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Real-time Kalman filter: Cooling of an optically levitated nanoparticle
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We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle,
and operated in real-time within a field programmable gate array, is sufficient to perform closed-loop parametric
feedback cooling of the center-of-mass motion to sub-Kelvin temperatures. The translational center-of-mass
motion along the optical axis of the trapped nanoparticle has been cooled by 3 orders of magnitude, from a
temperature of 300 K to a temperature of 162 ± 15 mK.
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I. INTRODUCTION

In order to perform closed-loop feedback control of a clas-
sical or quantum system, accurate real-time state estimation
is crucial. With recent advances in quantum engineering and
technology comes a need to accurately measure and control
quantum systems. In order to obtain accurate knowledge about
the state of a system from noisy measurements one can use a
process called filtering which combines the knowledge of the
dynamics of the system with noisy measurements of the system
to estimate the true state of the system [1].

A much targeted goal in levitated optomechanics [2] is
cooling and stabilizing the center-of-mass motion of an op-
tically levitated nanosphere in a target phonon number state
[3–12]. Nanospheres cooled to low-temperature thermal states
and stabilized in phonon number states have applications such
as performing matter-wave interferometry, allowing inves-
tigation of quantum phenomena which cannot be accessed
with atoms [13], and tests of collapse models which cannot
be performed at smaller mass scales [14–16], as well as
providing the possibility of much higher force sensitivity than
can be achieved in levitated atom systems [9,17–19]. Optically
levitated nanoparticles have also been used as a model system
to simulate and investigate nonequilibrium dynamics [20]
and stochastic dynamics [21] and show promise for use in
investigating quantum gravity [22–24].

The first step in stabilizing the center-of-mass motion
in such a state using closed-loop feedback is to accurately
estimate the motional state of the system in real-time. In
principle, this can be accomplished using a quantum filter,
known also as the stochastic master equation (SME), where
the estimate of the state, i.e., the conditional density operator,
is updated continuously by the measurement record [25–28].
Quantum estimation theory has been discussed in the context of
optomechanics to investigate wave-function collapse models
[29,30] and to detect and measure gravity [31,32], and the
Fisher information for parameter estimation in linear Gaussian
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quantum systems under continuous measurement has been
considered [33].

A quantum filter is a more general approach to modeling
the system than a Kalman-Bucy filter as it includes the
effect of measurement backaction on a quantum system under
continuous weak measurement. However, as is shown here, it
reduces to the optimal quantum Kalman-Bucy filter in the case
where the system is linear and the noise is approximately white
and Gaussian [25,34–36]. Moreover, as discussed in Ref. [37],
we can formally map the quantum Kalman-Bucy filter to
a (classical) Kalman-Bucy filter [38,39]. Kalman filters, the
discrete-time counterparts to continuous-time Kalman-Bucy
filters, have been used extensively in many aerospace and
defense applications [40,41], including navigation systems for
the Apollo Project and the well-known Global Positioning
System [42]. Field-programmable-gate-array (FPGA)-based
Kalman filters have also recently been developed for applica-
tions including antilock braking systems [43], radar tracking
systems [44], and displacement measuring interferometry [45].
Kalman filtering has also been applied in various areas within
the physical sciences such as atomic magnetometry [46], track-
ing dusty plasmas [47], and noise cancellation in gravitational
wave detection [48].

The second step is to control the state of the system with
feedback [49,50], e.g., Markovian [51] or Bayesian feedback
[37], the latter of which we adopt in this article (alternatively
one could also consider coherent feedback [52]). However,
numerically solving a SME in real-time requires truncation
of the Hilbert space basis as the computation time scales
exponentially with the size of the basis. To circumvent this
difficulty different suboptimal methods have been developed,
namely, the number-phase Wigner particle filter [53], the
Volterra particle filter [54], the quantum extended filter [55],
and the Gaussian approximation of the conditional density
operator [34].

Quantum Kalman filtering has recently been applied to
the field of optomechanics and demonstrated to produce a
minimal least-squares estimation of the mechanical state of
an optical cavity [56]. This was done in postprocessing by
using the measurement record from a homodyne detection as
the input to a quantum Kalman filter implementing an accurate
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state-space model which carefully took into account nontrivial
experimental noise sources. They suggest that ground-state
cooling should be readily achievable by utilizing a real-time
quantum Kalman filter of sufficiently high spatial resolution,
dynamic range, and latency in the detection and processing of
the signals.

