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We discuss a general method of model selection from experimentally recorded time-trace data. This method
can be used to distinguish between quantum and classical dynamical models. It can be used in postselection
as well as for real-time analysis, and offers an alternative to statistical tests based on state-reconstruction
methods. We examine the conditions that optimize quantum hypothesis testing, maximizing one’s ability to
discriminate between classical and quantum models. We set upper limits on the temperature and lower limits on the
measurement efficiencies required to explore these differences, using an experiment in levitated optomechanical
systems as an example.
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Introduction. There are a number of ways in which a system
can be determined to be quantum mechanical. Typically, the
system must be isolated from extraneous noise and operated at
very low temperatures, so that the system is in a ground state
or another low-lying energy state. The system can be subjected
to a series of individual or joint measurements to build up a
picture of the state (as in interference experiments and state
tomography [1–6]) or manipulated using an external field to
demonstrate superposition states (such as avoided crossings
in the observed energy spectra [7–10]). These experiments
provide direct evidence of quantum behavior but they can be
difficult to perform when the system has several degrees of
freedom and large numbers of measurements are required.

More efficient alternatives have been devised with the
growth of quantum information as a subject area. Specific
sequences of measurements can be applied to ascertain whether
the system contains nonclassical correlations (entanglement)
associated with quantum behavior [11–13]. Entanglement wit-
nesses do not necessarily allow an experimentalist to quantify
the degree of entanglement, but they do allow one to say that
entanglement is present and, hence, that the system is quantum
mechanical rather than classical. All of these methods are
intended to provide direct evidence that the system is mani-
festly nonclassical, e.g., discrete energy levels, interference,
superposition states, and entanglement.

An alternative approach is to try to determine whether the
system dynamics are quantum rather than classical. An elegant
approach to this task is to use the technique of quantum hypoth-
esis testing [14,15]. In situations where direct experiments are
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not possible, or are beyond the reach of current experiments,
this method can also be used to inform future work, explore
regions of parameter space, and to focus experimental efforts.
This is the motivation for the current Rapid Communication.

In this Rapid Communication, we use the quantum hy-
pothesis testing approach, often referred to as model se-
lection in classical Bayesian inference [16], to construct a
general method of model selection, which is an alternative to
state-reconstruction-based statistical tests. We reformulate the
problem as a Neyman-Pearson decision rule and quantify the
accuracy of the selected model using the confusion matrix. As
an example application, we devise an experiment for optically
levitated systems [17–20], and we optimize the Hamiltonian
parameters to enhance the distinguishability of quantum and
classical dynamics. The proposed experiment does not require
complicated preparation and measurement protocols, but relies
only on the detected photocurrent [21]. Quantum behavior
has not yet been established with such massive systems,
and improving the understanding of where and when such
evidence might be available is an important open question. We
demonstrate that two experimental parameters, the effective
temperature and the efficiency of the continuous measurement,
are critical to the ability to distinguish between quantum and
classical stochastic dynamics in this system.

Dynamical models. A model is composed of three elements:
(i) the description of the system, i.e., the state, (ii) the
dynamical law, and (iii) the detection process. In this Rapid
Communication, we consider nonrelativistic, single-particle,
classical and quantum dynamics with a diffusive, Markovian
environment, subject to continuous monitoring of the position
of the particle. We denote the state by Sc, the measured time
trace by Iexp, and the measured position by q̃ (either classical
or quantum). Note, however, that these assumptions are not
essential, but only a matter of convenience of presentation,
and could, at least in principle, all be relaxed. In particular,
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TABLE I. Quantum and classical dynamical models given by
Eqs. (1) and (2). Pc and ρ̂c denote the conditional probability density
and conditional statistical operator, respectively.q andp are the classi-
cal phase-space variables, i.e., position and momentum, respectively,
q (q̂) denotes the classical (quantum) position observable, H (Ĥ )
denotes the classical (quantum) Hamiltonian observable, and t is the
time variable. Et [ · ] denotes the expectation value with respect to the
conditional state Sc(t) at time t .

