Astronomy and Computing 25 (2018) 230-237

.

Contents lists available at ScienceDirect

Astronomy and
Computing

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Fast sampling from Wiener posteriors for image data with dataflow n

engines

Check for
Updates

N. Jeffrey “**, A.F. Heavens ", P.D. Fortio "

@ Department of Physics and Astronomy, University College London, Gower Place, London WCIE 6BT, UK
b Imperial Centre for Inference and Cosmology (ICIC), Imperial College London, London SW7 2AZ, UK

HIGHLIGHTS

Quantifying uncertainty of noisy and incomplete image data.

Messenger field sampling of the Wiener posterior is suited to Dataflow Engines (DFE).
Speed up > 11 with 8 DFEs (in 1U MPC-X box) compared to 1U server presenting 32 CPUs.
This can improve dark matter maps and determination of cosmological parameters.

ARTICLE INFO

Article history:

Received 11 June 2018

Accepted 3 October 2018
Available online 24 October 2018

Keywords:

Dataflow engines
Reconfigurable hardware
Data analysis

Bayesian statistics
MCMC

Wiener filter

ABSTRACT

We use Dataflow Engines (DFE) to construct an efficient Wiener filter of noisy and incomplete image data,
and to quickly draw probabilistic samples of the compatible true underlying images from the Wiener
posterior. Dataflow computing is a powerful approach using reconfigurable hardware, which can be
deeply pipelined and is intrinsically parallel. The unique Wiener-filtered image is the minimum-variance
linear estimate of the true image (if the signal and noise covariances are known) and the most probable
true image (if the signal and noise are Gaussian distributed). However, many images are compatible with
the data with different probabilities, given by the analytic posterior probability distribution referred to
as the Wiener posterior. The DFE code also draws large numbers of samples of true images from this
posterior, which allows for further statistical analysis. Naive computation of the Wiener-filtered image is
impractical for large datasets, as it scales as n®, where n is the number of pixels. We use a messenger field
algorithm, which is well suited to a DFE implementation, to draw samples from the Wiener posterior, that
is, with the correct probability we draw samples of noiseless images that are compatible with the observed
noisy image. The Wiener-filtered image can be obtained by a trivial modification of the algorithm. We
demonstrate alower bound on the speed-up, from drawing 10° samples of a 1282 image, of 11.3 4= 0.8 with
8 DFEs in a 1U MPC-X box when compared with a 1U server presenting 32 CPU threads. We also discuss
a potential application in astronomy, to provide better dark matter maps and improved determination of

the parameters of the Universe.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

and moreover the filtered data are also the maximum a posteriori
(MAP) values if the data have Gaussian signal and noise. To be

Dataflow computing has recently aided the significant acceler-
ation of many computationally-intensive and data-intensive prob-
lems. This paper discusses the use of Dataflow Engines (DFEs) for
sampling realisations of noise-free images from the Wiener poste-
rior distribution given noisy and incomplete data, with particular
applicability to astronomy and cosmology.

The Wiener filter (Wiener, 1949) is a useful statistical tool in
many image analyses, as it is a minimum variance linear filter,

* Corresponding author at: Department of Physics and Astronomy, University
College London, Gower Place, London WC1E 6BT, UK.
E-mail address: niall.jeffrey.15@ucl.ac.uk (N. Jeffrey).

https://doi.org/10.1016/j.ascom.2018.10.001

more specific, if the covariance matrices of the noise and signal are
known, then the Wiener filtered image has the smallest variance of
any linear-filtered image. Mathematically it is straightforward to
write down the expression for the Wiener-filtered image, and the
covariance of compatible images, but evaluation is problematic as
it involves the inversion of large matrices that are in general non-
diagonal. As image datasets become larger, naive Wiener methods
become unfeasible (requiring approximations such as re-binning
to larger pixels or assuming white noise).

By using messenger field algorithms (described in Section 2.2)
the Wiener image and posterior can be computed feasibly, with
no need to simplify the existing algorithms. Furthermore, the

2213-1337/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ascom.2018.10.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2018.10.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:niall.jeffrey.15@ucl.ac.uk
https://doi.org/10.1016/j.ascom.2018.10.001
http://creativecommons.org/licenses/by/4.0/

N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237 231

repeated operations inherent in drawing samples from the Wiener
posterior lend themselves to efficient computation on DFEs, and
we demonstrate that by a comparison with an implementation on
multiple CPUs.

1.1. Data model

Although the typical applications of Wiener filters involve 2D
image data, the formalism is general. In any case, we arrange the
2D pixel data as a list, and thus describe it by a data vector d, and
the true image is similarly described by a vector s.

Our linear data model assumes that data d and true signal s are
related by

d=As+n. (1)

where n is random noise, and there is a known linear operator
matrix A, which in the simplest case is just the identity matrix.

The Wiener filter W (Wiener 1949, Zaroubi et al. 1995) is given
by

W = SAT(ASAT +N) ', (2)

and the Wiener filtered solution, which is the minimum-variance
linearly-obtained solution for the true image, is

sw=Wd. (3)

In these equations, S = (ssf) and N = (nnf) are the signal and
noise covariance matrices respectively, which are assumed to be
known, and we have assumed that (s) = (n) = 0 for simplicity
(this can easily be relaxed). The angle brackets indicate the expec-
tation value, equal to the average over infinitely many realisations
of the signal for ergodic fields. If, as we will assume, the pixel noise
is uncorrelated, then N is diagonal in pixel space. In addition to
pixel noise, missing data in a given pixel can be incorporated into
the Wiener filter by setting the pixel noise variance to infinity.

