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Summary. Analysis of longitudinal randomized clinical trials is frequently complicated because
patients deviate from the protocol. Where such deviations are relevant for the estimand, we are
typically required to make an untestable assumption about post-deviation behaviour to perform
our primary analysis and to estimate the treatment effect. In such settings, it is now widely
recognized that we should follow this with sensitivity analyses to explore the robustness of our
inferences to alternative assumptions about post-deviation behaviour. Although there has been
much work on how to conduct such sensitivity analyses, little attention has been given to the
appropriate loss of information due to missing data within sensitivity analysis. We argue that
more attention needs to be given to this issue, showing that it is quite possible for sensitivity
analysis to decrease and increase the information about the treatment effect. To address this
critical issue, we introduce the concept of information-anchored sensitivity analysis. By this we
mean sensitivity analyses in which the proportion of information about the treatment estimate
lost because of missing data is the same as the proportion of information about the treatment
estimate lost because of missing data in the primary analysis. We argue that this forms a trans-
parent, practical starting point for interpretation of sensitivity analysis. We then derive results
showing that, for longitudinal continuous data, a broad class of controlled and reference-based
sensitivity analyses performed by multiple imputation are information anchored. We illustrate
the theory with simulations and an analysis of a peer review trial and then discuss our work in
the context of other recent work in this area. Our results give a theoretical basis for the use of
controlled multiple-imputation procedures for sensitivity analysis.

Keywords: Controlled multiple imputation; Deviations; Missing data; Randomized controlled
trial; Sensitivity analysis

1. Introduction

The statistical analysis of longitudinal randomized clinical trials is frequently complicated be-
cause patients deviate from the trial protocol. Such deviations are increasingly referred to as
intercurrent events. For example, patients might withdraw from trial treatment, switch treat-
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ment, receive additional rescue therapy or simply become lost to follow-up. Post deviation, such
patients’ data (if available) will often no longer be directly relevant for the primary estimand.
Consequently, such post-deviation data are often set as missing; any observed post-deviation
data can then inform the missing data assumptions. Nevertheless, however the analysis is
approached, unverifiable assumptions about aspects of the statistical distribution of the post-
deviation data must be made.

Recognizing this, recent regulatory guidelines from the European Medicines Agency Com-
mittee for Medicinal Products for Human Use (2010) and a US Food and Drug Administration
mandated panel report by the National Research Council (2010) emphasize the importance of
conducting sensitivity analyses. Further, the recent publication of the International Conference
on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human
Use (2017) E9 (R1) addendum on estimands and sensitivity analysis in clinical trials raises im-
portant issues about how such sensitivity analyses should be approached. It highlights how in
any trial setting it is important first to define the estimand of interest. This will inform what data
are missing and how such missing data should be handled in the primary analysis. Sensitivity
analysis, which targets the same estimand, should subsequently be undertaken to address the
robustness of inferences to the underlying assumptions, including those made for the missing
data.

We propose splitting sensitivity analyses for missing data into two broad classes. In both
classes, one or more alternative sets of assumptions (or scenarios) are postulated and the sen-
sitivity of the conclusions to these alternative scenarios is to be assessed. In our first class, the
primary analysis model is retained in the sensitivity analysis. This enables the exclusive assess-
ment of the effect of alternative missing data assumptions on the primary outcome of interest.
For example, for our sensitivity analysis we may impute missing data under an assumption of
data missing not at random and fit the primary analysis model to these imputed data. When
performed by multiple imputation, class 1 sensitivity analyses are therefore uncongenial, in the
sense described by Meng (1994) and Xie and Meng (2017), i.e. in brief, the imputation model
and the analysis model are not the same, or conditionals of a single joint model. Conversely,
in the second class, for each set of sensitivity assumptions an appropriate analysis model is
identified and fitted. Hence, each such analysis model is consistent with its assumptions, which
is why the analysis models generally change as we move from scenario to scenario.

In the first class of sensitivity analyses, the assumptions of the primary analysis model may
be inconsistent to some degree with the data-generating mechanism postulated by the sensi-
tivity analysis assumption. Nevertheless, a strong advantage of such sensitivity analysis is the
avoidance of full modelling under various, potentially very complex, missing data assumptions.
However, when performing class 1 sensitivity analyses, the properties of an estimator under
the primary analysis may change as we move to the sensitivity analysis. In particular, we shall
see that a sensible variance estimator for the primary analysis may behave in an unexpected
way under certain sensitivity analysis scenarios, e.g. decreasing as the proportion of missing
values increases. In regulatory work, particularly in class 1 sensitivity analyses, it is therefore
important to appreciate fully the quantity and nature of any additional statistical information
about the treatment estimate that may arise in the sensitivity analysis, relative to the primary
analysis.

This superficially abstract point can be readily illustrated. Suppose that a study intends to
take measurements on n patients Y1, : : : , Yn, from a population with known variance σ2, and
the estimator is the mean. If no data are missing, then the statistical information about the
mean is n=σ2. Now suppose that a total of nm observations are missing. We shall perform a
class 1 sensitivity analysis, so that the estimator is the mean for both our primary and sensitivity
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analysis. Our primary analysis will assume that data are missing completely at random, and our
sensitivity analysis will assume that the missing values are from patients with the same mean,
but a different variance, σ2

m.
Under our primary analysis assumption, we can obtain valid inference by calculating the

mean of the n−nm observed values, or by using multiple imputation for the missing values. In
both cases the information about the mean is the same: .n−nm/=σ2.

Under our class 1 sensitivity analysis, we multiply impute the missing data under our as-
sumption, and again our estimator is the mean. Now, however, the statistical information will
be approximately n2={.n−nm/σ2 +nmσ2

m}. Further, the information about the mean from the
sensitivity analysis depends on σ2

m. Since σ2
m is not estimable, this information is under the

control of the analyst.
This is illustrated by Fig. 1, which shows how the information about the mean varies with

σ2
m, when n=100, nm =20 and σ2 =1. When σ2

m <σ2, the information about the mean in the
sensitivity analysis is greater than from the intended 100 observations; when 1 � σ2

m � 2:25
then the information is greater than in the n−nm observations that we could obtain and, when
σ2

m > 2:25, the information is less than in the observed data .n − nm/ observations we could
obtain.

We believe that the International Conference on Harmonisation E9 (R1) addendum (2017)
will lead to sensitivity analysis playing a much more central role; in this context we believe
it important for statisticians and regulators to be aware of how—compared with the primary
analysis—information can be removed or added in the sensitivity analysis.

Our purpose in this paper is
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(a) to consider the information in sensitivity analyses, arguing that sensitivity analysis in a
clinical trial should be information anchored—as defined below—relative to the primary
analysis, and

(b) to demonstrate that using reference- and δ-based controlled multiple imputation, with
Rubin’s rules, to perform class 1 sensitivity analyses is information anchored.

An important practical consequence of our work is that it provides a set of conditions that
can be imposed on class 1 sensitivity analyses to ensure that—relative to the primary analysis—
they neither create nor destroy statistical information. We believe that this provides important
reassurance for their use, for example, in the regulatory setting.

