y-axis of 5.9a shows only the 60th to the 100th percentile ticks. The
CDFs show that visitors spend more time in female accounts than male accounts.

5.5.6 Further demographic analysis

We wanted to understand differences in the types of accesses recorded in the ac-

counts per age range and gender. To this end, we calculated the proportions of ac-

cess types in each range range and gender. As Figure 5.10 shows, teen accounts

present more chatty and emotional accesses than adult accounts, while adult ac-

counts show more friend modifier accesses than teen accounts. Figure 5.11 shows

that female accounts present more friend modifier accesses than male accounts

(proportionally). Male accounts present some profile editor accesses, while female

accounts present none. Finally, male accounts present more chatty and gold digger

accesses than female accounts.

Having observed many instances of friend requests among honey accounts dur-

ing experiments, we decided to study differences in friend request behaviour among

the accounts. To this end, we plotted CDFs of received friend requests (with empha-

sis on age range and gender). Figure 5.12 shows that female accounts receive a few

more friend requests than male accounts. Similarly, we observed minor differences

in received friend requests in adult and teen accounts.

Statistical tests. To test the statistical significance of the minor differences in re-
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Figure 5.10: Types of accesses per age range. Teen accounts present more chatty
and emotional accesses than adult accounts, while adult accounts show more friend
modifier accesses than teen accounts.

ceived friend requests by age range and gender, we once again performed the two-

sided Kolmogorov-Smirnov (KS) test. Recall that the output of the test is a KS statis-

tic and p-value. A small KS statistic or high p-value shows that we cannot reject the

null hypothesis. The first KS test was to determine if received friend requests in

adult and teen accounts belong to the same distribution or not (null hypothesis —

adult and teen vectors of received friend requests belong to the same distribution;

statistic=0.010, p-value=1.000). Likewise, we conducted another KS test to see if

the female and male vectors of received friend requests belong to the same distribu-

tion or not (null hypothesis — female and male vectors of received friend requests

belong to the same distribution; statistic=0.063, p-value=0.359). In both tests, the

null hypothesis cannot be rejected.

5.5.7 What gold diggers seek

As shown in Table 5.2, gold digger accesses were responsible for a substantial

share of actions in honey accounts (47%). Various search terms were recorded in

52 accounts (those search terms were entered in the Facebook search bar of honey

accounts). To understand what visitors were searching for, we analysed the search

logs in DYI archives and found many varieties of search terms.
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Figure 5.11: Types of accesses per gender. Female accounts present more friend
modifier accesses than male accounts (proportionally). Male accounts present
some profile editor accesses while female accounts present none. Also, male ac-
counts present more chatty and gold digger accesses than female accounts.

(a) Per age range. (b) Per gender.

Figure 5.12: CDFs showing the distribution of received friend requests. 5.12b shows
that female accounts received more friend requests than male accounts, while 5.12a
indicates minor differences in the number of received friend requests in teen and
adult accounts. Note that both plots display only very high percentile ticks, for visi-
bility reasons.
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Table 5.4: Top ten words among the search terms entered in honey accounts. These
include atheism- and religion-related words in Spanish (or Portuguese) as a result of
a visitor’s numerous searches for debates on atheism and religion. Other interesting
search terms that showed up include “india vs england live” and “bin carding.”

Searched words TF-IDF
debates 0.4293
ateı́smo 0.3578
bihar 0.3578
religiões 0.3220
robson 0.2326
india 0.1431
oaxaca 0.1252
salina 0.1252
cruz 0.1252
fajar 0.1252

We relied on Term Frequency – Inverse Document Frequency (TF-IDF),13 a nat-

ural language processing metric, to analyse the search logs, similar to our approach

in previous work [76, 16]. Given a text corpus, TF-IDF ranks words in the corpus by

assigning weights to them, between 0 and 1. Words weighted close to 1 are more

important in the corpus than words weighted close to 0. To observe the top words

that visitors searched for in the accounts, we used TF-IDF to obtain the top 10 words

in the search logs as shown in Table 5.4. They include atheism- and religion-related

words in Spanish (or Portuguese) as a result of a visitor’s numerous searches for

debates on atheism and religion. Other interesting search terms that showed up

in search logs include “india vs england live,” “bin carding,” and “marvel cinematic

universe.” These search terms reveal the presence of a wide variety of benign and

malicious interests in search terms. Note that word stemming was not applied during

this analysis because the corpus contained a mixture of words in multiple languages.

Stemming is best done on a corpus of text in a single language.

5.5.8 (Anti)social chatter

Recall that Table 5.2 shows that chatty accesses were responsible for 19% of all

recorded actions. What did chatty visitors post in honey accounts? We observed

13Chapter 4 contains a detailed mathematical explanation of TF-IDF.
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Table 5.5: Top ten words extracted from the text corpus comprising comments, pri-
vate messages, and posts made in the honey accounts. Greetings showed up in the
corpus (“hello” and “hi baby,” for instance). We also observed some posts alerting
account owners about data breaches (unknown to the posters, we leaked creden-
tials intentionally). Some visitors, in apparent moments of awareness, also posted
comments that our honey accounts were fake.

Chatty words TF-IDF
hi 0.3842
baby 0.2744
hii 0.2744
my 0.2744
you 0.2195
fake 0.1646
password 0.1646
am 0.1646
change 0.1646
better 0.1098

chatty behaviour in 29 accounts. These comprise attempted group calls, “waves,”

private messages, posts on own timeline and other timelines. Private messages

ranged from the “hello” and “hi” types to sexually explicit messages. Timeline posts

ranged from short meaningless posts to morbid posts (for instance, “killing my fam-

ily with an assault rifle from ww2”). There were some posts warning account own-

ers about data breaches including leaked credentials (unknown to the posters, we

leaked credentials intentionally). Finally, some comments stated that the accounts

were fake. Surprisingly, we did not observe any post containing phishing or malware-

laden links. To observe the top words in the chatty text corpus, we once again

applied the TF-IDF technique (previously described in Section 5.5.7). The top 10

chatty words are shown in Table 5.5. Note that we also did not perform stemming

because of the presence of multiple languages in the chatty text corpus.

5.5.9 System configuration of accesses

Leveraging the user-agent string information in DYI archives, we extracted browser

and operating system information from the observed accesses. A wide range of

browsers and operating systems were used to access honey accounts. Table 5.6

shows a summary of those browsers. Chrome and Android Browser top the list of

105



browsers, at 36% and 29% respectively. A small percentage of accesses were made

using PhantomJS,14 a web automation tool. Table 5.6 shows that some connections

to honey accounts were made manually, while others were made automatically. Ta-

ble 5.7 shows an overview of the operating systems on the devices that connected

to honey accounts. Windows and Android dominate the list (55% and 34% respec-

tively). A small fraction of accesses were also made with iPhones.

5.5.10 On the origins of accesses

In total, we observed 209 IP addresses (IPv4 and IPv6 addresses) from 47 coun-

tries. Of these IP addresses, 49 were TOR exit nodes. It is possible that some

of the remaining IP addresses were proxies or VPN nodes. To understand the ge-

ographical locations that accesses originated from, we extracted all IP addresses

associated with accesses from the DYI archives. We then carried out IP geoloca-

tion using IP-API,15 an IP geolocation service that provides timezone and location

information about IP addresses.

Figure 5.13 shows a world map with markers showing the locations that ac-

cesses originated from. As the map shows, connections originated from many lo-

cations around the world. It is interesting to note a particularly dense cluster of

accesses from Europe. No access originated from China — note that Facebook is

banned in China. It is possible that visitors connected to some accounts via proxies

or VPNs. However, we did not observe any evidence confirming or refuting this.

