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Abstract

The nearest subspace methods (NSM) are a category of classification methods

widely applied to classify high-dimensional data. In this paper, we propose

to improve the classification performance of NSM through learning tailored

distance metrics from samples to class subspaces. The learned distance met-

ric is termed as ‘learned distance to subspace’ (LD2S). Using LD2S in the

classification rule of NSM can make the samples closer to their correct class

subspaces while farther away from their wrong class subspaces. In this way,

the classification task becomes easier and the classification performance of

NSM can be improved. The superior classification performance of using

LD2S for NSM is demonstrated on three real-world high-dimensional spec-

tral datasets.

Keywords: Nearest subspace methods (NSM), distance to subspace,

distance metric learning, orthogonal distance, score distance

∗Corresponding author.
Email addresses: r.zhu@kent.ac.uk (Rui Zhu), mingzhi.dong.13@ucl.ac.uk

(Mingzhi Dong), jinghao.xue@ucl.ac.uk (Jing-Hao Xue)

Preprint submitted to Information Sciences July 1, 2018



1. Introduction1

Classification of high-dimensional data is an important research topic [8,2

9, 10, 27, 28]. Subspace-based classification methods have been widely ap-3

plied to classify high-dimensional data. Face recognition [11, 4, 7], chemo-4

metrics [22, 2, 5, 27] and process control in engineering [14, 20, 15, 17]5

are famous application areas of subspace-based classification methods. In6

subspace-based classification methods, classes are first modelled by low-7

dimensional subspaces. Then the test sample is classified using a classifi-8

cation rule that measures the similarities between the test sample and the9

class subspaces, and the test sample is assigned to its most similar class.10

The principal component (PC) subspaces are commonly adopted as the11

low-dimensional class subspaces. They are believed to be good representa-12

tions of high-dimensional data, because most variable information in the data13

is extracted to the leading PCs and the redundant information in the original14

features is discarded.15

Two distances associated with the PC subspaces are usually used in the16

classification rules: the squared orthogonal distance (OD2) and the squared17

score distance (SD2). OD2 measures the squared orthogonal distance be-18

tween a sample and a PC subspace [28], while SD2 measures the squared19

Mahalanobis distance between the projection of a sample onto a PC sub-20

space and the centre of the PC subspace. When the distances are used in the21

classification rule, the test sample is assigned to the class with the smallest22

score of the classification rule. In this paper, we term the PC subspace-based23

classification methods with the classification rule using distances the “nearest24

subspace methods” (NSM).25
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The nearest subspace classifier (NSC) [11, 25, 4, 3, 13] and soft inde-26

pendent modelling of class analogy (SIMCA) [22, 2, 5, 18, 16, 12] are two27

famous examples of NSM. NSC and SIMCA both adopt PC subspace as28

the low-dimensional class subspace, however, they use different classification29

rules to classify a test sample. In NSC, OD2 between the test sample and30

its projection on a class subspace is used as the classification rule. The test31

sample is assigned to the class with the smallest OD2. In SIMCA, the lin-32

ear combination of OD2 and SD2 is usually used as the classification rule.33

The test sample is assigned to the class with the smallest score of the linear34

combination.35

However, the standard distances OD2 and SD2 may not always be able to36

capture or reflect well the mechanism underlying the semantic similarity or37

dissimilarity between the sample and the subspace. In fact, this is also the38

case with other generic distance metrics, such as the Euclidean distance and39

the Mahalanobis distance. This has led to the proposals of metric learning40

in the machine learning community, which enables automatic learning of a41

tailored distance metric from the data available.42

More specifically, given the PC class subspaces, the distances used in the43

classification rule play vital roles in classification. Currently, OD2 and SD2
44

are the two distances widely used in the classification rule, both of which45

use predetermined distance metrics: OD2 uses the Euclidean distance while46

SD2 uses the Mahalanobis distance. However, different data usually prefer47

different distance metrics to reflect different semantic concepts of dissimilar-48

ity or similarity in the context of problems, and hence adapting the distance49

metrics to different data can be expected to improve the classification perfor-50
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mance of NSM. On the other hand, distance metric learning methods emerg-51