As mentioned in Section 2, the Wiener filter reconstruction, sy,
is the linear minimum variance filter for a given S and N regardless
of the statistical properties of either the signal or the noise. Note
that the Wiener filtered image variance is biased low; e.g. high
intensity pixels are suppressed. For Gaussian signal and noise, the
Wiener filter additionally becomes the MAP estimate. In addition
to computing the MAP estimate, for statistical purposes it is often
useful to draw samples of maps, that are compatible with the data,
with the appropriate probability. These can be used for subsequent
statistical analysis of the true image, such as determining the
uncertainty in a given pixel. This is discussed further in Section 2.1.

Calculation of the Wiener filter is challenging due to the inver-
sion of covariance matrices, which may not be diagonal, and can
become prohibitively time consuming for large images, especially
when one notes that for an N x N image, the matrices are N?> x N2
in size.

In some applications the signal is statistically homogeneous,
leading to a diagonal signal covariance in the Fourier/harmonic
domain, which leads to a route to a solution that does not involve
the inversion of large non-diagonal matrices (Elsner and Wandelt,
2013). This is not trivial, since although independent noise has
a diagonal covariance matrix in pixel space, it is not diagonal in
harmonic space if the dataset has varying noise variance and is
thus heteroscedastic. This situation automatically arises if there are
missing data, but not only in this case. Therefore, in general there
is no natural basis in which both the signal and noise covariance
matrices are sparse. It is possible to take advantage of the bases in
which the covariance matrices are sparse by using algorithms that
employ so-called “messenger fields” (Elsner and Wandelt, 2013) to
convey information between harmonic and pixel space.

The messenger field class of algorithms is highly suited to
a Dataflow implementation. Using reconfigurable hardware ac-
celerators rather than CPUs helps to deal iteratively with large
volumes of data. DFEs have recently been successfully applied
to a wide range of scientific problems, including geoscience (Gan
et al., 2017), fluid-dynamics (Diiben et al., 2015), artificial neural
networks (Liang et al., 2018), quantum chemistry (Cooper et al.,
2017), and genomics (Arram et al., 2015).

In Section 2, we describe the Wiener filter in a Bayesian frame-
work, and show how messenger fields are used to draw samples
from the Wiener posterior probability distribution. In Section 3, we
describe Dataflow computing and present our implementation of
the Wiener sampler. We present the results in Section 4. In Section
5, we describe our motivation for this work as an application to
upcoming large cosmology surveys.

2. Theoretical background
2.1. Wiener posterior

For the linear model of Eq. (1), the Wiener filter, with W given
by Eq. (2), is a linear operator which minimises the variance

V = (Wd —s)f(wd —s)) . (4)

From a different starting point, for the Wiener posterior, we be-
gin by assuming a Gaussian likelihood for the pixel noise! (Jasche
and Lavaux, 2015):

Pr(dls, N) = exp[(d—As)IN"'(d — As)] .5

1 1
JdetzzN) L 2
Assuming that the prior on the signal is that of a Gaussian
random field,

Pr(s|S) = —lsTS_ls] , (6)

7exp[
(det27S) 2
then using Bayes’ theorem and the fact that Pr(d|S, s, N) = Pr(d|s,
N), the full Wiener posterior can be found:
Pr(d|s, N)Pr(s|S, N)
Pr(d|N)
1 1

J(de27S)/([det2n N)
letg _ Lg acviN-T(d
xexp[5s'S™'s— S(d—As)'N"'(d As)]
x exp[—%(s —Wd)' (s~ + A'N"'A)(s — Wd)] .

Pr(s|S,N,d) =

(7)

Here we see that the maximum a posteriori (MAP) solution is indeed
that of the Wiener reconstruction, s = Wd.

If we can handle the large matrices, realisations of the true
underlying signal image s can be drawn from the posterior dis-
tribution Pr(s|S, d). The expected mean of these samples is the
Wiener-filtered image. Drawing samples from the Wiener poste-
rior clearly also suffers from the need to invert large matrices with
no natural sparse basis.

Progress can be made for signal images with statistical prop-
erties that are independent of pixel position x (i.e. statistically
homogeneous signals), for in this case, the Fourier transform of the
image Sy,

S = ste’““" (8)
X

1 We can also argue that if only the covariance and the mean are known, the
Gaussian distribution is most appropriate to assume, as it is the maximum entropy
distribution.

232 N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237

has a diagonal covariance matrix,
(SkSje) = P(k)Siae (9)

and Sy is a Kronecker delta for the discrete 2D wavenumbers k
and K/, and P(k) is the power spectrum, which depends only on
the magnitude k = |K|. The covariance matrix S for the signal is
diagonal, with entries given by the appropriate P(k).

2.2. Messenger fields

The messenger field approach splits the problem into two,
performing some operations in harmonic space and some in pixel
space, transferring the information using an extra field, t, called
the messenger field, whose covariance matrix is diagonal in both
spaces. The method takes advantage of the diagonal signal covari-
ance matrix in harmonic space and the diagonal noise covariance
matrix in pixel space, such that no matrices need to be inverted in
a basis in which they are dense.