5.6 Interesting case studies

As shown in Section 5.5.9, many accesses were made via mobile devices (espe-

cially Android devices and iPhones). We observed three cases in which visitors (in-

advertently) synchronised their mobile phone contacts, comprising names, phone

numbers, and occasionally, email addresses, to our honey accounts. In the first ac-

14http://phantomjs.org/
15http://ip-api.com
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Table 5.6: Various browsers were used to connect to the accounts, including desk-
top and mobile variants. The presence of PhantomJS, a web automation tool,
shows that some accesses were made using automation tools. This wide variety
of browsers (including mobile browsers) reveals a mix of manual and automated
accesses.

Browser Percentage
Chrome 35.98
Android Browser 29.13
Firefox 26.95
Unknown Browser 2.34
Edge 2.34
Safari 2.02
Opera 0.62
Internet Explorer 0.31
PhantomJS 0.31
Total 100.00

Table 5.7: Distribution of operating systems in accesses to honey accounts. The vast
majority of accesses were made using Windows and Android devices. More than
one-third of accesses were made via mobile devices (Android and iOS devices).

OS Percentage
Windows 54.98
Android 33.80
Linux 4.05
MacOS 2.65
Unknown OS 2.65
iPhone iOS 1.87
Total 100.00

Figure 5.13: Origins of accesses determined via IP geolocation. Each marker in-
dicates the origin of a connection to a honey account. Connections were made to
honey accounts from many locations around the world. There is a dense cluster of
accesses that originated from Europe. No accesses originated from China — recall
that Facebook is banned in China.
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count, we observed a contact list comprising 830 phone contacts. The country code

prefix (+91) of the phone numbers indicates that the phone numbers are domiciled

in India. In the second account, we observed a different contact list comprising 57

contacts, once again domiciled in India (country code prefix +91). In the third ac-

count, we observed yet another contact list comprising 27 Mexican phone contacts

(country code prefix +52).

For ethical reasons, we did not investigate the identities associated with these

phone numbers or their relationships with the visitors that connected to the honey

accounts and synchronised their phone contacts. In other words, it is possible to

potentially unmask them and their personal networks, but we decided against doing

so, for ethical reasons. A wider implication of this observation is that visitors (and

other actors) can be tricked into exposing vital information (PII) about themselves if

they can be convinced to connect to honey accounts using their mobile devices. In

addition to the potential harm from PII leakage, this can be potentially damaging for

actors that intend to keep their own identities private (along with identities of people

in their networks), for example, journalists and politicians. The countermeasure is

simple — do not connect to untrusted accounts on personal mobile devices to avoid

PII leakage and associated problems.

Finally, two honey accounts were used to authenticate to Instagram, according to

the information we collected via DYI archives. This indicates the possibility of multi-

platform attacks — cybercriminals can compromise accounts on an online service

and then use those accounts to carry out further illicit activity on other services.

5.7 Summary

We presented a method to study compromised social accounts without being in

control of a large online service, and implemented and deployed our honeypot in-

frastructure on Facebook, one of the largest social network platforms. We showed

detailed measurements and analyses of accesses and actions of visitors connect-

ing to compromised Facebook accounts under our control. We also explored dif-
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ferences in visitor behaviour across two demographic attributes of social accounts,

namely age range and gender. Finally, we presented our findings on the origins of

accesses and devices that connected to the accounts. Our approach to studying so-

cial accounts can be deployed by researchers to study other problems facing social

accounts, for instance, demographic risk factors in cyberbullying, which is one of the

persistent problems facing users of social accounts.
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Chapter 6

Compromised Cloud Documents

6.1 Contributions

First, we introduced some improvements to the cloud document monitor infrastruc-

ture originally proposed in a 2016 USENIX workshop paper [62], following the gen-

eral honey assets method presented in Chapter 3. Second, to understand what hap-

pens to compromised cloud documents, we created, instrumented, and leaked 100

decoy Google spreadsheets comprising 1000 financial records of fictional individu-

als. We henceforth refer to them as sheets. For comparison, only five decoy sheets

were deployed in the pilot study [62]. In other words, we scaled up experiments by

a factor of 20 in this chapter. Third, we present detailed measurements and analy-

ses of resulting activity in the sheets, and provide insights into what happens within

compromised cloud documents. The findings in this chapter will help researchers

to understand what happens to compromised cloud documents and help providers

of cloud services to understand ways to secure accounts and assets on such cloud

services.

Collaborators. We express our appreciation to Martin Lazarov (erstwhile UCL stu-

dent) for implementing and testing the first version of our cloud document monitor

system under the supervision of Gianluca Stringhini and the author of this thesis.

The idea of a cloud document monitor was conceived by the author while its initial

implementation was assigned to Martin Lazarov, and he did an excellent job. After-
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wards, the author implemented some improvements to the cloud document monitor

system and performed a large-scale experiment on compromised cloud documents.

This chapter presents the results of that large-scale experiment.

6.2 Overview

It is hard to imagine life nowadays without online accounts, for instance, webmail

accounts for business and personal communication, e-commerce accounts for on-

line shopping, and cloud storage accounts for convenient document storage and

sharing.

Cloud documents can help to increase the productivity of teams in organisations

by allowing them to collaborate easily and edit documents in real time without re-

quiring their physical presence. As of 2014, 21% of EU citizens relied on cloud

accounts to store their documents.1 This shows the widespread adoption of cloud

storage platforms, for instance, Dropbox, Google Drive, and Microsoft OneDrive.

However, there is a downside to the use of cloud accounts. Like most other

online accounts, cloud accounts often accumulate sensitive information over time,

for instance, financial and personal secrets. This makes them attractive targets to

cybercriminals seeking to steal and monetise such sensitive information [91]. It is

therefore important for researchers and cloud service providers to study and un-

derstand what happens to compromised cloud accounts and the documents they

guard, as one of the necessary steps towards securing such accounts. It is hard to

study attacker behaviour in online accounts unless one is in control of a large online

service (as discussed in Chapter 2). Hence, there is limited research literature in

this space. This research gap motivated the work presented in this chapter, with

specific focus on understanding compromised cloud documents.

Previous work has shown that cybercriminals target online accounts and ser-

vices to steal financial information from them, and trade stolen information via var-

ious outlets [49]. Such financial information includes payment card information,
1https://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_cloud_

services_-_statistics_on_the_use_by_individuals
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cryptocurrency wallets, and online banking details. In recent times, there has been

massive public interest in cryptocurrencies and blockchain technologies such as

Bitcoin, Ethereum, and Litecoin, which provide alternative means of facilitating on-

line transactions, among other uses. However, the advent of cryptocurrencies also

introduced a new wave of cybercriminals that steal digital money (cryptocurrency

wallets), sometimes leading to huge losses, as seen in the 2014 high-profile attack

on a cryptocurrency exchange known as Mt. Gox ($460 million in losses).2

To understand what happens to compromised cloud documents containing fi-

nancial information, we created decoy documents and inserted fake traditional bank

payment information and cryptocurrency details in them. In other words, following

the general honey assets method proposed in Chapter 3, we set up 100 fake payroll

sheets comprising comprising 1000 fake records of fictional individuals. We popu-

lated the sheets with fake traditional bank payment information, fake cryptocurrency

details, and fake payment links. We also installed scripts in the sheets to notify us

about the activity of visitors in them and configured fake payment links in the sheets

to record information about clicks on them. Unlike the pilot study [62] in which five

sheets were deployed, we conducted experiments on a much larger scale in this

chapter (100 sheets in total). Note that the pilot study [62] did not include any cryp-

tocurrency information unlike the work in this chapter. To lure cybercriminals and

other visitors into visiting the sheets, we leaked links pointing to the sheets via paste

sites. By doing so, we mimicked the modus operandi of cybercriminals that steal

and distribute stolen financial information online. This approach has been used suc-

cessfully in previous work by the author [76, 62, 16]. We then recorded accesses to

the sheets and tracked clicks on the fake payment URLs inside them.

