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We characterize general non-Markovian Gaussian maps which are covariant under Galilean trans-
formations. In particular, we consider translational and Galilean covariant maps and show that they reduce
to the known Holevo result in the Markovian limit. We apply the results to discuss measures of
macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and
non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by
Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
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Introduction.—Symmetries have always played a central
role in modern physics, especially after their mathematical
formulation with the advent of group theory: they underlie
the simplicity of nature and manifest the beauty of physical
laws. They also serve as a guideline principle for deciding
the form of the dynamics [1,2]. Here we are interested in the
role of space-time symmetries in nonrelativistic quantum
mechanics.
The covariance of the Schrödinger equation, and of the

corresponding Liouville–von Neumann equation, under the
action of the Galilean group, has been extensively dis-
cussed [3–5]. On the other hand, the investigation of
Galilean covariance within the context of open quantum
systems is still an area of active research [6]. The exact
quantum dynamics of a system interacting with the
surrounding environment can be very complicated: in
general, heavy approximations and heuristical arguments
are needed in order to arrive at an explicit useful expression
for the system’s effective dynamics. In this case, sym-
metries can be a guiding principle in constructing the
effective dynamics, bypassing at least partially the com-
plexity (or impossibility) of a direct calculation by impos-
ing constraints, which are expected to hold not only at the
fundamental level, but also at the effective level [7–15].
Space-time symmetries in open quantum systems have

been fully analyzed only in the special, but very important,
case of a Markovian, completely positive (CP) and trace
preserving (TP) dynamics. This dynamics, discussed in the
seminal works of Gorini, Kossakowski, Sudarshan, and
independently by Lindblad [16,17], is known as the quan-
tum dynamical semigroup: it is generated by the Lindblad
superoperator and can be written as a first order differential
equation, called the Lindbladmaster equation. By imposing
the additional request of covariance under the action of the
Galilei group, Holevo in a series of works [18–21], com-
pletely characterized translational and Galilei covariant
Lindblad master equations, by giving the explicit form of
the Lindblad superoperators [22].

The Holevo characterizations play a major role in the
description of several important physical phenomena such
as environmental decoherence and relaxation phenomena
[7–14]. Furthermore, they are also relevant for the founda-
tions of quantum mechanics, where an intrinsic nonunitary
dynamics is postulated to solve the measurement problem
[23–25], the black hole information paradox [26], or to
combine principles of general relativity with quantum
mechanics [27].
Although the assumption of Markovianity is often well

justified, recent technological advances have lead to inves-
tigating several phenomena exhibiting memory effects [28],
e.g., ultrafast chemical reactions [29–34], side band cooling
[35], and light harvesting in photosynthesis [36–41]. This is
little surprising, as the time resolution of experimental
apparata has increased severalfold in the last decades. It is
therefore now clear that non-Markovian dynamics will
acquire a more prominent role in the near future: the
theoretical investigations are pressed by practical necessity.
In this Letter we will derive the general structure of non-

Markovian Galilei covariant Gaussian maps. More specifi-
cally, we will consider the non-Markovian Gaussian map
introduced in Ref. [42], and we will impose covariance
under Galilean space-time symmetries (translations, boosts
and rotations). In this way wewill obtain a generalization of
the Holevo generators [18–21] to the non-Markovian
Gaussian case. Using these results, we will discuss mea-
sures of macroscopicity based on classicalization maps.
Specifically, we will address the role of non-Markovian and
dissipative effects, which limit the validity of the macro-
scopicity measure proposed in Ref. [43].
General framework of Gaussianmaps.—Non-Markovian

dynamics are in general difficult to analyze: the system and
environment form a complicated many-body problem
which, without some additional simplifying assumption,
remains intractable. On the other hand, the subclass of
(non-Markovian) Gaussian maps, still appropriate for the
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description of a vast spectrum of phenomena [44–56], can
be analyzed both analytically [42] and numerically [57,58].
The starting point of our analysis is the most general

trace-preserving, completely positive Gaussian map
derived in Ref. [42] (we work in interaction picture and
adopt Einstein’s summation convention):