This field is defined to have zero mean and a covariance matrix
proportional to the identity matrix, (tt') oc I, which will always
be diagonal in both harmonic and pixel spaces. The Markov Chain
Monte Carlo (MCMC) algorithm used in Jasche and Lavaux (2015) is
a method which uses the messenger field to draw samples from the
Wiener posterior, without inversion of non-diagonal covariance
matrices, requiring instead repeated Fourier transforms and in-
verse Fourier transforms. The algorithm is presented in Algorithm
1. In the limit of large numbers of iterations, this unconditionally
converges to drawing samples from the desired distribution.

A sufficient number of samples from the Wiener posterior prob-
ability distribution can characterise the statistical properties of the
underlying signal given some data.

Algorithm 1: Messenger Field Wiener Sampler: an iterative
method to draw sample signal images from a Wiener posterior
distribution using messenger fields (Jasche and Lavaux, 2015).

1: procedure SAMPLER

2 fort;int:

3: ti = ui +/(0f) G(0, 1)
4: t=]-—zp(t)

5: for S, in S:

6: Sk =y /(0 2 GO, 1)
7. s=F(8)

8: Return s

9: GOTO line 2
10: end procedure
Definitions:

t T; N; ieA2
o = ——Ad + —+—s;ifA* > 0
i TiAi2+Ni idi + TiAi2+Ni ! 1
TN, .
o (0/)?=_FifA?>0
TiAZ+N;
s Sk
° =
9% SetTr k
° (f)Z — A§I<Tlf
k Sk+Tk

e T=min((A"")'N(A"))I
e N=N-—A'TA

e G(0, 1) is a zero-mean Gaussian random variate with unit
variance.

e F>p is the 2D Fourier transform and J-‘z_D] its inverse.

By replacing the random variates in Algorithm 1 with zero
(G(0, 1) — 0), the iteration outputs converge to the (unsampled)
Wiener filter reconstruction (Eq. (2)). This was first described by El-
sner and Wandelt (2013) in the first use of messenger fields. With
this small change the code provides Wiener-filtered images, rather
than samples from the Wiener posterior.

For each calculation of a Wiener filter or sample drawn from
the Wiener posterior, O(n?) operations are required for a length
n data vector using a naive approach. Using the messenger field
algorithm, this reduces to O(nlogn) for covariance matrices that
are diagonal in their respective domains. The naive approach is
bottlenecked by the matrix inversion and the messenger field
approach is bottlenecked by the harmonic/Fourier transform.

3. DFE implementation
3.1. DFE system

The standard computing paradigm in the present day still fol-
lows the outline of the von Neumann model, often called Control
Flow. In a standard setup a Central Processing Unit (CPU) carries
out computational operations with data and instructions provided
by memory, usually Random Access Memory (RAM). Data and
instructions are iteratively passed between memory and CPU.

Dataflow Engines (DFEs) use reconfigurable hardware rather
than CPUs to represent a static description of an algorithm with
deep hardware pipelines consisting of a series of standard arith-
metic and logic operations. DFEs do not need to continually get
new instructions from the memory (Pell et al., 2013). They are
therefore intrinsically parallel. The Wiener sampling problem de-
scribed above has a high volume of data with highly deterministic
computation (few “if” statements), so is well suited to DFEs.

Unlike standard CPU-based High Performance Computing (HPC)
platforms, DFEs can be reconfigured on occasion to the need of
a given algorithm or dataset. For the cost of an initial build time
(O(hours)), the speed and efficiency at runtime is improved. These
systems allow greater flexibility with memory, data type, and clock
frequency.

For example, higher clock frequencies can lead to shorter run
time of the compute kernels instantiated on the DFE. This can yield
faster execution if the algorithm is compute bound. However, for
higher clock frequencies it becomes more difficult to build the
reconfiguration bitstream, so the clock frequency can be chosen
optimally for a given algorithm.

The CPU code for managing a DFE can be written in C or C++ and
runs on a host (a traditional control flow machine). For the DFE, the
software is written in Java-like code, which is compiled into the
reconfiguration file for the hardware chip. This turns the DFE into
a problem-specific hardware accelerator.

Once reconfigured, the DFE accepts data streaming and com-
pute action calls launched by the host CPU code. A single DFE is
a PCle card that can either be available locally on a CPU server or
be mounted in a Maxeler MPC-X: a CPU-free 1U server appliance
hosting up to 8 DFEs, which is connected to host CPU servers
by an infiniband network. Each DFE carries a chip with large
amount of reconfigurable logic and on-chip resources (e.g. a Field-
Programmable Gate Array, FPGA) with up to 96 GB of on-board
DRAM storage. The MAX4 generation cards available to the authors
are MAX4 Maia DFEs with Altera Stratix V FPGA and 48 GB of
DRAM. Integration of CPU and DFE codes is done by the dedicated
compiler as described in Kos et al. (2015).

Dataflow Engines allow user-friendly control over the features
of the underlying hardware, so the hardware description can be op-
timally designed and built for the algorithm at hand. This can lead
to large speed-ups at runtime compared to the same algorithm’s
implementation on a comparative CPU platform.