Our research questions, related to the questions in the pilot study [62], are as

follows. First, which actions do cybercriminals carry out on compromised cloud doc-

uments? Second, in a given document, will there be differences in the interactions

of cybercriminals with different types of financial information, namely traditional bank

payment information and cryptocurrency information? Third, will cybercriminals at-

2https://www.wired.com/2014/03/bitcoin-exchange/
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tempt to carry out further attacks outside the leaked documents, for instance, by

visiting payment URLs in the documents? Fourth, can we characterise the devices

that cybercriminals use to connect to stolen cloud documents?

We ran experiments for a month and collected data using the infrastructure pre-

sented in Section 6.4.2. We observed 235 accesses across 98 sheets. Two sheets

were not opened. We also recorded 38 modifications in 7 sheets. In Section 6.5,

we present detailed measurements and analysis of accesses, modifications, ed-

its, and devices that visited URLs in the sheets (with emphasis on IP addresses,

browsers, and operating systems). In summary, we present a comprehensive pic-

ture of what happens to compromised Google spreadsheets. The findings presented

in this chapter will help other researchers seeking to understand what happens to

stolen cloud documents and providers of cloud services looking to understand ways

to secure accounts and assets on those cloud services. This is essential because

our daily activities depend heavily on cloud services.

6.3 Background

In this section, we describe cloud documents, with specific focus on Google Sheets,

and explain why Google Sheets constitutes a good fit for our experiments in this

chapter.

6.3.1 Cloud documents

Word processing, desktop publishing, and data processing tasks, which are ever-

present business and personal tasks, can be carried out on local machines us-

ing desktop tools such as Microsoft Word, Scribus, and Apache OpenOffice Calc,

among others. It is also possible and easy to use cloud-based tools for such tasks.

They usually do not require complex installation processes unlike their desktop

counterparts. They also allow users to collaboratively edit documents from any lo-

cation unlike their desktop counterparts. Examples of cloud-based tools for creating

and editing cloud documents include Google Sheets, Microsoft Office 365, and Zoho
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Office Suite. These tools offer remote document hosting and editing services, and

are accessible via a web browser. Next, we describe Google Sheets, the cloud-

based platform that supported our experiments in this chapter.

6.3.2 Google Sheets

Here, we focus on Google Sheets, a cloud-based data processing tool that allows

users to create and modify sheets, and carry out data processing tasks on those

sheets. Google Sheets also enables users to extend the functionalities of their

sheets by incorporating scripts in them, leveraging the power of Google Apps Script3

(a scripting engine for building lightweight web applications and augmenting Google

Apps). This makes Google Sheets a good fit for the experiments in this chapter

since the embedded Google Apps Script engine allows us to instrument sheets to

“phone home” (report activity data), in line with requirements of the general honey

assets method proposed in Chapter 3. Google Apps Script (within Google Sheets)

thus plays an important role in the data collection module of the honeypot infrastruc-

ture instance presented in this chapter, similar to the one in Chapter 4 (we described

how Google Apps Script works in Section 4.3.2). In this chapter, our honeypot in-

frastructure relies on time-driven and event-driven triggers in a custom app hidden

in decoy documents, to track and report accesses and changes in those documents

to us. Note that this method can be applied to other types of online documents as

well, not just Google Sheets.

To create sheets, a user will first have to set up at least one Google account

to host sheets. Afterwards, the user can create new sheets via a web browser.

Alternatively, users can upload existing sheet data, for instance, comma-separated

values (CSV) files that already contain data formatted in rows and columns. Users

can edit cells in the sheets, delete rows and columns of cells, perform computations

and transformations on cells, and delete entire sheets, among other operations.

For collaborative purposes, the owner of a sheet can configure the sheet to allow

other users or visitors to view, comment on, or edit the sheet. Inviting collaborators
3https://developers.google.com/apps-script/overview
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Figure 6.1: One of the ways to share a sheet with collaborators is by generating a
long link that points to the sheet. In this example, anyone that knows the long link
(highlighted in grey) can view and edit this sheet. Alternatively, the sheet owner can
explicitly enter collaborators via the “People” field.

to such sheets usually involves explicitly granting them specific permissions (view

or edit). The sheet owner can also generate a long link that points to the sheet,

such that anyone that knows the long link can view or edit the sheet, depending on

the privilege level assigned to the long link. The sheet owner can then send the

long link to collaborators. They will visit the long link to gain access to the sheet.

Figure 6.1 shows an example of a sheet configuration setting that allows visitors

with knowledge of the long link to edit the sheet.

6.4 Method and experimental setup

In this section, we describe the process of creating and instrumenting honey sheets

prior to experiments, and how we exposed the sheets to cybercriminals. We also

describe the data collection infrastructure that powered experiments in this chapter.
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6.4.1 Creating honey sheets

To observe what happens in compromised cloud documents, we created sheets

containing two types of financial information, namely traditional bank payment in-

formation (bank account numbers and sort codes) and cryptocurrency information

(Bitcoin addresses). We designed the sheets to look like payroll spreadsheets in-

cluding salary information, following the approach employed in [62]. It is important

to note that the sheets in [62] did not include any cryptocurrency information, while

half of our sheets in this chapter did. Next, we describe honey sheet data in detail.

Fake data in cells. In total, we created 100 sheets for the experiments in this

chapter. Prior to creating them, we manually created 10 Google accounts to host

them, based on fake personal data that was generated using Random User Gener-

ator.4 Note that a similar approach was employed to generate fake personal data

for honey social accounts in Chapter 5. Next, we generated data to fill the rows

and columns of honey sheets. Using the same Random User Generator, we cre-

ated 1000 fake personal profiles. We then entered the first names and last names of

those profiles in the honey sheets. We also included salary information sourced from

Monster.co.uk,5 a website that provides job search, career advice, and salary infor-

mation to the general public. In half of the sheets, we inserted randomly-generated

fake banking information and inserted fake cryptocurrency information in the other

half. We did this to observe differences in accesses to documents that contain

traditional banking information compared to documents that contain cryptocurrency

information. To convert salary values from British Pound (GBP) to Bitcoin (XBT), we

relied on XE tool6 for currency conversion. We configured all sheets in a way that

visitors can edit them without authentication, in other words, anyone in possession

of a long link (described in Section 6.3.2) that points to a sheet can visit and edit

such a sheet.

Fake banking information. As mentioned earlier, we included traditional banking

4https://randomuser.me/
5https://www.monster.co.uk/career-advice/article/uk-average-salary-graphs
6https://www.xe.com/currencyconverter/
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Figure 6.2: This sheet contains fake traditional bank payment information. Even
though bank names were not explicitly included in the spreadsheets, account num-
bers and sort codes were generated to appear similar to real bank accounts. Short
URLs (parts redacted) in the sheet point to nonexistent pages on websites of real
banks.

information in half of the sheets. We selected 5 popular UK banks, namely HSBC,

Lloyds Bank, Santander, Barclays, and Standard Chartered. We then generated

fake sort codes and bank account numbers corresponding to those banks, follow-

ing their conventions. For instance, HSBC sort codes have the form 40-xx-xx, and

Barclays 20-xx-xx, where xx stands for any number between 11 and 99. Figure 6.2

shows an example sheet containing fake banking information.