Symbol Classical Quantum

Sc Pc(q,p; t) ρ̂c(t)
K · {H, · }Pb − i

h̄
[Ĥ , · ]

D[q̃] · − h̄2

8
∂2

∂p2 · 1
8 [q̂,[q̂, · ]]

H[q̃] · q − Et [q] (q̂ − Et [q̂]) · + H.c.
Et [ · ]

∫ ∫
dq dp · Pc(q,p; t) tr[ · ρ̂c(t)]

the analysis for general, nonrelativistic, diffusive, Markovian
models can be carried out in full analogy with the analysis
presented in this Rapid Communication (see Appendix A).

Under these assumptions, the state Sc formally evolves
according to [22–24] (in Itô form):

dSc = KScdt + γD
[

q̃

σ

]
Scdt + √

ηγH
[

q̃

σ

]
ScdW, (1)

where K · , D[q̃] · , and H[q̃] · denote the Hamiltonian, dif-
fusive, and detection terms [25], respectively; W is a zero
mean Wiener process; σ,γ denote a characteristic length scale
and frequency of the experiment, respectively; and η is the
efficiency of the measurement, which is defined to be the ratio
between the power due to the recorded measurement signal
relative to other sources of noise. Inefficient measurements
may arise from loss of signal or corruption of the signal by
additional, unprobed environmental degrees of freedom. The
detected signal Iexp(t) during an interval, t → t + dt , is related
to the Wiener process by

Iexp(t + dt) − Iexp(t) = dIexp(t) = √
ηE[q]dt + dW√

γ
, (2)

where E[ · ] denotes the expectation value with respect to the
state Sc.

For a given experimental signal, Iexp(t), the conditional
evolution of the state can be found by inverting Eq. (2) to
find a series of stochastic increments, dW̃ (t |dIexp(t)), to insert
back into Eq. (1). The resultant conditional state, Sc, describes
the knowledge about the state of the system, as derived from
the measurement record. In classical state estimation, the
stochastic increments are often called the innovation terms
[26] because they represent the difference between the actual
measurement taken and the measurement expected from the
conditioned state during each time increment.

The explicit expression for the terms in Eqs. (1) and (2) are
given in Table I. The quantum and the corresponding classical
models are related by the following formal prescription:
replace the quantum observables Ô with the corresponding
classical observables O, and commutators with Poisson brack-
ets, i.e., [ · , · ] → ih̄{ · , · }Pb. Note, however, that as far as
the model selection is concerned, the classical and quantum
models could be very different or even completely unrelated.

Decision rule. We now consider a collection M of dynami-
cal models, which we denote by mk ∈ M (k = 1, . . . ,N): these
can be either quantum or classical [see Eqs. (1) and (2) and
Table I]. Before data collection, we suppose that each model is
equally likely, which mathematically translates to setting the
a priori probabilities to be equal, i.e., the initial probability of
model mj is p0(mj ) = 1

M
. After data collection, the goal is to

select the model mj ∈ M that gives the best description of the
collected data, i.e., that fits best the recorded time-trace signal
Iexp.

According to the Bayes decision rule, a model mj is the best
considered model given the detected signal Iexp., if ∀k �= j we
have p(mj |Iexp) > p(mk|Iexp). However, in some situations,
the data Iexp is insufficient to select a given model with
certainty, e.g., two models might have experimental predictions
that are not distinguishable. It is then useful to introduce an
acceptance region A = {I |1 − max[p(mk|I )] > τ }, where I

denotes all possible signals, τ is a threshold parameter, and max
denotes the maximization over mk ∈ M . In the case Iexp ∈ A,
we apply Bayes decision rule for minimum error, otherwise we
conclude the data is inconclusive, i.e., Iexp is in the so-called
rejection region.

The Bayes decision rule and the acceptance region form
a two-stage selection: we can combine these two stages
by considering an alternative decision rule. Specifically, we
consider the Neyman-Pearson decision rule, which has a built-
in acceptance threshold parameter μ for the likelihood ratio
[14,15]. Specifically, one selects model mj , given the detected
signal Iexp., if ∀k �= j we have

p(mj |Iexp)

p(mk|Iexp)
> μ. (3)

Note that the two decision rules coincide for μ = 1, τ = 1,
and under the assumption of equal a priori probabilities. In the
rest of this Rapid Communication, we will use the latter, more
compact rule, given by Eq. (3).