Mt ¼ expþ

�Z
t

0

dτ
Z

t

0

dsDjkðτ; sÞ

× ðÂk
sLÂ

j
τR − θτsÂ

j
τLÂ

k
sL − θsτÂ

k
sRÂ

j
τRÞ

�
; ð1Þ

where expþ denotes the time-ordered exponential, Djk is
a complex valued positive semi-definite matrix, Â are
bounded Hermitian operators, and the subscript L (R)
denotes operators acting on the statistical operator ρ from
the left (right), e.g., Âk

LÂ
j
Rρ̂ ¼ Âkρ̂Âj with Âk Hermitian

operators. The correlation matrix Djkðτ; sÞ and the oper-
ators Âk are supposed to encode, phenomenologically, the
action of the bath on the system. We note that, by imposing
the request of Markovianity

Djkðτ; sÞ ¼ δðτ − sÞ ~DjkðsÞ; ð2Þ
where ~DjkðsÞ is a complex valued positive semi-definite
matrix, the exponent in Eq. (1) takes the well-known
Lindblad form.
Since we are interested in space-time symmetries, we

now explicitly assume that the Hilbert space HS is L2ðR3Þ
(the generalization to the N-particle Hilbert space is
straightforward). In this case it is convenient to decompose
the operators in Eq. (1) by using the Weyl-Wigner
decomposition (in Schrödinger picture) [59]:

Ât ¼
Z
R3

dα
Z
R3

dβAtðα; βÞeiðα·x̂þβ·p̂Þ; ð3Þ

where Ât may depend explicitly on time, which is encoded
in the time-dependency of At, and x̂ and p̂ are the standard
position and momentum operators. It is then straightfor-
ward to show that the map in Eq. (1) becomes (in the
interaction picture):

Mt ¼ expþ

�Z
dT

Z
dΓDðα1; β1;α2; β2; τ; sÞΘμν

τs

× ðeiðα1·x̂sμþβ1·p̂μÞe−iðα2·x̂τνþβ2·p̂νÞÞ
�
; ð4Þ

where dT ¼ dτds, dΓ ¼ dα1dβ1dα2dβ2, the integration
domains, which we omit to simplify the notation, are
½0; t� × ½0; t� and ⊗4

j¼1 R
3 for the T and Γ integrals, respec-

tively, x̂s is the position operator in the interaction picture at
time s, μ and ν denote L or R (left or right operators),
ΘLR

τs ¼ ΘRL
τs ¼ 1=2, ΘLL

τs ¼ −θτs, ΘRR
τs ¼ −θsτ and

Dðα1;β1;α2;β2;τ;sÞ¼Djkðτ;sÞAj
τðα1;β1ÞAk

sðα2;β2Þ ð5Þ

is a kernel that satisfies the following symmetry property [60]:

Dðα1; β1;α2; β2; τ; sÞ ¼ D�ðα2; β2;α1; β1; s; τÞ: ð6Þ
Wenow impose the relevant Galilei symmetry on the system,
constraining the form of the dynamics given by Eq. (4).
Covariance.—Let us consider a locally compact Lie

groupG and a unitary representation Ûg, with g ∈ G, on the
Hilbert space of the system. Following [61,62] a quantum
dynamical map is said to beG covariant if it commutes with
the linear transformation Ug½·� ¼ Ûg · Ûg:

Mt ¼ U−1
g ∘Mt∘Ug: ð7Þ

With reference to the single particle Hilbert space HS
(L2ðR3Þ) we assume that the Hamiltonian is covariant
under the relevant symmetry of the Galilei group G [63]:
specifically, we consider the centrally extended unitary
representation (Ûg) of the Galilei group (G) on HS. The
generators of infinitesimal translations, boosts, and rota-
tions are (in the interaction picture)

p̂ ¼ p̂; ð8Þ
Ĵ ¼ x̂ × p̂; ð9Þ
K̂ ¼ mx̂; ð10Þ

respectively, wherem is the mass of the particle. Exploiting
Eq. (4), and the fact that we are considering a unitary
representation, it is straightforward to show that Eq. (7) is
satisfied if and only if the following condition is satisfied:Z

dT
Z

dΓDðα1; β1;α2; β2; τ; sÞΘμν
τs

× ðeiðα1Ug½x̂sμ�þβ1Ug½p̂μ�Þe−iðα2Ug½x̂τν�þβ2Ug½p̂ν�Þ

− eiðα1x̂sμþβ1p̂μÞe−iðα2x̂τνþβ2p̂νÞÞ ¼ 0: ð11Þ
This equation constrains the structure of the dynamical map
under the Galilean symmetry g ∈ G. In particular, we will
now see how the request of translation (boost) covariance
characterizes the structure of the dynamical map.
Translational covariance.—Restricting to the subgroup

of translations T ⊂ G we have that

Ua½x̂t� ¼ x̂t þ a; ð12Þ
Ua½p̂� ¼ p̂; ð13Þ

where x̂t ¼ x̂þ ðp̂=mÞt is the position operator in the
interaction picture at time t, a is a translation vector, and Ua
denotes the corresponding linear transformation [see
Eq. (7)]. Using Eqs. (12), (13) we obtain from Eq. (11)Z

dT
Z

dΓDðα1; β1;α2; β2; τ; sÞΘμν
τs

× eiðα1·x̂μsþβ1·p̂μÞe−iðα2·x̂ντþβ2·p̂νÞð1 − eiðα1−α2Þ·aÞ ¼ 0: ð14Þ
Since this relation must hold ∀a, it follows that Eq. (14) is
satisfied if and only if the following equality holds:

Dðα1;α2;β1;β2;τ;sÞ¼δð3Þðα1−α2ÞDTðα1;α2;β1;β2;τ;sÞ;
ð15Þ
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whereDT is a complex valued function, which we rewrite as

DTðα1; β1;α2; β2; τ; sÞ ¼ Djkðτ; sÞ ~Aj�
τ ðα1; β1Þ ~Ak

sðα2; β2Þ:
ð16Þ

We then insert Eq. (15) into Eq. (4), use Eq. (16),
integrate over α2 and relabel α1 as α to obtain

Mt ¼ expþ

�Z
t

0

dτ
Z

t

0

ds
Z
R3

dαDjkðτ; sÞ

× ð½Fk
sLðp̂;αÞeiα·x̂sL �½Fj†

τRðp̂;αÞe−iα·x̂τR �
− θτs½Fj†

τLðp̂;αÞe−iα·x̂τL �½eiα·x̂sLFk
sLðp̂;αÞ�

− θsτ½Fk
sRðp̂;αÞeiα·x̂sR �½e−iα·x̂τRFk†

τRðp̂;αÞ�Þ
�
; ð17Þ

where

Fk
τμðp̂;αÞ ¼

Z
dβ ~Ak

τðα; βÞeiβ·p̂μ ð18Þ

is a completely general operator valued function of the
operator p̂. Equation (17) fully characterizes translation
covariant CP Gaussian maps.
Boost covariance.—Restricting to the subgroup of

boosts B ⊂ G we have that

Ub½x̂t� ¼ x̂t þ tb=m; ð19Þ
Ub½p̂� ¼ p̂þ b; ð20Þ

where b ¼ mv is a momentum vector (a particle of mass m
boosted with velocity v) and Ub denotes the corresponding
linear transformation [see Eq. (7)]. Imposing boost covari-
ance, and following the analogous steps as for the char-
acterization of translational covariance, we obtain the
following equality:

Dðα1;α2; β1; β2; τ; sÞ ¼ δð3Þ
�
β1 − β2 þ α1

s
m
− α2

τ

m

�
×DBðα1;α2; β1; β2; τ; sÞ; ð21Þ

where DB is a complex valued function. Performing the
following change of variables: β1→β1−τα1=m and β2→
β1−sα2=m, using Eq. (21), we can then rewrite Eq. (4) as