In this article we demonstrate that a real-time quan-
tum Kalman filter with a sampling period of 2.275 μs is
sufficient to estimate the state such that one can perform
closed-loop parametric feedback cooling of the translational
motion of an optically levitated nanoparticle to sub-Kelvin
temperatures.

II. THE MODEL

We consider an optically levitated nanoparticle in free space
subject to continuous weak measurements of its position.
Specifically, we consider the experimental setup described in
Ref. [57]: an incoming beam is focused by a paraboloidal
mirror to the focal point, where it creates a harmonic trap.
The particle, which is trapped in this potential scatters photons
in the Rayleigh regime: these are collected by the detector to
obtain the z position with efficiency η (see Fig. 1). We model
the particle dynamics along the optical axis, namely the z axis,
using the following SME:

dρ̂c = − i

h̄
[Ĥ + Ĥfb,ρ̂c]dt + (n̄ + 1)�D[â]ρ̂cdt

+ n̄�D[â†]ρ̂cdt + 2kD[ẑ]ρ̂cdt +
√

2ηkH[ẑ]ρ̂cdW,

(1)

where ρ̂c is the conditioned state at time t . In the first line we
have the Hamiltonian and the feedback terms:

Ĥ = p̂2

2m
+ mω2

2
ẑ2, (2)

Ĥfb = β

(
mω3

2

〈p̂〉〈ẑ〉
〈Ĥ 〉

)
ẑ2, (3)

respectively, whereβ is an adimensional parameter quantifying
the strength of the feedback, 〈 · 〉 = tr[ · ρc], ẑ and p̂ denote the
particle position and momentum operators, respectively, ω is
the trap frequency, and m is the mass of the particle (see the
Appendix, Sec. 1, for more details on the feedback term). The
second line of Eq. (1) describes the interaction with a gas of par-
ticles at temperature T , where n̄ = (exp(h̄ω/kBT ) − 1)−1, kB

is the Boltzmann’s constant, â† = √
mω
2h̄

(ẑ + i
mω

p̂), D[L̂] · =
L̂ · L̂† − 1

2 {L̂†L̂, · } [58], L̂ denotes an operator, { · , · } is the
anticommutator, and � is the damping rate [59]. The effect
of weak continuous z-position measurements is described by
the third line of Eq. (1), where H[L̂] · = {L̂, · } − 2Tr[L̂ · ] ·
and L̂ is a Hermitian operator, W is a real Wiener process,
k = 12π2μ

5λ2 , λ is the wavelength of the laser light, μ = σ

πw2
0

P
h̄ωL

is the scattering rate, σ is the the Rayleigh cross section, w0 is
the beam waist, P is the laser power, ωL = 2πc

λ
, and c is the

speed of light. In addition, we assume that the measurement
record is given by [57]

dQ = 4ηk〈ẑ〉dt +
√

2ηkdW. (4)

We suppose that the initial state ρc is thermal when the
feedback term starts to cool the system, and thus the state ρc

remains Gaussian under the evolution of the SME given in
Eq. (1). This simplifies the problem to the analysis of the mean
values [34],

d〈ẑ〉 =〈p̂〉
m

dt − �〈ẑ〉dt +
√

8ηkVzdW, (5)

d〈p̂〉 = −mω2〈ẑ〉
(

1 + β
ω〈p̂〉〈ẑ〉

〈Ĥ 〉

)
dt − �〈p̂〉dt

+
√

8ηkCdW, (6)

and of the covariances,

dVz = 2

m
Cdt − 8ηkV 2

z dt − �Vzdt

+�(2n̄ + 1)
h̄

2mω
dt − 3�〈z〉2dt, (7)

dVp = −2mω2C

(
1 + β

ω〈p̂〉〈ẑ〉
〈Ĥ 〉

)
dt − 8ηkC2dt

+ 2kh̄2dt−�Vpdt + �(2n̄+1)
mωh̄

2
dt − 3�〈p̂〉2dt,

(8)

dC = Vp

m
− mω2Vz

(
1 + β

ω〈p̂〉〈ẑ〉
〈Ĥ 〉

)
dt − 8ηkCVzdt

−�Cdt − 3�〈p̂〉〈ẑ〉dt, (9)

where Vz = 〈(ẑ − 〈ẑ〉)2〉, Vp = 〈(p̂ − 〈p̂〉)2〉, and C =
1
2 〈{ẑ,p̂}〉 − 〈ẑ〉〈p̂〉.