To apply the decision rule, we are left to specify how to
obtain p(mk|Iexp). Without loss of generality, we assume that
the time trace is given from t = 0 to t = t ′, and that the detector
has a finite integration time �t , such that n�t = t ′. We now use
the property of pairwise independence of the detected signals
in each interval �t to obtain an update equation for each of the
model probabilities [16]:

p(mk|Iexp,0:t ′ ) ∝ p0(mk)
∏

t=�t :t ′
p(�Iexp,t |mk,Iexp,0:t−�t ), (4)

where Iexp,0:t ′ on the left-hand side denotes the total time trace
from time t = 0 to t = t ′, p0(mk) is the initial probability
assigned to the model mk , and �Iexp,t on the right-hand side
is the signal in the interval [t,t − �t]. The probability updates
are generated using

p(�Iexp,t |mk,Iexp,0:t−�t ) = 1√
2π�t

exp

(
− (�W

(mk)
t )2

2�t

)
,

(5)

where the increments (innovations) are given by

�W
(mk)
t = √

γ (�Iexp,t − √
ηEt [q|mk]�t), (6)
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and where Et [q|mk] is the expected value of q, given the
dynamical model mk and the associated conditional state. The
probabilities for each of the possible models are updated after
each time step using Eq. (4) and then normalized such that∑

k p(mk|Iexp) = 1. As such, the probabilities being calculated
are the relative probabilities between the different dynamical
models, which does not necessarily include the possibility of
systematic errors. These limitations are considered in detail by
Tsang in [15], where the different types of systematic errors
are listed and discussed. This limitation does not invalidate the
approach presented here. However, it does mean that exper-
imental studies need to be careful to calibrate their systems
fully and to verify that systematic errors are either not present,
or are included explicitly in one of the dynamical models.

To summarize, given an experimental measurement record
consisting of discrete increments �Iexp,t , and a set of dy-
namical models mk describing the possible evolution of the
underlying system, we proceed as follows. At t = 0, set initial
probabilities for all models, with the default assumption being
that all models are equally likely. At each subsequent time step,

(1) calculate the increment �W
(mk)
t for each model using

Eq. (6) and �Iexp,t , and update the corresponding conditional
states using the appropriate form of Eq. (1);

(2) calculate the probability update p(�Iexp,t |mk) for each
model using Eq. (5);

(3) update all probabilities, using Eq. (4);
(4) normalize to find relative probabilities; and
(5) repeat using next measurement increment, �Iexp,t+�t .
Once the updates have been included from all measurements

in the record, the decision processing given by Eq. (3) can
be applied. One benefit of this procedure is that it is clearly
iterative, and can therefore be used as an online process, with
probabilities being updated as each measurement is taken; or,
if required, as a postprocessing step after experimental data
collection.

Quality of the decision. We have now introduced dynamical
models and selection rules. In particular, we have discussed
how to select the best model mj ∈ M given a measured signal
Iexp. However, the model selected might not be overall the
best model to describe the experiment, e.g., taking a longer
time trace Iexp, or repeating the experiment several times, one
might find out that the best model to describe the system
is actually a different one. To estimate the probabilities of
making a correct or a false selection, one can proceed using
the following procedure.

Suppose the system evolves according to the model ms . In
the absence of an experimental record, one can generate a time
trace I

(ms )
sim numerically, solving Eqs. (1) and (2), and using a

Gaussian random number generator for the Wiener increments
dW . After the time trace is generated, one uses the simulated
increments to calculate the conditional state evolution for each
of the models and generating relative probabilities given the
simulated record, P (mk|I (ms )

sim ). The most probable model is
then selected using the Neyman-Pearson rule given in Eq. (3),
given the simulated time trace I

(ms )
sim . One repeats this procedure

N (s) times to estimate the probabilities of false and correct
identification:

P (mk|ms) ≈ N
(s)
k

N (s)
, (7)

where N
(s)
k denotes the number of times the model mk was

selected, when the time trace I
(ms )
sim was generated using model

ms . In the limit N (s) → ∞, we obtain the probabilityP (mk|ms)
of selecting model mk , when the time trace I

