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Highlights 18 

 Two different approaches, 2-D OpenFOAM and Lagrangian wave-current simulations, are used 19 

to model focussed wave groups and sheared currents simultaneously in a controlled manner, 20 

and produce input conditions for 3-D OpenFOAM models to investigate wave-current-structure 21 

interactions. 22 

 Good agreement between numerical results and experimental data is obtained, indicating that 23 

both approaches are capable of replicating experimental wave-current flows, and accurately 24 

modelling interactions between surface piercing cylinders and focussing waves on sheared 25 

currents.  26 

 The performance of both approaches is evaluated in terms of accuracy and computational effort 27 

required. 28 

 It is found that the method of coupling the 3-D CFD and Lagrangian models is computational 29 

slightly cheaper and more accurate because of the use of a smaller computational domain and 30 

the iterative wave-current generation in the faster Lagrangian model. 31 

 32 

Abstract 33 

Vertical surface piercing cylinders, such as typical coastal wind turbine foundations and basic elements 34 

of many coastal structures, are often exposed to combined loading from waves and currents. Accurate 35 

prediction of hydrodynamic loads on a vertical cylinder in a combined wave-current flow is a 36 

challenging task. This work describes and compares two different approaches for numerical modelling 37 

of the interaction between focussed wave groups and a sheared current, and then their interactions with 38 

a vertical piercing cylinder. Both approaches employ an empirical methodology to generate a wave 39 

focussed at the location of the structure in the presence of sheared currents and use OpenFOAM, an 40 

open source Computational Fluid Dynamics (CFD) package. In the first approach, the empirical wave-41 

on-current focussing methodology is applied directly in the OpenFOAM domain, replicating the 42 

physical wave-current flume. This approach is referred to as the Direct Method. In the second approach, 43 

a novel Lagrangian model is used to calculate the free surface elevation and flow kinematics, which are 44 

then used as boundary conditions for a smaller 3-D OpenFOAM domain with shorter simulation time. 45 

This approach is referred to as the Coupling Method. The capabilities of the two numerical methods 46 

have been validated by comparing with the experimental measurements collected in a wave-current 47 

flume at UCL. The performance of both approaches is evaluated in terms of accuracy and computational 48 

effort required. It is shown that both approaches provide satisfactory predictions in terms of local free 49 
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surface elevation and nonlinear wave loading on the vertical cylinders with an acceptable level of 50 

computational cost. The Coupling Method is more efficient because of the use of a smaller 51 

computational domain and the application of the iterative wave-current generation in the faster 52 

Lagrangian model. Additionally, it is shown that a Stokes-type perturbation expansion can be 53 

generalized to approximate cylinder loads arising from wave groups on following and adverse sheared 54 

currents, allowing estimation of the higher-order harmonic shapes and time histories from knowledge 55 

of the linear components alone. 56 

 57 
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 61 

1. Introduction 62 

The review articles by Peregrine and Jonsson (1983a; b), Thomas and Klopman (1997) and Wolf and 63 

Prandle (1999) have shown that wave-current interaction is one of the important physical processes in 64 

coastal waters. The presence of a background current modifies the wave dispersion, wave-induced 65 

velocities and shear stress near the seabed etc., so has an effect on wave loads on structures and wave 66 

propagation near coastlines. Coastal engineering applications, such as the design of coastal protection 67 

and structures as well as the evaluation of sediment transport and coastal erosion, would benefit from 68 

an enhanced knowledge of this complex process and its effect on coastal structures. 69 

In existing design methods, the current profile is usually assumed to be uniform with depth. The uniform 70 

current approximation may apply for large-scale ocean currents and deep tidal flows, but it fails to 71 

model wind-driven currents and tidal flows in shallow coastal waters that exhibit some degree of 72 

variation in the vertical direction (Chakrabarti, 1996; Forristall and Cooper, 1997; Stacey et al., 1999; 73 

Gunn and Stock-Williams, 2013). Previous studies demonstrated that the velocity shear modifies the 74 

wave dispersion relation (Swan et al., 2001a), produces changes in water-surface elevation (Tsao, 1959; 75 

Brink-Kjaer, 1976; Kishida and Sobey, 1988), and causes significant effect on the tendency of surface 76 

waves to break (Peregrine and Jonsson, 1983; Yao and Hu, 2005) in a different way when compared to 77 

depth-uniform currents. This work considers a current profile which varies with depth so has a 78 

significant depth-varying vorticity distribution. Such a profile is a more realistic representation of a 79 

current flow in some regions in the open sea. 80 

The vorticity dynamics due to wave-shear current interaction can be described by the vorticity transport 81 

equations, which are obtained by taking the curl of the momentum equations. Analytical solutions of 82 

the vorticity transport equations exist only for the constant-vorticity case (the current is linearly sheared) 83 

(Thomas, 1981; 1990; Nwogu, 2009). For more realistic profiles that vary arbitrarily with depth, the 84 

computation is more difficult because of the changing vorticity field in space and time. For initially 85 

uniform vorticity, Kelvin’s circulation theory applies and the vorticity remains uniformly distributed. 86 

Then the wave motion can be treated as an irrotational disturbance, as described by Teles Da Silva and 87 

Peregrine (1988). Approximations are necessary if analytical solutions are to be sought for the cases 88 

with arbitrary vorticity. Various techniques have been developed (Kirby and Chen, 1989; Swan and 89 

James, 2001; Ko and Krauss, 2008; Smeltzer and Ellingsen, 2017), yet these have limited range of 90 

applicability; the wave is linear or weakly nonlinear, and the current strength lies within a certain range 91 

(either weak, moderate or strong). The difficulties inherent to problems associated with strongly sheared 92 

currents have necessitated the use of Computational Fluid Dynamics (CFD), which is a promising tool 93 

for modelling the interactions between waves and current, and both with structures. 94 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=A.%20F.%20Teles%20Da%20Silva&eventCode=SE-AU
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Much previous numerical work based on CFD has primarily concentrated on regular wave interactions 95 

with currents (Santo et al., 2017; Zhang et al., 2014; Markus et al., 2013; Li et al., 2007; Park et al., 96 

2001). However, Tromans et al. (1991) suggested the use of NewWave-type focussed wave groups as 97 

design waves representing individual extreme events in random seas. Jonathan and Taylor (1997), 98 

Taylor and Williams (2004), Santo et al. (2013), Christou and Ewans (2014), among others, confirmed 99 

that this theory is applicable to a wide range of wave conditions. The original NewWave theory was 100 

developed for deep water waves. Later it was demonstrated that it can be applied to waves on shallow 101 

water (Whittaker et al., 2016). The use of NewWave-type wave groups for wave-structure interaction 102 

has been demonstrated by Zang et al. (2006, 2010) for a ship-shaped fixed body and for a surface 103 

piercing cylinder, respectively. Further work using wave groups on cylinders is described in the papers 104 

by Fitzgerald et al. (2014) and Chen and co-workers (2014, 2016, 2018), and for jacket-type structures 105 

in Santo et al. (2018).  106 

Wind turbines with cylindrical foundations are likely to be located in areas with severe wave conditions, 107 

with intermediate and shallow water depths and with significant currents generated by tides, storm wind 108 

shear etc. Thus, the interaction of focussed wave groups propagating on either following or adverse 109 

sheared currents with surface-piercing cylinders has direct practical applications. 110 

The primary challenge in the numerical modelling of focussed wave groups on sheared currents is the 111 

simultaneous and controlled generation of focussed wave groups on flow with non-uniform vorticity. 112 

The co-existence of waves and currents alters both the evolution of the waves and the profile of the 113 

currents in a way unpredictable by existing analytical approaches. As such, neither the point of focus 114 

nor the elevation of the wave and the underlying flow field are known a-priori.  115 

Various approaches are used to achieve wave focussing at a particular location and time in the absence 116 

of currents, including a dispersive focussing method and various iterative techniques. The dispersive 117 

focussing method calculates the initial phase shift of each wave component based on linear wave theory. 118 

This inevitably results in a shift of the actual focus position due to non-linear wave-wave interactions 119 

(Rapp and Melville, 1990; Baldock et al., 1996; Johannessen and Swan, 2001). The iterative methods 120 

reconcile this issue by iteratively correcting either only the initial phases (Chaplin, 1996; Yao and Wu, 121 

2005) or both the initial phases and the amplitudes (Schmittner et al., 2009; Fernandez et al., 2014; 122 

Buldakov et al., 2017) of different wave frequency components in a wave group. The iterative approach 123 

derived in Buldakov et al. (2017) calculates the corrected input for the wavemaker considering only the 124 

linearized part of wave spectrum and therefore it differs from any previous methodology. This approach 125 

has been successfully applied to physical experiments of focussed wave groups on sheared currents 126 

(Stagonas et al., 2018a). The wave focussing methodologies discussed previously were mainly used in 127 

physical experiments; however, its application to a numerical wave flume is straightforward and can be 128 

implemented in a similar way to that in a physical flume (Stagonas et al., 2018b). 129 

For either 2-D or 3-D CFD simulations, a computationally expensive fine grid is necessary to accurately 130 

resolve the non-linear evolution of focussed wave groups, and the complex flow-structure interaction. 131 

Applying empirical wave-on-current focussing techniques in CFD-based models, even in 2-D, may 132 

yield substantial increases of the computational effort required. To accommodate this, a faster numerical 133 

model may be used alternatively to produce the input wave-current kinematics for CFD-based models. 134 

This work describes and compares two CFD modelling approaches building on the widely used open-135 

source CFD platform OpenFOAM. In the first approach, the wave-on-current focussing methodology 136 