The plan for the rest of the paper is as follows. Section 2 defines the concept of information
anchoring in sensitivity analysis. Section 3 considers class 1 sensitivity analysis by reference-
and δ-based controlled multiple imputation, and presents our main theoretical results on in-
formation anchoring within this setting. Section 4 briefly reviews class 2 sensitivity analyses
from this perspective. In Section 5 we present a simulation study which illustrates our theory for
information-anchored sensitivity analysis, which is then applied to a trial of training for peer
reviewers in Section 6. We conclude with a discussion in Section 7.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-
a-datasets

2. Information-anchored sensitivity analysis

We have seen in the simple example above how a sensitivity analysis can change the statistical
information about a treatment estimate. We now define information-anchored sensitivity anal-
yses, which hold the proportion of information that is lost because of missing data constant
across the primary and sensitivity analyses.

Suppose that a clinical trial intends to collect data from 2n patients, denoted Y, to estimate
a treatment effect θ. However, a number of patients do not give complete data. Denote the
observed data by Yobs, and missing data by Ymiss. Consistent with the International Conference
on Harmonisation E9 (R1) addendum (2017), we make a primary set of assumptions, under
which we perform the primary analysis. We then make a sensitivity set of assumptions, under
which we perform the sensitivity analysis. Both primary and sensitivity assumptions

(a) specify the distribution [Ymiss|Yobs],
(b) could be true, yet
(c) cannot be verified from Yobs.

Let θ̂obs, primary be the estimate of θ under the primary analysis assumption. Further, suppose
that we could observe a realization of Ymiss under the primary assumption. Putting these data
together with Yobs gives us a complete set of observed data, which actually follows the primary
assumption: we denote this by Yprimary, and the corresponding estimate of θ by θ̂full, primary. We
denote the observed information about θ by I.θ̂obs, primary/ and I.θ̂full, primary/. Then,

I.θ̂obs, primary/

I.θ̂full, primary/
< 1,

reflecting the loss of information about θ due to missing data.
Defining corresponding quantities under the sensitivity assumptions for the chosen sensitivity
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analysis procedure (be this class 1 or class 2) we have

I.θ̂obs, sensitivity/

I.θ̂full, sensitivity/
< 1,

again reflecting the loss of information about θ due to missing data—but now under the sensi-
tivity assumptions.

Comparing these leads us to the following definitions: information negative sensitivity anal-
ysis,

I.θ̂obs, primary/

I.θ̂full, primary/
>

I.θ̂obs, sensitivity/

I.θ̂full, sensitivity/
; .1a/

information-anchored sensitivity analysis,

I.θ̂obs, primary/

I.θ̂full, primary/
= I.θ̂obs, sensitivity/

I.θ̂full, sensitivity/
; .1b/

information positive sensitivity analysis,

I.θ̂obs, primary/

I.θ̂full, primary/
<

I.θ̂obs, sensitivity/

I.θ̂full, sensitivity/
: .1c/

When analysing a clinical trial, we believe that an information positive sensitivity analysis
is rarely justifiable, implying as it does that, the more data are missing, the more certain we
are about the treatment effect under the sensitivity analysis. Conversely, although information
negative sensitivity analyses provide an incentive for minimizing missing data, there is no natural
consensus about the appropriate loss of information. Therefore, we argue that information-
anchored sensitivity analyses are the natural starting point. In regulatory work they provide an
equal footing between regulators and industry, allowing the focus to be on the average response
to treatment among the unobserved patients.

The definitions above are quite general, applying directly to class 1 and class 2 sensitivity
analyses, and all types of de jure (on-treatment) and de facto (as-observed) assumptions. We
now discuss class 1 sensitivity analyses from the information perspective and present our theory
for information anchoring.

3. Class 1 sensitivity analysis and theory for information anchoring

Although class 1 sensitivity analyses can be performed without using multiple imputation
(Lu, 2014; Liu and Pang, 2016; Tang, 2017), multiple imputation is the most flexible approach
and often the simplest to implement (e.g. by using the SAS software from www.missingdata.
org.uk or Stata software by Cro et al. (2016) or R code implementing related approaches by
Moreno-Betancur and Chavance (2016). This is generally called controlled multiple imputation,
because the form of the imputation for the missing data is controlled by the analyst. So, for
example, the analyst can control the imputed data mean to be δ below that under missingness at
random (MAR). See, for example, Mallinckrodt (2013), chapter 10, O’Kelly and Ratitch (2014),
pages 284–319, and Ayele et al. (2014).

One approach is to obtain information about parameters that control the departure from
MAR from experts (Mason et al., 2017), but this is controversial (Heitjan, 2017), and challenging
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for longitudinal data where multiple parameters are involved. An alternative, as introduced by
Little and Yau (1996) and developed and discussed further more recently by, among others,
Carpenter et al. (2013), Ratitch et al. (2013) and Liu and Pang (2016), is reference-based multiple
imputation. In this approach, the distribution of the missing data is specified by reference to other
groups of patients. This enables contextually relevant qualitative assumptions to be explored
and avoids the need to specify numerical sensitivity parameters formally (these are implicit
consequences of the appropriate reference for a patient). Some examples are listed in Table 1.
For example, we may explore the consequences of patients in an active arm ‘jumping to reference’
post deviation. In practice the appropriate imputation model depends critically on the particular
clinical setting and what assumptions are considered credible. Such analyses can be performed by
using the reference-based multiple-imputation algorithm in the on-line appendix A implemented
in Cro et al. (2016). Overall, this approach is both very flexible and accessible, since patients’
missing outcomes are specified qualitatively—by reference to other groups of patients in the
study. This explains its increasing popularity (Philipsen et al., 2015; Jans et al., 2015; Billings
et al., 2018; Atri et al., 2018).

These references all focus on clinical trials with continuous outcome measures that are col-
lected longitudinally, and modelled using the multivariate normal distribution. We consider the
same setting, and give criteria for class 1 sensitivity analysis using controlled multiple imputation
with Rubin’s variance formula to be information anchored. This shows that most forms of δ- and
reference-based imputation proposed in the literature are, to a good approximation, informa-
tion anchored. It also shows that, in class 1 settings, uncritical use of the conventional primary
analysis variance estimator is often information positive, which is undesirable in practice.

There are two principal reasons for this. The first is that class 1 sensitivity analyses retain
the primary analysis model in the sensitivity analysis. However, in the sensitivity analysis, data
assumptions are not wholly compatible with those of the primary analysis model. In particular
variance estimators may behave in unexpected ways. The second reason is that reference-based
methods essentially use the data twice, e.g. by using data from the reference arm

(a) to impute missing data in an active arm and
(b) to estimate the effect of treatment in the reference arm.