Mt ¼ expþ

�Z
t

0

dτ
Z

t

0

ds
Z
R3

dβDjkðτ; sÞ

× ð½Fk
sLðx̂s; βÞeiβ·p̂L �½Fj†

τRðx̂τ; βÞe−iβ·p̂R �
− θτs½Fj†

τLðx̂τ; βÞe−iβ·p̂L �½eiβ·p̂LFk
sLðx̂s; βÞ�

− θsτ½Fk
sRðx̂s; βÞeiβ·p̂R �½e−iβ·p̂RFk†

τRðx̂τ; βÞ�Þ
�
; ð22Þ

where

Fk
τμðx̂τ; βÞ ¼

Z
dα ~Ak

τðα; β − τα=mÞeiα·x̂τμ ð23Þ

is a completely general operator valued function of the
operator x̂τ. This equation completely characterizes boost
covariant CP Gaussian maps.
Translation-boost covariance.—We now require both

translation and boost covariance. The dynamical map Mt
must satisfy condition Eq. (15) as well as condition
Eq. (21), i.e.,

Dðα1;α2; β1; β2; τ; sÞ ¼ δð3Þðα1 − α2Þ

× δð3Þ
�
β1 − β2 þ α1

s
m
− α2

τ

m

�
×DTBðα1;α2; β1; β2; τ; sÞ: ð24Þ

Replacing Eq. (24) in Eq. (4), performing again the
following change of variables: β1 → β1 − τα1=m and
β2 → β1 − sα2=m, one obtains

Mt ¼ expþ

�Z
t

0

dτ
Z

t

0

ds
Z

dα
Z

dβF ðα; β; τ; sÞ

× ðeiðα·x̂sLþβ·p̂LÞe−iðα·x̂τRþβ·p̂RÞ

− θτse−iðα·x̂τLþβ·p̂LÞeiðα·x̂sLþβ·p̂LÞ

− θsτe−iðα·x̂sRþβ·p̂RÞeiðα·x̂τRþβ·p̂RÞÞ
�
; ð25Þ

where F ðα; β; τ; sÞ is a completely general real valued
function. In this case the functional dependence of the map
on the position and momentum operator is fixed [65]. This
equation fully characterizes translation and boost covariant
CP Gaussian maps.
Rotation covariance.—For completeness, we also dis-

cuss rotation covariance. Restricting to the subgroup of
rotations R ⊂ G we have

UR½x̂s� ¼ Rx̂s; ð26Þ
UR½p̂� ¼ Rp̂; ð27Þ

where R is a generic rotation matrix and UR the correspond-
ing linear transformation [see Eq. (7)]. Using the relation
a · ðRbÞ ¼ ðR−1aÞ · b, where a, b are generic vectors, and
recalling that the integral measure dαdβ is invariant under
rotations, we perform the change of variables α → Rα, β →
Rβ in Eq. (11), which gives the condition

DðRα1; Rβ1; Rα2; Rβ2; τ; sÞ ¼ Dðα1; β1;α2; β2; τ; sÞ: ð28Þ
Equation (4), with the function D satisfying the symmetry
given by Eq. (28), characterizes rotational covariant CP
Gaussian maps. This concludes the characterization of CP
Gaussian maps covariant under Galilean symmetries.
Markovian limits.—The CP Gaussian covariant maps

derived here above reduce to thewell-knownMarkovianCP
Gaussian covariant maps in the Markovian limit. In par-
ticular, we immediately re-obtain the Holevo structures for
the generators of the covariant quantum dynamical semi-
group by imposing the request of Markovianity as given by
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Eq. (2). Under this assumption it is straightforward to show
that Eq. (17) reduces to Mt ¼ expþf

R
t
0 dsLsg, where

Ls ¼
Z

dα ~DjkðsÞ
�
Fk
sLðp̂;αÞeiα·x̂sLFj†

sRðp̂;αÞe−iα·x̂sR

−
1

2
Fj†
sLðp̂;αÞFk

sLðp̂;αÞ −
1

2
Fk
sRðp̂;αÞFk†

sRðp̂;αÞ
�
;