Fake Bitcoin addresses. We needed fake but realistic-looking cryptocurrency in-

formation for the other half of honey sheets. To this end, we generated fake Bitcoin

addresses following the specifications described on a Bitcoin wiki.7 Specifications

— most Bitcoin addresses comprise random digits and alphabets excluding char-

acters that can result in visual ambiguity, for instance, digit zero (0) and uppercase

letter O. The length of a Bitcoin address varies between 26 and 35 characters. In

addition, they usually start with 1, 3, or bc1. Following these specifications, we gen-

erated 500 fake Bitcoin addresses and included them in 50 sheets (Bitcoin sheets).

7https://en.bitcoin.it/wiki/Address
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Figure 6.3: This sheet contains fake Bitcoin addresses in addition to other financial
information. To convert salary values from British Pound (GBP) to Bitcoin (XBT),
we relied on XE tool for currency conversion. Short URLs (parts redacted) point to
nonexistent pages on real cryptocurrency exchanges.

Figure 6.3 shows an example sheet containing fake Bitcoin addresses.

Honey URLs. To observe if visitors to the sheets were going to carry out attacks

on the “account owners” listed in the sheets, we included some fake payment URLs,

which we refer to as honey URLs, in the sheets. These honey URLs, which point

to nonexistent pages on bank websites and cryptocurrency exchanges, allow us to

track clicks on them. To track clicks, we leveraged the functionality that link shorten-

ers provide. Link shorteners are often used to generate short (and convenient and

easy-to-use) URLs that contain fewer characters than the original URL, yet point to

the original URL. Short URLs are handy on social networks since it is important to

keep posts, messages, and URLs as short as possible. Examples of link shorteners

include bit.ly, goo.gl (recently discontinued), and cutt.ly. By including short

URLs (honey URLs) in the sheets instead of actual destination URLs, we achieve

our goal of click tracking (via click analytics functionality provided by link shortening

services) and hide the true destination of honey URLs. See Table 6.1 for illustrative

examples of honey URLs. Visitors are compelled to click on honey URLs if they
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Original URL Honey URL
https://www.hsbc.co.uk/?passkey=d******** https://cutt.ly/C***

https://bittylicious.com/?auth=6******** https://cutt.ly/8***

http://[bouncy.domain]/banking-8102-f******** https://cutt.ly/J***

http://[bouncy.domain]/crypto-8102-1******** https://cutt.ly/w***

Table 6.1: Examples of honey URLs and the original URLs that were shortened to
derive them (parts redacted). Note that click analytics data can be retrieved from
all honey URLs, but additional information (such as IP addresses) can be retrieved
only in the case of honey URLs that point to the bouncy web server (bouncy.domain
stands in for the real domain that we used) explained in Section 6.4.2. Note that
the URLs in this table are illustrative examples only, they are not literal examples of
specific URLs that we included in the sheets.

wish to visit “payment pages” that they point to.8 In the pilot experiment on honey

sheets [62], goo.gl was used to shorten URLs and achieve click tracking. However,

goo.gl was discontinued recently by Google, so we opted for cutt.ly instead. We

briefly considered using bit.ly, another popular URL shortener, but it allows the

external public to easily de-obfuscate the destination URL by simply appending a

“+” to the short URL and visiting the resulting URL. In addition to revealing the des-

tination URL, this also exposes details of the short URL’s click analytics. Hence,

we opted for cutt.ly whose destination URLs are harder to de-obfuscate and also

provides private analytics. It provides a free click analytics dashboard and an API

that allows easy download of click analytics data.

This concludes the process of creating honey sheets and adding fake financial

data to them. Next, we describe the data collection infrastructure that we deployed

to monitor honey sheets.

6.4.2 Data collection

In this section, we present the honeypot infrastructure that was deployed to collect

data from honey sheets. We describe its components, what they do, and how they

interact. Figure 6.4 shows an overview of the honeypot infrastructure and we de-

scribe its key components next.

Safehouse webmail account. Similar to the approach employed in [62], we in-

8Alternatively, to visit honey URLs, visitors can copy and paste them in a web browser.
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Figure 6.4: Our updated honey sheets infrastructure. Some components, espe-
cially the bouncy web server, have been updated since the experiments in previous
work [62].
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stalled scripts (Google Apps Script) in each sheet to report changes in the sheet

back to us via a dedicated safehouse webmail account. Precisely, the scripts send

notification emails containing periodic snapshots of sheets to the safehouse web-

mail account every 4 hours, by leveraging a time-driven Apps Script trigger. Also

included in those notification emails are the edits made by visitors (changes in sheet

state) between snapshots. We automatically record them by leveraging event-driven

triggers and writing those changes to Properties, a persistent buffer for storing sim-

ple key-value pairwise data.9 This approach (minimising the number of emails sent

from sheets by relying on an implicit buffer) helped us to avoid script failure by stay-

ing under Google’s quotas and limits (previously mentioned in Chapter 4, under Sec-

tion 4.3.2). Next, we retrieve those notification emails via an email client (IMAP) and

parse them to compare snapshots of sheets automatically. This allows us to record

differences in snapshots and changes in sheets over time. For instance, differences

in snapshots reveal modifications made to sheets by visitors (a modification involves

changing the structure of a sheet or editing its cells).

Honey URL analytics. As mentioned in Section 6.4.1, short URLs in honey sheets

provide information about clicks on them. This includes information about click origin

(country), click count, and device information (that is, the device that was used to

click on the link). We collected click analytics data once daily by leveraging cutt.ly

analytics API (recall that we used cutt.ly link shortener service to create honey

URLs), and stored it locally in JSON files for offline parsing.

Bouncy web server. cutt.ly analytics API provides useful click analytics data but

does not reveal IP addresses of people that visit honey URLs. To overcome this

limitation, we configured a third of the cutt.ly-generated honey URLs to point to

a custom web server under our control, otherwise known as a bouncy web server.

This web server enables us to record IP addresses and additional header informa-

tion (which short URL analytics do not provide). On receiving a request for a web

resource, the bouncy web server parses the request path and redirects the visitor to

9https://developers.google.com/apps-script/reference/properties/properties-service
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a bank website if the request path contains the token “banking-8102,” a cryptocur-

rency exchange website if the request path contains “crypto-8102,” or google.com if

the request path does not contain either of those tokens.10 Table 6.1 shows example

honey URLs that contain such tokens. The “bouncy” behaviour of the web server

helps to keep up the appearance of visiting “payment links” and hides the existence

of the bouncy web server.

Health inspector. To inspect the state of the honeypot system (to ensure that all

components work as expected), we periodically run the health inspector to check

that latest activity reports have been retrieved from the safehouse webmail account.

It also examines click analytics data for recency. Out-of-date data indicates that one

or more components of the honeypot infrastructure have failed. The health inspector

reported sound system health throughout the experiments in this chapter.

6.4.3 Leaking long links

Previous work has shown that cybercriminals often post samples of their loot via

online outlets usually to brag about their prowess or attract potential buyers [91].

Mimicking their modus operandi and following the general honey assets method

proposed in Chapter 3, we leaked long links pointing to the sheets (not to be con-

fused with honey URLs) on paste sites to lure cybercriminals to visit the sheets. To

avoid ambiguity, note that long links, for leaking, are of the form

https://docs.google.com/spreadsheets/d/1AX4ZDODx3J... while honey URLs,

included in sheet data, look like https://cutt.ly/B.... Figure 6.1 shows an exam-

ple of a long link that points to a sheet. We leaked long links via the same paste sites

employed in Chapter 5 (listed in Table 6.2). Note that paste sites have successfully

attracted visitors to honey assets in previous work [76, 62, 16] — this makes them

suitable for the experiments in this chapter. Each long link was leaked along with a

short description, for instance, “leaked payroll” or “bitcoin payment lists.” Recall that

we configured each sheet in a way that anyone can access and edit it, provided they

10In case the reader wonders what “8102” stands for in request paths, it has no special significance.
It is simply year “2018” written backwards.
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Table 6.2: To lure visitors to honey sheets, we leaked long links pointing to the sheets
through paste sites on the Surface Web and the Dark Web. We chose these paste
sites because they allow public pastes and have successfully attracted visitors to
honey assets in previous work [76, 62, 16].