(Stagonas et al., 2014; 2018a; 2018b) is applied directly to a CFD numerical wave flume, replicating 137 

the physical wave-current flume. 2-D simulations are performed first to calculate iteratively the 138 

boundary conditions required to produce focussed wave groups on different flow conditions - namely, 139 

quiescent flow without a current, adverse and following sheared current – and the interaction with the 140 

structure is then modelled in 3-D. This approach is referred to as the Direct Method hereafter unless 141 

otherwise stated.  142 
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In the second approach, a novel Lagrangian model (Buldakov et al., 2015) is coupled with the CFD 143 

model. Differentiating it from recent one-way ‘online’ coupling approaches used to, e.g., model the 144 

interaction of waves with cylinders (Paulsen et al. 2014a; 2014b), the time histories of the surface 145 

elevation and flow kinematics are pre-computed using the Lagrangian model and are then used as inlet 146 

boundary conditions for the CFD model. In this ‘offline’ coupling, all reflections are dealt by the CFD 147 

simulation, eliminating the need for simultaneous computation and exchange of information between 148 

the two models. This approach is referred to as the Coupling Method. We note that such a method of 149 

domain decomposition, i.e. one-way coupling of simpler models with more advanced models, was also 150 

applied by Biausser et al. (2004), Drevard et al. (2005), Christensen et al. (2009), among others for 151 

various flow problems but excluding the effect of flow currents. Here, the 3-D numerical flume used in 152 

the Coupling Method is considerably shorter than that of the Direct Method, and the iterative wave-153 

current generation is applied in the faster Lagrangian model. The performance of both approaches is 154 

validated against experimental measurements and is evaluated in terms of accuracy and computational 155 

effort. The rest of the paper is organized as follows. The physical experiments on wave-sheared current-156 

cylinder interactions are described in Section 2. Details of the CFD and Lagrangian models are provided 157 

in Section 3. The results of both numerical modelling methodologies are compared with the 158 

experimental results in Section 4. Section 5 reconstructs the higher order harmonic forces using linear 159 

components alone. Conclusions are given in Section 6. 160 

 161 

2. Experimental setup and methodology 162 

A set of experiments on wave-sheared current interactions with a vertical surface-piercing cylinder of 163 

two different sizes was carried out and used to validate the proposed two CFD-based numerical models 164 

in this work. This section describes the experimental setup and the applied methodology briefly. 165 

2.1 Experimental setup 166 

All experiments were conducted in a 20 m long, 1.2 m wide and 1 m deep recirculating wave-current 167 

flume at University College London (UCL) with a water depth of 0.5 m. Two Edinburgh Design Limited 168 

(EDL) force-feedback ‘piston-type’ wavemakers, one at each end of the facility, were used to generate 169 

and actively absorb the waves. The flow entered vertically into the working section of the flume with 170 

the inlet and outlet located approximately 1 m in front of each wavemaker, as shown in Figure 1. A 171 

Cartesian coordinate system Oxz is introduced in both physical and numerical wave flumes such that 172 

the origin O is the plane of the undisturbed free surface, x = 0 is the focus point, and z positive upwards. 173 

The critical challenge of generating controlled and stable sheared currents was addressed through the 174 

use of two carefully designed flow conditioners/profilers installed on top of the inlet and the outlet. The 175 

conditioners/profilers consisted of 0.5 m long, 1.2 m wide and 0.88 m deep box sections consisting of 176 

vertically and horizontally placed cylindrical elements. Each cylindrical element had a diameter of 8 177 

cm and was constructed using a 5 cm porous galvanised wire mesh, see Figure 2. Compared to previous 178 

work, the flow shaping approach used here has the comparative advantage of producing sheared currents 179 

with variable vorticity distribution without considerable interference to the generation of waves, see for 180 

example Steer et al. (2017) and for more details see Stagonas et al. (2018a). 181 

Flow kinematics were measured with a high speed, time resolved Particle Image Velocimetry (PIV) 182 

system produced by TSI Incorporated. The system employs a 5 W water cooled Argon Ion laser 183 

operated at a pulsating frequency of 1 kHz. A light arm was used to direct the laser sheet upwards 184 

through the bottom of the wave flume (the bed) and measurements were taken at the focus point (FP in 185 

Figure 1) and at a distance of approximately 27 cm from the side wall; these were also the locations of 186 

the free surface elevation measurements. The flow was seeded with 50 μm polyamide particles and PIV 187 

images with a resolution of 1024×1024 pixels were recorded at a frame rate of 250 fps. An example of 188 

the kinematics measured for adverse and following currents will be given in the following section. The 189 

velocity measurements are available from still water level (z = 0 m) to approximately 15 cm from the 190 
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bed, beyond which the camera view was blocked by the support structure of the flume. Surface elevation 191 

measurements are used not only for validation but also for providing the inlet boundary conditions for 192 

the numerical models. 193 

 194 

 195 

Figure 1. Schematic side view of the UCL wave-current flume showing two wavemakers at each end 196 

of the flume, and locations of inlet and outlet of the current discharge. FP stands for Focus Point, and 197 

AMP means the location for amplitude matching. 198 

 199 

  200 

Figure 2 Photograph of the conditioning and profiling system  201 

 202 

Focussed wave groups were produced using a Gaussian target spectrum on a water depth of 0.5 m. The 203 

same target spectrum was used for waves on adverse and following currents and without a current. The 204 

peak frequency was set to 0.6 Hz and the point of focus was 8.7 m from the wavemaker (FP in Figure 205 

1). The phases of different components in a wave group were forced to come to focus at the focus point 206 

and the amplitudes were matched to the target spectrum at a distance of 4 m upstream of the focus point 207 

(AMP in Figure 1). In this way, focussed wave groups with the same spectrum at a relatively short 208 

distance (1 m) from the inlet were produced for all flow conditions. The evolution to focus was 209 

measured in the physical wave-current flume using a set of wave gauges, providing the means to 210 

validate the numerical results not only at the focus point but also in terms of the evolution of the wave 211 

group along the flume. 212 

Free surface elevations in the flume were measured using 7 twin-wire resistance-type wave gauges 213 

positioned at x = -4.7 m, -3 m, -1.8 m, -1 m, -0.5 m, -0.25 m, and 0 m, and sampled at 100 Hz. A return 214 

period of 128 s and a focus time of 64 s were selected for the wave generation. Discrete input spectra 215 

consisting of 256 frequency components with Δf = 1/128 Hz were used as input to the wavemaker. For 216 

simplicity, the wave groups produced were categorized based on the linear sum of the target amplitude 217 

components, AL. Only the results of nonlinear wave groups with AL = 0.07 m are used in the present 218 

work. The methodology employed to generate these wave groups and sheared currents both in the 219 

physical and numerical wave flumes will be described in the following subsection.  220 

 221 

Inlet 

Wavemaker 

Wave and flow 
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 222 

Figure 3 (a) Schematic diagram of side view of the cylinder model illustrating the location of the two 223 

load cells used to measure horizontal loads. (b) Photograph of the installed cylinder model. (c) 224 

Photograph showing the four props supporting the weight of the cylinder and the second/bottom load 225 

cell connected to the bed of the flume. 226 

 227 

Experiments were also conducted with two different cylinders positioned at x =0 m; for these cases an 228 

additional wave gauge was placed at the front face of the cylinder. The smaller cylinder had a diameter 229 

of 0.165 m and the larger one 0.25 m. For the smaller cylinder, flow induced loads were measured using 230 

the load cell set-up described and used in Santo et al. (2017). However, in order to more effectively 231 

support the weight of the larger cylinder, a different arrangement was developed to measure the fluid 232 

induced horizontal force. The larger cylinder was a polyvinyl chloride (PVC) tube with a diameter of 233 

D = 0.25 m. The PVC tube/cylinder was connected to an aluminium rectangular column, marked as 234 

'strut' in Figure 3, via circular rings. The strut had dimensions of 0.09 m (breadth) × 0.09 m (width) × 1 235 

m (height), and was connected to a load cell rated at 100 kg from the top through a hinge. This load cell, 236 

labelled as Load cell No 1, was rigidly fixed on the steel H-frame that was in turn tightly fixed on the 237 

flume walls. Another load cell, labelled as Load cell No 2, was located approximately 10 cm above the 238 

flume’s floor and was tightly fixed on the bottom of the cylinder/strut, see Figures 3(a) and (b). The 239 

opposite end of the second load cell was connected through rod end bearings to an aluminium base, 240 

which was in turn fixed on the bed of the flume. Four props, also made using rod ends, supported the 241 

weight of the structure resulting in a preload-free cell, see Figure 3(c). The overall arrangement 242 

consisting of a strut, connecting rings and two load cells was mounted on rather than suspended from a 243 

steel H-frame. The latter arrangement was used in this study for the smaller cylinder as aforementioned 244 

and in previously reported tests by Santo et al. (2017).  245 

A piece of PVC was used to model the bottom of the cylinder, labelled as Lid No 1, which was 246 

approximately 10 cm above the bed of the flume. Another piece of PVC, labelled as Lid No 2, was used 247 

to extend the model cylinder down to approximately 5 mm from the bed and compartmentalise the 248 

model cylinder, see Figures 3 (a) and (b). The compartment below the Lid No 1 was flooded and 249 

therefore a water-resistant load cell (Load cell No 2 in Figure 3) was used. Both load cells were sampled 250 

at 1 kHz and the experimental apparatus was calibrated for both tension and compression using dead 251 

weights at the beginning and the end of every testing cycle. 252 

Surface elevation measurements recorded at x = -4.7 m (AMP in Figure 1) for different test cases 253 

illustrate a satisfactory level of repeatability. Representative results for experiments with waves on an 254 