Table 1. Examples of reference-based and external-information-controlled multiple-imputation
methods

Name Description

Reference-based controlled multiple-imputation methods
Jump to reference Imputes assuming that following dropout a patient’s mean

profile follows that observed in the reference arm
Pre-dropout means come from the randomized arm

Copy increments in
reference

Forms post-dropout means by copying increments in the
reference arm

Pre-dropout means come from the randomized arm
Last mean carried forward Forms post-dropout means by carrying forward the

randomized arm mean at dropout
Copy reference The conditional profile given the history is copied from the

reference group, i.e. imputes as if randomized to the reference arm
pre- and post-dropout means come from the reference arm

External-information-controlled multiple-imputation methods
δ-method Impute under randomized arm MAR and subtract or add by fixed δ
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3.1. Theoretical results
The presentation of our theoretical results is structured as follows. We begin by describing our
data, model, primary analysis and sensitivity analysis. We show in corollary 2 that, when all
data can be fully observed, for our treatment estimate θ̂,

E[V̂ full, sensitivity]=E[V̂ full, primary]+O.n−2/:

Theorem 1 then defines the information-anchored variance and derives a general expression for
the difference between this and the variance from Rubin’s rules. Finally, we show, in the remarks
following theorem 1, that in practice this difference is small.

3.1.1. Trial data
Consider a two-arm trial, which includes n patients randomized to an active arm and n patients
randomized to a reference arm (total 2n patients within the trial). Outcome data are recorded
at j =1, :::, J visits, where visit j =1 is the baseline. For patient i in treatment arm z, where z=a

indicates active arm assignment and z= r indicates reference arm assignment, let Yz,i,j denote
the outcome at time j.

We wish to estimate the treatment effect at the end of the follow-up, time J. Our analysis model
is the regression of the outcome at time J on treatment and baseline (i.e. analysis of covariance).
Now suppose that some patients are lost to follow-up in the active arm (for simplicity, we assume
for now that the reference arm data are complete). Our primary assumption is MAR.

Our primary analysis uses all the observed values, imputes the missing data under MAR,
fits the analysis-of-covariance model to each imputed data set and combines the results using
Rubin’s rules (this is essentially equivalent to fitting a mixed model with unstructured mean and
covariance matrix to the observed values; see Carpenter and Kenward (2008), chapter 3).

Our sensitivity analysis uses controlled multiple imputation, as formally defined below. This
could include a δ-based method or one of the reference-based methods that are given in
Table 1; all reference-based multiple-imputation methods can be implemented by using the
generic algorithm in the on-line appendix A.

For each trial arm, we assume a multivariate normal model, with common covariance matrix,
so for patient i who has no missing values:⎛

⎜⎜⎝
Yz,i,1
Yz,i,2

:::

Yz,i,J

⎞
⎟⎟⎠∼N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝

μz,1
μz,2

:::

μz,J

⎞
⎟⎟⎠,Σ=

⎛
⎜⎜⎜⎝

σ2
1,1 σ2

1,2 : : : σ2
1,J

σ2
1,2 σ2

2,2 : : : σ2
2,J

:::
::: : : :

:::

σ2
1,J σ2

2,J : : : σ2
J ,J

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where z=a for the active patients and z= r for the reference patients.
Now suppose that all reference group patients and no active group patients follow the protocol,

but nd =n−no active patients deviate from the protocol. Suppose that it was possible to continue
to observe these nd patients, but now their post-deviation data follow the controlled model:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ya,i,1
:::

Ya,i,j−1
Ya,i,j

Ya,i,j+1
:::

Ya,i,J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μa,1
:::

μa,j−1
μd,j,j

μd,j,j+1
:::

μd,j,J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Σ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

: .2/
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The term ‘controlled’ means that the analyst controls the post-deviation distribution. Here, for
patient i, the first index indicates active or deviation, the second the time of deviation and the
third the visit number. Different patients can deviate at different times, and this general formu-
lation allows the pattern of their post-deviation means to differ depending on their deviation
time. This encompasses all the settings in Table 1, and others besides.

To present the theory, we first consider the case where the primary analysis does not adjust
for baseline, extending to the baseline-adjusted case in corollary 2.

Proposition 1. For the trial data that were described above, when the analysis model is a
difference in means at the final time point with the usual sample variance estimate in both
observed and controlled settings, then:

(a) if all patients follow the protocol and no data are missing, then the expectation of the
variance estimate is

E[V̂ full, primary]= 2σ2
J ,J

n
;

(b) if nd patients deviate and are observed following the controlled model (2) the expectation
of the variance estimate is

E[V̂ full, sensitivity]= 2σ2
J ,J

n
+

J∑
j=2

nond,jΔ2
d,j

n3 +
J∑

p=2

J
q �=p∑
q=2

nd,pnd,qΔ2
d,p,q

n3 ,

where Δd,j =μa,J −μd,j,J , Δd,p,q =μd,p,J −μd,q,J and we let n−1→n.

For a proof, see the on-line appendix B.1.

Corollary 1. For clinical trials designed to detect a difference of μa,J − μr,J = Δ, with a
significance level of α and power β, at the final visit J ,

E[V̂ full, sensitivity]=E[V̂ full, primary]+O.n−2/:

Proof. First note that the standard sample size formula implies that

Δ2 = 2f.α, β/σ2

n
:

Therefore, Δ2 is O.n−1/. Further, since, in any trial, all Δ2
d,p,j can be written as Δ2

d,p,j =
κd,p,jΔ2 for some constant κd,p,j, we have Δ2

d,p,j = O.n−1/. Following the same arguments,
Δ2

d,j = O.n−1/. Second, note that no=n is the proportion of active patients who complete the
trial, and nd,j=n is the proportion who deviate at time j. Therefore, nond,j=n2 < 1. Similarly
nd,pnd,q=n2 < 1. It therefore follows that

E[V̂ full, sensitivity]=E[V̂ full, primary]+O.n−2/: .3/

Corollary 2. Under the conditions of corollary 1, if the primary analysis model is a linear
regression of the outcome at the final time point, adjusted for baseline, then result (3) still holds.

Proof. Replace the unconditional variance σ2
J ,J with the variance conditional on baseline,

σ2
J:1 =σ2

J ,J − .σ2
1,J /2=σ2

1,1, in the proof of proposition 1.

We now use this result in the context of reference-based multiple imputation to calculate the
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difference between our defined information-anchored variance and Rubin’s multiple-imputation
variance.

Theorem 1. Consider a two-arm trial which includes n patients randomized to an active arm
and n patients randomized to a reference arm. Measurement data are recorded at j =1, : : : , J

visits (where visit 1 is baseline). The primary analysis model is a linear regression of the
outcome at the final time point (visit J ) on baseline outcome and treatment. Suppose that all
n of the reference arm are completely observed on reference treatment over the full duration
of the trial (at all J visits) but, in the active arm, only no are observed without deviation. The
remaining nd patients in the active arm deviate at some point during the trial post baseline
in a monotone fashion (such that no + nd = n). Specifically, we assume that a proportion
πd,j =nd,j=n drop out at each visit, for j> 1, and their data are missing post deviation.

Assume that the primary design-based analysis model satisfies result (3), and that the
variance–covariance matrix for the data is the same in each arm. For each deviation pattern
in the active arm who deviate at time j, let P̄a,d,j be the j ×1 mean vector of the nd,j responses
at times 1, : : : , j −1 plus a 1 (to allow for an intercept in the imputation model).