N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237 233

Time to complete a task is also only one metric of perfor-
mance among other metrics. Lower clock frequencies mean that
DFEs use less power than conventional CPU machines (Gan et al.,
2017). Usually FPGAs use an order of magnitude less power than
CPUs (Liang et al., 2018). In many applications, it is therefore more
cost efficient to use DFEs as it allows more science per Watt.

Another commonly used and increasingly popular alternative to
CPU hardware is graphics processing units (GPU), which gain accel-
eration for vectorised problems using “single instruction, multiple
data” (SIMD) architectures and high-clock frequency (Liang et al.,
2018). However, they are disadvantaged by their high energy cost.
CPUs are more efficient than GPUs, and, as discussed, FPGAs are
in turn more efficient than CPUs. GPUs additionally do not benefit
from the flexibility that allows reconfigurable DFEs to tailor to a
specific algorithm. Their hardware cannot be optimally designed
for a given problem.

3.2. Implementation

We show the steps taken to generate a typical simulated dataset
with the desired properties in Fig. 2. To simulate underlying signals
s, we generate realisations of square, two-dimensional images,
which are in this case real, zero-mean, Gaussian random fields with
known power spectra. The real and imaginary parts of sy are each
drawn randomly from Gaussian distributions with variance P(k)/2,
and reality of the signal is enforced by s; = s_x. We simulate
square signal maps with 1282 pixels.

The image, and therefore the vectors k and X, are two dimen-
sional, so the transforms employ a 2D DFT. In practice the fast
Fourier transform (FFT) algorithm (Cooley and Tukey, 1965) is used
to evaluate the coefficients.

The datasets are generated according to the linear model of
Eq. (1). For simplicity, we do not apply the linear operator (setting
A = 1), though this could be included for a given application. The
first panel of Fig. 2 shows an initial power spectrum, P(k), from
which we generate our real, Gaussian field as the signal map.

The noise is independent between pixels and is drawn from a
Gaussian distribution where the noise variance varies across the
data. We assume that the noise variance is known. We mask some
of the pixels to represent missing data. The Wiener filter and the
Wiener posterior treat the missing data as a special case of infinite
noise. Infinite noise variance, in the region of the missing data, is
set to be 108, as an effective infinity.

On both CPU and DFE, we implement the messenger field al-
gorithm (Algorithm 1) to draw samples of signal from the Wiener
posterior (Eq. (7)), using 5 different datasets at each iteration. This
reflects Alsing et al. (2017), where multiple chains were run in
parallel to test convergence. In Fig. 1, the value of the same pixel in
5 independent chains with different initial values can be shown to
converge after a sufficient number of iterations. The period during
which the chains have not converged is known as burn-in, and
using these samples reduces the influence of the initial starting
point. Subsequent points are not converged immediately, therefore
it is essential to have multiple chains, to check convergence and
improve statistics.

On DFEs it is possible to instantiate fixed point and IEEE-like
floating point arithmetic units of an arbitrarily chosen bitwidth,
with greater flexibility beyond the standard options of single-
or double-precision floating-point. Reducing the bitwidth of the
number representation results in less reconfigurable logic spent
on single arithmetic operations. This allows the user to instantiate
more arithmetic units to fit the budget of reconfigurable space
available on the chip, which may be used to implement more
complex logic, or to replicate the computational pipeline; the latter
reduces time for solution due to increased parallelism, but at the
cost of reduced precision. In the implementation presented in this

102 .

|s;| (absolute pixel value)

10'3 1
10° 10! 102

number of iterations

Fig. 1. The absolute value of the same pixel at each iteration in 5 independent
MCMC chains of the messenger field algorithm. The initial value of each pixel is
different, to show convergence after a sufficient number of iterations.

paper, we use single-precision floating point format on both the
DFE and on the CPU, to compare more easily the results.

The CPU code, written in C, uses a Box-Muller transformation to
generate pairs of normally-distributed random variates for use in
the algorithm. This custom-written implementation was shown to
be consistently faster than the std C++ Gaussian random number
generator in unit tests. Our implementation is slightly faster as we
only ever generate one pair of zero mean and unit variance Gaus-
sian random numbers at each iteration. The DFE uses the Gaussian
random number generator from a dedicated dataflow library.? This
small difference changes the overall time measurement little, as
the fraction of time spent generating random numbers is small in
this algorithm.

The 2D FFT from the FFTW3 package (Frigo and Johnson, 2005)
was used for the CPU code, optimised with Advanced Vector Ex-
tensions (AVX2) available on the CPU hardware (see Section 4.2). A
dedicated dataflow FFT library was used for the DFE.2

4. Results
4.1. Wiener posterior properties

As described in Section 2.2, samples from the Wiener posterior
sampling algorithm without the random variates converge to the
Wiener filter solution (Eq. (2)). In the left panel of Fig. 3 the
Wiener filter reconstruction from this method is shown for the data
generated in Fig. 2. By doing this we tested that the CPU and DFE
outputs are identical up to computational precision.

A second test also provided the DFE with a vector of random
Gaussian variates, shared with the CPU, where the output samples
from the Wiener posterior were shown to be the same within
computational precision.

In the centre panel of Fig. 3, the mean of the 10> samples from
the Wiener posterior can be seen. By comparing to the Wiener
filtered image in the left panel, one can see that the Wiener filtered
solution is indistinguishable from the mean of the samples from
the Wiener posterior, as expected. Due to sample variance, the
mean of samples from Wiener posterior is not exactly equal to the
Wiener filter, though for an infinitely large number of samples it
would be.