We can further simplify the filter by neglecting the
small feedback term and damping term; i.e., we set
β = 0 and � = 0 in Eqs. (5)–(9). The equations for
the variances then form a closed set of coupled Ric-
cati equations [60–63] and we can also formally rewrite
Eqs. (5)–(9) as a classical Kalman-Bucy filter [37]:

dxc = Axcdt +
√

2ηkdξ +
√

2�kbT dV , (10)

where xc = (zc,pc)�, A = [
0 1/m

−mω2 −�
], dξ = (0,dξ )�, ξ

is a real Wiener process, dV = (0,dV )�, and V is a real Wiener
process uncorrelated with ξ and we have added the� dependent
terms on pc. In place of Eq. (4) we consider the classical
measurement record:

dQc = 4ηkzcdt +
√

2ηkdζ, (11)

where dζ is a third real Wiener process uncorrelated with ξ

and V . Moreover, we suppose the following relation:

dW =
√

8ηk(zc − E[zc])dt + dζ, (12)

where E[ · ] = ∫ ·Pc(zc,pc)dzcdpc and Pc is the (classical)
conditioned state obtained from the Kushner-Stratonovich
equation corresponding to Eq. (10) [64]. We can then formally
identify E[ O ] with 〈Ô〉, where O and Ô denote the classi-
cal and its corresponding quantum observable, and Qc with
Q [65].
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FIG. 1. The three-dimensional position of the particle is detected by interference of the scattered and divergent field by the photodetector.
This signal is then passed into an FPGA which is implementing the Kalman filter that estimates the z position and amplifies the estimate. This
estimated signal is then sent into a second FPGA which dc shifts it, frequency doubles it, applies a time delay, and multiplies it so as to keep
the amplitude approximately constant. This signal is then fed to an AOM to modulate the power of the trapping lasers. The erbium-doped fiber
amplifier (EDFA) then amplifies this modulated signal to the power required to trap the nanoparticle; this signal is then used to trap and measure
the nanoparticle.

III. EXPERIMENTAL METHODS

The Kalman filter described in Eq. (10) and further de-
tailed in the Appendix, Sec. 2, was implemented in VHDL

(Very High Speed Hardware Description Language) using
fixed-point arithmetic and synthesized onto a XilinX Virtex-5
SX50T field programmable gate array (FPGA) provided in
a National Instruments (NI) PXIe-7961 and connected to a
NI 5781 baseband transceiver for analog-to-digital conversion
(ADC) and digital-to-analog conversion. The fastest sample
rate achievable for a Kalman filter with this FPGA was
439.56 kHz. This was because the fastest synthesizable clock
rate for the design was 3.07 MHz and each Kalman filter
iteration takes seven clock cycles; this is equivalent to a sample
period of 2.275 μs.

Cooling was performed by taking the estimated signal
for the z position from the Kalman filter and using a leaky
integrator to calculate the dc component of the signal. The
dc component was then removed from the measured signal
in order to provide only the ac component of the signal. This
ac signal containing the estimate of the particle position was
squared in order to produce a signal at double the frequency
of the motion of the particle. The signal then had a constant
phase offset applied to it by introducing a time delay, in order
to compensate for experimental latency, which was optimized
such that maximal cooling was observed experimentally. In
addition, the amplitude of the output cooling signal was con-
trolled such that it maintained a set average amplitude in order
to keep the cooling rate approximately constant regardless of
fluctuations in the amplitude of the motion of the particle. This
signal was then applied to modulate the power of the trapping
laser in order to parametrically cool the translational z motion.