Suppose that the primary analysis is performed by multiple imputation assuming within-
arm MAR. Let V̂ obs, primary denote the estimated variance for the treatment effect under the
primary MAR assumption. Subsequently we perform class 1 sensitivity analysis via reference-
based multiple imputation, i.e. under equation (2), using the imputation algorithm in the on-
line appendix A. This general formulation includes all the reference-based options in Table 1.
As we are doing class 1 sensitivity analysis, the primary analysis model is used to analyse
the imputed data. Then the difference between the information-anchored variance of the
sensitivity analysis treatment estimate, which is denoted by V̂ anchored, which by definition is
.V̂ obs, primary=V̂ full, primary/V̂ full, sensitivity and Rubin’s multiple-imputation variance, denoted
by V̂ Rubin’s MI, is

E[V̂ anchored]−E[V̂ Rubin’s MI]=
J∑

j=2
π2

d,jP̄a,d,j.Vprimary,j −Vsensitivity,j/P̄T
a,d,j

+ E[B̂primary]

O.n2/E[Ŵprimary]
: .4/

Here Vprimary,j is the variance–covariance matrix of the parameter estimates in the primary
MAR imputation model for deviation at time j and Vsensitivity,j is the variance–covariance
matrix of the parameter estimates in the imputation model for deviation at time j, defined
by the reference-based sensitivity analysis assumption. B̂primary is the between-imputation
variance and Ŵprimary is the within-imputation variance of the treatment effect in the primary
analysis, both under MAR.

For a proof see the on-line appendix B.2.
Theorem 1 establishes the difference between the information-anchored variance and Rubin’s

rules variance. To show that class 1 sensitivity analysis by reference-based multiple imputation
is information anchored, we need to consider how close expression (4) is to 0.

The key quantity driving the approximation is the first of the two terms. Note that, for
each deviation time j, the variance–covariance matrix of the parameters of the on-treatment
imputation model is Vprimary,j =Σj=no, where Σj is the relevant submatrix of the variance–
covariance matrix Σ of the J observations. The precise form of Vsensitivity,j will depend on the
sensitivity analysis imputation model. Consider that data from the fully observed reference arm
are used in the sensitivity imputation (e.g. copy reference). In this case, Vsensitivity,j =Σj=n, and
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π2
d,jP̄a,d,j.Vprimary,j −Vsensitivity,j/P̄T

a,d,j =π2
d,jP̄a,d,jΣj

( 1
no

− 1
n

)
P̄T

a,d,j

=π2
d,jP̄a,d,jΣj

n−no

non
P̄T

a,d,j

=π2
d,jP̄a,d,jΣj

πd

n.1−πd/
P̄T

a,d,j:

Applying this line of argument to the other methods in Table 1 suggests that the error in the
approximation will be small and will vanish asymptotically.

Thus we have established that class 1 referenced-based imputation sensitivity analysis is,
to a good approximation, information anchored. We illustrate this in the simulation study in
Section 5.

3.2. Further comments

(a) In the proof of theorem 1, to simplify the argument, the variance–covariance matrix of
the data Σ is assumed known in the imputation model. When—as will generally be so—it
must be estimated, Carpenter and Kenward (2013), pages 58–59, show that, for the simple
case of the sample mean, the additional bias is small and vanishes asymptotically. This
strongly suggests that any additional bias caused by estimating the variance–covariance
matrix will be small, and asymptotically irrelevant; this is borne out by our simulation
studies below.

(b) For simplicity the theory treated the deviation pattern as fixed. We can replace all the pro-
portions πd,j by their sample estimates and then take expectations over these in a further
stage. As our results are asymptotic, the conclusions will be asymptotically equivalent.

(c) δ-method sensitivity analysis: we consider that, at the final time point J , imputed val-
ues for patients who deviate at time j (for j > 1) are edited by .J + 1 − j/δ to represent
a change in the rate of response of δ per time point post deviation. We now evaluate
the size of the two terms in expression (4) separately. For the first term, when δ is fixed,
the covariance matrix for the imputation coefficients under the primary analysis and
the sensitivity analysis is identical for each missing data pattern j; the δ-method sim-
ply adds a constant to the imputed values. Consequently Vprimary,j = Vsensitivity,j; thus
π2

d,jP̄a,d,j.Vprimary,j −Vsensitivity,j/P̄T
a,d,j =0, and Rubin’s rules give a very sharp approx-

imation to the information-anchored variance.
However, when δ is not fixed and we vary δ over the imputation set K , i.e. we suppose that

δk ∼N.δ, σ2
δ /, then, π2

d,jP̄a,d,j.Vprimary,j −Vsensitivity,j/P̄T
a,d,j =−π2

dσ2
δ , and the sensitivity

analysis is information negative. The extent of this is principally driven by the variance of δk.
Now consider the second term in expression (4). When the δ-method is used it is not nec-

essarily the case that result (3) holds, since Δd,j =μa,J −μd,j,J and Δd,p,q =μd,p,J −μd,q,J
are not necessarily O.n−1/. In the δ-based scenario, as outlined in the on-line appendix B.1,

V̂ full, sensitivity = V̂ full, primary +Q,

where

Q=
J∑

j=2

nond,j.J +1− j/2δ2

n3 +
J∑

p=2

J ,q �=p∑
q=2

nd,pnd,q{.J +1−p/δ − .J +1−q/δ}2

n3 :

Thus, for the δ-method the O.n−2/ component in the second term of expression (4) is
replaced with Q (as defined above). The composition of Q indicates that the information
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anchoring performance of Rubin’s variance estimate will also depend on the size of δ.
Typically, the size of δ will not have a large effect since the terms in Q are all multiplied
by components of the form nond,j=n3 or nd,pnd,q=n3 and thus will vanish asymptotically.
Hence with a fixed δ adjustment, the information anchoring approximation will typically
be excellent.

(d) Improved information anchoring: remark (b) shows that, provided that the underlying
variance–covariance matrices of the data are similar, the key error term in the information
anchoring approximation is the difference in precision with which they are estimated. If
all n patients are observed in the reference arm and no in the active arm, this is

1
no

− 1
n

:

This suggests that Rubin’s rules will lead to improved information anchoring if, instead
of using all patients in the reference arm to estimate the imputation model for deviators
at time j, a random no are used. We have confirmed this by simulation, but the improve-
ment is negligible when the proportion of missing data is less than 40%, when simulations
confirm that the approximation is typically excellent.

(e) Theorem 1 suggests that, for a given deviation pattern, information anchoring will be
worse the greater the difference between the covariance matrix of the imputation coef-
ficients under the primary and sensitivity analysis. However, we have not encountered
examples where this has been a practical concern.

