
Penalised Image Reconstruction
Algorithms for Efficient and
Consistent Quantification in

Emission Tomography

Yu-Jung Tsai

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Medical Physics.

Institute of Nuclear Medicine

Division of Medicine

University College London

January 8, 2019



2

I, Yu-Jung Tsai, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.



Abstract

With the increased interest in potential clinical applications based on quantitative

results, the aim of this study is to improve the quantitative consistency of the recon-

structed images in emission tomography (ET).

To achieve practical processing time, a fast convergent quasi-Newton al-

gorithm, preconditioned limited-memory Broyden-Fletcher-Goldfarb-Shanno with

boundary constraints (L-BFGS-B-PC), is firstly proposed. Its performance is eval-

uated using both simulations and three patient datasets. Results show that L-

BFGS-B-PC is able to achieve several times faster convergence rate than separa-

ble paraboloidal surrogates (SPS). Moreover, the performance is less sensitive to

penalty type, penalty strength, noise level and background level, compared to L-

BFGS-B.

To be able to improve the image quality and quantitative consistency, an

anatomical penalty function is then considered with a spatially-variant penalty

strength. Based on results for simulations and data from one patient with inserted

pseudo lesions, the spatially-variant penalty reduces the quantitative dependence on

the surrounding activity and location. Moreover, it benefits the algorithm conver-

gence rate and its consistency among datasets.

It is important to consider potential misalignment between the functional and

anatomical images. For this reason, two approaches that perform alternating pe-

nalised image reconstruction and misalignment estimation are therefore proposed.

Expanding on the previous work, L-BFGS-B-PC using Parallel Level Sets (PLS)

with the spatially-variant penalty strength is used in both approaches. Preliminary

results for non-time-of-flight (non-TOF) data simulations demonstrate that both
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methods are able to estimate the misalignment and deform the anatomical image

accordingly when a proper workflow for the alternating optimisation is applied. By

integrating algorithms proposed in this study, both good image quality and consis-

tent quantification can be achieved in a practical processing time.



Impact Statement

A fast convergent penalised image reconstruction algorithm is proposed in this the-

sis in order to achieve practical processing time. To obtain consistent quantitative

results, efforts have been made on eliminating variations of local contrast in indi-

viduals, locations and surroundings. The image quality of the reconstructed activity

image is also improved by incorporating anatomical information. In considera-

tion of the potential misalignment between the functional and anatomical images in

practice, two approaches that perform alternating misalignment estimation and im-

age reconstruction are therefore introduced. All proposed algorithms are thoroughly

evaluated with simulated datasets and promising results are obtained. Except for the

approaches for solving the misalignment issue, demonstrations with one to three pa-

tient datasets are also provided.

The use of the presented methods to improve the quantitative consistency in

emission tomography have been demonstrated in this thesis. Their application in

practice could benefit the reliability of interpretations based on quantitative results

without compromising the patient throughput. With the increased interest in image

quantification, these algorithms could be utilised by researchers for exploring po-

tential clinical applications, and could be incorporated into commercial software by

manufacturers. The impact of applying methods presented in this thesis could be

positive to public health in the medical imaging field on a national and international

level.

The presented algorithms are based on proven methods with certain modifica-

tions, which allow re-using existing implementations. The feasibility of generalis-

ing the proposed strategies to a wider class of reconstruction algorithms and penalty
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functions has been discussed. The implementation of the proposed methods should

only require small changes to the selected algorithm and prior, which in turn would

result in reasonable implications to the manufacturing and economics.
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Chapter 1

Introduction

In current clinical practice of emission tomography, most diagnostic applications

are based on visual interpretation of reconstructed images. With the expansion of

its potential clinical use, such as disease follow-up and therapy monitoring [2, 3, 4],

there is increased interest in quantification. The reconstructed images are therefore

expected to accurately represent the tracer concentration.

The aim of this study is to improve quantitative consistency in emission to-

mography without compromising the patient throughput in practice. The proposed

algorithms are able to achieve consistent convergence rate among different datasets

in clinically feasible reconstruction time and good image quality when auxiliary

information (e.g. anatomical information) is available.

1.1 Thesis overview
Chapter 2 includes general background on imaging physics and reconstruction

methods in ET. Basic principles of one of the anatomical imaging modalities, com-

puted tomography (CT), are also provided.

Chapter 3 investigates the feasibility of using a quasi-Newton optimisation

algorithm, L-BFGS-B, for penalised image reconstruction problems in order to

achieve practical processing time. For further acceleration, an additional precondi-

tioning technique based on a diagonal approximation of the Hessian is introduced.

The convergence rate of L-BFGS-B and the proposed preconditioned algorithm (L-

BFGS-B-PC) is evaluated using simulated data with various factors, such as the
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noise level, penalty type, penalty strength and background level in the chapter. Data

of three 18F-FDG patient acquisitions are also reconstructed.

Chapter 4 explores the use of a spatially-variant penalty strength with an

anatomical penalty function to improve both the image quality and quantitative

consistency. Since Parallel Level Sets (PLS) is a convex function and has shown

promising results in the literature, it is chosen as the representative anatomical

penalty and incorporated into the previously proposed preconditioned algorithm

(L-BFGS-B-PC). A 2-dimensional (2-D) disc phantom with a hot feature at the

centre and a 3-dimensional (3-D) XCAT thorax phantom with lesions inserted in

different slices are used respectively to study how surrounding activity and lesion

location affect both the visual appearance and quantitative consistency. Anatomical

information is provided by the attenuation map or CT images and assumed to be

well-aligned with the corresponding activity images. The consistency of the algo-

rithm convergence rate with respect to different data noise and background levels is

also investigated using the XCAT phantom. An example reconstruction for a patient

dataset with pseudo lesions is used as a demonstration in a clinical context.

Chapter 5 presents two approaches for solving the potential misalignment be-

tween the functional and anatomical images. Both methods are based on a recently

published joint motion estimation and image reconstruction method. The first ap-

proach deforms the anatomical image to align it with the functional one, while the

second approach deforms both images to align them with the measured data. The

current implementation alternates between image reconstruction and alignment es-

timation. Expanding on the previous work, PLS with a spatially-variant penalty

strength is incorporated into both approaches. To evaluate their performances , sim-

ulated non-TOF data generated with a XCAT phantom is used.

Chapter 6 makes general conclusions based on results presented in this thesis,

followed by discussion on potential future work. Current and expected publications

are listed in the chapter as well.



Chapter 2

Background

In this chapter the basic principles of ET are addressed, summarising its current

and possible clinical applications, imaging physics, data acquisition and data or-

ganisation. Principles and challenges of image reconstructions in ET using analytic

and iterative algorithms are also provided, followed by a discussion on the desired

characteristics of reconstruction algorithms in practice. Due to the increasing avail-

ability of multi-modality scanners that integrate benefits of functional and anatom-

ical imaging, general principles and current applications for one of the anatomic

imaging systems, CT, is also presented.

2.1 Emission tomography
ET is a medical strategy that allows non-invasive observation of metabolic processes

in vivo. With adequate image processing and analysis methods, it is valuable for the

diagnosis of many diseases. The technique has been commonly used in contempo-

rary nuclear medicine [5, 6, 7, 8, 9, 10]. Its application varies with the radioactive

tracer and the imaging protocol being used.

Radioactive tracers are analogues of chemicals in the human body with one

atom a radioisotope. The analogues are taken up in particular organs or involved in

similar physiological processes. Depending on the radioisotope, γ-rays or positrons

are emitted during decay. The emissions are then detected by an external scanner

specific to the type of emission.

To be able to obtain cross-sectional images of the tracer distribution, two
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imaging methods, Single Photon Emission Computed Tomography (SPECT) and

Positron Emission Tomography (PET), are applied for γ-ray and positron emitters,

respectively. Basic principles, such as data acquisition and image reconstruction for

both methods, will be presented in the following sections.

2.1.1 Current and potential clinical applications

ET is useful for imaging objects in a complex background of heterogeneous tissues,

such as brain, thorax and abdomen. Currently, its major applications are in the

following fields:

• Oncology – many cancerous cells show specific accumulation of chemicals

or over-expression of receptors, which can be targeted by corresponding trac-

ers. For example, 99mTc sestamibi has been suggested for early detection of

breast cancer in SPECT [11] and 18F-FDG (fluorodeoxy-glucose) is a com-

mon tracer of choice in PET as it reflects the high metabolism rate of glucose

in malignant cells [12].