(a) (b) 

(c) 

Props 

Rod end 
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adverse current with the small (solid line) and the large (dashed line) cylinder in place are presented in 255 

Figure 4. The repeatability in load cell measurements for the same testing conditions was also tested. 256 

Standard deviations of 0.11 N/0.2 N were calculated from 15 horizontal force records acquired in 257 

consecutive repeat tests with the smaller/larger cylinder exposed to waves on the adverse current. These 258 

horizontal force results are representative of all the cases considered. It is to be noted that an iterative 259 

methodology is used in both physical and numerical wave flumes to generate focussed wave groups 260 

and sheared currents in a controlled manner. In the following sections, the iterative methodology is 261 

presented first and then the numerical flumes and implementation are described. 262 

 263 

 264 

Figure 4 Example of free surface elevation time histories recorded at x = -4.7 m, for U = -0.2 m/s and 265 

AL = 0.07 m. Solid line: free surface elevation profile measured with the larger cylinder installed in the 266 

flume. Dashed line: free surface elevation profile measured with the smaller cylinder installed in the 267 

flume.  268 

 269 

2.2 Generation of focussed waves on adverse and following currents 270 

A methodology to accurately generate focussed waves without a current is described in Buldakov et al. 271 

(2017) and for waves on sheared currents in Stagonas et al. (2018b). The linearized part of the wave 272 

spectrum is isolated by linearly combining four non-linear free surface elevation time histories 273 

measured in the wave flume. Initially, a crest focussed wave is produced in the flume and the remaining 274 

three wave groups are generated with phase shifts of π, π/2 and 3π/2. The measured spectrum (written 275 

as a complex variable a+ib) is then decomposed as  276 



8 

 

0 1 2 3

0

0 1 2 3

1

0 1 2 3

2

0 1 2 3

3

4

4

4

4

s s s s
S

s is s is
S

s s s s
S

s is s is
S

  


  


  


  


                                                                                (1) 277 

where, sn are complex spectra of the fully nonlinear surface elevation signals with 0, π/2, π and 3π/2 278 

phase shifts. S0 is the complex spectrum of the 2nd order difference components and S1, S2 and S3 are 279 

complex spectra of nonlinear super-harmonics for 1st (linear), 2nd (+) and 3rd harmonic, respectively.  280 

New input amplitudes are then calculated based on the measured and the target amplitudes. In the same 281 

way input phases are also calculated 282 

1 1

1 1
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( ) ( ) ( ( ) ( ))

n n n
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n n n
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a f a f a f a f

f f f f   

 

 



  
                                                            (2) 283 

where ain
n(fi) and ϕin

n(fi) are the amplitude and phase of an input spectral component at frequency fi, 284 

respectively. aout
n(fi) and ϕout

n(fi) are the amplitude and phase of the corresponding spectral components 285 

of the measured/recorded output spectrum, respectively. The superscript n indicates the n-th iteration. 286 

atgt(fi) and ϕtgt(fi) are set by the preselected target spectrum.  287 

Iterations continue until the measured linearized amplitude spectrum matches the target amplitude 288 

spectrum, and the phases of the linearized part are zero at the desired location in the flume. By matching 289 

the measured amplitude spectrum to the target spectrum, NewWave-type focussed wave groups are 290 

generated in either physical or numerical wave flumes. The methodology has also been successfully 291 

applied to generate breaking waves by focussing in a CFD wave flume (Stagonas et al., 2018b) and in 292 

the present work it is applied to a CFD-based numerical model and a Lagrangian numerical flume with 293 

following and adverse sheared currents. 294 

 295 

3. Numerical setup 296 

Two approaches are used to replicate wave-current conditions generated in the physical flume, thus 297 

providing input conditions for the 3-D CFD model with the structure in place. In the first approach, the 298 

iteration scheme in physical experiments described in Section 2.2 is applied directly in the 2-D CFD 299 

model, while in the second approach, a Lagrangian model (Buldakov et al., 2015) is used to provide 300 

input conditions for the 3-D CFD model to reduce the size of the 3-D numerical CFD flume and shorten 301 

the simulation time. 302 

In this section, we first present a general description of OpenFOAM-based numerical models and then 303 

the methodologies used for replicating the wave-current flow generated in the physical wave-flume are 304 

detailed. The accuracy and the efficiency of the methodologies are validated by comparing with the 305 

experimental measurements. 306 

 307 

3.1 OpenFOAM-based numerical model  308 

The CFD model based on OpenFOAM solves the Navier-Stokes (NS) equations or the Reynolds-309 

averaged Navier-Stokes (RANS) equations coupled with the continuity equation for the two-phase 310 

combined flow of water and air with the incompressibility assumption, 311 
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0 u                                                                                                                                                   (3) 312 

*( ( ) ( )p X
t


     


          



u
uu) u g                                                (4) 313 

where ρ and μ are the density and the dynamic viscosity of the mixed fluid, respectively, which are 314 

calculated following the equation (6) based on the Volume-of-Fluid (VOF) technique, which will be 315 

discussed below. u = (u, v, w) is the fluid velocity field in Cartesian coordinates, and p* is the pressure 316 

in excess of hydrostatic pressure, defined as p*=p - (g·X)ρ. g is the acceleration due to gravity and X = 317 

(x, y, z) is the position vector. The stress tensor τ is defined in a standard way (Jacobsen et al., 2012) 318 

and may include viscous and Reynolds stresses depending on solver settings.  319 

Various turbulence closure models are implemented in OpenFOAM (e.g. Brown et al., 2016). However, 320 

the laminar flow model of OpenFOAM-2.4.0 is used in all computations reported here as both the 321 

external wave fields and the wave force on the cylinder are dominated by inertial (potential flow) effects 322 

(Chen et al., 2014; 2018). The reasonably good agreement between the numerical and experimental data 323 

shown in the following sections indicates that the consequences of viscosity and flow turbulence on the 324 

free surface elevation and wave forces on the cylinder that are of interest in this study are negligible as 325 

expected and supports the use of the laminar flow model. It is useful to note that turbulence modelling 326 

may be important if drag forces and the formation of wakes are significant (Santo et al., 2015).  327 

The last term on the right-hand side of equation (4) is the effect of surface tension in which σ is the 328 

surface tension coefficient and κ is the curvature of the interface. The presence of surface tension is 329 

found to have minor effects in most civil engineering applications (Jacobsen et al., 2012; Larsen, 2018), 330 

thus, σ = 0 is used in this study.  331 

The Volume-of-Fluid (VOF) technique is applied in OpenFOAM to locate and track the free surface 332 

(interface between air and water), with the following transport equation, 333 

( ) ( (1 ) ) 0
t




  


   


u u                                                                                       (5) 334 

in which α is the volume fraction function of water within each computational cell. This equation is 335 

similar to that proposed in Hirt and Nichols (1981), but with an additional compression technique (the 336 

last term on the left-hand side in which uα is an artificial compression term) to limit the numerical 337 

diffusion of the interface profile. The compression technique is developed by OpenCFD, and details 338 

can be found in Berberovic´ et al. (2009).  339 

The properties of the fluid at each cell are then calculated by weighting with the VOF function α, which 340 

ranges from 0 (if there is no traced fluid inside a cell) to 1 (when the cell is full of the traced fluid), 341 

water water
(1 ) ; (1 )

air air
                                                                                               (6) 342 

The equations (3) – (5) are solved with the finite volume method in which the whole computational 343 

domain is discretized into a number of cells (Ferziger et al., 2002). The merged Pressure Implicit 344 

Splitting Operator (PISO) algorithm is then applied for each cell to decouple pressure from the 345 

momentum equation (Issa, 1986).  346 

Both 3-D CFD models in this study use standard implementations of boundary conditions available at 347 

OpenFOAM (with the exception of inlet and outlet boundaries which will be discussed later). Detailed 348 

descriptions of available types of OpenFOAM boundary conditions are available in Greenshields (2015).  349 

We are modelling waves on sheared current by disturbing the original parallel sheared flow, which is 350 

specified by the prescribed current profile. The profile results from the current boundary layer 351 

developed on the solid bed and therefore originally satisfies no-slip conditions. Waves propagating over 352 

the current perturb the flow and lead to the development of a secondary wave boundary layer near the 353 

bed. However, we consider a fast evolving transient wave. The wave boundary layer does not have time 354 

to evolve and occupies only a very narrow region near the bed without affecting the rest of the flow. 355 

Considerable number of additional mesh points are required to resolve this layer with no considerable 356 

impact on the overall wave behaviour. We therefore using a standard OpenFOAM free-slip condition 357 
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with zero gradient of tangential velocity as a bed/bottom condition. This allows smooth flow behaviour 358 

near the wall without high mesh resolution. The same condition is applied on the side walls. 359 