ð29Þ
is the generator of the translational covariant semigroup.
Analogously, by considering the Markovian limit of the

boost and translation covariant map derived in Eq. (25), we
obtain the following generator:

Ls ¼
Z

dα
Z

dβ ~F ðα; β; sÞðeiðα·x̂sLþβ·p̂LÞe−iðα·x̂sRþβ·p̂RÞ − 1Þ;

ð30Þ
where ~F is a positive valued function. Equations (29) and
(30) correspond to the Holevo results for covariance under
translation and boost-translation, respectively [20,21].
Macroscopicity measure.—More and more experiments

are nowadays probing quantum mechanics in novel
regimes, exploring in particular the boundary between
quantum and classical [66–70]. It becomes relevant to
define ameasure that quantifies how far a given experiment
pushes this boundary. This is a nontrivial task: what is the
measure of macroscopicity that correctly accounts for
complexity, size, mass, or some other feature of the system
being explored?
Beginning with Leggett [71,72] several measures of

macroscopicity have been proposed [43,73–78]. Among
them, the one given by Nimmrichter and Hornberger in
Ref. [78] has become quite popular in the matter-wave
interferometry community because of its simplicity and
versatility: they define as a macroscopicity measure a real
number that quantifies how well an experiment tests a
minimal modification of quantum mechanics. Specifically,
they suggest the following measure:

μ ¼ logðτ=1sÞ ð31Þ
with τ the biggest excluded time scale in which quantum
superpositions are suppressed by the minimal modification
of quantum mechanics.
They further assume that the minimal modification of

quantum mechanics, for a single particle with mass m, is
described by a Markovian nonunitary TP, CP, Galilean
covariant (translations, boosts and rotations) and time
translation invariant map. This amounts to the nonunitary
map generated by Eq. (30), where they choose the following
parametrization of the correlation function:

~F ðα; β; sÞ ¼ 1

τ
gðα; βÞ; ð32Þ

where g is a positive, isotropic phase-space distribution
normalized to unity (a Gaussian function with variances σα,

σβ) and τ gives the time scale in which superpositions are
suppressed by the minimal modification (for further details
see Refs. [43,78]).
The measure μ defined in Eq. (31) thus relies on the

assumptions characterizing the minimal modification.
Among these, Markovianity and Galilei covariance are
usually taken for granted as they are a building block of
the most successful nonrelativistic theories: quantum and
classical mechanics. However, technological advances have
come to the point of questioning the validity of these two
assumptions; on top of this, minimal modifications need not
satisfy them a priori. We take an example from the literature
of collapsemodels,which can be seen as instances ofminimal
modifications of quantummechanics in the spirit ofRef. [43].
X-ray measurements [79] pose rather strong bounds on the
collapse parameters [66]; however, the strength of the bounds
depends critically on whether the collapse model is
Markovian or not [80,81]. The reason is that such experi-
ments explore the≈1018 Hz region of the spectrum,meaning
that the time resolution which is probed is ≈10−18s. Any
cutoff in the spectrum of the collapse noise smaller than such
frequencies weakens significantly the bound. A similar
behavior is expected to occur for a macroscopicity measure
that correctly includes non-Markovian effects. Markovianity
might be verified only under a suitable temporal coarse
graining of the underlying dynamics. In general if the time
resolution of the experiment is longer than the correlation
times associated to the modifications of the theory, then the
Markovian assumption is justified, as any non-Markovian
dynamics with finite correlation times may be approximated
by its Markovian limit [82].
The assumption of Galilean covariance (translation and