(f) We have not presented formal extensions of our theory to the case when we also have miss-
ing data in the reference arm. But this does not introduce any substantial errors in the infor-
mation anchoring approximation. With missing data in the reference arm, for each missing
data pattern j, an additional component which depends on the difference between the vari-
ance of the imputation parameters in the primary on-treatment imputation model and
sensitivity scenario imputation model for the reference arm, multiplied by the proportion
of reference patients with that missing data pattern squared (denoted π2

r,d,j), is included.
If reference arm data are imputed under within-arm MAR (as under copy increments in
reference, copy reference or jump to reference) these terms will be 0. In the more general
case, where different patterns of patients, across different arms, are imputed with different
reference-based assumptions, additional non-zero error terms of the form as in the sum-
mation in expression (4) will be introduced; but again, for the reasons discussed above,
these will typically be small. The covariance between the parameters of the active and
reference arm sensitivity scenario imputation models for each missing data pattern also
contributes to the sharpness of the approximation. The exact size of these additional error
terms again depends on the specific sensitivity scenario and in some cases will be 0 (e.g. last
mean carried forward). But each covariance term is always multiplied by the proportion
of deviators in each arm with the associated missing data patterns (πd,jπr,d,j), P̄a,d,j and
P̄T

r,d,j (the j ×1 mean vector of the responses at times 1, : : : , j −1 for the reference patients
deviating at time j, plus a 1 to allow for an intercept in the imputation model). Thus it will
be of a relatively small order in practice following the reasons that were discussed above.

3.2.1. Summarizing remark
Given a primary design-based analysis model, we have established in proposition 1 a criterion
which defines a general class of reference-based sensitivity analyses. If these sensitivity analyses
are performed by multiple imputation, we have further established in theorem 1 that they will
be—to a good approximation—information anchored, in line with the principles that we set out
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in Section 2. We have also shown why the information anchoring is particularly sharp for the
δ-method of multiple imputation.

4. Class 2 sensitivity analyses and information anchoring

A full exploration of information anchoring for class 2 sensitivity analyses is beyond the scope
of this paper. Here, we focus on likelihood-based selection models (see, for example, Diggle
and Kenward (1994)) and use the results of Molenberghs et al. (1998) to make links to pattern
mixture models, which enables us to use the results that we presented in Section 3.

Continuing with the setting in Section 4, consider a trial with scheduled measurement times of
a continuous outcome measure at baseline and over the course of the follow-up. When data are
complete, the primary analysis is the analysis of covariance of the outcome measure at the sched-
uled end of follow-up on baseline and treatment group. Equivalent estimates and inferences can
be obtained from a mixed model fitted to all the observed data, provided that we have a common
unstructured covariance matrix and a full treatment–time and baseline–time interaction.

Now suppose that patients withdraw before the scheduled end of follow-up and subsequent
data are missing. The mixed model that was described in the previous paragraph then provides
valid inference under the assumption that post-withdrawal data are missing at random given
baseline, treatment group and available follow-up data. A selection model that allows post-
withdrawal data to be missing not at random combines this mixed model with a model for the
dropout process. Let Ri,j equal 1 or 0 if we respectively observe or miss the outcome for patient
i at scheduled visit j =1, : : : , J . An illustrative selection model is

Yi,j =αj +βjYi,0 +γjTi + εi,j, εi ∼N.0,ΣJ×J /,

g.Ri,j/=αR
j +βR

j Yi,0 +γR
j Ti + δR

1 Yi,j−1 + δR
2 .Yi,j −Yi,j−1/,

.5/

where the superscript R denotes a selection model parameter, and the link function g is typically
the logit, probit or complementary log–log-link (the last giving a discrete time proportional
hazards model for withdrawal).

Usually there is little information on the informative missingness parameter δR
2 in the data

(Rotnitzky et al., 2000; Kenward, 1998), and this information will be highly dependent on the
data distribution assumed. Therefore, in applications it is more useful to explore the robustness
of inferences to specific, fixed, values of δR

2 (δR
2 =0 corresponds to MAR).

For each of these specific values of δR
2 , we may recast the selection model as a pattern mixture

model, following Molenberghs et al. (1998). The differences between the observed and unob-
served patterns are defined as functions of the fixed δR

2 . However, these then become a particular
example of the δ-method pattern mixture models that were considered in Section 3, which we
have shown are information anchoring.

More generally, local departures from MAR are asymptotically information anchored. To
see this, denote by θ the parameters in equation (5), apart from δR

2 . For a fixed δR
2 , let i.θ̂; δR

2 /

be the observed information matrix at the corresponding maximum likelihood estimates θ̂. For
regular log-likelihoods and a given data set, as we move away from MAR, for each element i of
the information matrix i, the mean value theorem gives

i.θ̂; δR
2 /− i.θ̂; 0/=

{
@

@δR
2

i.θ̂; δR
2 /

∣∣∣∣
δR

2 =δ̃
R

2

}
δR

2 , for some δ̃
R

2 ∈ .0, δR
2 /: .6/

However, asymptotically the parameter estimates are normally distributed, so the third deriva-
tive of the likelihood (i.e. the right-hand side of expression (6)) goes to 0. Because result (6)
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holds when we use both the full data, and the partially observed data, it is sufficient to give
information anchoring. This is the basis for our intuition that, for most phase III trials, class 2
sensitivity analyses can be treated as information anchored for practical purposes.

5. Simulation study

We now present a simulation study which illustrates the information anchoring property of
Rubin’s variance formula, derived in Section 3. The simulation study is based on a double-blind
chronic asthma randomized controlled trial that was conducted by Busse et al. (1998). The trial
compared four doses of the active treatment budesonide against placebo on forced expiratory
volume FEV1 (recorded in litres) over a period of 12 weeks. FEV1-measurements were recorded
at baseline and after 2, 4, 8 and 12 weeks of treatment. The trial was designed to have 80%
power (5% type 1 error) to detect a change of 0.23 in FEV1 with 75 patients per arm, assuming
a standard deviation SD of 0.5.

We simulated longitudinal data, consisting of baseline (time 1) and two follow-up time points
(time 2 being week 4, and time 3 being week 12), from a multivariate normal distribution whose
mean and covariance matrix were similar to those observed in the placebo and lowest active
dose arm of this trial:

Σplacebo =Σactive =
(0:4 0:2 0:2

0:2 0:5 0:2
0:2 0:2 0:6

)
,

μplacebo = .2:0, 1:95, 1:9/,

μactive = .2:0, 2:21, μa,3/

(litres).
In the asthma study μa,3 ≈ 2:2, corresponding to a treatment effect of approximately 0.3 at

time 3 (week 12). In the simulation study we explored μa,3 ={1:9, 2:2, 2:9}. To test approximation
(4) we chose a sample size of n=250 in each arm, giving a power of at least 90% in all scenarios.
For each scenario, the analysis model was a linear regression of FEV1 at time 3 on baseline and
treatment, and this was fitted to the full data.

Subsequently, for the active arm, we simulated monotone deviation completely at random. We
varied the proportion of patients deviating overall from 0% to 50%. For each overall proportion
deviating, around half the patients deviated completely at random before time 2, and around
half deviated completely at random before time 3. All post-deviation data were set to missing.
The reference arm was always fully observed.

For each simulated data set, the primary analysis assumed MAR, and we performed class 1
sensitivity analyses using each of the reference-based methods in Table 1 and Rubin’s variance
was calculated. 50 imputations were used for each analysis. For the δ-method, the unobserved
data were postulated to be worse (than under MAR) by a fixed amount of δ ={0, −0:1, −0:5,
−1}, for each time point post deviation, where δ =0 is equivalent to the primary, MAR, anal-
ysis. Thus, for patients who deviated between time 1 and 2, their missing at random imputed
observations at time 2 were altered by δ and at time 3 by 2δ. For patients who deviated between
time 2 and 3, their missing at random imputed observation at time 3 was altered by δ.