• Cardiology – myocardial perfusion studies are helpful in the diagnosis of

coronary artery disease and heart muscle damage. Cells that are damaged

or lack blood supply have no tracer uptake on the images. Examinations are

usually carried out using 201Tl in SPECT [13] and 13N-ammonia in PET [14].

• Neurology – some neurodegenerative diseases (e.g. Alzheimer’s and Parkin-

son’s disease) and psychiatric disorders can be detected using ET. Many trac-

ers that are able to enter the blood brain barrier have been developed in

recent decades. For example, 99mTc-HMPAO (hexamethylpropyleneamine

oxime), 11C-PiB (Pittsburgh Compound-B) and related radiotracers labelled

with 18F are commonly used tracers for examination of Alzheimer’s disease

using SPECT [15] and PET [16], respectively.

The application of ET is increasing as novel radioactive tracers are being developed.

In recent decades, potential clinical applications based on image quantification are

being explored intensively as well. Many studies have proposed using metrics de-
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rived from the intensity of the reconstructed images as indicators for disease follow-

up, treatment response assessment or receptor occupancy analysis [2, 3, 4].

2.1.2 Scanners and principles

A SPECT scanner detects emissions from radioisotopes decaying by γ-ray emis-

sion. It usually consists of two or more detector heads that rotate around the patient

to obtain projections from multiple angles. Since γ-rays are emitted in arbitrary

directions, physical collimators are required for limiting the incidence angle of the

rays, improving the spatial resolution at each projection angle. The mean energy of

the emitted γ-rays can vary among different radioisotopes. Therefore, collimators

should be changed accordingly.

PET scanners are designed especially for positron-emitting radioisotopes.

When interacting with matter, the positron loses its kinetic energy until it anni-

hilates with an electron, creating two photons that are emitted almost back-to-back.

The annihilation photons carry the same energy, 511 keV, independent of the la-

belled positron-emitting radioisotope. To capture these two photons at the same

time and register them as an event, coincidence detectors positioned in opposite di-

rections are used. Since the location of the emitter can be traced along the straight

line defined by the paired coincidence detectors (line of response, LOR), physical

collimators are unnecessary for PET. Instead of rotating them around the patient as

in SPECT, current PET scanners adopt stationary detectors arranged in a ring shape

to achieve multiple angle acquisition. PET scanners usually consist of parallel de-

tector rings along the transaxial direction. For some of them, thin septa of lead or

tungsten are used to block coincidences lying in different detector rings or outside

a predefined ring difference.

For converting the energy of γ-rays or annihilation photons to an electric sig-

nal, most of SPECT and PET detectors consist of scintillation crystals (scintillator)

coupled with a detector for the optical photons, such as a photo-multiplier tube

(PMT) and a Silicon photo-multipliers (SiPMs) tube. The optical photons are then

converted to electrical signals in the detector.



2.1. Emission tomography 31

2.1.3 Data acquisition

When a patient is sent to a nuclear medicine department, a small amount of radio-

tracer is injected for the required examination. Based on different imaging physics,

the data acquisition and organisation processes are different for SPECT and PET.

2.1.3.1 Data acquisition in SPECT

SPECT scanners usually acquire 2-D projections at equally-spaced angular intervals

around the patient. One single projection corresponds to the accumulation of the

tracer distribution for a specific time frame and along the solid angle limited by the

collimator. The cross-sectional images are reconstructed from multiple projections

using algorithms that will be discussed in Section 2.3. Generally, the number of

projections required for the reconstruction ranges from 64 to 128 in clinical practice.

There are four types of events that may happen in a SPECT scanner, however

only valid events provide correct positional information:

• Valid event – an event caused by a γ-ray entering directly to the detector

without previous interaction and depositing all of its energy at one position.

• Detector scattered event – when a γ-ray changes its direction in the detector

by Compton scattering. The scattered γ-ray can either escape the detector

or interact a second time. In the former case, only part of the γ-ray energy

is deposited in the detector, therefore, the event can be rejected by setting

a low level energy discriminator. However, in the latter case, the event will

be recorded and mispositioned between the two interaction locations. The

energy discriminator cannot disregard these events, because all the energy of

the ray has been deposited in the detector.

• Object scattered event – when a γ-ray changes its direction in any object along

its travel to the detector by Compton scattering. For the γ-ray scattered by an

object before reaching the detector, the energy discriminator can be used to

reject the event, if the scattering angle is large enough for the discriminator to

recognise the energy loss caused by the direction change.
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• Septal penetration – when a γ-ray enters non-parallel to the collimator holes,

there is a chance that the ray penetrates one or more septa and interacts with

the scintillator, especially for high energy rays. These events cannot be re-

jected by the discriminator and will lead to mispositional information.

Therefore, the total recorded events ggg is actually composed of valid events, detector

scattered events, object scattered events and events due to septal penetration. This

can be expressed using the following equation:

ggg = gggvalid +gggdetector scattered +gggobject scattered +gggseptal penetration (2.1)

2.1.3.2 Data acquisition in PET

Due to the back-to-back directional characteristic of the annihilation photons, PET

scanners record every event belonging to a LOR defined by a pair of coincidence

detectors. The ring shape arrangement of the detectors allows simultaneous acquisi-

tion of events from various angles. The data acquisition mode of PET can be either

2-D or 3-D. In the 2-D mode, annihilation photons, which would be detected by

a pair of detectors belonging to different rings, are blocked by septa. In order to

improve the detection sensitivity, septa are retracted in the 3-D acquisition mode.

Therefore, LORs lying across different rings are accepted.

In PET, four types of events could be accepted by the paired coincidence de-

tectors in 3D mode. The correct positional information is provided only by valid

events:

• Valid event – an event occurred from a pair of photons generated by the same

annihilation event and detected in a pair of opposite detectors within a speci-

fied coincidence timing window without previous interaction.

• Detector scattered event – when one or both annihilation photons from an an-

nihilation event change their direction by Compton scattering in the detector.

The scattered photon(s) can be rejected by using an energy discriminator if

the energy loss caused by the direction change is large enough. Otherwise,
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they will be detected in a wrong coincidence detector pair and lead to mispo-

sitioning of the event.

• Object scattered event – when one or both annihilation photons from an an-

nihilation event change their direction by Compton scattering in any object

along their travel to the detector. Similar to the scattering event occurring

within the detector, they can lead to mispositioning of the event if the energy

loss is too small for an energy discriminator to disregard them.

• Random – events caused by accidentally detecting two photons from two un-

related annihilation events in a pair of detectors within the coincidence timing

window. Since annihilation events can happen anywhere in the field-of-view

(FOV), this kind of mispositioning can lead to apparent LORs far away from

the true location.

Similar to the data in SPECT, in PET, the collected events ggg are composed of valid

events, two types of scattered events and randoms:

ggg = gggvalid +gggdetectorscattered +gggobjectscattered +gggrandoms (2.2)

2.1.4 Data organisation

In 2-D data organisation, a coordinate system (r,s), stationary with respect to the

detector, is introduced to reduce the complexity of SPECT and PET data analysis.

Given the data collecting angle φ , the transformation from the (x,y) coordinate

system of the imaged object to (r,s) is illustrated in Figure 2.1 and can be formulated

by:

r = xcosφ + ysinφ (2.3)

s = ycosφ − xsinφ (2.4)
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Figure 2.1: Transformation of the coordinate system from (x,y) to (r,s).

2.1.4.1 Data organisation in SPECT

With the help of this coordinate system, a full set of SPECT projection data for a

single slice can be described by a 2-D matrix ppp. Each row of the matrix represents

the projection acquired at angle φ and each element in a row records the number of

detected events at location r. The matrix is also referred to as a sinogram, since a

sinusoidal path down the matrix is observed when imaging a point source at location

(x,y) (Figure 2.2). The equation that describes the 2-D relationship between the

matrix element p(r,φ) and the tracer distribution at location (x,y), ignoring physical

effects, such as attenuation, is given by [17]:

p(r,φ) =
∫

∞

−∞

f (r cosφ − ssinφ ,r sinφ + scosφ)ds (2.5)

For a 3-D volume, the data organisation can be seen as a stack of sinograms that

record projections belonging to each slice z in the FOV.