(ms )
sim has been

generated using model ms .
The probabilities P (mk|ms) form the elements of the so-

called confusion matrix (Mc)sk [27]. For example, in the case
where we are considering only two models, e.g., a classical
one and a quantum one, denoted by C and Q respectively, we
can arrange the probabilities of correct and false identification
in the following 2 × 2 matrix:

Mc =
(

p(C|C) p(C|Q)
p(Q|C) p(Q|Q)

)
, (8)

where p(C|Q) is the probability of a type-II error (false
negative, assuming that the classical hypothesis C is the
default or null hypothesis) and p(Q|C) is the probability of a
type-I error (false positive). More generally, one can generate
a receiver-operator characteristic curve [27] by varying the
threshold value μ.

Application to optomechanics. Levitated optomechanical
systems are a topical area of research. They have been used for
ultrasensitive force measurements [28], fundamental tests of
gravity [29], as well as testing the limits of quantum mechanics
[30–32]. Here we propose a type of experiment to detect
nonclassical features in such systems using dynamical model
selection.

For the purposes of this Rapid Communication, we assume
that the motion of a levitated nanoparticle is decoupled along
the three motional axes and discuss only one-dimensional
motion [21,33,34]. Specifically, we suppose that the potential
is nonlinear and it forms a Duffing oscillator [35–37]. The
Hamiltonian is given by

Ĥ = 1
2 p̂2 − 1

2ω2q̂2 + 1
4βq̂4 + g cos(t)q̂, (9)

where we have taken h̄ = 1, the mass is scaled so that m =
1, p̂ is the momentum operator, ω is the angular frequency
of a linear oscillator, β is the nonlinear parameter, and g is
the magnitude of an external periodic drive. This system has
been widely studied in relation to chaotic dynamics in open
quantum systems and the quantum-classical transition [35–41].
The full quantum (Q), as well as the corresponding classical
(C) model, are of the form given in Eqs. (1) and (2), with
additional dissipator terms to describe the interactions with
gas particles, acting as a thermal environment (see Appendix
B for more details).

For the case considered here, one would like to find the
conditions where one can best discriminate between the two
dynamical models, and thus plan the experimental implemen-
tation accordingly. A number of different conditions were
examined, for single-well (linear and nonlinear) and double-
well potentials. The optimum condition was found to be a
double-well potential with ω = 1, β = 0.5, and g = 0 (see
Appendix C for more details).

In general, the probabilities for correctly identifying a
quantum system, P (Q|Q), are slightly higher than for the
classical system, P (C|C). At low temperatures kBT < �E01

the distinguishability is excellent, approaching 100% even for
measurement efficiencies η � 0.2, where �E01 is the energy
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FIG. 1. Numerically calculated probabilities for the identification
of the correct dynamical evolution of an optomechanical example
with trapped nanoparticles in a double-well potential: Q is calculated
using a quantum stochastic master equation, and C is calculated using
the equivalent classical stochastic differential equation. Probabilities
p(C|C) and p(Q|Q) are shown, for different temperatures T as a
function of the measurement efficiency η. Insets show approximate re-
gions where the models are distinguishable [green (light-gray) shaded
regions], as functions of temperature and measurement efficiency.

separation between the ground state and the first excited state.
This contrasts with a linear trap, where the probability of cor-
rectly distinguishing dynamical models was found to be limited
to around 80%, even for very low temperatures and ideal
measurements η = 1.0. Here, with two wells, both dynamical
models show good distinguishability between quantum and
classical behavior for temperatures T � 0.5 (kBT � �E01)
and measurement efficiencies η > 0.2, with some ability to
distinguish between the two models for temperatures where the
thermal energy is well above the first energy level separation
and around the second transition, kBT � 1.5h̄ω ∼ 4�E01, as
long as η > 0.5 (see Fig. 1).