ing in the machine learning community provide us a tool to learn tailored52

distance metrics automatically from data and to improve the classification53

performance [23, 21, 26, 19, 24].54

However, the existing distance metric learning methods in the literature55

aim to improve the classification methods that are based on distances be-56

tween samples, such as the k-nearest neighbours (kNN) algorithm. Thus the57

distance metrics that they learned are for the distances between samples.58

But unfortunately the distance metrics used in NSM measure the distances59

between samples and class subspaces. This makes those established distance60

metric learning methods unable to be applied directly to NSM.61

Therefore in this paper, we propose a distance metric learning method62

tailored for NSM to improve its classification performance. We first analyse63

the classification rules of NSM adopted in the literature, and we derive a64

general formulation for them. We show that the general formulation is based65

on two parameterisation matrices with different sizes; hence different classi-66

fication rules of NSM in the literature can be shown actually using different67

distance metrics within the general formulation.68

We define this general formulation as the distance metric from a sample69

to a class subspace, and propose a method of learning distance to subspace,70

to automatically learn the two parameterisation matrices that define the71

distance metric. Then, inspired by the distance metric learning strategy,72

we learn this distance metric based on a set of distance-to-subspace-based73

similarity/dissimilarity constraints: the samples are similar to their correct74

class subspaces while are dissimilar from the wrong class subspaces. Using75
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the learned distance as the similarity measure, we aim to make the samples76

to be closer to their correct class subspaces while be farther away from their77

wrong class subspaces. We term this distance metric “learned distance to78

subspace (LD2S)”.79

The contributions of this paper are summarised as follows.80

First, we are the first to derive a general formulation for the classification81

rules of the nearest subspace methods used in literature. Based on the gen-82

eral formulation, we can design new classification rules, by specifying M k
183

and M k
2. This formulation is a guidance for researchers to design new clas-84

sification rules for the nearest subspace methods with better classification85

performance.86

Second, based on the general formulation, we develop a novel distance87

metric learning method for the nearest subspace methods. Most of the cur-88

rent literature of distance metric learning methods are only designed for89

classification methods based on distances between samples. Here we design90

a distance metric learning method for methods based on distances between91

a sample and a subspace. In this paper, we have shown an effective distance92

metric learning method, LS2D, to classify high-dimensional data.93

To evaluate the effectiveness of LD2S, we compare the the classification94

performances of NSC [4], SIMCA [22, 2] and NSM with the classification95

rule learned from LD2S (NSM-LD2S) using three real-world high-dimensional96

datasets.97
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2. Methodology98

2.1. NSM99

2.1.1. PC class subspace100

Given the training set of class k (k = 1, 2), Xk ∈ Rnk×p, we build the PC101

class subspace of the kth class by using the reduced singular value decompo-102

sition (SVD):103

Xk(c) = U qkDqkV
T
qk
, (1)

where Xk(c) is the column-centred training set, the rows of U qk ∈ Rnk×qk104

(qk = rank(Xk(c))) are the standardised PC scores, Dqk ∈ Rqk×qk is a diag-105

onal matrix with singular values d1 ≥ d2 ≥ . . . ≥ dqk ≥ 0 on the diagonal,106

and the columns of V qk ∈ Rp×qk are the PCs. The PC score is defined as107

T qk = U qkDqk = Xk(c)V qk ∈ Rnk×qk . (2)

If we select the first rk ≤ qk PCs to build the kth class subspace, then108

Xk(c) = U rkDrkV
T
rk

+ Ek, (3)

where U rk ∈ Rnk×rk , Drk ∈ Rrk×rk , V rk ∈ Rp×rk , and Ek ∈ Rnk×p is the109

residual matrix when reconstructing the training samples Xk(c) using the110

first rk PCs. The PC subspace spanned by the first rk PCs is associated111

with a unique projection matrix P k = V rkV
T
rk
∈ Rp×p. We denote the PC112

subspace for class k as Lk.113

Projecting a new sample xnew ∈ R1×p to the PC class subspace, we could114
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obtain115

xk,new(c) = tk,newV T
rk

+ ek,new, (4)