2.1.4.2 Data organisation in PET

As mentioned in Section 2.1.3.2, PET scanners record every single event instead of

projections from different angles. To describe PET data in the manner of sinograms,
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Figure 2.2: Illustration of the sinogram in SPECT.

an extra step is required. For a specific time frame, events are accumulated and

combined with adjacent parallel LORs to represent projection data at the particular

angle. An example is shown in Figure 2.3.

After the projection construction step, data organisation in 2-D PET is identi-

cal to that in SPECT when physical effects are not considered. Data acquired in 3-D

mode can also be described by a stack of sinograms with additional sinograms rep-

resenting projections at different polar angle θ . The coordinate system of scanners

in 3-D acquisition is illustrated in Figure 2.4.

2.1.5 Attenuation effect and correction

As γ-rays and annihilation photons can be scattered or absorbed by the patient body

before interacting with the detector, events recorded in the projection data will not

reflect true activity distribution in the patient. The probability of detection therefore

depends on the distance and material that these emissions have to travel through.

Given the differences in imaging principles, the measured SPECT and PET data for

a single slice considering the attenuation effect can be described as follows:



2.1. Emission tomography 36

Figure 2.3: An example of constructing one projection from adjacent parallel LORs.

Figure 2.4: Coordinate system for 3-D PET acquisition [1].
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SPECT:

p(r,φ)=
∫

∞

−∞

f (r cosφ−ssinφ ,r sinφ+scosφ)e−
∫ s
−∞

f (r cosφ−s′ sinφ ,r sinφ+s′ cosφ)ds′ds

(2.6)

PET:

p(r,φ)=
∫

∞

−∞

f (r cosφ−ssinφ ,r sinφ+scosφ)e−
∫

∞

−∞
f (r cosφ−s′ sinφ ,r sinφ+s′ cosφ)ds′ds

(2.7)

Without considering the attenuation of the photons, images reconstructed from the

data cannot represent the true activity distribution in the object. For emissions sur-

rounded by dense materials, such as bone, the reduction of events due to attenuation

is severe and artefacts in the reconstructed images will occur. In addition to inter-

fering with visual interpretation, the image quantification also becomes unreliable.

In contemporary nuclear medicine, the reduction can be estimated and compensated

by using anatomic information provided by an additional CT or MR scan.

2.2 Anatomical imaging modalities
In contrast to scanners for ET that allow in vivo observation of physiological pro-

cesses, anatomic imaging modalities, such as CT, provide insight into structural

detail regarding tissue size, location and morphological change [18, 19, 20]. The

anatomical information can be used for performing attenuation correction in ET

[21, 22] or assisting diagnosis [23, 24], follow-up [25] and treatment planning in

oncology [26, 27]. Although there are other imaging modalities that are able to

provide anatomical information, this thesis focuses on the application of CT in ET.

The basic principles of CT will be addressed in the following section.

2.2.1 Computed tomography

CT is a technique that generates anatomic cross-sectional images of a patient using

external x-ray measurements taken from different angles. Similar to conventional

x-ray imaging that acquires only one projection of the patient, CT is based on the



2.2. Anatomical imaging modalities 38

variable absorption of x-rays by different tissues.

2.2.1.1 Basic principles

A CT scanner consists of a motorised table that moves the patient into the imaging

position for the required examination and a donut-shaped gantry, on which an x-ray

tube is mounted. An x-ray tube is a vacuum tube where electrons emitted from the

cathode are accelerated toward the anode using a high potential difference. The

electrical input is then converted to x-rays as the electrons interact with the heavy

nuclei of the anode and lose their energy. The spectrum of the x-rays depends on

the material of the anode and the strength of the accelerating voltage. A typical CT

x-ray tube produces photons with energy levels between 20 and 150 keV. For recent

generations of CT scanners, the resulting x-rays are distributed into a narrow and

fan-shaped beam so that the patient can be completely irradiated at each imaging

angle as the tube rotates around the inside of the circular opening.

While passing through the patient, some of the x-rays are absorbed by tissues

in their travelling path. The remaining or attenuated x-rays are then measured by

the digital x-ray detectors positioned diametrically opposite to the x-ray tube. To be

able to convert the registered x-ray to electrical signals, the detector usually consists

of a scintillator coupled with a photosensitive device, such as a photodiode. The

most common CT scanners in current practice are composed of rotating detectors

that allows helical data acquisition. For this kind of acquisition, the table moves

through the circular opening of the gantry whilst the x-ray tube and detectors rotate

around the patient.

2.2.1.2 Image generation

The voxel value of a CT image represents the ability of x-ray absorption for dif-

ferent tissues in Hounsfield Units (HU), which are calculated based on the linear

attenuation coefficient µ of the corresponding tissue:

HU = 1000× µ−µwater

µwater−µair
(2.8)

where µwater and µair are the linear attenuation coefficient of water and air.
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2.2.1.3 Contrast-enhanced CT

The purpose of contrast-enhanced CT is to find pathology by visualising blood flow

and washout using non-specific iodinated contrast agents. Depending on the pathol-

ogy of interest, the optimal contrast injection rate and data acquisition time can vary.

For example, helical CT imaging that starts 35 seconds, 70 seconds and 10 minutes

after contrast injection at 5 ml/second is routinely used for patient with liver masses

[28, 29]. It is especially useful for observing lesions having similar linear attenua-

tion coefficient but different vascular density to surrounding tissues, as the wash-in

or clearance rate of the agent is different between them. In practice, the technique is

often used to delineate abnormal regions for neoplasm or inflammation in relatively

uniform soft tissues, such as liver and lung [30, 31, 32, 33, 34].

2.3 Image reconstruction
The goal of image reconstruction is to obtain a cross-sectional image of the tracer

distribution from the corresponding set of projections (sinogram) acquired around

the object. To achieve this goal, there are two main categories of algorithms in ET,

analytic image reconstruction and iterative image reconstruction. The former con-

siders the reconstruction as a direct inverse problem, without considering any un-

certainty, while the latter takes into account the statistical properties of the emission

and imaging processes [1]. Principles and challenges for each kind of algorithms

will be discussed in this section. However, as this project concentrates on iterative

algorithms, analytic ones will be only covered briefly. Although the explanation is

given in a single slice manner, the algorithms can be generalised to the case of 3-D

PET data.

2.3.1 Analytic algorithms

The most basic approach for image reconstruction is by simple back-projection,

which inverts the process by which the projections are created. It distributes events

stored in each sinogram element back along the path they are collected from, but

in the discrete image plane. Each pixel intersected by the projection path shares

the total accumulated events equally, since the exact location information has been
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lost during the projection process. By back-projecting all projections acquired from

different angles and adding them up together, an approximation of the tracer dis-

tribution f (x,y) is obtained. However, images reconstructed with this method are

intrinsically blurred because the same activity value is assigned to pixels outside the

true activity distribution but intersected by the back-projection path. A ramp filter

can therefore be applied to compensate for the blurring effect, and the algorithm be-

comes filtered-back-projection (FBP). For analytic reconstruction algorithms, data

pre-correction for scatter and attenuation effect is required.

Although advantages, such as fast computational speed, have made FBP a pop-

ular method for image reconstruction, it has some limitations. First, it introduces

severe artefacts if the acquisition is incomplete. Second, serious streak artefacts can

be observed for data representing poor counting statistics (e.g. few events). Third,

the FBP algorithm cannot be modified to take into account the physical effects of the

imaging system, such as the shift-variant intrinsic spatial resolution of the detector.

2.3.2 Iterative algorithms

Due to the ability of modelling the imaging physics and statistics, iterative recon-

struction algorithms have become the method of choice in ET. As all available in-

formation about the measurement can be incorporated into these methods, a more

reliable quantification based on the resulting image is expected. In contrast to ana-

lytic methods that obtain images in one step, iterative algorithms adopt successive

estimates toward the solution of the objective function (see Section 2.3.2.2 for more

information) based on the actual measured data (sinogram(s)) using an update func-

tion.