A particle was trapped and the power of the trap was lowered
so as to reduce the frequency of oscillation in the z direction,
a frequency of 38 kHz was obtained for the z motion. The
VHDL code for a Kalman filter modeling a simple harmonic
oscillator with a frequency of 38 kHz was generated; the

Q matrix and the R value, corresponding to Eqs. (A7) and
(A8) in the Appendix, Sec. 2, were tuned by application to
simulated data [66] and then synthesized onto an FPGA. The
frequency doubling, time delay, and amplitude control codes
were synthesized onto another FPGA. The experimental setup
is shown in Fig. 1.

A lock-in amplifier was used to cool the other two direc-
tions of motion as described in Ref. [10]. The power of the
trapping laser was adjusted slightly so that the z motion, the
motion parallel to the propagation direction of the laser, stayed
oscillating at a frequency of 38 kHz regardless of pressure so
that the Kalman filter could continue to optimally track the
particle’s z motion.

IV. RESULTS

The data analysis has been primarily performed using the
open-source optoanalysis package which we have developed
[67]. The derivation of the method of calculating temperature
is detailed in Ref. [10]. Plots showing the measured, bandpass-
filtered, and real-time Kalman estimated z-motion signals are
shown in Fig. 2. The Kalman estimate has been shifted forward
in time by one filter cycle (time for one time-step/iteration of
the Kalman filter algorithm which is 2.275 μs) to account for
the latency in the estimation. The dominant noise source in the
estimated and cooling signals is electrical noise originating
from the analog-to-digital and digital-to-analog converters.

As described under Experimental Methods this estimated
signal was then passed to a second FPGA so that the signal
could be squared, a time delay applied, and a modulation
applied to the amplification of the signal so as to keep the
amplitude approximately constant. This signal was then used to
modulate the power of the laser via an acousto-optic modulator
(AOM) as shown in Fig. 1. Through this technique cooling of
the translational motion in the propagation direction of the
laser (labeled the z direction) from 300 K to 162 ± 15 mK was
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(a) (b)

(c) (d)

FIG. 2. (a) Time trace of unfiltered measured signal from the particle and filtered z signal over 0.5 ms. (b) Time trace of filtered z signal and
Kalman-filter-estimated z signal over 0.5 ms. (c) Power spectral density of measured signal from the particle and the Kalman-filtered estimate.
The peaks at 100 and 120 kHz are due to the x motion and the y motion, respectively. (d) Same as panel (c) but over a smaller frequency range
centered on the z frequency of 38 kHz.

achieved; see Fig. 3 for the power spectral density (PSD) of
the uncooled and cooled signals.

FIG. 3. The PSD of the uncooled particle in equilibrium with the
environment at 300 K (at a pressure of 3 mbar) and the cooled particle
at a pressure of 5.7 × 10−5 mbar. The lines represent the Lorentzian
functions fitted to the PSD data to calculate the temperature of the
cooled state.

The main limitations on the temperature reached with
this cooling scheme are discretization noise from the ADC,
stochastic noise of the particle motion from gas collisions, and
the sample period with which one can perform an iteration of
the Kalman-filtered-state estimation.

The discretization noise is caused because the voltage signal
from the photodetector is read into the FPGA as a digital
value from an ADC. For the ADC used here the voltage
difference between the discrete observable levels is 122 μV;
this means that for the signal shown in Fig. 2 the FPGA
only observed approximately five discrete levels. The feedback
cooling is operating very near the limit of what motion it can
discern and estimate, and this is likely the predominant limiting
factor on the cooling achievable. Using an ADC with higher
voltage resolution or amplifying the signal into the ADC with
a sufficiently low noise amplifier will improve this limit.

The stochastic noise on the motion of the particle from gas
collisions is the other primary limitation on the temperature
reached; performing this cooling at lower pressures will further
reduce the temperature that can be reached as the stochastic
driving of the particle motion by gas collisions will be further
reduced.
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At present the hardware implementation can run at a fastest
sample period of 2.275 μs, this means that for a particle
oscillating with a frequency of 38 kHz one only estimates
the motion ∼11.6 times in one period and this results in
a higher signal-to-noise ratio being necessary for accurate
state estimation. Increasing the sample frequency would mean
that the accuracy of the state estimation at lower signal-to-
noise ratios will improve and therefore that cooling to lower
temperatures should be achieved. A high sample frequency
also means that higher frequency motion can be estimated and
cooled in this way, leading to a lower mean phonon number
for the same temperature of motion [10,68].