Name Type URL
Pastebin Surface Web https://pastebin.com/

Paste.org.ru Surface Web http://paste.org.ru/

Stronghold Dark Web (via TOR) http://nzxj65x32vh2fkhk.onion/

know the long link that points to it.

Prior to leaking the 100 long links, we divided them into five chunks, each chunk

comprising 20 long links. We leaked all chunks twice daily to ensure good temporal

coverage on paste sites, thus compensating for timezone differences among visitors

to the paste sites. We also randomised the order of links in each chunk prior to

leaking, thus ensuring that each long link had a fair chance of being visited. After

leaking the long links, we recorded accesses to sheets and tracked clicks on honey

URLs inside them.

6.4.4 Threats to validity

We acknowledge that there are some factors that may affect the validity of our find-

ings. First, our honey sheet data comprises fake financial data, including fake Bitcoin

addresses, which may be obvious under close scrutiny, and can possibly influence

the behaviour of visitors. Second, our honey URLs (embedded in sheet data) are

short URLs, and short URLs are generally treated with suspicion. This may nega-

tively affect the perception of visitors to honey sheets. Third, we leaked long links

pointing to the sheets through paste sites only. Our findings may not be represen-

tative of malicious activity in cloud documents stolen via other outlets, for instance,

malware-laden endpoints or underground forums.

Finally, there is also the possibility that automated tools (crawlers) visited the

long links in addition to human visitors. This may affect the validity of our findings. To

mitigate this risk in future work, it is possible to incorporate an additional CAPTCHA-

like step in the process of accessing the sheets to ensure that only manual accesses
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by humans pass through. This can be achieved by leaking links that point to a

web domain under our control which will serve up an interstitial page containing

the CAPTCHA. If a visitor passes the CAPTCHA (and thus prove they are indeed

human), they will be redirected to the sheet that they were trying to access in the first

place. However, this approach may discourage visitors from proceeding because of

the increased cognitive workload that CAPTCHA solving involves.

Despite these concerns, this chapter offers insights into malicious activity in com-

promised cloud documents and presents new ways to study such activity.

6.4.5 Ethics

The experiments in this chapter involve deceiving cybercriminals into interacting

with cloud documents. In line with standard ethical practices, we took the follow-

ing precautions. First, we used fake financial data (randomly generated) in the

sheets. Thus, we ensured that no real person or account was harmed in our ex-

periments. Second, to avoid spamming other accounts, we did not leak credentials

of the Google accounts that hosted our honey sheets. We only leaked the long links

that point to honey sheets, thus limiting the possible harm that our experiments may

cause otherwise. Third, we obtained approval from UCL’s ethics committee prior to

running experiments.

6.5 Data analysis

In this section, we present an overview of our observations during experiments and

detailed measurements of visitor activity in honey sheets.

6.5.1 Activity overview

We conducted experiments from 11th July, 2018 until 14th August, 2018. During

this period, 98 sheets were opened 235 times. These sheets comprise 48 sheets

containing banking information and 50 sheets containing cryptocurrency informa-

tion. We recorded 38 modification events during which 7 sheets were modified by
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visitors. We observed 219 clicks on honey URLs. Those clicks originated from 30

countries.

6.5.2 What is a sheet access?

Unlike the studies presented in Chapter 4 (webmail accounts) and Chapter 5 (social

accounts) in which an access requires authenticating to an account using leaked

username and password information, we present a different definition of an access

in this chapter. By design, accessing any of our honey sheets does not require au-

thentication. Instead, the visitor requires knowledge of a long link that points to a

sheet (and we expose those long links by leaking them on paste sites, as explained

in Section 6.4.3). This makes it easier for visitors to access the honey sheets — all

they need to do is visit the long link. Hence, in this chapter, we define an access

as a file open event (in other words, a sheet open event). The downside of this

unauthenticated approach is that there are no strong unique identifiers of accesses

(in other words, no cookies, unlike Chapters 4 and 5 in which we recorded and anal-

ysed cookies). This also implies that we are unable to build a taxonomy of accesses

in this chapter, since doing so requires cookies. Finally, it is important to note that

spreadsheets present fewer functionalities than webmail accounts and social ac-

counts (hence, fewer measurements are possible). Nevertheless, we successfully

analysed open events and modification events, and tracked clicks on honey URLs in

the sheets. Next, we present our findings.

6.5.3 Timing of activity in sheets

Leak to first access. First, we set out to understand how long it took for visitors

to access the sheets after we leaked long links pointing to them. Let us denote

the time of first leak as tleak. For each opened sheet, we record the time of its

first open event (first access) as t0 and compute the time lag between leak and

first access as t0 � tleak. Figure 6.5 shows a CDF of time lags. Less than 10%

of opened sheets were visited within the first 22 hours since first leak. However,
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accesses increased rapidly afterwards — by the 25th hour since first leak, 80% of

the sheets had been opened. It is possible that the initial time lags between first

leak and first accesses were due to reluctance of visitors to visit links, since links

can be potentially malicious, generally speaking. However, it is hard to explain the

rapid uptake that started around the 23rd hour since first leak.

Timeline of accesses. Next, we set out to understand the spatial patterns (with re-

spect to time) of all accesses during experiments. 98 sheets received 235 accesses.

These comprise 48 bank sheets and 50 cryptocurrency sheets. Let us denote the

time of a given access as ta and the time of first leak as tleak. For each access, we

computed its relative access time as ta�tleak. We then plotted a timeline of accesses

(see Figure 6.6), with the time of first leak tleak as the reference point. Figure 6.6

corroborates our previous findings in Figure 6.5 — it shows sparse accesses during

the first day since the initial leak. From the beginning of the second day, it shows a

sharp increase in accesses to bank sheets and cryptocurrency sheets. Figure 6.6

also shows that accesses to cryptocurrency sheets spanned a longer time period

than accesses to bank sheets — the last access we recorded in a bank sheet was

on the 25th day after first leak, whereas we observed accesses in cryptocurrency

sheets afterwards. Next, we study the modifications that visitors made to some of

the honey sheets.

6.5.4 Modifications and edits in sheets

We observed 38 modifications in 7 cryptocurrency sheets. No bank sheet was mod-

ified. A closer look at the modified sheets revealed that most of the modifications

were recorded when visitors resized columns in sheets (changes made to sheet

structure are recorded as modifications). This happened in cryptocurrency sheets

because visitors wanted to view Bitcoin addresses, which are long strings, partly

obscured in the default states of the cryptocurrency sheets. See Figure 6.3 for an

example cryptocurrency sheet containing Bitcoin addresses — note that the ad-

dresses were not displayed in full. Interested visitors thus had to resize that column
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Figure 6.5: CDF of time lags between first leak and first access. Less than 10% of
the opened sheets were visited within the first 22 hours since first leak, indicating
initial reluctance to visit the sheets. However, accesses increased rapidly afterwards.
By the 25th hour since first leak, 80% of the sheets had been opened.
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Figure 6.6: Timeline of accesses. 98 sheets received 235 accesses. These com-
prise 48 bank sheets (“Bank”) and 50 cryptocurrency sheets (“Bitcoin”). Note that
accesses to cryptocurrency sheets spanned a longer time period than accesses to
bank sheets.
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for a better view.