2.3.2.1 Imaging model

In this thesis, the imaging model is discretised using voxels, although other discreti-

sations are possible. Given the discretised tracer distribution fff = [ f1, . . . , fJ]
> ∈RJ

and the expected invalid events nnn = [n1, . . . ,nI]
> ∈ RI (see Section 2.1.3 for more

information), the imaging process in ET can be described using the following equa-
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tion:

ḡgg = AAA fff +nnn (2.9)

where ḡgg = [g1, . . . ,gI]
> ∈ RI is the (statistical) mean of the observed data and AAA

is an I× J transition matrix with each element Ai j indicating the probability that

an emission from voxel j is detected by detector bin i without scattering. The bin

i corresponds to the ith element of the sinogram. The matrix AAA is also referred

to as the system matrix, which characterises the physical system properties, such as

resolution and detector sensitivity, in terms of detection probability. The attenuation

effect mentioned in Section 2.1.5 is another factor in the calculation of the system

matrix AAA.

2.3.2.2 Objective function

In the context of image reconstruction, an objective function quantifies the differ-

ence between the measured and estimated data. It reaches the optimal value when

the closest estimate to the measured data is found. In ET, the probability of col-

lecting data ggg ∈ NI given a tracer distribution fff can be described using a Poisson

model:

PPP ( fff ,ggg) =
N

∏
i=1

ḡgi
i exp(−ḡi)

gi!
(2.10)

where ḡi is the observed mean value in the ith bin as defined in (2.9). The prob-

ability function of ggg can be interpreted as a likelihood function of fff . Therefore,

maximising the probability (2.10) is equivalent to finding an estimate of the distri-

bution f̂ff that gives the maximum value of the likelihood. This approach is known

as maximum-likelihood (ML), which is a common strategy for iterative reconstruc-

tions. Taking the logarithm and omitting terms independent of fff , the objective

function based on the log-likelihood estimation is obtained:

L( fff ,ggg) = ∑
i

gi log ḡi( fff )− ḡi( fff ) . (2.11)

maximising L is equivalent to minimising−L. The optimisation therefore is referred

to as a minimisation problem in the rest of the thesis.
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However, image reconstruction using ML estimation is an ill-conditioned prob-

lem, resulting in noise amplification as iterations increase [35]. In practice, the

noise can be controlled by early termination of the iterative process, at the expense

of quantitative accuracy [36], or by incorporation of a penalty term [1, 37]. Instead

of optimizing (2.11), penalised ML (PML) image reconstruction minimizes an ob-

jective function Φ, which consists of the negative log-likelihood −L and a penalty

function R with a parameter β controlling its strength:

Φ( fff ) =−L( fff ,ggg)+βR( fff ) . (2.12)

The optimisation of the problem can then be addressed as:

f̂ff = argmin
fff≥000

Φ( fff ) . (2.13)

A positivity constraint is normally enforced on fff , as it represents radioactivity con-

centration.

Several penalty functions can be used to control noise propagation [38, 39, 40].

It is referred to as the penalty term or prior in this thesis. The most common Gibbs-

type penalties, which penalise the difference between voxels in a given neighbour-

hood N are firstly applied:

R( fff ) =
1
2 ∑

j
∑

k∈N j

ω jkϕ( f j− fk) (2.14)

where ω jk indicates the weight between voxel j and its neighbouring voxel k. As a

comparison study between different reconstruction conditions and algorithms, two

relatively simple potential functions ϕ are used in Chapter 3:

• quadratic penalty (QP) – is a smoothing prior tending to reduce the pixel

difference regardless of the presence of true edges.

ϕQP(x) = x2 (2.15)
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• rescaled log-cosh penalty (LP) – is a more edge preserving prior [41].

ϕLP(x) =
1

ρ2 log(cosh(ρx)) (2.16)

where ρ is a scalar controlling the edge-preservation property of ϕLP. The

factor 1/ρ2 is derived from the second derivative of ϕLP for normalisation

such that both penalties behave similarly for small |x|.

In addition to regularising noise, desired properties, such as sharp edges and

smoothness in uniform regions, can also be introduced by using a specially designed

penalty function [42, 43]. For example, penalties derived from anatomical CT or

Magnetic Resonance (MR) images have been proposed for improving the edge de-

lineation of objects in many studies [38, 44, 45, 46, 47, 48, 49, 50, 51, 52]. In recent

years, there have been promising developments on anatomical priors [53, 54]. For

instance, Joint Total Variation (JTV) [55] has been used for exploring the edge infor-

mation based on the magnitude of the image gradients of both the ET and anatom-

ical images. By encouraging strong gradients that are observed in both functional

ET and anatomical images, the prior incorporates structural details during the image

reconstruction process of ET. The robustness of the estimated image was further

improved by considering the orientation of the gradients [56]. With the direction

information, the proposed Parallel Level Sets (PLS) shows higher reliability of dis-

covering the structure similarity between these two images. Since it has shown

promising results in the literature [56, 57, 58], PLS is chosen as the representative

anatomical penalty in this thesis:

R( fff |zzz) = ∑
j

√
ε2 +‖ [∇ fff ] j ‖2

2−〈[∇ fff ] j , [ξξξ ] j〉
2
, (2.17)

[ξξξ ] j :=
[∇zzz] j√

‖ [∇zzz] j ‖2
2 +η2

, ε and η > 0

where ∇ is the gradient operator, 〈·, ·〉 is the Euclidean scaler product, zzz =

[z1, . . . ,zJ]
> ∈ RJ is the anatomical image and ‖ · ‖2 denotes the `2-norm. The

edge preserving property of the function is modulated by the pair of parameters
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Figure 2.5: Plots of QP, LP and PLS in 1-D. The range of the difference between two
adjacent voxels is [−2, 2]. The scalar ρ in LP and the set of parameters (ε ,
η) in PLS are 1.8 and (0.01, 0.1), respectively. The gradient of the anatomical
image is fixed at 1 for PLS.

(ε,η) [58]. The utilisation of the anatomical information will be studied in Chap-

ter 4 and 5. Note that for the penalties used in this thesis, the objective function Φ

is strictly convex [58, 59]. Figure 2.5 illustrates the behaviour of each function in

1-dimensional (1-D), given a fixed range of difference between adjacent voxels.

2.3.2.3 Update function

The update function, which is also referred to as the optimisation algorithm, finds

a better estimate f̂ff from a given estimate based on the comparison result of the

objective function. Many different approaches have been proposed for the opti-

misation. One of the most widely used methods that converges to ML solution is

ML-expectation maximisation (ML-EM) [60]. It makes the next step to the solution

with current estimate f̂ff
(t)

by:

f̂ (t+1)
j = f̂ (t)j

∑i Ai j
gi

∑ j′ Ai j′ f̂
(t)
j′ +ni

∑i Ai j

 (2.18)
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The equation can also be written in an additive form as follows:

f̂ (t+1)
j = f̂ (t)j +

f̂ (t)j

∑i Ai j

∑
i

Ai j

∑ j′ Ai j′ f̂
(t)
j′ +ni

(gi− (∑
j′

Ai j′ f̂
(t)
j′ +ni))


︸ ︷︷ ︸

∇L

(2.19)

Both of these expressions can be interpreted as a process that updates the current

estimate with a correction term (in the parenthesis). Note that the correction term in

the additive form is actually the gradient of the log-likelihood function (2.11). The

computation of ML-EM is readily parallelisable with respect to projections. How-

ever, its application is limited in practice, since it converges very slow. Although

it is not necessary to converge to the ML-solution due to the ill-conditioned prop-

erty of the problem, the algorithm requires a large number of iterations to obtain a

visually appealing image.

To improve the convergence rate, the OS (ordered-subset)-EM algorithm was

proposed [61]. By using only a subset of the projection data per update (“sub-

iteration”), the algorithm can be about an order of magnitude faster than ML-EM.

Although it is fast to compute and also parallelisable, OS-EM normally does not

converge [61]. The estimation oscillates among the solutions for the sets of incom-

plete data (limit-cycle problem). In particular, using a large number of subsets can

introduce artefacts and hence interfere with lesion detection [62].