The model used in this Kalman filter is sufficient to
outperform other, more simplified, state estimation and feed-
back cooling schemes such as using a bandpass filter to
track and cool the motion, which we found only achieved
cooling to a temperature of 3 K. However, the model of
the motion considered here has been simplified to that of a
simple harmonic oscillator which does not represent a perfect
model of the experimental system, because of this the state
estimation is suboptimal, which reduces the accuracy with
which the Kalman filter can estimate the motional state of the
system, which in turn causes the cooling to be suboptimal.
A more sophisticated model that more completely modeled
the physical system would produce a more accurate estimate
and therefore a higher cooling rate which would result in an
achievable final temperature which was lower.

V. DISCUSSION AND CONCLUSIONS

We have demonstrated that, for an optically levitated
nanoparticle, a Kalman filter using a very simple harmonic-
oscillator model of the dynamics of the system and which
operates with a relatively high sample period is sufficient to
achieve cooling of translational motion to sub-Kelvin temper-
atures of 162 ± 15 mK. Improvements in the speed of the
hardware implementation such that a lower sample period
can be achieved, a more sophisticated model of the dynamics
including the effect of feedback and extending the modeling
to all 3 translational degrees of freedom, and performing the
cooling at a lower pressure will increase the performance
of the cooling performed using this method and result in
cooling to lower temperatures. Provided that the limitations
discussed could be overcome and a sufficiently accurate model
of the system could be implemented in a Kalman filter and
that the achievable cooling rate could be made sufficiently
high to overcome the rate of reheating caused by thermal gas
heating and photon recoil then ground-state cooling should be
achievable in this way.

Using this form of state estimation in real time also opens
the way to implementing more complex feedback schemes
[64,69–71], such as combination with a proportional integral
differential controller [72] or a linear quadratic regulator
(LQR) [37,64]. Combining the Kalman filter, which is a linear
quadratic estimator, with an LQR constitutes linear quadratic
Gaussian (LQG) feedback control. Coherent-feedback cooling
by LQG control has been discussed in depth in Refs. [73] and
[74] and could be used to significantly improve the level of
control over the motional state of the system as well as to
improve the minimum temperature reachable in this system.
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APPENDIX: REAL-TIME KALMAN FILTER: COOLING
OF AN OPTICALLY LEVITATED NANOPARTICLE

In this Appendix we derive the form of the feedback term
in the SME in Eq. (1) in the main text. We also derive the
discrete-time-state transition matrix for the Kalman-Bucy filter
considered in Eq. (10) in the main text.

1. The feedback term

We denote the measured signal by z̄ = Q, where Q is given
in Eq. (4) in the main text, and we define the phase of the signal
as

θt =
{

arctan
(

p̄

mωz̄

)
, if z̄ � 0,

arctan
(

p̄

mωz̄

) + π, otherwise,
(A1)

where p̄ = m d
dt

z̄. Note that this definition of p̄ assumes a
physical noise with a nonwhite spectrum in place of the
Brownian noise dW

dt
. We apply a sinusoidal modulation of the

laser power P at twice the tracked signal phase. Specifically,
we consider the modulation βsin(2θt ), where β is the amplitude
of the modulation of the laser power P . We have that the trap
frequency squared ω2 is proportional to the laser power P

(see main text and Ref. [57]). Thus when the modulation is
applied we can obtain the feedback term by formally making
the replacement ω2 → ω2[1 + βsin(2θt )] in the unmodulated
Hamiltonian H (we neglect the corresponding modulation of
the k dependent terms in Eq. (1)). The feedback term is given
by

Hfb = βmω2

2
sin(2θt )ẑ

2. (A2)

Using the definition in Eq. (A1) we note that

sin(2θt ) = sin

[
2 arctan

(
p̄

mωz̄

)]
. (A3)

Using Eq. (A3) and trigonometric identities we then find the
following from Eq. (A2):