We use a no-slip boundary condition on the cylinder surface, and a computational mesh near the surface 360 

of the cylinder has the widths of cells ten times smaller than those away from the cylinder surface in 361 

order to resolve the boundary layer. The wall-normal mesh size is selected to ensure that the 362 

dimensionless wall distance (y+) is smaller than 5 based on the flat-plate boundary layer theory. The 363 

mesh dimensions for the regions away from the cylinder are determined by convergence tests to ensure 364 

that there are sufficient cells per wavelength to resolve propagating incident waves and wave-current-365 

structure interactions; this will be discussed in more detail in the following section. It is found that 366 

further refining the mesh inside the boundary layer has negligible influence on the flow-induced forces 367 

on the cylinder. The Reynolds number Re (=ωηm
2/ν) and the maximum local Keulegan-Carpenter 368 

number KC (=2 ωηm/D) in this study are approximately 8.5 × 104 and 2.3, respectively. ω is the peak 369 

wave angular frequency, ν is the kinematic viscosity and ηm is the maximum free surface elevation 370 

which is about 0.15 m in this study. The initial conditions and other boundary conditions follow the 371 

same set-up as described in Chen et al. (2014) and Santo et al. (2017). 372 

The time step in OpenFOAM simulations is not fixed, but dynamically calculated to maintain a 373 

prescribed maximum Courant number Co = u∆t/∆x throughout the whole domain at all times. ∆t is the 374 

time step, ∆x is the cell size in the direction of the velocity and u is the magnitude of the velocity at that 375 

location (Courant et al., 1967). In this study an adjustable time step is used to achieve Co = 0.25, which 376 

is again determined by numerical experimentation, and not shown here for brevity. For details refer to 377 

Larsen et al. (2018).  378 

OpenFOAM offers the extensive choice of numerical schemes and the iterative solvers/algorithm 379 

settings for various terms in the equations (3) – (5) (Greenshields, 2015). These settings may have 380 

significant effects on the performance of the CFD solvers in terms of accuracy and efficiency (Larsen 381 

et al., 2018). The best choice can usually be determined from previous experience or on a case-by-case 382 

basis by numerical experimentation. The scheme and solver choices used in this study are summarized 383 

in Table A1 and detailed description of schemes, solvers and algorithms can be found in Greenshields 384 

(2015). The combination of these choices in Table A1 has proved to work well and yield good results 385 

when applied to nonlinear wave interactions with a vertical cylinder for ranges of flow conditions 386 

studied in this work.  387 

 388 

3.2 Direct application of the iterative wave generation methodology in CFD models 389 

This study uses and extends the toolbox ‘waves2Foam’ developed and released by Jacobsen et al. (2012) 390 

to realize wave generation and absorption in numerical wave flumes in OpenFOAM. The boundary 391 

conditions for generating waves are given analytically according to the linear wave theory, i.e. 392 

corresponding velocities and free surface elevations are specified at the input boundary faces. In this 393 

study, linear superposition of velocities of the spectral components of a wave group calculated using a 394 

desired spectrum (the spectrum of extracted linearized waves used here will be discussed later) is used 395 

to generate the focused wave group in the computational domain through a vertical wall. 396 

A new boundary condition is developed within the framework of ‘waves2Foam’ to produce a vertically 397 

sheared current. The sheared current profile is defined by a second-order polynomial which is obtained 398 

by curve fitting the measured horizontal velocity profile at the model cylinder location. Figure 5 399 

demonstrates the current profiles used in the CFD-based numerical simulations in this paper, and their 400 

comparison with measured experimental profiles.  401 

The combined wave and current conditions are then generated by linearly superimposing the focussed 402 

wave group and sheared current at the inlet. The boundary condition for generating sheared current is 403 

also used at the outlet to ensure mass conservation.  404 

 405 
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 406 

Figure 5 Comparisons of sheared current profile with depth obtained from the experiment and the 407 

numerical simulations at the location of the model cylinder for the cases with a sheared current and 408 

without waves. A -- Adverse current; B -- following current. 409 

 410 

The wave-on-current focussing methodology described in Section 2.2 is now applied to generate 411 

focussed waves on various flow conditions in the numerical wave flume. All iterations are performed 412 

in a 2-D numerical flume replicating the physical flume at UCL. Although the target spectrum used in 413 

the physical wave flume can be used as inputs for the first set of simulations, the linearized spectrum 414 

extracted from the actual experimental measurements is used instead to ensure a faster convergence to 415 

the experimental measurements (i.e. ain
0 = atgt = aLinear

exp
 and ϕin

0 = ϕtgt = ϕLinear
exp

 in equation 2). The free 416 

surface elevations at x = -4.7 m (AMP in Figure 1) and x = 0 m (FP in Figure 1) in the numerical flume 417 

are recorded and used for performing the amplitude and phase corrections following equations (1)-(2). 418 

Generally, satisfactory/convergent results for all flow conditions considered in this work are obtained 419 

within 1 or 2 iterations following the first set of simulations, i.e. in total three sets of 2-D simulations 420 

are required. The final corrected set of boundary conditions is then used as input for the 3-D numerical 421 

model shown in Figure 6. Previously, the same approach has been successfully used to simulate extreme 422 

forces induced by focussed waves on a following uniform current to a jacket structure, see Santo et al. 423 

(2018). 424 

The 3-D numerical flume (which is shown in Figure 6) consists of a rectangular domain with a vertical 425 

cylinder located at the centre of the flume. The total length of the flume is 13.7 m (~4λp) with a distance 426 

of L0 between the inlet boundary and the vertical cylinder. The last 3 m (~λp) of the numerical flume is 427 

occupied by the relaxation zone used to minimize wave reflections from the outlet. λp is the peak 428 

wavelength, which is ~3.2 m in this study. The width of the computational domain is 1.2 m, and the 429 

water depth h is 0.5 m, the same as those in the experiments. In the Direct Method, L0 = 8.7 m (~ 2.7 430 

λp), the same as that in the experiments.  431 

 432 

A B 
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 433 

Figure 6 Layout of the computational domain. D is the diameter of the vertical cylinder and λp is the 434 

peak wavelength. The truncated inlet demonstrates the inlet boundary for the Coupling Method; the 435 

computational flumes for the Coupling and the Direct Methods are bounded by the dashed grey lines 436 

and the solid black lines, respectively. 437 

 438 

The optimum set-up for the computational domain including its size and the mesh resolution is 439 

determined using numerical experimentation (not shown here for brevity but more details are given in 440 

Chen et al., 2014). The principle is to have the smallest possible domain size, thus minimum 441 

computational effort, while still maintaining the correct flow field around the structure. 442 

Overall, the computational domain is divided into two areas, one with a coarser and one with a finer 443 

mesh resolution. In particular, the area near the vertical cylinder and the layers near the air-water 444 

interface are resolved with a finer mesh. Horizontal and vertical grid sizes for the coarser mesh are 445 

about λp/240 and Hp/12, respectively; λp and Hp are the peak wavelength and the peak wave height, 446 

respectively. The cell size of the finer mesh is decreased by half, and cell sizes are graded so that the 447 

size of the cells between the two areas varies smoothly. 448 

 449 

Table 1 Parameters and computational costs used for two OpenFOAM-based models 450 

Parameters Direct Method Coupling Method 

Overall length (m) 13.7 (~4λp) 10 (~3λp) 

Overall width (m) 1.2 (~5D) 1.2 (~5D) 

Distance from inlet to cylinder (m) 8.7 (~2.7λp) 5 (~1.5λp) 

Distance from cylinder to outlet (m) 4.75 (~1.5λp) 4.75 (~1.5λp) 

Length of damping (relaxation) zone (m) 3 (~λp) 3 (~λp) 

Cell number (million) ~17.2 ~12.6 

Maximum Courant number Co 0.25 0.25 

Computational costs (hrs) 

Each 3-D  ~12 ~15.5 

Each 2-D  ~ 1 (×12)* -- 

Total  ~ 24** ~15.5 

*In total 3 sets of 2-D simulations are required, and each set of 2-D simulations consists of 4 runs with successive 451 
additional phase shifts of π/2, in total 12 2-D simulations are required, and each 2-D simulation requires ~1 hour 452 
computational time.  453 

**Total time is calculated as the summary of the computational time required to calculate the corrected inlet 454 
conditions using either the 2-D CFD model or the Lagrangian model and the time spent for the 3-D simulations.  455 

 456 

The simulations were performed using the supercomputing facility at the Pawsey Supercomputing 457 

center which supports researchers in Western Australia. Utilising 48 cores for 3-D simulations, the 458 

computational time is approximately 12 hours to obtain the results within the time scale of interest, i.e. 459 

~20 s of modelled time corresponding to propagation of the wave group and its interaction with the 460 

model structure. Each 2-D simulation used to calibrate the incoming wave group takes about 1 hour 461 
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using 24 cores. The geometric parameters used for 3-D simulations and computational costs required 462 

for both 2-D and 3-D simulations are summarized in Table 1.  463 

 464 

3.3 Generation of the incoming wave-current flow by coupling the Lagrangian and CFD models 465 

The second method of generating wave-current conditions is based on reconstructing experimental 466 

surface elevation and kinematics of incoming waves on sheared currents by applying the iterative wave 467 

generation methodology (Section 2.2) to a Lagrangian numerical wave-current flume. The Lagrangian 468 

kinematics and the free surface elevation are then fed into a truncated numerical CFD wave flume with 469 

the cylinder present using an external forcing subroutine built onto waves2Foam and OpenFOAM-470 

based numerical models. 471 

A general Lagrangian formulation for two-dimensional flow of inviscid fluid with a free surface can be 472 

found in Buldakov et al. (2006). We consider time evolution of coordinates of fluid particles x(a, c, t) 473 

and z(a, c, t) as functions of Lagrangian labels (a, c). The formulation includes the Lagrangian 474 

continuity equation, 475 

( , )
( , ),

( , )

x z
J a c

a c





                                                                                                                          (7) 476 

the Lagrangian form of vorticity conservation, 477 

( , ) ( , )
( , )

( , ) ( , )

t t
x x z z

a c
a c a c

 
 

 
                                                                                                           (8) 478 

and the dynamic free-surface condition, 479 

0
| 0.