Instead of using OS, accelerated EM methods use a larger step at each iteration

[63, 64, 65, 66, 67]. The improvement of the convergence rate is linear in the step

size. However, the convergence of the accelerated methods is hard to prove. To

preserve the convergence, a manually selected relaxation parameter was introduced

in [68]. Although the algorithm can achieve a fast convergence rate while the pa-

rameter is optimised, there are no rules for choosing the parameter. Moreover, it

can be sensitive to many factors, such as data scale and object geometry [68].

With only a minor modification in the correction term of (2.18) using the one-

step-late (OSL) approach [69], both ML-EM and OS-EM can be applied to PML

optimisation problems incorporating any differentiable penalty function. However,
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the inconsistency between the log-likelihood and penalty terms makes the algorithm

unstable and divergent for a larger penalty strength [70]. Although other modified

ML-EM algorithms [71] or separable paraboloidal surrogates (SPS) [72] can di-

rectly incorporate the penalty term into a closed-form update of the image without

suffering from convergence issues, the application of both strategies is limited by

the need to find a convex surrogate function that lies above the original function and

easier to solve. The image update scheme of SPS can be summarised as follows

(see Appendix A for more information):

fff t+1 = fff t− ĤHH
2
t ∇Φ( fff t) (2.20)

ĤHHt = diag
{

AAA>XXX tAAA1+βRϕ( fff t)1
}− 1

2

where Rϕ(x) = ∇R(x)/x provides the second order information of the penalty func-

tion R of the form in (2.14) with the potential function ϕ and XXX t is a vector with the

same length as the measured data ggg. Note that subscripts are used to indicate the

iteration number instead of the voxel location and the estimated f̂ff has been replaced

by fff in this and the following sections for compactness. Given the current estimate

data ĝggt = AAA fff t +nnn, XXX t can be computed by:

[XXX t ]i =


[
2Φi(0)−Φi([ĝggt ]i)+∇Φi([ĝggt ]i)[ĝggt ]i

[ĝggt ]
2
i

]
if [ĝggt ]i > 0

∇2Φi(0) if [ĝggt ]i = 0
(2.21)

Another alternative is to employ the generic steepest-descent optimisation al-

gorithm to find the local solution along the gradient of the penalised log-likelihood

function by using a line search:

fff t+1 = fff t−α
?
∇Φ( fff t) , (2.22)

α
? = argmin

α≥0
(Φ( fff t)−α∇Φ( fff t)), fff ≥ 0

With a good line search algorithm, steepest descent can show fast initial conver-

gence rate but often slows down while approaching the final solution as the direction
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defined by the gradient can lead to a zigzag path to the solution for ill-conditioned

problems (Figure 2.6).

Instead of using merely the gradient, Newton’s method [73] defines a better

search direction with the help of the Hessian matrix, which is calculated from

the second partial derivatives of Φ. Given the current estimate fff t at iteration t,

a quadratic polynomial approximation of the objective function Φ in the neighbour-

hood of fff t is defined as:

qt( fff ) = Φ( fff t)+ddd>t ∇Φ( fff t)+
1
2

ddd>t HHHtdddt . (2.23)

where dddt = fff − fff t is the search direction and HHHt is the Hessian matrix at fff t . The

optimisation is therefore performed by minimising this quadratic model instead of

the objective function. By taking a gradient of the model, the local minimiser is

found at dddt = −HHH−1
t ∇Φ( fff t) and the next update of Newton’s method is achieved

with:

fff t+1 = fff t +α
?dddt . (2.24)

With information inherent in HHH, the algorithm shows not only fast convergence but

also consistent performance for different datasets. However, HHH in large scale prob-

lems is usually too large to calculate, store in memory or invert. To overcome this,

quasi-Newton algorithms that use approximations for HHH−1 were developed [74].

The use of a quasi-Newton algorithm for PML reconstructions is further discussed

in Chapter 3.

2.3.3 Desired properties of reconstruction algorithms

A reconstruction algorithm should provide good image quality with accurate and

precise intensity values for research and clinical application. Since both visual in-

terpretation and quantitative analysis can be affected by the spatial resolution of the

reconstructed image, the desired algorithm should be capable of encouraging high

resolution at edges and smoothness in uniform regions as well. To have reliable re-

constructed images without compromising patient throughput, algorithms that show

fast convergence rate are preferable. In addition, the performance of the algorithm
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Figure 2.6: Illustration of the optimisation path for an ill-conditioned problem using the
steepest descent algorithm. The contour-plot represents the objective function
and the blue lines are the search directions defined by the gradient at each
estimate. The shortest direction is denoted by the dashed green arrow.

should be independent of as many factors as possible to ensure predictable run-time

in a clinical environment.

With a good choice for the penalty, penalised image reconstruction algorithms

are able to provide both appealing images and reliable quantification results [75].

However, the image visual appearance and quantitative accuracy and precision are

functions of iterations when the applied algorithm has not converged yet. As shown

in Figure 2.7, sharper edges are observed in the image at higher iteration than that

at lower iteration. Moreover, the quantification error can be reduced significantly

when a higher iteration number is used (Figure 2.8), especially for regions with low

activity level (e.g. region 3 and 4). Since each optimisation algorithm approaches

the PML solution in a different way, the required number of iterations for achiev-

ing convergence varies between algorithms and applications. This makes ensuring

similar visual quality and quantitative accuracy and precision for different data and

reconstruction conditions even more challenging in practice.
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Figure 2.7: An example of how iteration number affects image appearance. The left image
is terminated at the 20th iteration and the right one is at the 50th. The simulation
condition was the same as in Section 3.5.1 with total counts of 594 K. The
applied reconstruction algorithm was SPS with the quadratic penalty and β =
0.1. A summary of the algorithm can be found in Appendix A.

Figure 2.8: An example of how iteration number affects quantitative accuracy. Value 1
means 100% recovery. The recovery ratio was calculated by drawing a square
region-of-interest (ROI) in the centre of each circular spot with a side length
of 26.4 mm. See the caption in Figure 2.7 for details of the simulation and
reconstruction settings.



Chapter 3

Fast quasi-Newton algorithms for

PML reconstruction in ET

In this chapter a brief description of a quasi-Newton optimisation algorithm, L-

BFGS-B, is given. To circumvent its potential slow convergence rate for ill-

conditioned or large-scale reconstruction problems in ET, a preconditioner based

on a diagonal approximation of the Hessian is introduced. Basic principles of pre-

conditioning and the derivation of the preconditioned algorithm, L-BFGS-B-PC,

are therefore addressed. Performance evaluations for both algorithms with digital

and real patient data are provided, followed by discussion and conclusions.

3.1 Introduction
With the additional information contained in the Hessian matrix, Newton’s method

is able to define a better search direction at each iteration, leading to a faster con-

vergence rate. However, as mentioned in Section 2.3.2.3, the Hessian matrix is

usually unavailable for image reconstruction problems. Instead of calculating the

true Hessian, quasi-Newton optimisation methods use approximations of the Hes-

sian to define the search direction. A popular example of a quasi-Newton method

is the L-BFGS algorithm [76, 77], which approximates the inverse of the Hessian

based on the gradient information obtained in the previous few iterations. L-BFGS

has been extended to allow box constraints on the variables that are to be estimated

(L-BFGS-B) [74, 78]. Since the amount of memory the algorithm requires can be
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controlled by the user and scales linearly with the dimensionality of the problem,

it has become the most popular quasi-Newton method for optimising non-linear

problems [79]. It is widely used in machine learning but not yet in PML image

reconstruction. As L-BFGS-B constructs approximations of the inverse Hessian by

using only the gradient information, the algorithm should be able to handle any

differentiable penalty term. This enables the incorporation of many non-convex

penalty functions, such as the joint entropy priors [80].

However, the application of L-BFGS-B for PML image reconstruction is lim-

ited by the dependence of its convergence rate on image and data scale [78, 81].

This chapter concentrates on improving the performance of L-BFGS-B by introduc-

ing better initialisation and additional diagonal preconditioning. Previously, Kaplan

et al. used L-BFGS-B with a preconditioner for accelerating simultaneous estima-

tion of activity and attenuation distributions in SPECT [82]. A constant value was

chosen as the preconditioner to rescale the activity estimate. The algorithm showed

a faster convergence rate in most cases when both the transformed activity and at-

tenuation were in a similar scale. However, since the scale of the activity varies

with application and individual dataset, the preconditioner had to be tuned accord-

ingly by trial and error. In this work, a more general diagonal preconditioner, based

on the second partial derivative of the objective function, is used. With the help

of the extra information, the penalised reconstruction problem is transformed to a

better-conditioned form, which is then incorporated into the L-BFGS-B optimisa-

tion process. The resulting algorithm is denoted as L-BFGS-B-PC.