In Fig. 3, the variance of the same 10° samples can be seen in
the right panel. The variance in the region of missing data is high,

2 MaxPower (maxeler.com/mymaxeler requires Maxeler account).

mailto:maxeler.com/mymaxeler

234 N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237

led Signal Power Spectrum

Noise Variance Map

0 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0 20 40 60 80 100 120

Noise Map

4 4
3 20 3
2 2
40
1 1
-1 80 -1
-2 -2
100
-3 -3
120
-4 -4
0 20 40 60 80 100 120

T T 4

Data No Mask

Data with Mask

20

60

80

-2
100 | q
-3

120 4

0 20 40 60 80 100 120

Fig. 2. This figure shows our data model, and gives an example realisation of a simulated dataset. We begin with a Signal Power Spectrum, P(k), from which we generate
a real, Gaussian random field as a Signal Map. We then take a Noise Variance Map, whose values vary across the data, from which we generate a Noise Map of Gaussian,
independent pixel noise. The noise is added to the signal to generate the Data No Mask. We mask pixels representing missing data in Data with Mask.

as expected, but constrained by the signal covariance. The structure By drawing sufficient samples from the full posterior proba-
of the variance of the samples matches the structure of the noise bility distribution, the code can characterise it very well, not just
variance map (see Fig. 2) as expected. providing its mean and covariance.

N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237 235

Wiener filter

0 20 40 60 80 100 120

Mean of 1 x 10° samples

1.0 0 1.0 0 -
0.8 0.8
20 20} 1
0.6 0.6
102
0.4 20 0.4 a0}
0.2 0.2
0.0 60 0.0 6o 1
-0.2 50 -0.2 ol |
-0.4 -0.4
-0.6 100 06 100 [|
-0.8 -0.8
120 120} .
1.0 10 10
0 20 40 60 80 100 120

Variance of 1 x 10° samples

0 20 40 60 80 100 120

Fig. 3. The input data, signal power spectrum and noise variance are shown in Fig. 2. Left panel: the left panel is the Wiener filter solution, where the random variates are
not included in Algorithm 1. Centre panel: Mean of 10> samples from the Wiener posterior distribution evaluated using Algorithm 1. Right panel: Variance of the same set of

samples.

Box Runtime

104 | 8DFE (MPC-X) '
| 32 CPU (MPC-X)

10! 4

time/s

100 4

10~ 4

102 103 10* 10°

number of MCMC samples

Fig. 4. Time taken to run the sampling algorithm for a given number of iterations,
where each iteration returns a sample from each of the 5 chains. Each data point is
the mean of 10 runs (with the DFE data overhead removed), and 1o error bars with
Akima (1970) interpolation for the error envelope. 32 CPU threads vs. 8 DFEs, run
in parallel on MPC-X.

4.2. CPU vs. DFFE, speed

We compare the speed of the CPU+DFE implementation of the
Wiener sampler (Algorithm 1) to the pure CPU implementation.
Both were run on an Intel(R) Xeon(R) EB5-2650 v2 @
2.60 GHz server (2 sockets, 8 dual-thread cores per socket) pre-
senting 32 CPU threads, which is connected to a MPC-X node at the
STFC Hartree Centre. A single MPC-X box contains 8 MAX4 (Maia)
DFEs. The clock frequency for the DFE implementation was chosen
to be 200 MHz.

The sampler was timed for increasing number of iterations on
both the CPU and the DFE, up to 10° iterations. Samples of 5 images
are returned at each iteration. The time was measured from the
CPU from the start to the end of the algorithm’s execution. At each
number of iterations, the algorithm was repeated 10 times and the
measured times averaged.

Fig. 4 shows the time to perform the algorithm for a 1U MPC-X
with 8 DFEs against a 1U server presenting 32 CPU threads. The
time as a function of number of iterations is linear for both CPU
and DFE. The DFE has an initial overhead (with an average of 4.0 s)
as the data is loaded onto the hardware, which is removed from the
DFE time. Errors are obtained from 10 runs of the code. For the low
run times, the DFE times have larger error-bars than the CPU, due
to larger variance in the DFE data loading time; the relative effect
of this decreases with longer running times.

In order to parallelise the problem, we run independent MCMC
chains. We measure the time to generate a given number of
samples by running the MCMC on 32 memory independent CPU

threads for the CPU-only code. For the CPU+DFE code, we measure
the time to generate a given number of samples on 8 DFEs by
splitting the work across 8 CPU threads.

In this work we have one CPU thread orchestrating one DFE.
In future work we need to support an N:1 ratio of N CPU threads
served by a single DFE. This will help to utilise all the CPU com-
putational capacity as well as all DFEs. Therefore, the speed-up of
the CPU+DFE implementation in this work is a lower bound—here
there is scope for considerable further acceleration.

From each independent MCMC chain some number of initial
samples are unusable due to burn-in and are discarded. As each
MCMC chain (run in parallel CPU threads) must discard the same
number of initial samples, running 32 chains gives 32 times more
unusable samples than a single chains with the same number of
iterations. The 32 parallel CPUs will therefore have to discard four
times more samples than 8 parallel DFE-accelerated CPU threads
due to burn-in. This is also a reason why the time measurement
from this MPC-X box parallel test should be interpreted as a lower
bound on the potential speed up from DFEs.