Next, we studied modifications that resulted in changes to values of cells in

sheets (otherwise known as edits). We observed that a Bitcoin address in cell D4

of a cryptocurrency sheet was replaced with another Bitcoin address. We looked up

the new Bitcoin address on a Bitcoin address verification tool (blockchain.info),

but it returned no result. We also looked up our list of fake Bitcoin addresses to

see if it was copied from another cryptocurrency sheet and this lookup also yielded

no result. This indicates that the Bitcoin address entered by the visitor was either

a yet-to-be-used Bitcoin address that belonged to them (with intent to commit fraud

by receiving payments meant for the original recipient listed on the compromised

sheet), or a fake Bitcoin address made up by them.

In another cryptocurrency sheet, we observed that one of its records (fields B10

– E10) had been replaced with values that were exactly the same record. In other

words, cell edits were recorded with no changes in values. This indicates that a

visitor (accidentally) “cut” the original values and pasted them back in the sheet. On

the same sheet, the next record was modified similarly, with most values intact, ex-

cept for the Bitcoin address field. The Bitcoin address of that record was replaced

with a different string11 that did not fit the specification of Bitcoin addresses and was

also absent from the list of fake Bitcoin addresses we initially generated. We ob-

served another edit in a separate cryptocurrency sheet in which the Bitcoin address

of one of its records was replaced by a copy of the string mentioned previously. This

indicates that the same visitor modified both sheets (by pasting that string in both

sheets).

In summary, the majority of sheet modifications comprised column resizing ac-

tions by visitors, while actual edits involved changes to Bitcoin addresses. Next, we

study the patterns of clicks on honey URLs within the sheets.

11Pasted string — qzpweklwh85u0h2x44ffv4tsfhxww96v8c7kylnwyu. We are yet to figure out what
it stands for.
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6.5.5 Click activity

Recall that we included two types of honey URLs in the honey sheets, namely bank

URLs and cryptocurrency URLs. In this section, we present measurements of clicks

on those URLs. We recorded 219 clicks on honey URLs comprising 135 clicks on

bank URLs and 84 clicks on cryptocurrency URLs. Those clicks originated from 30

countries. We present a detailed summary of click counts in Table 6.3.

Click counts. We wanted to observe differences in clicks on bank URLs and cryp-

tocurrency URLs. To this end, we counted those clicks, by link type, and plotted

CDFs of click counts. Contrary to our expectations, honey URLs of the bank type

consistently received more clicks than honey URLs of the cryptocurrency type. We

expected the opposite to happen, given the recent surge in interest of the general

public in cryptocurrencies and blockchain technologies. The bank link with the high-

est click count recorded 18 clicks while the cryptocurrency link with the highest click

count recorded 14 counts, as Figure 6.7 shows.

Statistical test. To test the statistical significance of differences in click counts by

link type, we relied on the two-sided Kolmogorov-Smirnov (KS) test to examine the

CDFs in Figure 6.7. The null hypothesis states that both samples under examination

belong to identical statistical distributions. The output of the test is a KS statistic

and p-value. A small KS statistic or high p-value shows that we cannot reject the

null hypothesis. The KS test returned an inconclusive result (statistic=0.4667, p-

value=0.0515).

Click locations. During the analysis of cutt.ly click analytics data (on honey

URLs), we collated a list of countries that clicks originated from. We also carried

out geolocation (country resolution) of IP addresses that visited our bouncy web

server. We used IP-API,12 an IP geolocation service that provides timezone and

location information for IP addresses, to achieve this. We then plotted the resulting

locations, comprising 30 countries, on a world map as shown in Figure 6.8. As the

map shows, most of the countries are located in Europe. It is possible that some

12http://ip-api.com

130



Table 6.3: Summary of clicks on honey URLs. Direct honey URLs lead visitors
directly to the destination URL (bank or cryptocurrency page) while bouncy URLs
surreptitiously route visitors through our bouncy web server before redirecting them
to the destination URL. Surprisingly, bank URLs received more clicks than cryptocur-
rency URLs despite the recent interest of the general public in cryptocurrencies and
blockchain technologies.

Type of honey URL Click count
Direct bank 98
Bouncy bank 37
Direct Bitcoin 69
Bouncy Bitcoin 15
Total 219

Figure 6.7: URL click counts. Contrary to our expectations, honey URLs of the bank
type received more clicks than cryptocurrency honey URLs. The bank link with the
highest click count recorded 18 clicks while the cryptocurrency link with the highest
click count recorded 14 counts.
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Figure 6.8: Origins of clicks on honey URLs in sheets. These locations comprise a
comprehensive list of countries found during the parsing of click analytics data and
IP geolocation. Most of the countries are located in Europe. It is possible that some
visitors connected to sheets and clicked on honey URLs via proxies or VPNs.

visitors connected to the sheets and clicked on honey URLs via proxies or VPNs.

We found some TOR exit nodes (see Section 6.5.6) among the IP addresses that

visited the bouncy web server via honey URLs.

The IP geolocation process yielded 20 countries. Intuitively, these countries

should be a subset of the list of countries recorded by the cutt.ly click analytics

tool. However, this was not entirely the case. We found 14 common countries (that

is, they exist in click analytics and IP geolocation datasets), while 6 countries in the

IP geolocation dataset were absent from the click analytics dataset. This shows that

some visitors visited honey URLs, recorded the (de-obfuscated) destination URLs,

and directly visited those destination URLs later.

6.5.6 System configuration of accesses

In this section, we study the devices that visitors used while clicking on honey URLs

in sheets. We discuss their IP addresses, browsers, and operating systems.

IP addresses and TOR exit nodes. Recall that a subset of honey URLs point to

our bouncy web server which allows us to collect IP addresses of visitors clicking

on them, in addition to click analytics. We recorded 35 IP addresses that visited the

bouncy web server from 20 countries. 12 of the IP addresses were TOR exit nodes.
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Figure 6.9: Distribution of browsers that visitors used while clicking on honey URLs
in the sheets. Firefox leads the pack, with more than 80% share in clicks on bank
and cryptocurrency URLs. We also observed clicks from Chrome, Opera, and other
browsers.

Note that this is only a subset of the IP addresses that visited the honey sheets. In

other words, not all visitors to honey sheets click on honey URLs in the sheets. Also,

only a third of our honey URLs, the ones that point to the bouncy web server, can

track IP addresses. Hence we have a partial view of IP addresses. Nevertheless, it

is surprising that 34% of the recorded IP addresses were TOR exit nodes. It shows

that one out of every three persons that visited our honey URLs covered their tracks

while doing so, by visiting via the TOR network.

Browsers. We wanted to understand the distribution of browsers that visitors used

to connect to honey URLs in the sheets. To this end, we extracted browser infor-

mation from click analytics data and grouped browser-clicks by URL type. We com-

puted the percentages of clicks made via the different browsers observed. Figure 6.9

shows the distribution of browsers that were used to visit honey URLs. Visitors that

clicked on honey URLs had an unusual preference for Firefox — the top browser

responsible for more than 80% of clicks on bank and cryptocurrency URLs. We also

observed clicks from Chrome, Opera, and other browsers.

Operating Systems. We wanted to know the operating systems of devices that

connected to honey URLs. We extracted this information from the click analytics

dataset. Visitors that clicked on honey URLs had a preference for Windows de-
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Figure 6.10: Visitors to honey URLs had a preference for Windows devices in clicks
on honey URLs. In Bitcoin URL clicks, even though Windows devices dominate,
we observe a slightly wider range of operating systems compared to bank URLs.
Bitcoin URLs also attract more handheld devices (by percentage share) than bank
URLs, indicating a more diverse set of visitors.

vices, in bank and cryptocurrency honey URL clicks, as shown in Figure 6.10. In

cryptocurrency URL clicks, even though Windows devices dominate, we observe a

slightly wider range of operating systems than devices that clicked on bank URLs. In

both URL types, we observed a small fraction of clicks from Android devices. Cryp-

tocurrency URLs recorded a tiny fraction of visits from iPhones and Linux devices,

both absent from clicks on bank URLs. This indicates that cryptocurrency URLs

attracted a slightly more diverse set of visitors than bank URLs.