3.2 L-BFGS-B

In this section, the main ideas behind L-BFGS-B are described. More detail can be

found in [74] and [83].
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3.2.1 Unconstrained optimisation

Substituting HHHt in (2.23) with an approximation of the inverse of the Hessian matrix

BBBt , the polynomial approximation of Φ in the neighbourhood of fff t becomes:

qt( fff ) = Φ( fff t)+ddd>t ∇Φ( fff t)+
1
2

ddd>t BBB−1
t dddt . (3.1)

The matrix BBBt is calculated by L-BFGS using limited memory. In order to compute

the matrix/vector products with BBBt efficiently [84], the algorithm does not store BBBt

directly, but represents it by a pair of lower-dimensional correction matrices, which

record the change of the update and the gradient of Φ in the previous few iterations.

A description of the construction of BBBt is given in Appendix C.

When BBBt is positive definite, qt has a unique minimiser fff ?:

fff ? = fff t−BBBt∇Φ( fff t) . (3.2)

Since the polynomial approximation (3.1) is local, fff ? cannot be used as an update

for the minimisation of Φ. Instead, an update fff t+1 along the line segment { fff t +

αddd?
t , α ∈ [0,1]} with ddd?

t = fff ?− fff t =−BBBt∇Φ( fff t) is sought:

fff t+1 = fff t +α
?ddd?

t . (3.3)

To ensure convergence and sufficient progress, the step length α? is generally ob-

tained using a “backtracking” algorithm, which gradually decreases α from an ini-

tial value α init ≤ 1 until the Wolfe conditions (WCs) are met [85]:

Φ( fff t +αddd?
t )≤Φ( fff t)+λ1α∇Φ( fff t)

>ddd?
t (3.4)

‖∇Φ( fff t +αddd?
t )
>ddd?

t ‖2 ≤ λ2‖∇Φ( fff t)
>ddd?

t ‖2 (3.5)

where 0 < λ1 < λ2 < 1 and ‖ · ‖2 is the `2-norm. In this study, λ1 and λ2 were

set to 10−4 and 0.9 as in [73]. Since both the objective function and its gradient

have to be computed for each new α (as shown in (3.4)–(3.5)), in ET extra forward
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and back-projection operations are required when applying a line search. Note that

when α? satisfies the WCs and the current estimated BBBt is positive-definite, the new

estimated L-BFGS matrix BBBt+1 is necessarily positive-definite [73].

3.2.2 Boundary constraints

L-BFGS was extended to L-BFGS-B [74, 78] to be able to handle minimisation

with box constraints. The search direction is computed by solving the constrained

problem corresponding to (3.1):

fff † = argminqt( fff ) subject to lll ≤ fff ≤ uuu (3.6)

where lll and uuu denote the lower and upper bounds of the problem, respectively. In

this chapter, solving (3.6) was achieved following the method proposed in [74],

which utilises the active constraints1 defined by the generalised Cauchy point2.

A lower bound lll = 000 was used to impose the non-negativity constraint of the

image reconstruction problem in this study, while the upper bound was set to in-

finity. The line-search is performed in the direction ddd†
t = fff †− fff t . Similarly to the

unbounded case, a backtracking algorithm is used to find a solution α† that satisfies

the WCs. By convexity, the update is guaranteed to satisfy the boundary constraints.

For well-conditioned and small-scale problems, L-BFGS-B is expected to pro-

duce a minimiser with fast convergence rate, since BBB is a non-diagonal matrix that

takes into account the inter-variable correlation. However, the limited memory ap-

proximations that are introduced can lead to low accuracy of BBB and slow conver-

gence for ill-conditioned or large-scale problems [84].

3.3 Preconditioned L-BFGS-B
This work proposes to circumvent the potential slow convergence of L-BFGS-B via

preconditioning. Preconditioning is a general strategy that transforms the problem

into a new coordinate system where it is easier to solve (3.6) [86]. Given fff the

1Variables whose value at the generalised Cauchy point is at lower or upper bound define the
active constraints.

2The generalised Cauchy point is defined as the first local minimiser along the gradient direction
within the trust region for a quadratic model.
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original estimate, the transformation is described as:

f̃ff = DDD fff (3.7)

where the preconditioner, DDD, is used as the transformation matrix. To deal with

the new estimate f̃ff , the objective function and its derivatives should be transformed

accordingly:

Φ̃( f̃ff ) = Φ( fff ) = Φ(DDD−1 f̃ff )

∇Φ̃( f̃ff ) = DDD−1
∇Φ(DDD−1 f̃ff )

H̃HH( f̃ff ) = DDD−1HHH(DDD−1 f̃ff )DDD−1 (3.8)

where HHH(DDD−1 f̃ff ) and H̃HH( f̃ff ) respectively denote the Hessians of Φ and Φ̃ evaluated

at DDD−1 f̃ff and f̃ff . In consideration of the computational efficiency, we suggested

to use a diagonal preconditioner. As the transformation has become a voxel-wise

rescaling process, modifications on the box-constraints are not required. Since L-

BFGS-B will have to restart the approximation process for constructing BBBt every

time the preconditioner is updated, it is essential to keep D fixed during a sufficient

number of iterations to have enough history information. In this study, the use of a

precomputed (and fixed) preconditioner D was chosen.

3.3.1 Preconditioner

As an initial investigation, the “precomputed denominator” of relaxed OS-SPS in-

troduced in [59] was considered. This preconditioner is an approximation of the

Hessian of a quadratic surrogate of the objective function Φ (see [59] for more

information):

DDD1 = diag
{

AAA>diag
{

1
(ggg+1)

}
AAA1+β∇

2R( fff )1
} 1

2

, (3.9)

where diag{·} is an operator that constructs a diagonal matrix from a vector, 1 is

a vector of ones and ∇2R is the second derivative (i.e., the Hessian) of the penalty
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function. The latter is essentially a constant for quadratic penalties. Note that a

constant value 1 has been added to the denominator to make it positive-definite. A

summary of OS-SPS can be found in Appendix B.

Since the preconditioner (3.9) is calculated with the measured data in the de-

nominator, its performance is sensitive to low counts. For adapting to noisy data,

the following preconditioner, derived based on the Hessian of the objective function

at the initial estimate, is therefore proposed in this thesis:

DDD2 = diag
{

AAA>diag
{

ggg

(AAA fff init +nnn)2

}
AAA1+β∇

2R( fff init)1
} 1

2

(3.10)

where fff init is the initial guess. Note that the performance of DDD2 will be affected

by the initial guess fff init. Choosing a better initial guess can therefore improve the

convergence rate of L-BFGS-B-PC by starting closer to the solution and also by

improving the preconditioner DDD2.

Both preconditioners DDD1 and DDD2 can be interpreted as diagonal approximations

of the square root of the Hessian of the objective function.

As DDD1 and DDD2 are not updated between iterations, the overall computational

demand of L-BFGS-B-PC is similar to that of L-BFGS-B. The performance of both

preconditioners are compared in terms of convergence rate in Section 3.6.2.

3.4 Algorithm implementation

The implementation of L-BFGS-B employed in this study was originally proposed

in [74]. Pseudo-code that summarises the implementation can be found in Algo-

rithm 1. In Algorithm 1, WC refers to the backtracking algorithm to find a step

length α? that satisfies the WCs (3.4) and (3.5), whereas ApproxInvHess refers to

the Hessian inverse compact approximation method described in the Appendix C.