where xk,new(c) is the centred xnew by the column means of Xk, t
k,new ∈ R1×r

116

is the PC score of the new sample, and ek,new ∈ R1×p is the residual of117

reconstructing the new sample by the PC class subspace.118

2.1.2. Two distances associated with the PC class subspace119

Given the PC class subspaces, the new sample xnew is classified using a120

classification rule that is based on two distances related the PC class sub-121

spaces: the squared orthogonal distance (OD2) and the squared score dis-122

tance (SD2). In this section, we discuss the calculation and the geometric123

intuition of OD2 and SD2.124

The squared orthogonal distance. The squared orthogonal distance from xcnew125

to the subspace of the kth class, OD2
k, is defined based on the residual ek,new126

in (4):127

OD2
k =

p∑
j=1

(ek,newj )2 = ek,new(ek,new)T , (5)

which is the squared Frobenius norm of ek,new.128

Rewriting (4), we have129

ek,new = xk,new(c) − xk,new(c) P k = xk,new(c) (Ip − P k), (6)

where Ip denotes the p-by-p identity matrix. The ek,new can then be con-130

sidered as the difference vector between xk,new(c) and its projection on Lk,131

xk,new(c) P k. The orthogonal complement of Lk is L⊥k which has the projection132
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matrix Ip −P k. Thus ek,new is also the projection of xk,new(c) to the subspace133

L⊥k . Since ek,new is orthogonal to Lk, the distance based on ek,new is called134

the orthogonal distance. An illustration of OD2
k in a 3-dimensional feature

X(c)
k,new

Pk

enew

Lk

X(c)
k,new

Figure 1: An illustration of OD2
k in a 3-dimensional feature space.

135

space is shown in Figure 1. The new instance xk,new(c) is shown as the black136

dot; the class subspace Lk is shown as the dark blue 2-dimensional plane;137

and the projection of xk,new(c) to Lk, xk,new(c) P k, is shown as the black triangle.138

The residual ek,new is represented by the red solid line segment, which is139

orthogonal to the plane Lk. The square of the length of the red line segment140

is OD2
k.141

The squared score distance. The squared score distance to class k, SD2
k, is142

defined as the Mahalanobis distance from the projection of xk,new(c) to the143

centre of the subspace Lk:144

SD2
k =

rk∑
i=1

(tk,newi /di)
2 = tk,newD−2rk (tk,new)T , (7)
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where Drk is the diagonal matrix of singular values in (3). SD2
k is the145

reweighted squared Frobenius norm of tk,new with weights 1/di (i = 1, 2, . . . , r)146

and 1/d1 ≤ 1/d2 ≤ . . . ≤ 1/drk . An illustration of SD2
k in a 3-dimensional

X(c)
k,new

Pk

enew

Centre
Lk

X(c)
k,new

Figure 2: An illustration of SD2
k in a 3-dimensional feature space.

147

feature space is shown in Figure 2. In addition to the symbols in Figure 1,148

the centre of the class subspace, Lk, is shown as the black star, and the or-149

ange dashed line connects the centre of the class subspace and the projection150

of xk,new(c) to the class subspace. The SD2
k is then the reweighted length of the151

orange dashed line.152

2.1.3. The classification rules153

In NSC, the classification rule is154

OD2
k. (8)

NSC assigns xnew to the class with the smallest OD2
k.155
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In SIMCA, a linear combination of OD2
k and SD2

k is often used as the156

classification rule [2]:157

γ

(
ODk

ck
OD2

)2

+ (1− γ)

(
SDk

ck
SD2

)2

, (9)

where γ ∈ [0, 1] and ck
OD2 and ck

SD2 are the cutoff values of OD2
k and SD2

k158

calculated from the training set of the kth class. When γ = 1, (9) only159

depends on OD2
k, and is the same as (8) if the cutoff value ck

OD2 in (9) is one.160

When γ = 0, (9) only depends on SD2
k. In practice, the value of γ can be set161

by the users based on their prior knowledge of the importance of OD2
k and162

SD2
k, or can be tuned by cross-validation using the training set.163

2.2. A general formulation for the classification rules for NSM164

Although the classification rules in NSM are in different forms, as shown165

in (8) and (9), we shall show that they can be written using the following166

general formulation:167

xk,new(c) M k
1(xk,new(c) )T − tk,newM k

2(tk,new)T , (10)

with different M k
1 ∈ Rp×p and M k

2 ∈ Rrk×rk . In this section, we derive this168

general formulation based on the classification rules (8) and (9), and show169

M k
1 and M k

2 for (8) and (9), respectively. Based on the derived general170

formulation of the classification rules, we will define the distance to subspace171

and propose a method to learn the distance to subspace in the next section.172
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Substituting (6) into (5), we obtain