Typical trapping frequencies in experiments are around
100 kHz and masses of the nanoparticles are a few ×10−19 kg
[33,34]. In this case, h̄ω corresponds to a temperature of
0.77 μK, and T = 1.5 � 1.16 μK, with the two wells sepa-
rated by 0.2 nm, smaller than the radius of the sphere. However,
double-well optical traps can be generated using fabricated

structures within a few nanometers spacing between the two
wells, below the diffraction limit [42,43]. Similarly, a few
nanometers of spacing in ion trapping using optical lattices
is demonstrated in [44]. Alternatively, a double well can be
generated by focusing two laser beams of different wavelengths
[45]. A dielectric particle will thus evolve in an effective
potential of these two partially overlapping potentials. As
highlighted in [42,46], trapped particles can have resolutions
well below ∼1 pm [33,34]. Therefore, such double-well traps
are realizable within the current experiments. Experiments
with levitated nanoparticles have reported temperatures around
450 μK [47], well above the regime required, but experimental
techniques are improving rapidly and temperatures equivalent
to n̄ ∼ 10–20 are anticipated in the near future. Measurement
efficiencies are more difficult to estimate from previous work
since the values are not critical to the results presented
and are not normally provided. However, for other systems,
such as superconducting circuits [48–51], it is known that
measurement efficiencies of at least η ∼ 0.4 are achievable
[49].

Conclusions. This Rapid Communication has discussed a
general method to distinguish between dynamical models for
quantum and classical systems. It provides an alternative to
standard statistical tests based on state reconstruction. We have
rephrased the problem of model selection in a form suitable
to apply the well-known Neyman-Pearson decision rule, and
quantified the reliability of the selection using the confusion
matrix. Particularly noteworthy is the simplicity and generality
of the proposed method: dynamical model selection is based on
generic time-trace data and it could be used to select between
a wide variety of dynamical models.

To illustrate the method of dynamical model selection, we
have considered its application to levitated optomechanical
systems, where nonclassical features are yet to be experi-
mentally demonstrated. We have proposed and optimized an
experiment, where the nanoparticle is optically trapped in a
double-well potential. Using dynamical model selection we
have provided limits for two key experimental parameters
(temperature and measurement efficiency) for quantum be-
havior to be detected reliably. The successful experimental
implementation, were it to confirm nonclassical features,
would improve on the most massive particle shown to exhibit
quantum interference by several orders of magnitude [52], and
would thus be of great importance to fundamental physics.
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APPENDIX A: GENERAL DIFFUSIVE MODELS

In this Appendix we consider nonrelativistic, Markovian,
diffusive models [23,24]. We start by discussing general
classical models. Specifically, the conditional probability
density Pc evolves according to the Kushner-Stratonovich
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equation [24]:

dPc =−
r=1∑
k

∂

∂qk

(akPc)dt

+ 1

2

r=1∑
k

r∑
k′=1

∂

∂qk∂qk′
(Dkk′Pc)dt

+
r ′∑
k

r ′∑
k′=1

[c − E[c]]k(BB
)kk′[BdV + (c−E[c])dt]k′ ,

(A1)

where ak ∈ R, Bkk′ ∈ R, ck ∈ R, Dkk′ ∈ R, and V is a vector
of mutually independent R-valued Wiener processes. The first
line corresponds to the Hamiltonian evolution, the second line
to the diffusion, i.e., in case the measurement perturbs the
system, and the third line to the update in the knowledge about
the system. In particular, the measured signal is given by (an
r ′-dimensional vector)

dIexp = cdt + BdV. (A2)

We next describe general quantum models. Specifically,
the conditional statistical operator ρ̂c evolves according to the
Belavkin equation [22–24]:

dρ̂c = −i
[
Ĥ ,ρc

]
dt + D[ĉ]ρ̂cdt + H[dU †ĉ]ρ̂c, (A3)

where ĉ is an r ′-dimensional vector of operators. U is an r ′-
dimensional vector of correlated C-valued Wiener processes
satisfying

dU dU † = η dt, (A4)

dU dU
 = Ξ dt, (A5)

where η is diagonal with ηkk ∈ [0,1], and Ξ is symmetric with
C-valued elements. Moreover, we have the constraint that[

η + Re(Ξ ) Im(Ξ )
Im(Ξ ) η + Re(Ξ )