We measure the lower bound on the parallel DFE speed-up to
be 11.3 £ 0.8, where we have again used 10 time measurements
to estimate the error.

5. Potential applications to cosmology

In this section we discuss some potential use cases in cosmol-
ogy, although the algorithm and implementation are general and
could be used in a number of contexts.

5.1. Power spectrum inference

A common problem is to extract information from the power
spectrum, P(k), of an underlying field, s, as defined in Eq. (9), and an
extension of the DFE code can allow this. For a zero-mean Gaussian
random field, the power spectrum contains all the statistical infor-
mation that defines the field. The specific aim for power spectrum
inference is to calculate the posterior probability distribution of the
power spectrum given a set of data.

The standard model of cosmology predicts that the density
field of the early universe will be a Gaussian random field, which
persists for large cosmological scales in the late universe. Esti-
mating the power spectrum is therefore a standard tool in many
cosmological analyses with different data sets, including the early
universe through Cosmic Microwave Background (CMB) radiation
data (Planck Collaboration et al., 2016). A posterior probability
distribution of the power spectrum of the density field in turn
leads to posterior probability distributions for the cosmological
parameters. These usually include, but are not limited to: the
matter density £2,,, the Dark Energy density §2,, the Dark Energy
equation of state parameter w, and the Hubble parameter Hy.

236 N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237

Pr(P(k)) Pr(s|P(k)) B—»

Fig. 5. The Bayesian hierarchical forward model as described by Alsing et al. (2017) for signal image, s, and power spectrum, P(k), inference using the messenger field, t. The
work described in this paper uses Dataflow Engines can focus on the nodes of this network that do not include the power spectrum: the power spectrum is assumed and

kept constant, and samples of the signal image are drawn.

The Bayesian hierarchical inference models described by Jasche
and Lavaux (2015), Alsing et al. (2016), and Alsing et al. (2017)
infer the posterior distributions of either the power spectrum or
cosmological parameters in addition to samples from the field; see
Fig. 5. With Gibbs sampling, samples of both the power spectrum
and the image are drawn, keeping the other temporarily fixed.
For a given power spectrum, large numbers of samples from the
posterior probability distribution of the underlying signal s can
be drawn efficiently using Dataflow Engines, leading to better
constraints on the power spectrum and hence on cosmological
parameters.

5.2. Cosmological mass mapping

Due to the local curvature of spacetime by the matter, images
of distant galaxies are deformed by the inhomogeneous matter
distribution along the line of sight. This is called gravitational
lensing. Any matter can contribute to the lensing effect, making
it a direct probe of non-visible dark matter (Kaiser and Squires,
1993). Reconstructing this density field facilitates the study of
the dark matter physics, its relationship with visible matter, and
can provide novel approaches to extract additional cosmological
information.

The model describing this process when in the linear regime,
known as weak gravitational lensing, is fully described by our
linear model in Eq. (1). The data d are images where the pixel
values are the mean of galaxy shapes within that pixel. The signal
s is a weighted, projected density field> in the foreground of the
observed galaxies. The pixel noise, due to the intrinsic random
galaxy shapes, is approximately Gaussian. The density field in the
late universe on large cosmological scales is also approximately
Gaussian.

From data with these properties, the large-scale density field
from weak lensing shape measurements can be principally recov-
ered with a Wiener filter. In Jeffrey et al. (2018) the messenger
field Wiener filter algorithm is applied to Dark Energy Survey
gravitational lensing data to generate a mass map image of the
underlying density field. The Wiener filter method has also long
been an established tool for reconstructing the underlying density
field using only galaxy positions (Lahav et al., 1994), rather than
using lensing data. Obtaining a large number of samples of the
Wiener distribution, as is described in this work, then gives a
posterior probability distribution of the density field in each pixel.

5.3. Future data requirements for cosmology

With current cosmic shear data,? Alsing et al. (2017) were able
to use CPUs to generate samples from the posterior probability
distributions of the underlying cosmic shear signal images and the

3 The weighted, projected density field in mass mapping is called convergence
and is denoted by «.

4 Cosmic shear is the spin-2 complex field manifested as the coherent distortion
of galaxy shapes due to gravitational lensing. It is a function of a linear projection
into 2D of the 3D density field.

power spectrum, using the Bayesian hierarchical model shown in
Fig. 5. 10 chains were run in parallel to a length of 10° samples.

Current and future cosmic shear surveys DES (DES Collaboration
et al., 2017), LSST (LSST Dark Energy Science Collaboration, 2012),
and Euclid (Amendola et al., 2018) expect orders of magnitude of
increase in data volume. The European Space Agency project Euclid
expects to observe over 10° galaxies useable for cosmic shear,
compared to ~3 x 10% with the CFHTLenS data used by Alsing
et al. (2017). This leap in data size requires novel computational
approaches to previously tractable problems. Here, Dataflow En-
gines can provide a solution.

6. Discussion

We have demonstrated a speed-up of at least 11.3 £ 0.8 for
generating 10> samples of the Wiener posterior of possible images
compatible with an observed noisy image of 1282 pixels, using 8
DFEs in a 1U MPC-X box and comparing with a 1U server presenting
32 CPU threads.