OD2
k = (xk,new(c) − xk,new(c) P k)(x

k,new
(c) − xk,new(c) P k)

T

= xk,new(c) (xk,new(c) )T − 2xk,new(c) P k(x
k,new
(c) )T + xk,new(c) P 2

k(x
k,new
(c) )T

= xk,new(c) (xk,new(c) )T − xk,new(c) P k(x
k,new
(c) )T

= xk,new(c) (xk,new(c) )T − tk,new(tk,new)T , (11)

which indicates that OD2
k is the difference between the squared Frobenius173

norm of xk,new(c) and the squared Frobenius norm of tk,new. This is intuitive if174

we think about the right-angled triangle formed by xk,new(c) , xk,new(c) P k and the175

centre of Lk in Figure 2.176

Then the classification rule (8) can be written as

xk,new(c) (xk,new(c) )T − tk,new(tk,new)T

= xk,new(c) M k
1(NSC)(x

k,new
(c) )T − tk,newM k

2(NSC)(t
k,new)T , (12)

where M k
1(NSC) = Ip and M k

2(NSC) = Irk . Equation (12) indicates that177

the classification rule of NSC provides equal weights to the p dimensions178

in the linear combination of the original features xk,new(c) (xk,new(c) )T and also179

equal weights to the rk dimensions in the linear combination of the scores180

tk,new(tk,new)T .181
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Similarly, for the classification rule of SIMCA, we substitute (11) to (9):

γ

(ck
OD2)2

(xk,new(c) (xk,new(c) )T − tk,new(tk,new)T ) +
1− γ

(ck
SD2)2

tk,newD−2r (tk,new)T

=
γ

(ck
OD2)2

xk,new(c) (xk,new(c) )T −
r∑
i=1

(− 1− γ
(ck

SD2)2
+

γ

(ck
OD2)2d2i

)t2i

= xk,new(c) M k
1(S)(x

k,new
(c) )T − tk,newM k

2(S)(t
k,new)T , (13)

where M k
1(S) = 1

h1
Ip, h1 = γ

(ck
OD2 )

2 and M k
2(S) is an rk-by-rk diagonal matrix182

with (− 1−γ
(ck

SD2 )
2 + γ

(ck
OD2 )

2d2i
) on the diagonals (di’s are the singular values in183

D with d1 ≥ d2 ≥ . . . ≥ drk ≥ 0). Different from the classification rule of184

NSM in (12), the rule in (13) indicates that the classification rule of SIMCA185

provides equal weights to the p dimensions in the linear combination of the186

the original features xk,new(c) (xk,new(c) )T , while providing different weights to the187

rk dimensions in the linear combination of the scores tk,new(tk,new)T .188

2.3. Learning distance to subspace189

We define the general formulation (10) as the distance from xnew to the190

kth class subspace. Hence we assign xnew to the nearest class subspace based191

on the distance to subspace defined in (10).192

The distance to subspace for the kth class defined in (10) depends on193

two matrices: M k
1 and M k

2. It can be treated as the difference between two194

squared distances: xk,new(c) M k
1(xk,new(c) )T is the squared distance from xk,new(c)195

to the centre of the class subspace Lk, and tk,newM k
2(tk,new)T is the squared196

distance from the projection of xk,new(c) to Lk to the centre of Lk.197

The matrices M k
1 and M k

2 are of great importance for classification.198

Instead of determining M k
1 and M k

2 manually as in [22] and [2], distance199
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metric learning methods offer us a path to learn more appropriate distance200

metrics automatically from the training data to improve the classification201

performance.202

Distance metric learning methods aim to learn distance metrics based203

on a set of similarity/dissimilarity constraints: the samples from the same204

class should be similar while the samples from different classes should be205

dissimilar. Thus the samples from the same class are close together while the206

samples from different classes are farther away from each other, based on the207

distance metric learned from the training data. In this way, the classification208

task becomes easier and we can expect better classification performance using209

the learned distance metrics.210

Established distance metric learning methods are sample-based, i.e. the211

distances that they learned are measured between samples. However, in212

NSM, the distance is calculated between a sample and a class subspace. Thus213

we need to develop a new method of learning the distance metric from sample214

to subspace, to learn the distance metrics in NSM. The learned distance215

metrics are termed “learned distance to subspace (LD2S)”. Inspired by the216

constraints used in established distance metric learning methods, we propose217

the following set of similarity/dissimilarity constraints for LD2S: the samples218

should be similar to their true class while dissimilar from the wrong classes.219