]
(A6)

is postive semidefinite. Note that the first, second, and third
terms on the right-hand side of Eq. (A3) correspond to
the first, second, and third lines of the right-hand side of
Eq. (A1), respectively. The measurement signal is given by (an
r ′-dimensional vector with C-valued elements)

dIexp = Tr[(ĉ
η + ĉ†Ξ )ρ̂c]dt + dU
. (A7)

APPENDIX B: OPTOMECHANICAL SYSTEM MODELS

For our purposes, the important factors are (i) a levitated
nanoparticle is physically large (with a radius several hundred
to a few thousand times that of an atom); (ii) a nanoparticle
has a high mass (six to eight orders of magnitude larger than
an atom); (iii) the trap can be arranged to separate degrees of
freedom in terms of frequency, thereby simplifying the system
to one translational degree of freedom; and (iv) the particle
is weakly coupled to a thermal environment and to a laser
field that can be used to provide a continuous measurement of
position. We will take parameters based on optomechanical
spheres described in [33,34], made from silica with radii
�25–100 nm and masses m � 10−19–10−18 kg. These are

good candidates for study because they previously have been
used in experiments to generate thermal squeezed states
[33], measurements have been used to reconstruct (classical)
Wigner functions [34], and they can realize the multiple-well
potentials [45], which we find maximizes the discrimination
between classical and quantum models.

A continuous quantum measurement process is usually
modeled with a stochastic master equation (SME) [22–24],
which can be written as

dρc = −i[Ĥ ,ρc]dt

+
m′∑

r=1

{
L̂rρcL̂

†
r − 1

2
(L̂†

r L̂rρc + ρcL̂
†
r L̂r )

}
dt

+
m′∑

r=1

√
ηr (L̂rρc + ρcL̂

†
r − Tr(L̂rρc + ρcL̂

†
r ))dWr,

(B1)

where ρc is the density matrix for the state of the system
conditioned on the measurement record—the state (possibly
mixed) which represents the current knowledge of the quantum
state, Ĥ is the Hamiltonian of the system, dt is an infinitesimal
time increment, and the operators L̂r represent the effect of
the environment and measurement. The measurement record
for each of the operators L̂r during a time step t → t +
dt is given by y(t + dt) − y(t) = dyr (t) = √

ηr Tr(L̂rρc +
ρcL̂

†
r )dt + dWr , where the recorded time trace in this interval

is dIexp(t) = dy(t)/
√

2k. ηr is the measurement efficiency; the
ratio of the signal power due to the measurement relative to the
power of other extraneous sources of noise, where ηr = 1 is an
ideal measurement and ηr = 0 is an unprobed environmental
degree of freedom. Moreover, we will assume that dWr are
independent real Wiener processes, i.e., dWrdWr ′ = δrr ′dt .
Physically, this SME represents a situation where the mea-
surement environment decoheres sufficiently rapidly that no
correlations build up between the state of the quantum system
of interest and the environmental degrees of freedom (Markov
approximation).

For the case considered here, the SME is given by (B1) with
three environmental operators (m′ = 3): one measurement of
the position (q) of the nanosphere within the trap, L̂1 = √

2kq̂,
and two operators representing an unprobed thermal environ-
ment L̂2 = √

(n̄ + 1)�â† and L̂3 = √
n̄�â [53], where â† and

â are the usual harmonic oscillator raising and lowering oper-
ators, � is a decay rate (� � ω), n̄ = [exp(h̄ω/kBT ) − 1]−1

is the average thermal occupation number of a linear oscillator
at temperature T , and k is the measurement strength for the
continuous measurement interaction. The measurement effi-
ciencies areη1 = η andη2,3 = 0 (unprobed). The measurement
record for L̂1 is dy(t) = √

8ηk Tr[ρc(t)q̂]dt + dW .
For the equivalent classical system, we take a stochastic dif-

ferential equation (SDE) for the position q and the momentum
p of a classical particle,

dq = p dt

dp = −μq3dt + ω2q dt − �p dt + g cos(t)

+
√

2k dY +
√

2�kBT dU, (B2)
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where the measurement record is dyc(t) = √
8ηkq dt + dW

and we have again set h̄ = 1. Like dW , dY and dU are
also real Weiner increments, dY 2 = dU 2 = dt , but they are
uncorrelated so that dW dU = dW dY = dY dU = 0, and
there is no backaction from the measurement on the state of
the system in a classical measurement.