Future extensions could be to include the full Bayesian hierar-
chical model shown in Fig. 5, to further exploit the increased speed
afforded to us by the Dataflow approach. This would lead to better
constraints on the inferred cosmological parameters through sam-
ples of the power spectrum.

For data requirements of future cosmological surveys it would
be useful to Wiener filter and draw samples of the Wiener posterior
from data which have more than of 1282 pixels per image. The
image size in this work is constrained by the size of an FFT problem
that fits within the fast FMEM on-chip memory (~6 MB). We
expect that future versions of the dataflow FFT library will provide
the option to use off-chip memory (48 GB) as an FFT buffer. We
could then expect to be able to Fourier transform images of size
215 % 215 This would increase the scientific applicability of a single
DFE dramatically.

Implementing large scale Bayesian methods for cosmological
parameter estimation on Dataflow Engines is a promising solution
to the problem of increasingly large datasets from future surveys.
This implementation of a Wiener sampler has broad application for
inference or de-noising from any images or dataset with similar
properties to those described here.

The authors plan to make the code public on appgallery.maxeler.
com soon.

Acknowledgements

We thank Pavel Burovskiy, Vitali Averbukh, Georgi Gaydadjiev
and Edward Edmondson for useful discussions and comments. NJ
acknowledges support from the UK Science and Technology Re-
search Council (STFC) Grant No. ST/M001334/1. We acknowledge
use of Hartree Centre resources in this work. The STFC Hartree
Centre is a research collaboratory in association with IBM provid-
ing High Performance Computing platforms funded by the UK’s
investment in e-Infrastructure. The Centre aims to develop and
demonstrate next generation software, optimised to take advan-
tage of the move towards exa-scale computing.

mailto:appgallery.maxeler.com
mailto:appgallery.maxeler.com
mailto:appgallery.maxeler.com

N. Jeffrey et al. / Astronomy and Computing 25 (2018) 230-237 237

References

Akima, H., 1970. A new method of interpolation and smooth curve fitting based on
local procedures.]. ACM 17 (4), 589-602.

Alsing, J., Heavens, A., Jaffe, A.H., 2017. Cosmological parameters, shear maps and
power spectra from CFHTLenS using Bayesian hierarchical inference. Mon.
Not. R. Astron. Soc. 466, 3272-3292. doi:10.1093/mnras/stw3161, arXiv:1607.
00008.

Alsing,]., Heavens, A., Jaffe, A.H., Kiessling, A., Wandelt, B., Hoffmann, T., 2016.
Hierarchical cosmic shear power spectrum inference. Mon. Not. R. Astron. Soc.
455, 4452-4466. doi:10.1093/mnras/stv2501, arXiv:1505.07840.

Amendola, L., Appleby, S., Avgoustidis, A., Bacon, D., Baker, T., Baldi, M., Bartolo, N.,
Blanchard, A., Bonvin, C., Borgani, S., et al., (Euclid Theory Working Group),
2018. Cosmology and fundamental physics with the Euclid satellite. Living Rev.
Relativ. 21, 2. doi:10.1007/s41114-017-0010- 3, arXiv: 1606.00180.

Arram, J., Pflanzer, M., Kaplan, T., Luk, W., 2015. FPGA acceleration of reference-
based compression for genomic data. In: Field Programmable Technology (FPT),
2015 International Conference on. IEEE, pp. 9-16.

Cooley, JW., Tukey,].W., 1965. An algorithm for the machine calculation of complex
Fourier series. Math. Comp. 19 (90), 297-301.

Cooper, B., Girdlestone, S., Burovskiy, P., Gaydadjiev, G., Averbukh, V., Knowles, P.J.,
Luk, W., 2017. Quantum chemistry in dataflow: Density-fitting MP2. J. Chem.
Theory Comput. 13 (11), 5265-5272, PMID: 29019679. doi:10.1021/acs.jctc.
7b00649.

DES Collaboration, Abbott, et al., 2017. Dark energy survey year 1 results: Cos-
mological constraints from galaxy clustering and weak lensing. ArXiv e-prints
arXiv:1708.01530.

Diiben, P.D., Russell, F.P., Niu, X., Luk, W., Palmer, T., 2015. On the use of pro-
grammable hardware and reduced numerical precision in earth-system mod-
eling. J. Adv. Model. Earth Syst. 7 (3), 1393-1408.

Elsner, F., Wandelt, B.D., 2013. Efficient Wiener filtering without preconditioning.
Astron. Astrophys. 549, A111. doi: 10.1051/0004-6361/201220586, arXiv:1210.
4931.

Frigo, M., Johnson, S.G., 2005. The design and implementation of FFTW3. Proc.
IEEE 93 (2), 216-231, Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

Gan, L., Fu, H., Mencer, O., Luk, W., Yang, G., 2017. Data flow computing in geoscience
applications. Adv. Comput. Creat. Comput. DataFlow SuperComput. 125-158.
doi:10.1016/bs.adcom.2016.09.005.

Jasche, J., Lavaux, G., 2015. Matrix-free large-scale Bayesian inference in cosmology.
Mon. Not. R. Astron. Soc. 447, 1204-1212. doi:10.1093/mnras/stu2479, arXiv:
1402.1763.