In other words, we aim to learn M k
1 and M k

2, such that the samples are close220

to their true classes while farther away from the wrong classes.221

2.3.1. Distance metric222

In this section, we briefly review the definition of distance metric. Given a223

set of data points {x1,x2, ...,xN} in R1×p with a set of labels {y1, y2, ..., yN},224
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the distance metric d(xi,xj) between two data points xi and xj should satisfy225

the following properties:226

1. d(xi,xj) ≥ 0 (non-negativity),227

2. d(xi,xj) = 0 if and only if xi = xj (identity),228

3. d(xi,xj) = d(xj,xi) (symmetry),229

4. d(xi,xj) ≤ d(xi,xk) + d(xj,xk) (triangle inequality), where xk is an230

instance that is different to xi and xj.231

A distance metric is known as a pseudo metric when the second property232

is relaxed to: d(xi,xj) = 0 if xi = xj.233

Most of the metric learning algorithms aim to learn a Mahalanobis distance-234

like pseudo metric:235

dM(xi,xj) =
√

(xi − xj)M (xi − xj)T , (14)

which is parameterised by M . The matrix M is set to be positive semidefi-236

nite to ensure that dM(xi,xj) is a pseudo metric. If M is the inverse of the237

sample variance, then dM(xi,xj) is the Mahalanobis distance. If M is the238

identity matrix, then dM(xi,xj) is exactly the Euclidean distance.239

2.3.2. Distance to subspace240

Different from the distance metric between two samples xi and xj defined241

in (14), we define the squared distance metric between a sample x and a class242

subspace Lk using the general formulation in (10):243

d2(x,Lk) = xk(c)M
k
1(xk(c))

T − tkM k
2(tk)T , (15)
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where xk(c) denotes the sample mean-centred by the mean of the training244

samples of the kth class, M k
1 ∈ Rp×p is the parameterisation matrix for the245

distance in the original feature space of the kth class, tk is the PC score of the246

sample when projected to the PC subspace of the kth class, and M k
2 ∈ Rrk×rk247

is the parameterisation matrix for the distance in the PC subspace of the kth248

class. Then d2(x,Lk) can be treated as the difference between the squared249

distance from the sample (column-centred by the column means of class k) to250

the centre of Lk and the squared distance from the projection of the sample251

to the centre of Lk.252

2.3.3. Learned distance to subspace253

To learn good distance metrics between samples and class subspaces, we254

propose the following similarity/dissimilarity constraints: the samples are255

similar to their correct class subspaces while are dissimilar to the wrong256

class subspaces. To formulate the constraints, we define the following simi-257

larity/dissimilarity sets:258

S = {(xi,Lk) | xi belongs to class k}, and259

D = {(xi,Lk) | xi does not belong to class k}.260

In the following part, the training samples from class 1 are denoted by261

subscript 1(i), i.e. x1(i) ∈ R1×p and X1 = [xT1(1), . . . ,x
T
1(n1)

]T ∈ Rn1×p, and the262

training samples from class 2 are denoted by subscript 2(j), i.e. x2(j) ∈ R1×p
263

and X2 = [xT2(1), . . . ,x
T
2(n2)

]T ∈ Rn2×p. Thus the similarity/dissimilarity sets264

become265

S = {(x1(i),L1), (x2(j),L2) | i = 1, 2, . . . , n1, j = 1, 2, . . . , n2}, and266