Since it has been observed that a satisfactory approximation of HHH−1 can be obtained

based on a few previous iterations [84], a history length m = 5 was maintained for

constructing BBBt . In an attempt to take the scale of the variables into account, Byrd
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et al. initialised the line search step at the first iteration as [74]:

α
init
0 = min

(
1

‖∇Φ( fff init)‖2
,1
)
. (3.11)

Note that the maximum α init
0 is set to 1 to remain within the boundary. All other

line searches in the algorithm are initialised from α init
t = 1 as they start from the

boundary. Although the initialisation (3.11) is fine for certain scales of fff , for some

problems it can lead to suboptimal step length at the first iteration if α init
0 is too

small. The log-likelihood term and its gradient were implemented in MATLAB

and imported to the implementation of L-BFGS-B of Byrd et al [74] through a

MATLAB interface.

Algorithm 1: Pseudo-code for L-BFGS-B
Input: Data ggg, Φ, ∇Φ, initial fff init, α init

0 , β , λ1, λ2, m
Output: Estimated tracer distribution fff
fff 0← fff init ;
zzz0← ∇Φ( fff 0) ;
BBB← Id ;
for t = 0, . . . ,MaxIter−1 do

Define q : xxx 7→ (xxx− fff t)
>zzzt +

1
2 (xxx− fff t)

>BBB−1(xxx− fff t) ;
fff ?← argminxxx≥000 q(xxx) ;
ddd?← fff ?− fff t ;
if t = 0 then

α init← α init
0 ;

else
α init← 1 ;

end
α?←WC(Φ,∇Φ, fff t ,ddd

?,α init,λ1,λ2) ;
fff t+1← fff t +α?ddd? ;
zzzt+1← ∇Φ( fff t+1) ;
m′←min(t +1,m) ;
BBB← ApproxInvHess( fff s,zzzs,s ∈ {t +1−m′, . . . , t +1}) ;

end
fff ← fff MaxIter ;

For the proposed L-BFGS-B-PC, the same L-BFGS-B implementation was

used, with the transformed objective and gradient functions programmed in MAT-

LAB. Since the lack of the scale information of the variables is supplemented by

the preconditioner DDD, it is unnecessary for L-BFGS-B-PC to use the suboptimal first

step length (3.11) as L-BFGS-B does. In other words, α init
0 = 1 is a good choice

for the preconditioned problem. After the modification, L-BFGS-B-PC is able to
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update the current estimate with a reasonably optimal step length at every itera-

tion. The use of this modification to speed up the initial line search, and therefore

the initial convergence rate have been verified. More information can be found in

Section 3.6.1. Algorithm 2 shows a pseudo-code summary of the L-BFGS-B-PC

implementation.

Algorithm 2: Pseudo-code for L-BFGS-B-PC
Input: Data ggg, Φ, ∇Φ, initial fff init, β , λ1, λ2, m
Output: Estimated tracer distribution fff
fff ← fff init ;
DDD← DDD1 or DDD2 ;
f̃ff ← DDD fff ;
α init

0 ← 1 ;
Define Φ̃ : xxx 7→Φ(DDD−1xxx) ;
Define ∇Φ̃ : xxx 7→ DDD−1

∇Φ(DDD−1xxx) ;
f̃ff ← L-BFGS-B(ggg,Φ̃,∇Φ̃, f̃ff ,α init

0 ,β ,λ1,λ2,m) ;
fff ← DDD−1 f̃ff ;

3.5 Data
A 2-D disc phantom was used for verifying the modification of the first line search

in L-BFGS-B-PC and studying the performance of the algorithm using DDD1 or DDD2

as the preconditioner. The investigation of the best initial image for DDD2 and the

performance comparison between L-BFGS-B and L-BFGS-B-PC was conducted

with a more realistic 3-D XCAT phantom [87]. To demonstrate the feasibility with

practical applications, sample reconstructions with three patient datasets are also

presented.

3.5.1 Digital disc phantom

The phantom was a 2-D disc (radius = 98.28 mm) containing 4 circular inserts,

2 hot spots and 2 cold spots (Figure 3.1 (left)). The radius of each sphere was

26.37 mm. The activity ratios of the cold and hot regions to the background were

0.25 and 2, respectively. For each group of activity levels, different attenuation

materials simulating the effects of bone and soft tissue were applied to each spot

(Figure 3.1 (right)). The attenuation of the background region was set to that of
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Figure 3.1: The 2-D disc phantom (left) and the corresponding attenuation map (right).

water. The projection data were generated using STIR [88] projectors to simulate

the GE Discovery STE in 2D. A uniform projection with a constant intensity was

added to the generated data to simulate the background events. To assess possible

noise effects, two datasets with different levels of Poisson noise were generated.

The number of background events was scaled accordingly such that both datasets

had the same true-to-background event ratio (TBR) = 1.23. The total counts of the

datasets were 29.3 K and 594 K.

3.5.2 Digital XCAT phantom

A 3-D volume from the XCAT torso phantom [87] was cropped to a 192×192×47

matrix with voxel size of 3.125 mm in all directions. A slice of the phantom and

the corresponding attenuation map are shown in Figure 3.2. This image was for-

ward projected, taking attenuation into account, into 3-D sinograms corresponding

to data from the GE Discovery STE in 3-D acquisition mode [89] using C functions

provided by the scanner manufacturer. The background events were simulated by

adding a constant value to the generated sinograms. For assessing the noise effects,

three datasets (G0) with total counts Stot of 52 M, 261 M and 1305 M were gener-

ated. The composition of each dataset is summarised in Table 3.1. Note that each

of them had the same TBR = 0.74.

The possible effects from the background were investigated by introducing 4

more datasets, which can be divided into two groups. The first group (G1) had the

same total counts as the data with Stot = 261 M counts, but had 5 times lower or

higher TBR, achieved by adjusting both background Sbg and true events Strue. As
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Figure 3.2: A slice of the XCAT phantom (left) and the corresponding attenuation map
(right).

Table 3.1: A summary of the simulated data for evaluating the influence of the background.

Strue Sbg Stot

G0
TBR = 0.74 22 M 30 M 52 M
TBR = 0.74 111.2 M 149.8 M 261 M
TBR = 0.74 555.8 M 749.2 M 1305 M

G1
TBR = 0.15 33.7 M 227.3 M 261 M
TBR = 3.71 205.6 M 55.4 M 261 M

G2
TBR = 0.15 111.2 M 749.2 M 860.4 M
TBR = 3.71 111.2 M 30 M 141.2 M

Stot was unchanged, there were less Strue in the data with higher Sbg. For the other

group (G2), we kept Strue the same as that in the data with Stot = 261 M counts,

but changed Sbg by 5 times lower or higher. The total count of the data in G2 after

adding the background were Stot = 141.2 M and Stot = 860.4 M, respectively. Note

that these two groups had identical TBR for the same background level: TBR =

0.15 for the high background data and TBR = 3.71 for the low background data.

Table 3.1 shows a summary of the simulated data for evaluating the influence of the

background as well.

3.5.3 Patient data

Data used for this retrospective study included three patient datasets of the thorax

acquired on the GE Discovery STE PET/CT scanner. For each study, a cine-CT

scan (140 kVp, 60 mA, 4 s duration, 0.5 s rotation period, 0.45 s time between re-

constructed images, 9 bed positions, 8 axial slices per bed position) was performed,

followed by a PET scan in fully 3-D mode. The CT scan was used for the attenua-
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tion correction. The acquisition was started 1 hour after the injection of 315 MBq

of 18F-FDG and patient consent was collected beforehand. The total counts of the

PET data were Stot = 181 M, 255 M and 355 M, respectively. The vendor-provided

software was then used to bin the PET data into sinograms and to model the corre-

sponding detection efficiency, attenuation, scatter and randoms.

3.6 Initial investigation

In this section, the modification of the first line search in L-BFGS-B-PC is verified,

followed by dependency evaluation of the proposed algorithm on data noise level

when different preconditioners are applied. Since the preconditioner DDD2 is affected

by the initial image fff init, a sub-study that seeks the reasonable initialisation for DDD2

is also presented.

Simulated data were used in this section. For the disc phantom, QP with β =

0.1 was chosen as the penalty function and the neighbourhood structure was defined

as the closest 4 pixels. The applied penalty function for the XCAT phantom was

QP with β = 4 and the neighbourhood was defined as the closest 6 voxels. The

reconstructed images were 111× 111 matrices with voxel size of 3.125× 3.125

mm2 for the disc phantom and 192×192×47 matrices with voxel size of 3.646×

3.646× 3.27 mm3 for the XCAT phantom, respectively. Note that the voxel size

used for image reconstruction was different from that for digital phantom generation

to avoid artefacts induced by discretisation.