Jeffrey, N., Abdalla, F.B.,, Lahav, O., Lanusse, F., Starck, J.L., Leonard, A., Kirk, D.,
Chang, C., Baxter, E., Kacprzak, T., Seitz, S., Vikram, V., Whiteway, L., et al.,
2018. Improving weak lensing mass map reconstructions using Gaussian and
sparsity priors: application to DES SV. Mon. Not. R. Astron. Soc. 479, 2871-2888.
doi:10.1093/mnras/sty1252, arXiv:1801.08945.

Kaiser, N., Squires, G., 1993. Mapping the dark matter with weak gravitational
lensing. Astrophys. J. 404, 441-450. doi:10.1086/172297.

Kos, A., Rankovi¢, V., Tomazi¢, S., 2015. Sorting networks on maxeler dataflow
supercomputing systems. Adv. Comput. Dataflow Process. 139-186. doi:10.
1016/bs.adcom.2014.10.001.

Lahav, O., Fisher, K.B., Hoffman, Y., Scharf, C.A., Zaroubi, S., 1994. Wiener reconstruc-
tion of all-sky galaxy surveys in spherical harmonics. Astrophys. J. Lett. 423,1L93.
doi:10.1086/187244, arXiv:astro-ph/9311059.

Liang, S., Yin, S., Liu, L., Luk, W., Wei, S., 2018. FP-BNN: Binarized neural network on
FPGA. Neurocomputing 275, 1072-1086.

LSST Dark Energy Science Collaboration, 2012. Large Synoptic Survey Telescope:
Dark Energy Science Collaboration. ArXiv e-prints arXiv:1211.0310.

Pell, O., Mencer, 0., Tsoi, K.H., Luk, W., 2013. Maximum performance computing
with dataflow engines. In: High-Performance Computing using FPGAs. Springer,
pp. 747-774.

Planck Collaboration, Ade, P.A.R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J.,
Baccigalupi, C., Banday, AJ]., Barreiro, R.B., Bartlett,].G., et al., 2016. Planck
2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13. doi:
10.1051/0004-6361/201525830, arXiv:1502.01589.

Wiener, N., 1949. Extrapolation, Interpolation, and Smoothing of Stationary Time
Series, vol. 7. MIT Press, Cambridge, MA.

Zaroubi, S., Hoffman, Y., Fisher, K.B., Lahav, O., 1995. Wiener reconstruction of the
large-scale structure. Agron. J. 449, 446. doi:10.1086/176070, arXiv:astro-ph/
9410080.

http://refhub.elsevier.com/S2213-1337(18)30090-8/sb1
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb1
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb1
http://dx.doi.org/10.1093/mnras/stw3161
http://arxiv.org/abs/1607.00008
http://arxiv.org/abs/1607.00008
http://arxiv.org/abs/1607.00008
http://dx.doi.org/10.1093/mnras/stv2501
http://arxiv.org/abs/1505.07840
http://dx.doi.org/10.1007/s41114-017-0010-3
http://arxiv.org/abs/1606.00180
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb5
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb5
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb5
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb5
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb5
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb6
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb6
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb6
http://dx.doi.org/10.1021/acs.jctc.7b00649
http://dx.doi.org/10.1021/acs.jctc.7b00649
http://dx.doi.org/10.1021/acs.jctc.7b00649
http://arxiv.org/abs/1708.01530
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb9
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb9
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb9
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb9
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb9
http://dx.doi.org/10.1051/0004-6361/201220586
http://arxiv.org/abs/1210.4931
http://arxiv.org/abs/1210.4931
http://arxiv.org/abs/1210.4931
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb11
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb11
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb11
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb11
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb11
http://dx.doi.org/10.1016/bs.adcom.2016.09.005
http://dx.doi.org/10.1093/mnras/stu2479
http://arxiv.org/abs/1402.1763
http://arxiv.org/abs/1402.1763
http://arxiv.org/abs/1402.1763
http://dx.doi.org/10.1093/mnras/sty1252
http://arxiv.org/abs/1801.08945
http://dx.doi.org/10.1086/172297
http://dx.doi.org/10.1016/bs.adcom.2014.10.001
http://dx.doi.org/10.1016/bs.adcom.2014.10.001
http://dx.doi.org/10.1016/bs.adcom.2014.10.001
http://dx.doi.org/10.1086/187244
http://arxiv.org/abs/astro-ph/9311059
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb18
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb18
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb18
http://arxiv.org/abs/1211.0310
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb20
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb20
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb20
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb20
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb20
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb22
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb22
http://refhub.elsevier.com/S2213-1337(18)30090-8/sb22
http://dx.doi.org/10.1086/176070
http://arxiv.org/abs/astro-ph/9410080
http://arxiv.org/abs/astro-ph/9410080
http://arxiv.org/abs/astro-ph/9410080

	Fast sampling from Wiener posteriors for image data with dataflow engines
	Introduction
	Data model

	Theoretical Background
	Wiener Posterior
	Messenger Fields

	DFE Implementation
	DFE System
	Implementation

	Results
	Wiener posterior properties
	CPU vs. DFE, speed

	Potential Applications to Cosmology
	Power Spectrum Inference
	Cosmological Mass Mapping
	Future Data Requirements for Cosmology

	Discussion
	Acknowledgements
	References