D = {(x1(i),L2), (x2(j),L1) | i = 1, 2, . . . , n1, j = 1, 2, . . . , n2}.267

One straightforward way to find tailored distance metrics is to minimise
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the sum of the distances between the samples and the class subspaces that

fall into the similarity set S, while maximise the sum of those that fall into

the dissimilarity set D. However, simply optimising the sums of the distances

suffers from losing the information in individual samples. Hence, instead of

treating all training samples together, we aim to make the difference between

the distance to the wrong class and the distance to the correct class large

enough for each training sample by using the following constraints:

d2(x1(i),L2)− d2(x1(i),L1) ≥ 1, for i = 1, . . . , n1, and

d2(x2(j),L1)− d2(x2(j),L2) ≥ 1, for j = 1, . . . , n2. (16)

In this way, the samples can be classified more easily. In addition, to en-

hance the generalisation ability of the learned distance metrics, we add slack

variables ξ1(i) and ξ2(j) to the constraints and aim to solve the following op-

timisation problem:

min
ξ1(i),ξ2(j),M

k
1 ,M

k
2

n1∑
i=1

ξ1(i) +

n2∑
j=1

ξ2(j) (17)

s.t. d2(x1(i),L2)− d2(x1(i),L1) ≥ 1− ξ1(i), ξ1(i) ≥ 0, (18)

d2(x2(j),L1)− d2(x2(j),L2) ≥ 1− ξ2(j), ξ2(j) ≥ 0, (19)

M k
1 � 0 and M k

2 � 0, (20)

where M k
1 � 0 and M k

2 � 0 denote that M k
1 and M k

2 are positive semidefi-
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nite. The constraints in (18) and (19) can be rewritten as

ξ1(i) ≥ [1 + d2(x1(i),L1)− d2(x1(i),L2)]+ and

ξ2(j) ≥ [1 + d2(x2(j),L2)− d2(x2(j),L1)]+,

where [l]+ = max(0, l). Hence the optimisation problem is equivalent to

min
Mk

1 ,M
k
2

n1∑
i=1

[1 + d2(x1(i),L1)− d2(x1(i),L2)]++

n2∑
j=1

[1 + d2(x2(j),L2)− d2(x2(j),L1)]+

s.t. M k
1 � 0, M k

2 � 0. (21)

The hinge losses used in (21) only penalise the samples that do not satisfy268

(16), while assign zero loss for the samples that satisfy (16) using NSM.269

In this way, the hinge loss makes full use of the effectiveness of NSM. It270

is worth noting that the hinge loss has also been popularly used in other271

distance-based classifiers, such as support vector machine (SVM) and large272

margin nearest neighbour (LMNN) classification [21].273

Suppose M k∗
1 and M k∗

2 (k = 1, 2) denote the solutions of (21). Then the274

learned distance from a test sample xnew to the kth class subspace is275

d2(xnew,Lk) = xk,new(c) M k∗
1 (xk,new(c) )T − tk,newM k∗

2 (tk,new)T . (22)

We compare d2(xnew,L1) and d2(xnew,L2), and assign xnew to the class with276

the smallest squared distance.277

Considering the nature of spectral data, i.e. high-dimensional feature and278
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small sample size, learning the full matrices, M k
1 with p(p+ 1)/2 parameters279

and M k
2 with rk(rk+1)/2 parameters, could easily suffer from the overfitting280

problem. In (12) and (13), M k
1(NSC) = Ip and M k

1(S) = 1
h1
Ip are identity281

matrices with common coefficients 1 and 1/h1 for all dimensions, respectively.282

Therefore, in this paper, we learn M k
1 = ckIp(with ck ≥ 0) and M k

2 =283

diag(mk
21,m

k
22, . . . ,m

k
2rk

) (with each element nonnegative), as natural and284

practically-interpretable extensions of those used in (12) and (13).285

3. Experiments286

In the following experiments, NSC, SIMCA and NSM with distance mea-287

surement (22) (NSM-LD2S) are compared using high-dimensional spectral288

data, the Phenyl dataset, the fat dataset [6] and the meat dataset [1]. We289

also compare the classification results of the nearest subspace methods with290

those of the naive Bayes classifier (NB), the k-nearest neighbours algorithm291

(kNN) and the support vector machine (SVM), to show the effectiveness of292

the nearest subspace methods to classify high-dimensional data.293

3.1. Datasets294

The number of samples in each class and the number of features for the295

three high-dimensional spectral datasets are summarised in Table 1.296

Table 1: The number of samples in each class, n1 and n2, and the number of features p
for the three high-dimensional spectral datasets.

n1 n2 p
Phenyl 300 300 658

Fat 122 71 100
Meat 54 55 1050
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Figure 3: The plots of the spectra of the three datasets.