1000 independent replicates were generated for each combination of μa,3 and deviation pro-
portion. Our results focus on the time 3 treatment effect and its variance.

To minimize the Monte Carlo variability in our comparisons, we used the same set of 1000
data sets and deviation patterns for each sensitivity analysis.
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Within each replication, for each sensitivity scenario, we also drew post-deviation data under
this scenario, giving a complete scenario-specific data set. For each replication this allowed
us to estimate the treatment effect and V̂ full, sensitivity for each scenario. Then, we calculated
the theoretical information-anchored variance, which by definition in Section 2 is V̂ anchored =
.V̂ obs, primary=V̂ full, primary/V̂ full, sensitivity. Estimates were averaged over the 1000 simulations.
All simulations were performed using Stata version 14 (StataCorp, 2015) and reference-based
multiple imputation was conducted by using the mimix program by Cro et al. (2016).

5.1. Simulation results
Fig. 2 shows the results, for each of the reference-based sensitivity scenarios in Table 1, and
controlled multiple imputation with four values of δ.

Figs 2(a)–2(d) display the results for the reference-based scenarios for a moderate treatment
effect of 0:3 (μa,3 =2:2), comparable with that found in the asthma trial. We see that the results
show excellent information anchoring by Rubin’s variance estimator for up to 40% of patients
deviating. Note that the information-anchored variance is always greater than V̂ full, sensitivity: the
variance that we would see if we could observe data under the sensitivity assumption.

These results are echoed by those with smaller and larger treatment effects (Fig. 3). We
conclude that, for realistic proportions of missing post-deviation data, reference-based multiple
imputation using Rubin’s variance estimator can be regarded as information anchored.

This is in contrast with the behaviour of the conventional variance estimator from the primary
regression analysis. Across all four reference-based scenarios, this reduces—and tends to 0—
as the proportion of missing data increases, and so yields increasingly information positive
inference as more data are missing! It is also smaller than the variance that we would obtain if
we could observe data under the sensitivity assumption. Therefore (see Carpenter et al. (2014)),
we believe that this is not generally an appropriate variance estimator for class 1 sensitivity
analyses. We return to this point below.

Now consider Figs 2(e)–2(h), which show results for controlled multiple imputation using
the δ-method. Again, consistent with the theory in Section 3, these show excellent information
anchoring by Rubin’s variance estimator for all missingness scenarios for δ =0, −0:1, −0:5, l.
Indeed, the information anchoring approximation is better than for the reference-based methods
above because the covariance matrix for the imputation coefficients under MAR and δ-based
imputation are identical: the first term in expression (4) disappears.

For contextually large δ=−1 l, the approximation is excellent for up to 40% missing data. For
greater proportions of missingness the approximation is not so sharp, and this is caused by the
size of the second term in expression (4), which is larger with a bigger δ and greater proportion
of missing post-deviation data.

For the δ-method we also see that using the conventional variance estimator from the pri-
mary analysis is also information anchored. The reason for different behaviour here from that
for reference-based methods is that reference-based methods borrow information from an-
other trial arm, and they do this increasingly as the proportion of patients deviating increases.
This causes the conventional variance estimator to be information positive. However, with the
δ-method there is no borrowing between arms, so this issue does not arise.

To summarize, the simulations demonstrate our theoretical results, showing that, for all the
controlled multiple-imputation methods outlined in Table 1 (reference and δ based), in realistic
trial settings multiple imputation using Rubin’s rules gives information-anchored inference for
treatment effects. It is only with very high proportions of missing data (e.g. greater than 50%)
that the information anchoring performance of Rubin’s variance begins to deteriorate. Such
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Fig. 2. Simulation results (for each sensitivity scenario, as the proportion of active arm deviations increases,
each panel shows the evolution of the mean estimate of the time 3 treatment effect variance (over 1000
replications) calculated in four ways: , Rubin’s multiple-imputation variance, from reference- or δ-based
multiple imputation; , information-anchored variance (Ê[V̂ anchored]); , applying the primary analysis
variance estimator in sensitivity scenarios; , variance when post-deviation data are actually fully observed
under the given scenario (Ê[V̂ full, sensitivity])): (a) sensitivity scenario, copy reference; (b) sensitivity scenario,
jump to reference; (c) sensitivity scenario, copy increments in reference; (d) sensitivity scenario, last mean
carried forward; (e) sensitivity scenario, δ-method, with δ D 0 (MAR); (f) sensitivity scenario, δ-method, with
δ D�0.1; (g) sensitivity scenario, δ-method, with δ D�0.5; (h) sensitivity scenario, δ-method, with δ D�1.0



638 S. Cro, J. R. Carpenter and M. Kenward

0
10% 20% 30%

(a) (b)

(c) (d)

(e) (f)

(g) (h)

40% 50%

Proportion of missing data (active)

0
10% 20% 30% 40% 50%

Proportion of missing data (active)

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50%

Proportion of missing data (active)

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

V
ar

ia
nc

e

V
ar

ia
nc

e

10% 20% 30% 40% 50%

Proportion of missing data (active)

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50%

Proportion of missing data (active)

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50%

Proportion of missing data (active)

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50%

Proportion of missing data (active)

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50%

Proportion of missing data (active)

.002

.004

.006

.008

.01

.002

.004

.006

.008

.01

Fig. 3. Simulation results (for each sensitivity scenario, as the proportion of active arm deviations increases,
each panel shows the evolution of the mean estimate of the time 3 treatment effect variance (over 1000
simulations) calculated in four ways: , Rubin’s multiple-imputation variance, from reference- or δ-based
MI; , information-anchored variance (Ê[V̂ anchored]); , applying the primary analysis variance estimator
in sensitivity scenarios; , variance when post-deviation data are alternatively fully observed under the
given scenario (Ê[V̂ full, sensitivity])): (a) sensitivity scenario, copy reference, treatment effect 0; (b) sensitivity
scenario, jump to reference, treatment effect 0; (c) sensitivity scenario, copy increments in reference, treatment
effect 0; (d) sensitivity scenario, last mean carried forward, treatment effect 0; (e) sensitivity scenario, copy
reference, treatment effect 1.0; (f) sensitivity scenario, jump to reference, treatment effect 1.0; (g) sensitivity
scenario, copy increments in reference, treatment effect 1.0; (h) sensitivity scenario, last mean carried forward,
treatment effect 1.0
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high proportions of missing data are unlikely in well-designed trials and would typically be
indicative of other major problems.

6. Analysis of a peer review trial

We now illustrate how the information-anchored theory that was outlined in Section 3 performs
in practice, using data from a single-blind randomized controlled trial of training methods for
peer reviewers for the British Medical Journal. Full details of the trial were given in Schroter
et al. (2004).

6.1. Description of the data
Following concerns about the quality of peer review, the original trial was set up to evaluate
no training, face-to-face training or a self-taught training package. After consent, but before
randomization, each participant was sent a baseline manuscript to review (paper 1) and the
quality of review was measured by using the review quality index (RQI). This is a validated
instrument which contains eight items and is scored from 1 to 5, where a perfect review would
score 5. All 609 participants who returned their review of paper 1 were randomized to receive
one of the three interventions.