tt a tt a a c
x x z z gz


                                                                                                                    (9) 480 

Functions J(a, c) and Ω(a, c) are given functions of Lagrangian coordinates and are defined by the initial 481 

conditions. J(a, c) is defined by initial positions of fluid particles associated with labels (a, c), and Ω(a, 482 

c) is the vorticity distribution defined by the velocity field at t = 0. It is convenient to select initial 483 

undisturbed positions of fluid particles as Lagrangian labels (a, c) = (x0, z0). This gives J = 1. For waves 484 

over a flat bed this defines a rectangular Lagrangian domain with c = 0 being the free surface and c = -485 

h being the bottom, where h is the undisturbed water depth. The boundary condition at the lower 486 

boundary can then be specified as, 487 

( , , )z a h t h                                                                                                                               (10) 488 

The presented Lagrangian formulation offers a simple treatment of vortical flows and therefore is 489 

suitable for modelling waves on vertically sheared currents. A sheared current can be defined by 490 

specifying vorticity depending only on the vertical Lagrangian coordinate c. For our choice of 491 

Lagrangian labels the parallel current can be specified as x = a + V(c)t; z = c, where V(c) = V(z0) is the 492 

current profile. Substitution to (8) gives, 493 

'( , ) ( ) ( )a c c V c                                                                                                                   (11) 494 

Therefore, waves on a sheared current with an undisturbed profile V(z0) are described by equations (7,8) 495 

with the free surface boundary condition (9), the bottom condition (10) and the vorticity distribution 496 

given by (11). Figure 5 demonstrates velocity profiles for adverse and following currents we are using 497 

in this paper and their comparison with measured experimental profiles. The current profiles applied 498 

for the Coupling Method (CFD: Coupling Method in Figure 5) are obtained from PIV and ADV 499 

(Acoustic Doppler Velocimetry) measurements of the current velocity using a Bezier smoothing 500 

algorithm.  501 

http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2006
http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2006
http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#x1-1002r2
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For convenience and efficiency of numerical realisation, we modify the original problem (7-9) and write 502 

it in the following form, 503 

( , ) ( , )( , )
( ) 0; ( ) 0

( , ) ( , ) ( , )

t t

t t

x x z xx z

a c a c a c

 
    

  
                                                                                              (12) 504 

and 505 

0
( , ) | ,

tt a tt a a c
x x z z gz RHS a t


                                                                                                       (13) 506 

where the operator Δt denotes the change between time steps and the right-hand side of the dynamic 507 

surface conditions includes various service terms. For calculations presented in this paper we use the 508 

following additional terms, 509 

2 2

, ,

1 11
( )
6 12

           ( )(( ( )) ) ( , ),

a aa tt t a tt

t a t a x

RHS x g z

k a x V c x z z P a t

  

   

                                                                                   (14) 510 

where δa and δt are the numerical mesh step in a-direction and the time discretization step. The first 511 

term in (14) is the dispersion correction term, which increases the accuracy of the numerical dispersion 512 

from second to fourth order. The second term enforces dissipation of surface perturbations. It is used 513 

for absorbing reflections, and the dissipation strength is regulated by the coefficient k(a). The last term 514 

in (14) is the prescribed time varying surface pressure gradient which is used for wave generation. 515 

The numerical wave-current flume is created by specifying inlet and outlet boundary conditions, 516 

distribution of surface dissipation k(a) and the surface pressure gradient Px(a,t) providing free in- and 517 

outflow of the current to and from the computational domain, generation of waves on/over the current 518 

and absorption of waves reflected from domain boundaries. 519 

The dissipation coefficient in the Lagrangian scheme is set to zero in the working section of the flume 520 

and gradually grows to a large value near the inlet and outlet boundaries. This results in a steady 521 

horizontal free surface at these boundaries which remain at their initial position z = 0 providing parallel 522 

inlet and outlet flows. This serves a double purpose. First, reflections from the boundaries are 523 

significantly reduced. Second, the boundary conditions at the inlet and outlet can be specified as the 524 

undisturbed velocity profile at the inlet and as a parallel flow at the outlet, 525 

in out
( , , ) ( ); z ( , , ) 0.

t a
x a c t V c a c t                                                                                                   (15) 526 

The wave is generated by creating an area in front of one of the wave absorbers where pressure 527 

distribution of a prescribed shape is defined. Time-varying amplitude of this pressure disturbance is 528 

used as a control input for wave generation. The problem is then solved numerically using a finite-529 

difference technique. More details of the numerical method can be found in Buldakov (2013, 2014). 530 

An additional difficulty with numerical realisation of the Lagrangian formulation on sheared currents 531 

is continuous deformation of the original physical domain. The accuracy of computations for strongly 532 

deformed computational cells reduces considerably. In addition, parts of the deformed physical domain 533 

can move outside the region of interest. To avoid these difficulties, we perform sheared deformation of 534 

the Lagrangian domain to compensate for the deformation of the physical domain. The deformation 535 

takes place after several time steps and moves boundaries of the physical domain back to the original 536 

vertical lines. After this Lagrangian labels are re-assigned to new values to preserve the rectangular 537 

shape of the Lagrangian computational domain with vertical and horizontal lines of the computational 538 

grid. 539 

To reproduce experimental free surface elevation records, we use the iterative procedure described in 540 

Section 2.2. Amplitudes and phases of spectral components of a pressure control signal are modified 541 

iteratively to match amplitudes and phases of the calculated linearized surface elevation spectrum at 542 

selected wave probes with target spectra. Linearized spectra of the actual experimental surface elevation 543 

at locations x = -4.7 m (amplitude matching position) and x = 0 m (focus point) are used as targets for 544 

the iterative procedure. Each numerical wave is generated with phase shifts of nπ/2, with n = 0, 1, 2, 3. 545 

http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2013
http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2013
http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2014
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This allows calculation of the linearized output signal of free surface elevation. The linearized output 546 

is then compared with the target, and corrections to the input spectrum for next iteration are calculated 547 

using the method described in Section 2.2. For further details of the iterative wave matching 548 

methodology refer to Buldakov et al. (2017). We apply the procedure to generate incoming waves for 549 

experimental cases presented in Section 2.1. 550 

Lagrangian computations of the free surface elevation and flow kinematic time histories closer to the 551 

structure are used as boundary conditions for a new, truncated 3-D numerical CFD wave flume (when 552 

compared to the CFD domain of the Direct Method; dashed lines in Figure 6). The model cylinder is 553 

centrally located in the new domain and the inlet is set at a distance of 5 m upstream from the cylinder. 554 

Although Lagrangian calculations cover the full extent of the numerical flume, only the results at the 555 

inlet location (truncated inlet in Figure 6) are used in the 3-D CFD model using the Coupling Method. 556 

The Lagrangian results are stored every 0.025 s (40 Hz) and are linearly interpolated to match the 557 

internal time step of the CFD simulation. The same outlet relaxation zone (damping zone) used in the 558 

Direct Method is used in the Coupling Method to minimise wave reflection and absorb outgoing mass 559 

fluxes.  560 

In contrast to the Direct Method, all iterations for the Coupling Method are conducted in the Lagrangian 561 

wave flume therefore allowing for a shorter CFD wave flume. The layout of the computational domain 562 

is also shown in Figure 6. Compared with the Direct Method, the distance between the (truncated) inlet 563 

boundary and the vertical cylinder is now 3 m smaller with L0 = 5 m, reducing total length of the 564 

numerical flume from 13.7 m to 10 m. More details about the CFD domains are summarised in Table 565 

1, where it is also seen that the Coupling Method is in total (including the time required for the iterations) 566 

approximately 1.5 times faster than the Direct Method despite the fact that 3-D simulations with the 567 

former method are found to require more computational time than simulations with the latter method. 568 

This increase in computational time is attributed to the additional time required for the communications 569 

between the externally provided inlet boundary conditions and the OpenFOAM model. In particular, 570 

small fluctuations in inlet boundary conditions require a smaller time step to ensure the stability of the 571 

simulations.  572 

 573 

3.4 Validation of wave-current generation methods 574 

The computational results with both modelling approaches for wave-current interactions without the 575 

structure in place are now validated against experimental measurements. Free surface elevation time 576 

histories at x = -4.7 m (amplitude matching position) and at x = 0 m (focus point) with following and 577 

adverse sheared currents and without a current are presented in Figure 7. The outputs of the Lagrangian 578 

numerical model are also included and are referred to as LaNM. An overall good agreement between 579 

experimental results and results from both the Direct and Coupling Methods is observed, with slightly 580 

larger differences being found for the Direct Method. As discussed previously, wave-current generation 581 

is different between the two numerical methods (Direct and Coupling Methods) and between numerical 582 

methods and experiments, and thus the generation of different spurious waves is expected. This explains 583 

the main differences between the methods and between calculations and experiments. The generation 584 

of spurious long waves will be discussed in more detail in the following section. 585 

 586 

http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2017
http://www.homepages.ucl.ac.uk/~uceseug/tmp/Lagr/Lagr_html/Lagr.html#XBuldakov2017
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 587 

Figure 7 Comparisons of the free surface elevation time histories for cases with and without a sheared 588 

current. Left: x = -4.7 m (amplitude matching position); Right: x = 0 m (phase focus position). From 589 

top to bottom: following current, no current, and adverse current. All the results presented consider 590 

cases without the structure in place. 591 

 592 

It is clear from Figure 7 that the wave shapes at the phase focussing position (right panels) for the cases 593 

with and without sheared currents are similar to each other as a result of the carefully controlled wave 594 

generation. The linearized spectrum at the focus point is the same for the experiments and computations 595 

for all the current cases considered (following, no-current and adverse current), while nonlinear 596 

contributions from higher order harmonics of the focussed wave group for different current cases are 597 
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rather different. This leads to the differences in the main focused wave crests and the following crests 598 

at the focussed position. Further analysis on the harmonic structure of the free surface elevation will be 599 

presented in the following section. Additionally, it can be seen that the wave shapes at the amplitude 600 

matching position (left panels) are rather different from each other for all the current cases considered. 601 