3.1.1. The Phenyl dataset297

The Phenyl dataset is available in the ‘chemometrics’ R package, which298

contains 300 spectra with the phenyl substructure and 300 spectra without299

the phenyl substructure. The spectra are measured at 658 wavelengths. To300

avoid confusing, the spectra of two instances from two classes are shown in301

Figure 3a.302

3.1.2. The fat dataset303

The fat dataset contains 193 spectra of finely chopped meat, measured at304

100 wavelengths [6]. The fat dataset consists of 122 spectra of meat samples305

with less than 20% fat and 71 spectra of meat samples with more than 20%306

fat. The spectra of all samples are shown in Figure 3b.307

3.1.3. The meat dataset308

The meat dataset [1] contains the spectra of five classes of meat sam-309

ples, measured at 1050 wavelengths. We select the chicken and turkey meat310

samples from the original dataset in the experiments, because they contain311

similar chemical components and are hard to classify. The new meat dataset312
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contains the spectra of 55 chicken samples and the spectra of 54 turkey sam-313

ples. The spectral of all samples are shown in Figure 3c.314

3.2. Experiment settings315

The classification performances of the three methods are shown for five316

different ratios of training set size/feature dimension: n1/p = n2/p = 0.1,317

0.2, 0.3, 0.4 and 0.5.318

For the Phenyl dataset, we randomly select 100 samples with Phenyl319

structure and 100 samples without Phenyl structure. For illustrative pur-320

poses, we select the first 100 dimensions from the 658 feature dimensions for321

the experiments in this paper, i.e. p = 100.322

For the fat dataset, we use all the 120 meat samples with less than 20%323

fat and 71 meat samples with more than 20% fat in the dataset. We also use324

all the dimensions of the fat dataset, i.e. p = 100.325

For the meat dataset, we use all the 55 chicken samples and 54 turkey326

samples in the dataset. Again for illustrative purposes, we also select the first327

100 dimensions from the 350 dimensions for the experiments in this paper,328

i.e. p = 100.329

Therefore, as p = 100 for each of the three datasets, the five training set330

sizes are n1 = n2 = 10, 20, 30, 40 and 50. The samples to form a training331

set are randomly selected from a dataset. The rest samples in the datasets332

are used as test samples.333

In NSC, SIMCA and NSM-LD2S, the numbers of PCs, rk, are tuned by334

5-fold cross-validation using the training set to minimise the classification335

error. More specifically, for each value of rk, we calculate the mean classi-336

fication error of the 5-fold cross-validation. The value with the minimum337
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mean classification error is chosen as the number of PCs.338

In SIMCA, ckOD = (µ̂ + σ̂z0.975)
3/2, where µ̂ and σ̂ are the mean and the339

standard deviation of the orthogonal distances in of the training samples in340

class k; and ckSD =
√
χ2
nk;0.975

. The weight γ is also tuned by 5-fold cross-341

validation using the training data.342

In NSM-LD2S, the optimisation problem (21) is solved by ‘cvx’ in MAT-343

LAB.344

In SVM, the radial basis function (RBF) kernel is adopted. The scale345

parameter of the RBF kernel and the penalty factor C are tune by 5-fold346

cross-validation. The values of the two parameters to be chosen are set to347

10, 102 and 103. In kNN, the number of the nearest neighbours is tuned by348

5-fold cross-validation. The values to be chosen are set to 3, 5 and 7. In NB,349

the prior probability of each class is set as the proportion of the number of350

training samples of that class over the total number of training samples.351

All the random training/test splits and the subsequent experiments are352

repeated 100 times and the classification accuracies of the test data are353

recorded.354

3.3. Results355

3.3.1. The Phenyl dataset356

The classification results of the Phenyl dataset demonstrate the superior357

classification performance of NSM-LD2S, as shown in Figure 4 and Figure 5,358

compared with NSC and SIMCA over all nk/p ratios. It is clear that SVM359

performs better than the three nearest subspace methods for this dataset.360

kNN and NB are also better than the three nearest subspace methods when361

nk/p becomes large.362
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(d) n1/p = n2/p = 0.4.