2–3 months later, participants were sent a further manuscript to review (paper 2). If this
manuscript was reviewed a third was sent 3 months later (paper 3). Unfortunately, not all the
reviewers completed the required reviews; thus some review scores were missing. The main
trial analysis was conducted under the MAR assumption, using a linear regression of RQI on
intervention group adjusted for baseline RQI. The analysis showed that the only statistically
significant difference was in the quality of the review of paper 2, where the self-taught group
did significantly better than the no-training group.

Therefore, here we focus on examining the robustness of this purportedly significant result
to different assumptions about the missing data. Assuming MAR, the analysis found that re-
viewers in the self-taught group had a mean RQI 0.237 points above the no-intervention group
(95% confidence interval 0.01–0.37; p=0:001). Although this is relatively small, the self-taught
intervention is inexpensive and may be worth pursuing. However, Fig. 4 shows the quality of
the review at baseline for

(a) those who went on to complete the second review and
(b) those who did not,

for each of these two trial arms. The results suggest that a disproportionate number of poor re-
viewers in the self-taught group failed to review paper 2. This suggests that the MAR assumption
may be inappropriate, and data may be missing not at random.

6.2. Statistical analysis
The primary analysis model was a linear regression of paper 2 RQI on baseline and intervention
group (self-taught versus no training), and the intervention effect estimate is shown in the first
row of Table 2.

We conducted four further analyses.

(a) We multiply imputed the missing RQI data assuming MAR, fitted the primary analysis
model to each imputed data set and combined the results for inference by using Rubin’s
rules. The imputation model for RQI of paper 2 included the variables that were present
in the primary analysis model (RQI at baseline and treatment group).

(b) As it is reasonable to suppose that many of the reviewers in the self-taught group who
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Fig. 4. Quality of the baseline review: , reviewed paper 2; , did not review paper 2

Table 2. Estimated effect of self-training versus no training on the paper 2 RQI,
from the primary and various sensitivity analyses

Analysis Estimate Standard error p-value

Primary analysis, MAR 0.237 0.070 0.001
Multiple imputation, MAR 0.234 0.071 0.001
Multiple imputation, copy no training† 0.172 0.069 0.013
Multiple imputation, expert opinion 0.195 0.132 0.145

δk ∼N.−0:21, 0:462/
Multiple imputation, δ-method with 0.189 0.072 0.009

δ =−0:21†

†Information-anchored sensitivity analysis.

did not return their second review ignored their training materials, we perform a class 1
sensitivity analysis assuming that they ‘copied no training’. We used multiple imputation
and Rubin’s rules for information-anchored inference.

(c) We reproduced a previous sensitivity analysis that was described by White et al. (2007).
They used a questionnaire to elicit experts’ prior opinion about the average difference in
RQI between those who did, and did not, return the review of paper 2 (20 editors and
other staff at the British Medical Journal completed the questionnaire). The resulting
distribution can be summarized as N.−0:21, 0:462/. We used this to perform a δ-method
sensitivity analysis, where, for each imputation k, RQI values in the self-taught arm were
imputed under MAR and then had δk ∼N.−0:21, 0:462/ added. This analysis is expected
to be information negative.

(d) Our fourth analysis used the δ-method via multiple imputation for participants in the
self-taught arm, but now fixed δ=−0:21 (the mean expert opinion) to obtain information-
anchored analysis.

All analyses used 50 imputations and were performed using Stata version 14 (StataCorp
(2015)).
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6.3. Results
Table 2 shows the results. As theory predicts, the first and second rows show that the primary
analysis and analysis assuming MAR using multiple imputation give virtually identical results.
In the third row, reference-based sensitivity analysis assuming copy no training reduces the esti-
mated effect to 0.172; compared with the primary analysis the information-anchored standard
error is now very slightly reduced at 0.069. The effect of this is to increase the p-value by a factor
of 10 to 0.013.

In contrast, using the expert’s prior distribution (the fourth row), the point estimate is 0.195,
but the standard error is much increased at 0.132, so the p-value is over 100 times greater than in
the primary analysis. Lastly (the fifth row), again using the δ-method, but now fixing δ =−0:21,
gives a similar point estimate, but an information-anchored standard error of 0.072.

Critically, comparing the last two rows shows that expert opinion loses a further

1=0:0722 −1=0:1322

1=0:0722 ×100=70%

of the information beyond that lost due to missing data under the primary analysis. Such infor-
mation losses are not atypical (Mason et al., 2017). Since trials are often powered with minimal
regard to potential missing data, such a loss of information must frequently lead to the primary
analysis being overturned. By contrast, information-anchored sensitivity analysis fixes the loss
of information across the primary and sensitivity analysis, at a level that is possible to estimate
a priori for any given deviation pattern.

7. Discussion

The recent publication of the International Conference on Harmonisation E9 (R1) addendum
(2017) is bringing a sharper focus on the estimand. As the addendum recognizes, this in turn
leads to a greater focus on the assumptions underpinning estimands. When we are faced with
estimand relevant protocol deviations, or intercurrent events (e.g. rescue medication) and loss
to follow-up etc., such assumptions are at best only partially verifiable from the actual trial data.
In such settings, a primary analysis assumption is made, and then the robustness of inferences
to some secondary sensitivity assumptions will ideally be explored.

The assumptions underpinning the primary and sensitivity analyses should be as accessible
as possible. This applies not only to assumptions about the typical, or mean, profile of patients
post deviation, but also to assumptions about their precision.

In this paper, we have introduced the concept of information anchoring—whereby the extent
of information loss due to missing data is held constant across primary and sensitivity analyses.
We believe that this facilitates informed inferences and decisions, whatever statistical method
is adopted. Information anchoring allows stakeholders to focus on the assumptions about the
mean responses of each patient, or group of patients, post deviation, without being concerned
about whether we are injecting information into or removing information from the analysis
(relative to that lost—due to patient deviations—in the primary analysis). For example, we
believe that this provides a good basis for discussions between regulators and pharmaceutical
statisticians: the former can be reassured that the sensitivity analysis is not injecting information,
whereas the latter can be reassured that the sensitivity analysis is not discarding information.

We have differentiated between two types of sensitivity analysis: class 1 and class 2. In class 1
the primary analysis model is retained in the sensitivity analysis; such sensitivity analyses can
be readily (but need not be) carried out by multiple imputation.

Controlled multiple-imputation procedures, which combine a pattern mixture modelling
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approach with multiple imputation, naturally fall into this first class. These include reference-
based multiple-imputation procedures, which impute missing data under qualitative assump-
tions for the unobserved data, based on data observed in a specified reference group. The primary
analysis model is retained in the sensitivity analyses, fitted to each imputed data set and results
combined by using Rubin’s rules. Consequently the assumptions of the primary analysis model
are generally inconsistent with the data-generating mechanism postulated by the sensitivity
analysis assumption. Thus the usual justification for Rubin’s multiple-imputation rules does
not hold. Instead, we have identified a new property of these rules, namely that for a broad
class of controlled multiple-imputation approaches, including both δ- and reference-based ap-
proaches, they yield information-anchored inference. In this regard, a practically important
corollary of our theory is that the widely used δ-method (and associated tipping point analysis)
is information anchored with fixed δ adjustment.