6.6 Summary

In this chapter, we studied the activity of visitors in compromised cloud documents.

First, we presented a method for instrumenting and deploying honey cloud docu-

ments. Next, we deployed 100 payroll sheets comprising 1000 financial records.

In half of the sheets, we included fake banking information, and included fake cryp-

tocurrency information in the other half, to observe differences in accesses and activ-

ity in the sheets. We included honey URLs in the sheets to track clicks on them. We

ran experiments for a month and recorded 235 accesses across 98 sheets. We ob-

served 38 modifications in 7 sheets. Finally, we presented detailed measurements
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and analysis of devices that visited honey URLs, with emphasis on IP addresses,

browsers, and operating systems. In summary, we have presented a comprehensive

picture of what happens to compromised spreadsheets. The findings presented in

this chapter will be useful for other researchers seeking to understand what happens

to stolen cloud documents and providers of cloud services seeking to understand

ways to secure user accounts and assets.
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Chapter 7

Discussions and Conclusion

In Chapters 4 (webmail accounts), 5 (social accounts), and 6 (cloud documents),

we studied what happens to compromised online accounts and documents. In this

chapter, we position our findings in a broader context. First, we discuss what our

findings imply for current detection and mitigation techniques against malicious ac-

tivity in online accounts. Second, we discuss differences and similarities in activity

across the online services under study. Third, we discuss lessons learned from the

credential dissemination vectors that were employed in this thesis. We then highlight

some implementation-specific limitations of honeypot instances that were deployed

in this thesis. Finally, we present some ideas for future work.

7.1 Implications for detection systems

We made multiple findings that provide the research community with a better un-

derstanding of what happens when online accounts are compromised. In Chapter 4

(webmail accounts), we discovered that attackers that know the locations of web-

mail account owners tend to connect from places that are closer to those locations.

We infer that this is an attempt to evade current security mechanisms employed by

online services to discover suspicious logins. Such systems often rely on the ori-

gin of logins to assess how suspicious those login attempts are. Our findings show

that there is an arms race going on, with attackers attempting to actively evade the
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location-based anomaly detection systems employed by Google and other online

services. We also observed that a considerable number of accesses to webmail ac-

counts, social accounts, and cloud documents were routed through TOR exit nodes,

so it is hard to determine the exact origins of accesses, since TOR network masks

true origins of accesses. This problem shows the necessity of defence-in-depth ap-

proaches in protecting online services, in which multiple layers of detection systems

are deployed simultaneously to identify and block criminals.

Potential improvements. Despite confirming evasion techniques in use by cyber-

criminals, our experiments also highlighted interesting behaviours that can be used

to develop or improve systems to detect malicious activity. For example, our ob-

servations about the words searched for by cybercriminals show that behavioural

modelling could work in identifying anomalous behaviour in online accounts (Chap-

ters 4 and 5). Anomaly detection systems could be trained adaptively on words

being searched for by the legitimate account owner during regular use. A devia-

tion of future search behaviour would then be flagged as anomalous, indicating that

the account may have been compromised. Online service providers, when tuning

detection systems, can also apply our findings on differences in search terms —

in Chapter 4 (webmail accounts), we observed that search terms mostly contained

financial/sensitive information while search terms recorded in Chapter 5 (social ac-

counts) indicated less interest in financial information.1 Similarly, anomaly detection

systems could be trained by building statistical models on the durations of accesses

(measured in Chapters 4 and 5). Deviations from known access patterns could then

be flagged as anomalous (potentially malicious) and they would trigger additional

automatic checks and reviews by human operators. In other words, it is possible

to develop and train tools based on machine learning methods that do not require

balanced training datasets of positive and negative examples (one-class Support

Vector Machines, for instance) on “normal” document activity or account accesses.

Malicious accesses will likely deviate from normal activity and will thus be flagged as

such. Our datasets, collected during experiments, are insufficient for this purpose

1Caveat — We encountered some limitations in our analysis of search terms in Chapter 4.

137



(that is, they are not large enough to train machine learning tools). Online services

with direct access to much larger datasets of account accesses and activity, for in-

stance, Google and Facebook, are in a better position to develop such tools.

7.2 Differences across services under study

We observed differences in external usage of honey assets. For instance, in Chap-

ter 4 (webmail accounts), we observed the use of a honey webmail account as a

registration address during account creation on a carding forum (financial usage).

Similarly, in Chapter 5, we observed the use of two honey social accounts for au-

thentication to Instagram (social usage). This shows differences in motivation of cy-

bercriminals that visit different types of online accounts — webmail account visitors

appear to be more interested in financial usage of honey assets than visitors to so-

cial accounts.2 Overall, the use of honey assets on external platforms indicates the

possibility of multi-platform attacks in which cybercriminals compromise accounts on

an online service and use those accounts to carry out further illicit activity on other

services.

As we discussed in Chapter 5 (social accounts), differences in account demo-

graphics influence malicious activity in accounts. For instance, we observed slight

differences in recorded activity across different age ranges and genders. Anomaly

detection systems could be trained to be sensitive to differences in account activity

per demographic attribute. These detection systems could be trained to be more

sensitive to chatty and emotional behaviour in teen accounts more than adult ac-

counts, for instance. Similarly, a related study (not included in this thesis) shows

that language differences in account content affects the behaviour of cybercriminals

in webmail accounts [16]. This knowledge, along with other key findings presented

in this thesis, could be applied when sourcing and partitioning training and test data

for automatic detection systems.

In cloud documents (Chapter 6), we observed differences in document modifi-
2We observed a similar distinction in search terms across webmail and social accounts, as men-

tioned earlier.

138



cations, depending on the content of the documents. Particularly, documents that

contained cryptocurrency information were subject to more modifications than docu-

ments containing banking information, despite receiving fewer accesses than sheets

that contained bank information. Similarly, we observed differences in URL click-

ing behaviour across different types of URLs in documents. This knowledge can

be used during the development and training of detection systems to protect cloud

documents. Such detection systems could be built to adapt their statistical models

depending on document type and content.

7.3 Common trends across services

We also observed common trends across online services. First, we observed some

usage of TOR browser/network in accesses to honey assets in all platforms under

study (webmail, social, and cloud document services). As discussed previously, this

makes it difficult to determine the true origin of accesses to online accounts. Sec-

ond, we recorded account modification or defacement activity on all the platforms

under study. In webmail accounts, for instance, we observed many abandoned

email drafts. In social accounts, we recorded bizarre timeline posts and private

messages. In cloud documents, we observed an instance in which a meaningless

string was pasted in two sheets, among other modifications. Such behaviour likely

deviates from regular everyday use of online accounts and could potentially help in

identifying anomalous behaviour in such accounts.

On a related note, we observed potentially destructive behaviour across all types

of honey assets under study. In webmail and social accounts, for instance, we ob-

served hijacking attacks (password changes) and deletion of friends (along with ad-

dition of new friends). In cloud documents, we observed “cut-and-paste” activity on

sheet content. Recall that there was no way to observe hijacking incidents in cloud

documents because our experimental system intentionally allowed unauthenticated

access to documents. Even though such actions occur during benign account us-

age, a surge in potentially destructive activity could be flagged as an anomaly by
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detection systems.