NB kNN SVM NSC SIMCA NSM-LD2S

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) n1/p = n2/p = 0.5.

Figure 4: Classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S for
the Phenyl dataset.
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Figure 5: Mean classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S
for the Phenyl dataset.
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However, it is conceivable that, for certain other datasets, the classifica-363

tion performance of NSM-LD2S cannot always be better than those of NSC364

and SIMCA, in particular under small nk/p ratios. In the following two365

sections, we show two examples that NSM-LD2S performs worse than NSC366

and SIMCA for small nk/p ratios but better for large nk/p ratios. This is367

because there are more parameters in NSM-LD2S to be learned than in NSC368

and SIMCA, and NSM-LD2S needs more training samples to achieve good369

classification performance for some data. In addition, the classification per-370

formances of NB, kNN and SVM are also not always better than the nearest371

subspace methods. The following two examples can also demonstrate this372

argument.373

3.3.2. The fat dataset374

In the fat dataset, the classification performance of NSM-LD2S and SIMCA375

are worse than NSC when nk/p = 0.1 and are better than NSC when376

nk/p ≥ 0.2, as shown in Figure 6 and Figure 7. NSM-LD2S provides the377

best classification performance when nk/p ≥ 0.2.378

It is obvious that NB has the worst mean classification accuracies for all379

nk/p ratios. kNN performs similarly to NSM-LD2S. SVM performs similarly380

to SIMCA when nk/p = 0.1 and performs worse than the three nearest381

subspace methods for all other nk/p ratios.382

3.3.3. The meat dataset383

Compared with the fat dataset, the classification accuracies of the three384

methods for the meat dataset show a stronger effect of the nk/p ratios. When385

nk/p < 0.4, NSM-LD2S performs much worse than NSC and SIMCA, espe-386
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(e) n1/p = n2/p = 0.5.

Figure 6: Classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S for
the fat dataset.
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Figure 7: Mean classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S
for the fat dataset.
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(d) n1/p = n2/p = 0.4.
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Figure 8: Classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S for
the meat dataset.
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Figure 9: Mean classification accuracies of NB, kNN, SVM, NSC, SIMCA and NSM-LD2S
for the meat dataset.

cially for nk/p = 0.1. However, when nk/p = 0.5, the classification accuracies387

of NSM-LD2S become much better than those of NSC and SIMCA, as shown388

in Figure 8(e) and Figure 9. The classification results of the meat dataset389

suggest that NSM-LD2S needs nk/p > 0.4 to achieve superior classification390

performance for the meat dataset.391

Similarly to the fat dataset, NB and SVM have the worst classification392

performances for nk/p > 0.1 for the meat dataset. kNN performs worse than393

the nearest subspace methods for the meat dataset.394

3.3.4. Summary of the results395

The experiments show that using the learned distance metrics from data396

can provide superior classification results, compared with using predeter-397

mined distance metrics, when the nk/p ratio is large enough. For data with398

small nk/p ratios, using the distance measurement based on LD2S may per-399

form poorly in classification since the nk/p ratio is not large enough to learn400
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all the parameters in LD2S.401

It is worth noting that the nearest subspace methods are effective to clas-402

sify high-dimensional data. An important reason for this is that they find a403

low-dimensional subspace representation for each class to extract the most404

informative features. Our proposed LD2S is an additional step to further im-405

prove the classification performance of the nearest subspace methods, based406

on the features-extracted data. LD2S can obtain better distance measure-407

ments between a sample and a subspace, which imposes a positive effect on408

classification accuracies. As demonstrated by the experiment results, NSM-409

LD2S can achieve better classification accuracies than NSC and SIMCA,410

which shows the effectiveness of LD2S in addition to feature extraction in411

NSC and SIMCA.412

4. Conclusion413

We have proposed a general formulation of distance to subspace, i.e. the414

distance from a sample to a PC class subspace. Based on this formulation,415

we have proposed a simple but effective LD2S method that can learn tailored416

distance metrics adaptively from data, for the classification rule of NSM. The417

classification performances on three datasets demonstrate the effectiveness of418

learning distance metrics from data when the nk/p ratio is large enough. The419

current LD2S is designed for binary classification. A multi-class version of420

LD2S is needed for more general and practical cases and we identify this as421

our future work.422
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