Although we believe that information-anchored sensitivity analyses provide a natural start-
ing point and will often be sufficient, in certain scenarios it may also be desirable to conduct
information negative sensitivity analysis. In such analyses a greater loss of information due to
post-deviation (missing) data is imposed by the analyst in the sensitivity analysis relative to the
primary analysis. One way to do this is by prior elicitation—i.e. incorporating a prior distri-
bution on δ—as touched on in the further comments following theorem 1 and Section 6. The
theory in Section 3 also shows how a greater loss of information can be imposed in sensitivity
analysis via reference-based multiple imputation if required. This is done by reducing the size
of the reference group that is used to construct the reference-based imputation models.

Whatever approach is taken, careful thought needs to be given, and justification provided, for
the additional loss of information being imposed. As we discussed at the end of Section 6, the
loss of information with prior elicitation can be substantial. Often it will be difficult to justify
an additional amount of information loss to impose.

Conversely, we argue that information positive sensitivity analysis, where a lower loss of
information due to missing data post deviation is imposed in the sensitivity analysis relative to
the primary analysis, is rarely justifiable, if at all. This is because it goes against all our intuition
that missing data means that we lose (not gain) information: with information positive sensitivity
analyses, we gain more precise inferences the more data we lose!

Our approach to determining the appropriate information in sensitivity analyses (which, as
the simple example in Section 1 shows, is under the control of the analyst), contrasts with some
recent work. Lu (2014), Tang (2017) and Liu and Pang (2016) each developed alternative imple-
mentations of the reference-based pattern mixture modelling approach. Lu (2014) introduced
an analytical approach for placebo-based (copy reference) pattern mixture modelling which
uses maximum likelihood and the delta method for treatment effect and variance estimation.
Tang (2017) derived different analytical expressions for reference-based models, also via the
likelihood-based approach. Liu and Pang (2016) proposed a Bayesian analysis for reference-
based methods which estimates the treatment effect and variance from the posterior distribution.

What Lu (2014), Liu and Pang (2016) and Tang (2017) have in common is that, in the ter-
minology that is developed here, they essentially choose to apply the primary analysis variance
estimator across the sensitivity analyses. Although this choice has a long-run justification, for the
reference-based multiple-imputation estimator, as our simulation results in Fig. 2 show (and we
have discussed elsewhere (Carpenter et al., 2014)), this choice also means information positive
inferences for reference-based scenarios. This is a consequence of

(a) uncongeniality between the imputation and analysis model and
(b) the fact that reference-based methods borrow information from within and across arms.
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Thus we highlight here that, if one of these alternative implementations is employed within
sensitivity analysis, information positive inference will be obtained.

What are the implications of this for our approach? Necessarily, the variance estimate arising
from the information-anchored sensitivity analysis via reference-based multiple imputation does
not have a long-run justification for the reference-based multiple-imputation point estimate.
However, having determined that the information-anchored variance is appropriate, we can
readily inflate the long-run variance of the reference-based multiple-imputation estimator by
adding appropriate random noise. In this way, having chosen to make our primary and sensitivity
analysis information anchored, we can derive a corresponding point estimator whose long-run
variance is the information-anchored variance.

If we wish to do this, we can proceed as follows. Recall that reference-based methods calculate
the means of the missing values for each patient as linear combinations of the estimated treatment
means at each time point under randomized arm MAR. Assume J follow-up visits, and denote
these estimated means by the 2J ×1 column vector μ, with estimated covariance matrix V̂. It fol-
lows that, for some 2J ×1 column vector L, the maximum likelihood reference-based treatment
estimate is given by LTμ, with associated estimated empirical variance σ̂2

ML =LTV̂L. If we de-
note the information-anchored variance by σ̂2

IA, take a draw from N.0, σ̂2
IA − σ̂2

ML/ and add
this to the treatment estimate that is obtained from the reference-based analysis by multiple
imputation, this will result in an estimate with the information-anchored variance in a long-run
sense. In practice σ̂2

ML could also be estimated by using one of the implementations of Lu (2014),
Tang (2017) or Liu and Pang (2016). In applications, however, we do not think that this step is
typically worthwhile. Note also that with the δ-method σ̂2

IA is well approximated by σ̂2
ML, so it

is not necessary.
This paper has focused on the analysis of a longitudinal measure of a continuous outcome.

For generalized linear models, if we perform controlled multiple imputation on the linear pre-
dictor scale, then we can apply the theory that was developed here on the linear predictor scale.
This suggests that, for generalized linear models, controlled multiple imputation will be approx-
imately information anchored; preliminary simulations support this, and work in this area is
continuing. We note, however, that issues may arise with non-collapsibility when combining
the component models in this setting. For survival data, we need to define the reference-based
assumptions. This has been done in Atkinson (2018), which also contains simulation results
suggesting promising information anchoring properties for Rubin’s rules in this setting.

When conducting class 1 sensitivity analyses via multiple imputation a natural question might
be how many imputations to conduct. As remarked in the proof of theorem 1 in the on-line
appendix B.2, the number of imputations does not materially affect the information anchoring
performance of Rubin’s variance estimate. Thus we recommend determining the number of
imputations that are required for primary analysis (under MAR) based on the required precision;
these should estimate the information anchored variance with similar precision in sensitivity
analysis. To establish the number of imputations that are required to achieve a specific level of
precision under MAR Rubin (1987) showed that the relative variance, i.e. the efficiency of an
estimate using only K imputations compared with an infinite number, is approximately 1+λ=K,
where λ is the fraction of missing information. As discussed in Carpenter and Kenward (2008),
pages 86–87, 5–10 imputations are sufficient to obtain a reasonably accurate answer for most
applications. For more critical inferences, at least 50–100 imputations are recommended (see
Carpenter and Kenward (2013), pages 54–55).

Of course, to obtain information-anchored analyses multiple imputation does not have to be
used. In principle we can perform information-anchored analysis by calculating the variance
directly from the information anchoring formula. However, to do this we need to calculate
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the expected value of the design variance when we actually observe data under the sensitivity
assumption. When the approach is used with its full flexibility (with different assumptions
for different groups of patients) this is awkward. Multiple imputation provides a much more
direct, computationally general, accessible approach for busy trialists, without the need for
sophisticated one-off programming which is often required to fit data missing not at random
pattern mixture models or other data missing not at random models directly.

In conclusion, we believe that sensitivity analysis via controlled multiple imputation provides
an accessible practical approach to exploring the robustness of inference under the primary
assumption to a range of accessible, contextually plausible alternative scenarios. It is increasingly
being used in the regulatory world (see, for example, the Drug Information Association pages
at www.missingdata.org.uk, and the code therein, Philipsen et al. (2015), Jans et al. (2015),
Billings et al. (2018), Atri et al. (2018), O’Kelly and Ratitch (2014) and references therein).
Our aim has been to provide a more formal underpinning. Information anchoring is a natural
principle for such analysis, and we have shown that this is an automatic consequence of using
multiple imputation in this setting.
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