This is due to the fact that the dispersion relations are different for waves on following, zero and adverse 602 

currents. 603 

Flow kinematics computed at and below the peak of the main wave crest at focus are compared with 604 

PIV measurements in Figure 8. It can be seen from Figure 8 that the two CFD models (Direct and 605 

Coupling Methods) and the Lagrangian model all provide very good predictions for the flow kinematics 606 

below still water level (0 m). The largest discrepancies between the two CFD models (Direct and 607 

Coupling Methods), the Lagrangian and experimental measurements are seen to occur in the vicinity of 608 

wave crests. This difference in the velocity profile is partly caused by the inaccuracy of the numerical 609 

velocity profile (Figure 5). The limitation of the VOF method in reconstructing very steep and sharp 610 

free-surfaces is also responsible for this difference around the interface (Wroniszewski et al., 2014). 611 

There is a sharp discontinuity of density at the interface, and the density-weighted velocity of air using 612 

the VOF factor α above the interface is close to zero, the velocity across the small interface between air 613 

and water is smeared accordingly.   614 

 615 

 616 

Figure 8 Velocity profiles under the wave crest for focussed wave groups for all three cases considered. 617 

Numerical calculations and experimental measurements are included. A -- Adverse current; B -- no 618 

current; C -- following current. 619 

 620 

4. Wave-current-structure interactions 621 

Wave-current input conditions generated by the Direct Method and the Lagrangian model are now used 622 

to simulate the wave-current-structure interaction using CFD-based models. We consider six cases, 623 

including waves on following and adverse currents and without a current interacting with cylinders of 624 

two diameters D = 0.25 m and D = 0.165 m. 625 

A B C 



18 

 

Comparisons between computed and measured time histories of the horizontal load on the cylinder and 626 

the free surface elevation at the front of the cylinder are presented in Figures 9 and 10. Results for 627 

maximum free surface elevation and peak forces are summarized in Table A2 of Appendix 2.  628 

Considering the cases with the larger cylinder (Figure 9), the time histories of the non-linear elevation 629 

and horizontal force are predicted sufficiently well by either of the two approaches and the differences 630 

are observed mostly in the amplitude of the first and the main crests which are also illustrated in Figure 631 

8. The peak free surface elevation and horizontal force are generally very slightly under-predicted by 632 

both approaches. 633 

An equally good comparison between experimental and numerical results is reported in Figure 10 for 634 

the cases with the smaller cylinder. Differences in computed elevations are relatively larger than those 635 

for the larger cylinder, but differences in peak force predictions are as small as those for the larger 636 

cylinder. In all six cases considered the highest discrepancies between experimental and numerical force 637 

results are seen for the cases with adverse currents and in particular for the smaller cylinder. 638 

Computational results presented so far demonstrate a sufficient capacity of both CFD approaches 639 

(Direct and Coupling Methods) to model wave-current-structure interactions.  640 

In the same time, CFD model cross-comparisons, by referring to the predicted elevation and force 641 

profiles, Figures 8 and 9, and the peak elevation and force, Table A2, show a good agreement and 642 

neither of the two approaches appears to be clearly superior to the other. Nevertheless, to further explore 643 

the source of the small differences observed between computations and between both computations and 644 

measurements, the fully non-linear elevation and force time histories are decomposed into their linear 645 

and non-linear components using the methodology described in Section 2.2.  646 

The decomposed spectrum and the inverse Fourier transformation of each spectral part (e.g. time 647 

histories of the 2nd order difference, linearized, 2nd order sum parts etc.) are shown in Figures 11-14. 648 

The root mean square error for each spectral part is calculated as:  649 

2

1( )
RMSE

N

i pi mi
a a

N

 
                                                                                                                                (16) 650 

where api and ami are the spectral amplitudes of the ith (i = 0, 1, 2, 3) frequency predicted by the 651 

computations, and measured in the experiments, respectively. N is the number of frequencies considered 652 

in the calculations of the RMS error. N varies from 256 to 80, being larger for the linearized part and 653 

decreasing for the nonlinear part. The range of frequencies considered for calculating the RMSE is 0 < 654 

f/fp < 1 for the 2nd order difference part (S0), 0 < f/fp < 3 for the linearized part (S1), 1 < f/fp < 3 for the 655 

2nd order sum part (S2), and 1.5 < f/fp < 3.5 for the third order part (S3). It is noted that each frequency 656 

range was selected to include frequency components with non-negligible energy. As such, the integral 657 

spectral error calculated with equation (16) is used as an integral measure to evaluate the level of 658 

agreement between experimental and numerical results. The RMS errors for both methods and for all 659 

test cases are shown in Figures 11 to 14 and they are summarized in Table A3 of the Appendix 2. 660 

Considering the 2nd order difference harmonics, discrepancies are seen in the inverse Fourier time 661 

histories of surface elevation and horizontal force on both cylinders. Given that waves are generated 662 

linearly in the physical flume the occurrence of, e.g., the 2nd order spurious wave crests at approximately 663 

-3 s < t < 0 s in Figures 11 and 13 is not surprising. It is also worth noting that the same methodology 664 

(Section 2.2) was used to reproduce the experimental results in the Coupling Method and the Direct 665 

Method. As such, the presence of spurious wave crests in the numerical results is also not surprising. 666 

The Coupling Method is seen to somehow reproduce more closely 2nd order difference harmonics with 667 

the experimental results, especially for the tests without currents. Given the variability in wave 668 

generation methods between the flumes, and since the 2nd order wave generation is not employed, the 669 

differences in the elevation of the 2nd order difference harmonic are expected. 670 

The best agreement between experimental and numerical results is observed for the linearized part of 671 

the spectra. This is an expected outcome since with the iterative methodology the computations are 672 

forced to match the linearized part extracted from the experimental spectrum. However, it is illustrated 673 

by the time histories in Figures 11 to 14 and the RMS errors in Table A3, the Coupling Method is more 674 

efficient in reproducing the experimental results.  675 
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 676 

 677 

Figure 9 Comparisons of the free surface elevation time histories at the front of the cylinder (left) and 678 

the horizontal forces on the cylinder (right) for the larger cylinder (D = 0.25 m). From top to bottom: 679 

following current; no current; adverse current. 680 

 681 

In contrast to spurious long waves (2nd order difference harmonic), spurious short-wave components 682 

(2nd order sum harmonic) travel with a celerity smaller than that of the wave group and thus they arrive 683 

at and interact with the structure after the focused wave. As a result, the agreement between 684 

experimental (elevation and force) measurements and computations for the 2nd order sum harmonics 685 

improves, see for example S2 for -1 s < t < 1 s in Figures 11 to 14. Particularly, for tests with the smaller 686 

cylinder, the RMS error for the forces predicted by the Coupling Method is smaller but once again the 687 

difference with the errors calculated for the Direct Method is not significant.    688 

 689 
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 690 

Figure 10 Comparisons of the free surface elevation time histories at the front of the cylinder (left) and 691 

the horizontal forces on the cylinder (right) for the smaller cylinder (D = 0.165 m). From top to bottom: 692 

following current; no current; adverse current. 693 

 694 

Similar conclusions are drawn from Figures 11 to 14 and Table A3 about the 3rd order sum harmonics 695 

albeit the agreement between the 3rd order horizontal forces is not as impressive as the agreement 696 

between experimental and numerical free surface elevation. Although the combination of four phase 697 

shifted elevation/force signals is sufficient to efficiently isolate the 3rd order harmonics (Buldakov et al., 698 

2017), the very small amplitude of the 3rd order harmonics challenges the accuracy limits of 699 

experimental measurements. With this in mind, the performance of both Methods is considered to be 700 

satisfactory with the Coupling Method results being slightly closer to the experiments. Despite the small 701 

amplitudes, the 3rd order force harmonics are still important since they are often related to the ‘ringing’ 702 

phenomenon. 703 

With regards to the inter-comparison of the two numerical approaches, Figures 11 to 14 reveal no 704 

significant differences and neither model is seen to outperform the other. The small differences in the 705 

performance of the Coupling and the Direct Method are likely due to the fact that the Lagrangian model 706 

reconstructs the experimental input conditions with slightly higher precision; see also Figure 7. Small 707 

discrepancies in the 2nd order difference components can be attributed to the different wave generation 708 

methods adopted, but they are not seen to result in significant discrepancies in the overall computations 709 

of free surface elevation and force time series, e.g. Figures 9 and 10. In general, RMS errors for the 710 

Coupling Method tend to be smaller than those for the Direct Method. This in combination with the 711 

smaller computational effort required (Table 1) shows an advantage in favour of the Coupling Method. 712 

 713 
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5. Force decomposition 714 

We have demonstrated in Figures 12 and 14 that the harmonic structure of forces on a cylinder in waves 715 

and sheared currents can be accurately decomposed into harmonic contributions using the four-phase 716 

based decomposition method in Section 2.2. Chen et al. (2018) showed that the harmonic structure of 717 

force on a vertical cylinder in a wave group without current can be adequately modelled based on only 718 

the linear component as follows. We write the linear component in time as 719 

1 1 1
F f                                                                                                                                                              (17) 720 

where 
1

is the peak of the envelope of F1 in time and f1 carries all the phase information and group 721 

structure in time. Then the assumed form of the total force in time is  722 
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The force approximation contains Stokes-like amplitude terms 3