boost), even if it seems an innocent assumption, forces the
nonunitary dynamics to produce an infinite growth of the
system’s energy on long time scales [85]. Galilean covariant
maps must be then understood only as a good approximation
that can be used in experiments that run for sufficiently short
times, such that dissipative phenomena are negligible. In
experiments with a long running time, the results could be
influenced by dissipative phenomena and consequently the
assumption of Galilean covariant dynamics is too restrictive.
We consider a second example taken from collapse models.
A recent experiment succeeded to cool a cloud of cold atoms
to temperature less than 50þ50−30 pK [87]. They measured the
spreading of the cloud over time, which would be affected by
modification of quantummechanics. The analysis performed
in Ref. [69] shows that the predictions of collapse models
depend on whether dissipative effects are taken into account
(Fig. (8) of Ref. [69] shows that the bounds on the collapse
model drastically change with the thermalization temper-
ature T, which quantifies the dissipation in the model).
Again, a similar dependence on dissipation is expected by a
macroscopicity measure, which takes dissipative effects into
account.
To summarize, although μ is a reasonable choice for the

measure of macroscopicity in many instances, novel
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experiments probing the very short and very long time scales
need a different measure of macroscopicity due to Non-
Markovian and dissipative effects, respectively. For such
cases we propose to use the (translational covariant and non-
Markovian) map given in Eq. (17) as the minimal modifi-
cation, with an appropriately chosen correlation function
Dðt; sÞ and operators Fτμðp̂;αÞ, where for simplicity we
consider that the sumover j,k contains only one term.Wecan
still use Eq. (31) to define the measure of macroscopicity,
where now τ → τðτc; TÞ is the biggest excluded time scale,
for fixed parameters ðτc; TÞ, inwhich quantum superposition
is suppressed by the minimal modification. Here τc is the
correlation time of the correlation function Dðt; sÞ and T is
the temperature measuring dissipative effects.
To be more concrete we suggest the exponential corre-

lation function

Dðt; sÞ ¼ 1

2τc
e−jt−sj=τc ð33Þ

and the Gaussian operators

Fμðp̂;αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ

m2

m2
0

�
rcffiffiffi
π

p
ℏ

�
3

s
e−ðr2c=2ℏ2Þ½ð1þkTÞαþ2kT p̂μ�2 ; ð34Þ

where kT ¼ ðℏ2=8m0r2ckBTÞ, m0 ¼ 1 amu is a reference
mass, kB is Boltzmann’s constant, rc is a free length
parameter analogous to the spread σα in Eq. (32), and τ
gives the time scale inwhich the superpositions of a reference
object with mass m are suppressed. In the Markovian
(τc → 0) and nondissipative (T → ∞) limit, we reobtain
themeasure ofmacroscopicity proposed byNimmrichter and
Hornberger with σβ → 0 [see Eqs. (31), (32)].
This new measure depends critically on the values of τc

and T. To illustrate this, we have studied the classicalization
map in the regime of small distances and low momentum
transfer in one spatial dimension [88]. Specifically, we have
considered a simple ideal experiment capable of resolving
the time evolution of the spread of the wave packet of a
freely evolving particle. The associated macroscopicity
measure is investigated in the non-Markovian and dissi-
pative regimes [89] (cf. Supplemental Material S4 and
Fig. S2), showing how it depends on the correlation time τc
and temperature T.
Summary.—We have analyzed Galilean symmetries in

non-Markovian Gaussian CP maps. The two main results
of this Letter are the characterization of translational and of
Galilei (translation-boost) covariant non-Markovian CP
Gaussian maps given by Eqs. (17) and (25), respectively.
These maps are a generalization of the well-known Holevo
results, which we reobtain in the Markovian limit. We have
also provided the corresponding unravelling given by
stochastic Schrödinger equations in a form suitable for
nonperturbative numerical analysis [95]. As mentioned in
the introduction, these results can find applications in
several fields of research [7–14]. We have also analyzed
the role that non-Markovian and dissipative effects play in
the construction of a macroscopicity measure. We have

shown that experiments probing the quantum-to-classical
boundary on very short or very long time scales might not
be adequately described by the macroscopicity measure in
Ref. [43], and a more general definition is needed, as the
one we propose, based on Eqs. (17), (33), and (34).
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