Finally, we observed search activity in webmail and social honey assets.3 This

shows that searching for information within an account is yet another common ac-

tivity of criminals that connect to stolen accounts on various platforms. This also

corroborates previous work [25] and shows that we should pay more attention to

anomalous search patterns in online accounts in the race for better detection and

mitigation systems to make accounts safer for users.

7.4 Lessons learned from dissemination vectors

Recall that we leveraged multiple dissemination vectors, otherwise known as outlets

for credential leaks, namely paste sites, underground forums, and malware. In this

section, we summarise some general lessons we learned while using those dissem-

ination vectors.

Paste sites and others. During the webmail study (Chapter 4), we leveraged paste

sites and underground forums on the Surface Web and found that paste sites re-

sulted in higher yield than underground forums (we controlled for leak outlets).

Hence, for high yield (more accesses from potential criminals), it is beneficial to

focus more on paste sites than other outlets. Note that we excluded malware leak

outlets from this discussion because they do not fit into the Surface Web/Dark Web

dichotomy.

Surface Web and Dark Web outlets. Unlike Chapter 4 (webmail study) in which we

used Surface Web and malware outlets only, we leveraged a combination of Surface

and Dark Web outlets (paste sites) in Chapters 5 (social accounts) and 6 (cloud

documents). This combination of Surface Web and Dark Web outlets enabled us to

record more accesses than we would have recorded if we had relied on the Surface

Web only. This approach also helps to improve the diversity of visitors (potential

criminals) that access honey assets.

3Even though sheets present search functionality, we do not have a way to record search logs in
them yet.
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Malware outlets. It takes a skilled criminal with malicious intent to operate information-

stealing malware infrastructure. The process extends beyond mere curiosity, for in-

stance, just testing to see if leaked accounts are real or not – it involves actively

compromising victim endpoint devices and covertly stealing sensitive information

from them. Hence, when compared to paste sites and underground forums that

attract a combination of potentially benign visitors, potential criminals, and other in-

terested parties, malware outlets comprise dissemination vectors that are founded

on real criminal intent and they likely provide the “purest” view to malicious activity

in online accounts. Hence, it may be beneficial to focus more on malware outlets

in future work seeking to understand sophisticated cybercriminal operations. How-

ever, the main downside of studying malware outlets is the difficulty of obtaining

live malware samples with active C&C infrastructure (malware outlets are fickle, as

we learned during the webmail study). In addition, advanced information-stealing

malware, for instance Dridex, often incorporate evasive mechanisms that prevent

them from executing in sandboxed environments. Despite these challenges, mal-

ware outlets hold a lot of promise in shining light on criminal activity in compromised

accounts.

7.5 Implementation-specific limitations

In Chapter 3, we discussed our honey assets method, ARMER requirements for hon-

eypots, and our honeypot development life cycle approach. We also discussed its

limitations. In this section, we discuss the limitations of specific honeypot instances

that were deployed during the experiments in this thesis.

We were able to leak honey assets on a few outlets, namely paste sites, under-

ground forums, and malware. In particular, we could only target underground forums

that were open to the public and for which registration was free. In Chapter 4 (web-

mail accounts), we could not study recent families of information-stealing malware,

such as Dridex, because they would not execute in our virtual environment (evasive

malware). Attackers could find the scripts we hid in the webmail accounts and re-
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move them, and make it impossible for us to monitor their activity. This is an intrinsic

limitation of the webmail honeypot infrastructure, but this limitation does not apply to

the Facebook honeypot system in Chapter 5, since we did not have to hide scripts

in Facebook accounts. In principle, studies similar to ours could be performed by

online service providers themselves, for instance, Google or Facebook. By having

access to the full logs of their systems, such entities would have no need to set up

monitoring scripts and it would be impossible for attackers to evade their scrutiny.

Chapter 4 revealed that the vast majority of accesses to our webmail accounts,

especially the ones leaked via underground forums and malware, resulted in no

action (“curious” visitors). Our honey accounts were possibly not convincing enough

for them to take action after logging in. This can affect the ecological validity of our

findings. Alternatively, it is possible that potential criminals that use underground

forums and malware are generally less active than those that use paste sites.

In Chapter 4 (webmail accounts), while evaluating what cybercriminals were

looking for in honey accounts, we were able to observe the emails that they were

interested in, not everything they searched for. This happened because we did

not have access to search logs of the webmail accounts under study. However, in

Chapter 5 (social accounts), we did not face this limitation. We had access to the

full search logs of Facebook accounts that were deployed during experiments and

recorded exact search terms in them.

In Chapter 6, we had limited visibility into the sheets because of unauthenti-

cated accesses (by design). As a result, we were able to record only a subset of IP

addresses that visited the documents by recording the ones that clicked on honey

URLs in the documents. Similarly, we succeeded in recording times of accesses

to cloud documents, but not the durations of accesses, unlike Chapters 4 (webmail

accounts) and Chapter 5 (social accounts) in which we recorded access durations,

in addition to IP addresses.

Across all services under study, we leaked credentials via public outlets, with the

exception of the subset of webmail credentials that were leaked through information-

stealing malware, implying that they ended up in private lists of the actors running
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those malware C&C servers. In other words, all public leaks, by design, were known

to multiple potential criminals simultaneously. There is the possibility that the acces-

sibility of credentials to multiple potential criminals diminished the perceived value

of those accounts. This may influence their willingness to carry out the usual ac-

tions they would have carried out if the accounts were privately held. In view of this,

the subset of webmail credentials that were leaked via malware likely present better

ecological validity (since they were privately held) than the remaining sets of leaked

credentials.

Finally, recall that we do not have control of the online services that host our

honey assets. Hence, the installation of scripts inside honey assets that require

them (see Chapters 4 and 6) must be done perfectly prior to experiments. This is

because it is hard to update scripts in honey assets — such updates must be carried

out and tested manually across all honey assets. This is hard to do, but even harder

once experiments are in motion (such updates, if carried out during experiments,

may taint the findings). Hence, we carried out rigorous testing on honey assets prior

to experiments to avoid having to update them during experiments.

Despite these limitations, we have succeeded in shedding light on malicious

activity in online accounts and cloud documents. Our honeypots also provide new

ways for researchers and service providers to carry out related work and add to the

knowledge of the security community.

7.6 Future work

In the future, we plan to continue exploring the ecosystem of stolen accounts and

gaining a better understanding of the underground economy surrounding them. We

will explore ways to make honey assets more believable, to attract more cybercrim-

inals and keep them engaged. We intend to set up additional scenarios, such as

studying attackers who have a specific motivation, for example, compromising ac-

counts that belong to political activists. We also intend to carry out further studies on

the impact of other demographic attributes (including employment status, religious
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affiliation, and political affiliation, among others) of online accounts on the behaviour

of cybercriminals that gain illicit access to them. It is also possible to deploy social

honeypots to understand demographic risk factors that influence cyberbullying in-

cidents. These will provide comprehensive insights into attackers’ motivations and

resulting activity.

7.7 Conclusion

In this thesis, we reviewed existing work on malicious online activity, developed novel

methods to study malicious activity in compromised online accounts, carried out ex-

periments, and presented our findings. We discovered attempts by cybercriminals

to evade existing defence systems. We also observed patterns of accesses and be-

haviour that could be used to characterise malicious activity to help improve existing

defence systems. We discussed the implications of our findings, especially for online

service providers, and bridged the research gap we observed prior to the work in

this thesis. Finally, we discussed the limitations of our work and highlighted potential

future work. Parts of the work in this thesis have been peer-reviewed and presented

in top conferences and workshops. In addition, some parts have received consid-

erable press coverage. This shows that our work has contributed to the research

community and increased the awareness of the general public about compromised

online accounts. Overall, this will lead to safer online activity for everyone.
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