Hfb = β

(
mω3

2

p̄z̄

Ē

)
ẑ2, (A4)

where Ē = p̄2

2m
+ mω2

2 z̄2. Note that Ē is also time dependent.
It is a nontrivial task to add the feedback term in Eq. (A4)

to the dynamics in Eq. (1) due to the nonwhite nature of the
noise. One would need to find the white-noise limit of the term
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in Eq. (A4), for example, for a Gaussian noise; add it to the
dynamics in the Stratonovich form; and then convert back to the
Itô form [51]. However, if one considers only the nonstochastic
contribution, then the feedback term in Eq. (A4) reduces to

Hfb = β

(
mω3

2

〈p̂〉〈ẑ〉
〈Ĥ 〉

)
ẑ2. (A5)

This term yields, in the equations of motion for 〈p̂〉, the
following contribution:

d〈p̂〉 =
(

βmω3

〈Ĥ 〉

)
〈ẑ〉2〈p̂〉dt, (A6)

If we then replace 〈Ĥ 〉 with a constant energy value E, we
obtain the cooling term considered in Refs. [10,75].

2. The discrete-time Kalman filter

The discrete-time Kalman filter uses a linear state-space
model of the form

Xt = FtXt−1 + wt , (A7)

where Xt is the state vector containing the variables that one
wishes to estimate (e.g., position, velocity), Ft is the state
transition matrix which describes how the state vector at time
step t − 1 transitions to the state vector at time step t , wt

is the vector containing the discrete process noise for each
parameter in the state vector. The process noise is assumed to be
drawn from a zero mean multivariate normal distribution with
covariance matrix Qt , i.e., wt ∼ N (0, Qt ). Measurements of
the system take the form

zt = H tXt + vt , (A8)

where zt is the vector of measurements, H t is the measurement
transformation matrix which maps the state vector domain to
the measurement domain, vt is the vector containing the mea-
surement noise terms for each observation in the measurement
vector. The measurement noise, similar to the process noise,
is assumed to be drawn from a zero mean normal distribution
with covariance Rt , i.e., vt ∼ N (0,Rt ).

If one considers the Kalman-Bucy filter given in Eq. (10) of
the main text with the state vector Xt = (zt ,vt )T at time step
t , where zt is the position of the particle in the z direction and
vt = pt/m is the velocity of the particle in the z direction, one
has the following equation for the system dynamics,

Ẋt = AXt + ω, (A9)

where

A =
[

0 1
−ω2 −�

]
, ω =

√
2�kBT0

m

dξ (t)

dt
+

√
2ηk

m

dV(t)

dt
,

(A10)

with dξ = (0,dξ )� and dV = (0,dV )�.
The stochastic terms can be modeled as process noise ω.

The damping is time variant as it varies with pressure; however
for the range of pressures explored experimentally � << ω2

and therefore the damping value can be approximated as 0. In
this case the dynamics model simplifies to a simple sinusoidal
model of the motion ẍ = −ω2x with the stochastic noise
modeled in the process noise. This simple model also allows
us to keep the hardware implementation simple to allow the
design to fit inside the FPGA.

As described in Refs. [76–78] we can use the following
transformation from linear-time-invariant system theory in
order to calculate the continuous-time state transition matrix
F(t) for a time-invariant system dynamics matrix A:

F(t) = L−1([sI − A]−1), (A11)

where F(t) is the continuous-time form of the Ft matrix in
Eq. (A7), L−1 is the inverse Laplace transform in terms of
the complex frequency variable s, and I is the identity matrix.
Performing this transformation and taking continuous time t

to be in discrete steps t gives us the discrete time state-space
model:

[
zt

vt

]
=

[
cos (ωt) 1

ω
sin (ωt)

−ω sin (ωt) cos (ωt)

][
zt−1

vt−1

]
, (A12)

where t = tn − tn−1.
The values of the process noise covariance matrix Q and the

measurement noise covariance value R were tuned such that
when the HDL (Hardware Description Language) implementa-
tion of the Kalman filter was run on noisy data produced by a
simulated signal it produced an accurate estimate of the true
signal. This simulated signal was produced by adding Gaussian
noise to the simulated position measurements found by solving
the classical stochastic differential equation modeling our
system under free evolution using the open-source OPTOSIM

package we have developed [79].
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