1
/ gR  based on the peak amplitude 724 

of the linear force component, non-dimensional force coefficients at each order SFFn and phase 725 

coefficients ( , )
FFn FFn

  with 2 2 1
FFn FFn

   . R = D/2 is the radius of the cylinder. The subscript H 726 

denotes the Hilbert transform of the f1 function in time, and the increasingly complicated products of f1 727 

and f1H denote the shape of the nth harmonic in time. The coefficients SFFn and αFFn, βFFn are estimated 728 

by weighted fits, as described in Chen et al. (2018). Chen et al. (2018) showed that this approximate 729 

form works well for all the harmonics up to the 5th but that the 3rd harmonic fits are less good. 730 

Here we briefly demonstrate that these decompositions work equally well for forces from waves on 731 

sheared currents, and that the form of the current affects the force coefficients SFFn significantly, but the 732 

phase terms ( , )
FFn FFn

  only slightly. The coefficient values are given in Table A4 of Appendix 2. We 733 

note in passing that the assumed form of the inline force on the cylinder (equation 18) neglects drag 734 

completely. Clearly, for the flow conditions reported here, unsteady inviscid components dominate the 735 

force time histories. 736 

The reconstructed harmonics up to the 4th harmonic are compared to the extracted experimental 737 

harmonics in Figure 15 for the larger cylinder, and in Figure 16 for the smaller cylinder. The 738 

experimental harmonics are extracted with the four phase decomposition method of Section 2.2 and 739 

Fitzgerald et al. (2016) and the 4th sum harmonic is separated from the 2nd order difference term by 740 

digital filtering. It can be seen from the figures that the reconstructions of the 2nd and 4th harmonics 741 

work well, and for both cylinders the amplitudes of the harmonics are largest for the following current 742 

and smallest for the adverse current. These bracket the case with no current. The 3rd harmonic 743 

contributions are fitted less well with significant structure outside the time range of the (linear 744 

envelope)3 as discussed by Chen et al. (2018) for cases without current. That is, obvious wiggles outside 745 

the envelopes of 3rd harmonics are observed as shown in Figures 15 and 16; the envelopes of 3rd 746 

harmonics are approximated by raising the linear envelope to the power three, and then scaled to fit the 747 

measured envelopes of the 3rd harmonic component by a least-squares method (Chen et al., 2018). 748 

Further analysis of the forces and scattered waves is left for a follow-on paper. 749 

 750 

6. Conclusions 751 

Two approaches are proposed and used in this numerical study to generate nonlinear focussed wave 752 

groups propagating on a sheared current so as to allow an investigation of complex interactions between 753 

a combined wave-current flow and a vertical surface piercing cylinder, with applications to problems 754 
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in coastal engineering. Both approaches employ an iterative wave-on-current focussing methodology 755 

to ensure controlled wave-current generation. In the first approach, i.e. the Direct Method, the iterative 756 

methodology is applied directly in a 2-D OpenFOAM model to provide input conditions for a 3-D 757 

OpenFOAM model, while in the second approach, i.e. the Coupling Method, the input wave-current 758 

kinematics of the 3-D OpenFOAM model is created in a faster numerical model. In this study, a 759 

Lagrangian numerical wave-current flume is used as the fast model for reconstructing experimental 760 

surface elevation and kinematics of incoming focussed waves on sheared currents. There is no necessity 761 

to have such a long distance between the wavemaker and the structure to ensure a full development of 762 

the combined wave-current flow before the complex interactions with the structure.Thus using the 763 

Coupling Method allows a smaller 3-D computational domain and shorter simulation time for modeling 764 

wave-current-structure interactions when compared to the Direct Method.  765 

It is worth noting that the wave-on-current focussing methodology applied in this study considers only 766 

the linearized part of wave group spectrum, and phase and amplitude corrections are performed at 767 

different locations to improve the effectiveness and convergence of the iterative procedure; the phases 768 

are corrected at the pre-selected focus location, and amplitudes are corrected at a location well before 769 

the focus position.  770 

Good agreement between the experimental and numerical results demonstrates that both numerical 771 

methods are capable of replicating experimental wave-current flows, and then accurately modelling 772 

interactions between surface piercing cylinders and focussing waves on sheared currents. It is found 773 

that the Coupling Method is computational cheaper due to the application of the iterative wave-on-774 

current focusing methodology in the faster Lagrangian model. More specifically, for the simulations 775 

considered in this study the computational efficiency is increased by a factor of approximately 1.5. 776 

Overall, both approaches can be recommended as practical methods for studies of wave-current 777 

interactions with structures, especially the Coupling Method that has a higher computational efficiency. 778 

It is worth mentioning that the Lagrangian model can be coupled with various models and solvers, and 779 

is thus applicable for a wide range of wave-current-structure interaction problems. 780 

It is also found that the Stokes-wave perturbation expansion of Chen et al. (2018) can be generalized to 781 

cylinder loads arising from wave groups on adverse and following currents and without a current. The 782 

higher-order harmonic shapes can be estimated from knowledge of the linear components alone, and 783 

the actual time history at each harmonic can be reconstructed to a reasonable approximation from the 784 

linear component time history, using an amplitude coefficient and a phase angle at each harmonic. The 785 

2nd and 4th harmonic force coefficients are found to be the largest on a following current, and the smallest 786 

on an adverse current. The results for waves without a current sit in between. The 3rd harmonic forces 787 

fit the simple expansion less well, as observed by Chen et al. (2018) for the case of no current. The 788 

application of this reconstruction method to a wide range of wave-current conditions will be considered 789 

in future work. 790 
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     799 

Figure 11 Harmonic components of the free surface elevation at the front face of the larger cylinder (D = 0.25 m). From top to bottom: Amplitude spectra of 800 

the free surface elevation, 2nd order difference harmonic, linear harmonic, 2nd order sum harmonic, and 3rd harmonic. From left to right: following current; no 801 

current; adverse current.   802 
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 803 

Figure 12 Harmonic components of the wave loading on the larger cylinder (D = 0.25 m). From top to bottom: Amplitude spectra of the force, 2nd order 804 

difference harmonic, linear harmonic, 2nd order sum harmonic, and 3rd order harmonic. From left to right: following current; no current; adverse current.   805 
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 806 

Figure 13 Harmonic components of the free surface elevation at the front face of the smaller cylinder (D = 0.165 m). From top to bottom: Amplitude spectra of 807 

the free surface elevation, 2nd order difference harmonic, linear harmonic, 2nd order sum harmonic, and 3rd order harmonic. From left to right: following current; 808 

no current; adverse current.   809 
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 810 

Figure 14 Harmonic components of the wave loading on the smaller cylinder (D = 0.165 m). From top to bottom: Amplitude spectra of the force, 2nd order 811 

difference harmonic, linear harmonic, 2nd order sum harmonic, and 3rd order harmonic. From left to right: following current; no current; adverse current. 812 
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                     813 

Figure 15 The reconstruction of horizontal wave loading on the larger cylinder (D = 0.25 m). From top to bottom: Total force, linear harmonic, 2nd order sum 814 

harmonic, 3rd order harmonic, and 4th order harmonic. From left to right: following current; no current; adverse current. 815 
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                  816 

Figure 16 The reconstruction of horizontal wave loading on the smaller cylinder (D = 0.165 m). From top to bottom: Total force, linear harmonic, 2nd order sum 817 

harmonic, 3rd order harmonic and 4th order harmonic. From left to right: following current; no current; adverse current. 818 
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Appendix 1. Numerical schemes and solvers 819 

The selected numerical schemes used to discretize the different terms in the governing equations, and 820 

the settings for the linear solvers and for the solution algorithm are summarized in Table A1. In 821 

OpenFOAM, they can be specified in the fvSchemes and fvSolution files, respectively.  822 

The treatment of the first order time derivative terms (∂/∂t) in the momentum equations is specified in 823 

the ddt scheme. Three transient schemes are widely used for engineering applications including Euler, 824 

Backwards and CrankNicolson (CN). The Euler scheme corresponds to the first-order forward Euler 825 

scheme, while Backwards is a second-order implicit time discretization scheme in which the results 826 

from the current and two previous time steps are used. A blending factor is introduced in the 827 

CrankNicolson (CN) scheme to improve its stability and robustness; the blending factor of 1 828 

corresponds to a pure CN scheme with a second-order accuracy, and 0 corresponds to pure Euler. The 829 

simulations with the Euler scheme are faster but may lead to a heavy diffusion of the air-water interface. 830 

The use of a CN scheme is recommended for waves with long propagation distances and times (Larsen 831 

et al., 2018).  832 

One of major challenges in CFD calculations is the treatment of convective/advective terms in the 833 

governing equations. Different schemes are specified for different convective terms as they are 834 

fundamentally different. The standard finite volume discretization of Gaussian integration is 835 

implemented in OpenFOAM in which the integral over a control volume is converted to a surface 836 

integral using the Gauss theorem. Accordingly, the word “Gauss” is specified in the numerical schemes. 837 

The Gaussian integration requires the interpolation of the field variable from cell centres to face centres 838 

using for example central/linear or upwind differencing. The former is second-order accurate, but may 839 

cause oscillations (unboundedness) in the solution, while the latter is first order accurate, thus, is more 840 

diffusive. In lieu of this, various total variation diminishing (TVD) and normalized variable diagram 841 

(NVD) schemes that utilize combined upwind and linear differencing are implemented in OpenFOAM, 842 

including schemes of limitedLinear and vanLeer. The use of upwind differencing or linear upwind 843 

differencing for the momentum flux is preferable if the loads on the structure are of main concern, such 844 

as the cases in this study. A similar conclusion is presented in Larsen et al. (2018). 845 