APPENDIX C: OPTOMECHANICAL SYSTEM
SIMULATION

The distinguishibility of the two models was found to be best
in the double-well configuration. Specifically, when the two
wells were well separated in position and the barrier between
the two wells was high enough for the classical particle to
remain in one well for a reasonable period of time, before the
environmental noise kicked it into the other well. In addition,
the barrier also had to be low enough to prevent the quantum
state localizing in one or other of the wells. In practice, these
conditions correspond to a symmetric double-well potential
where the quantum ground state lies below the barrier height
but the first excited state is above the barrier. The classical
system is always localized, in the sense that it is a point particle,
but the probability density function (pdf) represented by the
particles needs to be largely localized to one of the wells by
the measurements. By contrast, a quantum state can only be
localized to one of the wells if two of the low-lying energy
levels are below the barrier. If the barrier is sufficiently high,
the lowest two energy states are formed from the symmetric
and antisymmetric superposition of localized well states, and
a localized well state can be generated by combining these
two energy levels [54]. If the first excited state lies above the
barrier, then a superposition of this with the ground state will
not be localized in one well. For the Duffing Hamiltonian (9),
these conditions are met if we take ω = 1, β = 0.5, and g = 0,
where we have set � = 0.05, k = 0.025, and N = 500.

The quantum model uses Rouchon’s integration method
[55,56] with noncommutative noise sources and a moving
basis [35–37] with 60–100 linear oscillator states. The models
are integrated over 100 cycles of the linear oscillator with
500–2000 time steps per oscillator cycle, and the probabilities
are calculated by averaging over 100 runs of each model.
The barrier height in this example is �Eb = 0.5h̄ω, the two
wells are separated in position by �q = 3

√
h̄/mω, the lowest

two energy levels are separated by �E01 = 0.396h̄ω, and the

next excited states are separated by �E12 = 0.941h̄ω and
�E23 = 1.061h̄ω.

The classical model requires the evolution of the pdf to
be calculated, which is computationally expensive. We use an
alternative approach here to solve the approximate problem
using a sequential Monte Carlo method [26,57,58] known
as a particle filter. The particle filter uses the fact that the
evolution of the pdf can be approximated by the evolution
of a finite number of candidate solutions or “particles,” each
of which has a weight associated with it, where the weight
evolves in such a way that a quantity averaged over all weighted
particles approximates the expectation value for the quantity
over the pdf. In this case, we take N particles, initialized with
equal weight w

(i)
0 = 1/N . Each particle has a position q(i) and

a momentum p(i), initially selected from the same thermal
distribution as that given by the thermal state for the quantum
model. The particles then evolve according to the SDE (B2)
with independent noise sources. The weights are updated using

w̃
(i)
t =

exp
(
− (�ỹt−

√
8ηkq(i)�t)2

2�t

)
√

2π�t
w

(i)
t−�t , (C1)

where the w̃(i)’s are unnormalized weights after updating, and
the probability for the classical model is approximated by
p(�ỹt |C,�ỹ0:t ′−�t ) ∝ ∑N

i=1 w̃
(i)
t . As the system evolves, the

values of some of the weights fall to near zero. The particles and
the candidate solutions that they represent are then resampled
using the current weight distribution as described in [16]. This
evolution with periodic resampling allows the particle filter to
be efficient while still retaining a diverse selection of candidate
solutions. This makes the particle filter an ideal method for the
estimation of a nonlinear dynamical process and it is the reason
for considering it in a model selection context. In addition, the
particle filter and other sequential Monte Carlo methods can be
augmented to include the simultaneous estimation of system
parameters [59] and they can be applied to quantum systems
described by SMEs with uncertain parameters [60].

It should be noted that the ability to distinguish the models
is dependent on the total time over which the measurement
record is collected and the models integrated. Extending the
integration time will improve the results, but the trap potential
and the measurement interaction would need to be stable over
the integration time, providing a trade-off between distin-
guishability and difficulties in collecting the measurement data.
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