Generally, the linear schemes are used for calculating the gradients and the interpolation from cell 846 

centres to face centres although higher order accurate schemes are available. The laplacian scheme 847 

requires the specification of an interpolation scheme for e.g. the dynamic viscosity μ, and a surface 848 

normal gradient scheme for e.g. ▽u. Again, linear schemes are often used with orthogonality corrections 849 

for surface normal gradients. For more detailed descriptions on various numerical schemes in 850 

OpenFOAM, the reader is referred to the OpenFOAM user’s guide (Greenshields, 2015) and 851 

programmer’s guide (Greenshields, 2015) as well as Larsen et al. (2018).  852 

The iterative solvers, solution tolerances and algorithm settings for solving the discretised algebraic 853 

equations are specified in the fvSolution file. Various iterative solvers are implemented in OpenFOAM, 854 

including preconditioned (bi-) conjugate gradient solvers (PCG/PBiCG) and smoothSolver in which the 855 

specification of preconditioning of matrices (preconditioner) and smoother is required, respectively. 856 

The generalised geometric-algebraic multi-grid (GAMG) solver is also commonly used in which the 857 

initial guess of the accurate solution on the finer simulation mesh is obtained by mapping the quicker 858 

solutions on a coarser mesh to this finer mesh. Generally, the GAMG solver is quicker than the 859 

smoothSolver, whereas the latter may yield more accurate results. The use of PCG/PBiCG solver sits 860 

in between. Detailed descriptions refer to the OpenFOAM user’s and programmer’s guides (2015). 861 

In this study, the compression velocity uα in the equation (5) equals to the flow velocity at the interface 862 

by specifying cAlpha to be 1. A larger value of cAlpha leads to a sharper interface but also the 863 

appearance of wiggles in the air-water interface which is found to be responsible for un-physical 864 

steepening of waves and over-estimations of wave celerity (Larsen et al., 2018). Whereas, the use of a 865 
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smaller cAlpha reduces the wiggles but at the same time leads to a more significant smearing interface. 866 

Another two important controls over the α equation are nAlphaCorr and nAlphaSubCycles; the former 867 

specifies how many times the α field should be solved within a time step, and the latter represents the 868 

number of sub-cycles for the α equation within a given time step. 869 

As aforementioned, the PISO algorithm is applied in this study, thus, nOuterCorrectors = 1, and the 870 

parameter nCorrectors is the number of pressure corrector iterations in the PISO loop and the 871 

momentumPredictor is a switch that controls solving of the momentum predictor. Each time step will 872 

be begun by solving the momentum equation rather than the pressure equation if the momentum 873 

predictor is turned on. 874 

 875 

Numerical schemes 

Terms in 

equations 

Representation in 

OpenFOAM 
Discretization schemes Description 

Time 

derivatives 
ddt Euler 

First order forward Euler 

scheme 

Gradients grad Gauss linear  -- 

Divergence 

(momentum 

flux) 

div(rho*phi, U) Gauss linearUpwind, grad(U) 

Second order, upwind-

biased, specification of 

velocity gradient is 

required. 

Divergence  

(mass flux) 
div(phi, alpha) Gauss vanLeer 

Total variation 

diminishing (TVD)  

Divergence div (phib, alpha) Gauss linear -- 

Laplacian  laplacian Gauss linear corrected 
Interpolation and snGrad 

schemes are required. 

Interpolation interpolation linear -- 

Surface normal 

gradient 
snGrad corrected  

Linear with orthogonality 

correction 

Iterative solvers 

Equations Variable field Solvers 

Left to right are: solver, 

preconditioner/smoother, 

tolerance, relative 

tolerance 

Pressure p* 
pcorr/p_rgh/ 

p_rghFinal 
PCG, DIG, 1e-5, 0 

Velocity U U smoothSolvers, symGaussSeidel, 1e-06, 0 

VOF function 

α 
alpha.water smoothSolvers, symGaussSeidel, 1e-08, 0 

Algorithm controls 

Artificial 

compression 

term uα 

cAlpha 1 

uα = u in which u is the 

flow velocity at the 

interface 

PISO loop momentumPredictor no 
Loop starts by solving the 

pressure equation 

PIMPLE loop nOuterCorrectors 1 
PISO is used, otherwise, 

PIMPLE is used. 

PISO loop nCorrectors 3 
pressure corrector 

iterations 

Loop over the 

α equation 

nAlphaCorr 2 α corrector iterations 

nAlphaSubCycles 1 Number of sub-cycles 

Table A1 The selected numerical schemes and iterative solvers. 876 
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Appendix 2. Detailed model comparisons and coefficients used for the reconstruction 877 

Table A2 summarized the results for maximum surface elevation and peak forces, and all differences 878 

in Table A2 are calculated with respect to the experimental data and they are only used for a qualitative 879 

model comparison. Integral spectra errors are reported in Table A3 and used as an approach 880 

demonstrating model accuracy in depth. Table A4 summarized the coefficients used for reconstructing 881 

the higher order harmonics from the linear components alone, as shown in Figures 15-16. 882 

 883 

Table A2 Comparisons between the two models in terms of wave crests/troughs and peak forces 884 

Cases 

Exp.  

Direct Method Coupling Method 

Cylinders Parameters 
Current 

(Heading) 
Num.  

Differences 

(%) 
Num. 

Differences 

(%) 

D =  

0.25 m 

Wave crest 

(m) 

Following 0.144 0.135 -6 0.135 -6 

No current 0.118 0.108 -8 0.114 -3 

Adverse 0.107 0.107 0 0.093 -13 

Wave 

trough (m) 

Following -0.077 -0.065 -16 -0.070 -9 

No current -0.064 -0.055 -14 -0.061 -5 

Adverse -0.042 -0.046 10 -0.043 2 

Positive 

peak forces 

(N) 

Following 54.17 53.07 -2 52.67 -3 

No current 48.10 48.10 0 49.70 3 

Adverse 46.90 43.89 -6 45.46 -3 

Negative 

peak forces 

(N) 

Following -49.04 -44.75 -9 -48.90 0 

No current -51.25 -48.07 -6 -53.63 5 

Adverse -46.03 -48.33 5 -44.94 -2 

D = 0.165 

m 

Wave Crest 

(m) 

Following 0.100 0.120 20 0.120 20 

No current 0.105 0.096 -9 0.105 0 

Adverse 0.090 0.085 -6 0.091 1 

Wave 

trough (m) 

Following -0.053 -0.049 -8 -0.055 4 

No current -0.059 -0.054 -8 -0.051 -14 

Adverse -0.040 -0.055 38 -0.047 18 

Positive 

peak forces 

(N) 

Following 22.51 23.84 6 22.51 0 

No current 22.51 20.93 -7 21.69 -4 

Adverse 22.00 18.28 -17 18.28 -17 

Negative 

peak forces 

(N) 

Following -24.53 -18.67 -24 -20.17 -18 

No current -25.71 -19.66 -24 -22.64 -12 

Adverse -23.04 -20.9 -9 -19.90 -14 

.885 
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Table A3 Root-mean-square errors for various harmonics in spectra space 886 

Cases Direct Method  Coupling Method  

Cylinders Parameters 
Current 

(Heading) 

2nd order 

dif. 

Linea

rized 

2nd 

order 

sum 

3rd order 
2nd order 

dif. 

lineariz

ed 

2nd order 

sum 
3rd order 

D =  

0.25 m 

Free surface 

elevations 

(× 10-2 m) 

Following 0.46 0.84 0.52 0.18 0.21 0.82 0.50 0.16 

No current 0.23 0.68 0.31 0.12 0.12 0.68 0.34 0.13 

Adverse 0.23 1.05 0.19 0.11 0.22 0.94 0.17 0.11 

Forces 

(N) 

Following 0.56 0.96 0.76 0.27 0.31 0.88 0.28 0.11 

No current 0.48 0.70 0.43 0.12 0.88 0.97 0.82 0.11 

Adverse 0.19 0.58 0.51 0.073 0.89 0.85 0.29 0.09 

D =  

0.165 m 

Free surface 

elevations 

(× 10-2 m) 

Following 0.42 0.17 0.15 0.06 0.15 0.17 0.09 0.06 

No current 0.13 0.12 0.08 0.04 0.05 0.10 0.03 0.03 

Adverse 0.05 0.14 0.07 0.04 0.2 0.11 0.04 0.02 

Forces 

(N) 

Following 1.03 0.55 0.35 0.11 0.71 0.35 0.61 0.15 

No current 0.07 0.58 0.23 0.068 0.09 0.33 0.22 0.08 

Adverse 0.62 0.32 0.25 0.051 0.31 0.44 0.26 0.051 
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Table A4 Coefficients for reconstructing the higher order harmonics for all three flow conditions 888 

kR kh  Order 
Coefficients 

Following No current Adverse 

0.242 

(larger 

cylinder) 

0.97 

Amplitude 

(SFFn) 

2 3.03 2.58 2.06 

3 0.34 0.27 0.18 

4 0.98 0.54 0.23 

Phase (deg.) 

(αFFn, βFFn)* 

2 97 94 73 

3 49 305 148 

4 145 123 68 

0.160 

(smaller 

cylinder) 

0.97 

Amplitude 

(SFFn) 

2 2.01 1.89 1.51 

3 0.12 0.34 0.32 

4 0.33 0.22 0.09 

Phase (deg.) 

(αFFn, βFFn)* 

2 99 99 81 

3 183 245 190 

4 165 128 48 

* Phase arctan( / )
FFn FFn

    889 
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