Plots of the objective function values against the total number of projection op-

erations were used for evaluating the performance of different reconstruction or data

simulation conditions. Each forward and back-projection of the full set of data was

counted separately. We used the number of projection operations instead of the iter-

ation numbers as it represents the computational demand, especially for algorithms

involving a line search. Note that we did not plot results from the initial point to

improve clarity in the plots. The first point of each line in this section therefore

represents the objective function value after the first iteration and the corresponding

number of projection operations is sum of the required projection operations for
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Figure 3.3: The objective function values plotted against the number of projection opera-
tions for L-BFGS-B-PC using (3.11) and 1 as the initial step length of the first
line search.

constructing the initial image and for completing the first iteration of L-BFGS-B-

PC.

3.6.1 Verification of the modified initial step length

Data with Stot = 594 K for the disc phantom was used for verifying the modification

of the initial step length in L-BFGS-B-PC. All reconstructions were initialised from

1 full iteration of OS-EM with 35 subsets and DDD2 was chosen as the preconditioner.

As shown in Figure 3.3, a faster convergence rate of the objective function value is

observed when the modification is applied.

3.6.2 Comparison between D1 and D2

Simulated data with total counts of 594 K and 29.3 K for the disc phantom were

reconstructed by L-BFGS-B-PC using DDD1 and DDD2 as the preconditioner. Again, the

algorithm was initialised from 1 full iteration of OS-EM with 35 subsets. The initial

images for both count levels can be found in Figure 3.4. As shown in Figure 3.5,

DDD1 and DDD2 are similar to each other for the high count dataset. However, when the

noisy dataset was used, the overall scale of the preconditioners was quite different

(see the bottom row of Figure 3.5) as the ”+1” term, instead of the data itself, had
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Figure 3.4: Initial images reconstructed from data with total counts of 594 K (left) and 29.3
K (right). The scale for each image was set according to the different scaling
factors leading to different noise levels.

made a dominant contribution to DDD1.

The performance comparison between DDD1 and DDD2 in terms of convergence rate

is shown in Figure 3.6. Similar convergence rates are observed for the high counts

data. However, when the total counts was reduced to 29.3 K, the preconditioner DDD2

outperforms DDD1. This is because of the wrong information carried by DDD1 had led to

a suboptimal step length in early iterations. To eliminate the influence of data noise

level, DDD1 is excluded in future reconstructions by L-BFGS-B-PC. In the rest of this

chapter, DDD is used to represent DDD2 for simplicity.

3.6.3 Best initial image

As mentioned in Section 3.3.1, initialising reconstruction algorithms with an image

closer to the final solution could increase their speed, especially for the proposed

L-BFGS-B-PC with the preconditioner in (3.10). To avoid increasing the overall

computational cost significantly, an initial image reconstructed by OS-type algo-

rithms is suggested. In this study, the use of OS-EM [61] is investigated as this

algorithm is widely used in practice.

To simplify the problem of finding the best initial image, a two-part study was

conducted. In the first part of the study, one full iteration of OS-EM with 8 different

numbers of subsets (1, 2, 5, 7, 10, 14, 35 and 70) were employed to speed up the

convergence rate. The number of subsets was then fixed to the optimal found in

the first part and the number of full iterations was increased from one to two to
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Figure 3.5: The preconditioner DDD1 (left column) and DDD2 (right column) for data with total
counts of 594 K (upper row) and 29.3 K (bottom row). As the image scale was
partially determined by the strength of the penalty and the experimental “+1”
term for DDD1, it was set for achieving good visual comparison instead of reflect-
ing the difference in data noise level. Note that images for data representing
the same noise level are displayed in the same scale.

assess if the performance can be improved even further. The reconstruction was

then performed with L-BFGS-B-PC initialised with the images described above.

Note that the initial images were reconstructed without using a penalty function.

All initial conditions were evaluated using the digital XCAT phantom dataset with

Stot = 261 M counts (TBR = 0.74).

As shown in Figure 3.7, the convergence rate of the objective function value

was improved as the number of subsets was increased to 35. The convergence trend

for 70 subsets (there were only 4 projections in one subset) was quite different from

the others. Therefore, we chose 35 as the highest number of subsets and increased

the full iteration number. Since the performance was not improved any further after

one full iteration (Figure 3.7, bottom), all reconstructions afterwards were initialised
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Figure 3.6: The objective function values plotted against the total projection operations
for L-BFGSB-PC using DDD1 and DDD2 as the preconditioner. Results for data with
594 K and 29.3 K counts are presented in the top and bottom plots, respectively.
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Figure 3.7: The objective function values plotted against projection operations for L-
BFGS-B-PC initialised from one full iteration of OS-EM with various subsets
(top) and 2 different full iterations of OS-EM with 35 subsets (bottom).

by 1 iteration of OS-EM with 35 subsets.

3.7 Performance comparison between L-BFGS-B &

L-BFGS-B-PC
The performance of L-BFGS-B and L-BFGS-B-PC is compared in this section.

Either QP or LP was incorporated into the reconstruction algorithm and the penalty
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neighbourhood structure was defined as the closest 6 voxels. The scalar ρ in LP was

fixed at 1.8, based on a visual comparison with images from QP, so as to have an

apparent edge preserving effect. All reconstructions were initialised with the best

initial image found in Section 3.6.3 and the reconstructed images had 192×192×

47 voxels with voxel size of 3.646×3.646×3.27 mm3.

The evaluation was conducted in terms of visual comparison and a convergence

estimate M that measures the difference between the current reconstruction and the

converged solution fff c. The metric was defined as:

Mt =

√
1
N
‖ fff t− fff c‖2

2

( f̄ff c)
2

(3.12)

where N is the number of voxels in the volume and f̄ff c is the mean value of all vox-

els in fff c. Fast decrease of M indicates fast convergence rate to the solution. For

the converged image fff c in (3.12), the output of SPS [72] at high iteration number

is used, since the convergence of this algorithm has been well-established. To re-

duce the total computational cost, the output of L-BFGS-B-PC with 40 iterations

was applied as the initial image for SPS. We then ran SPS for 15000 iterations and

investigated the change of visual appearance and objective function values. Since

no significant change was observed after 14000 iterations for all datasets and image

reconstruction conditions used in this study, the image obtained with (L-BFGS-B-

PC initialised) SPS at the 15000th iteration was chosen as the converged image fff c.

The image-based measurement defined in (3.12) is more reliable than the objec-

tive function value as the latter might have reached an apparently saturated value

while the image is still changing, especially for low value of the penalty strength.

Therefore, this study concentrates on the convergence of M values for performance

comparison in following sections.

To be able to compare the convergence rate among different datasets, the re-

quired number of projection operations and the corresponding iterations for achiev-

ing “practical” convergence were computed. The corresponding iteration number
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was determined by:

t?M = min{t : Mt ≤ 0.01} . (3.13)

3.7.1 Visual comparison

An initial evaluation with a visual comparison of a slice of the reconstructed images

from both L-BFGS-B and L-BFGS-B-PC at different iterations was used to see if

the changes in the convergence rate are relevant.

Figure 3.8 shows reconstructed images of the XCAT data with Stot = 261 M

counts and TBR = 0.74 at the 5th, 10th and 15th iteration for L-BFGS-B and L-

BFGS-B-PC. The reconstructions were performed with QP and β = 20. Comparing

images at the same iteration, we found those from L-BFGS-B-PC represent better

contrast and object delineation than images reconstructed by the other algorithm.

Images for L-BFGS-B and L-BFGS-B-PC at iterations that achieve conver-

gence of M values (3.13) are shown in Figure 3.9, with the converged image from

SPS for comparison. Profiles along the central row of each image are also provided.

As indicated in the figure, both algorithms are able to converge visually to the same

image and profile as SPS does.

3.7.2 Convergence rate

Quantitative evaluation used plots of M values against the total number of projec-

tion operations, i.e., the number of projection operations in both the initial OS-EM

iterations and L-BFGS-B or L-BFGS-B-PC. Results from the same dataset and re-

construction configuration as in the previous visual comparison section were used.

Comparison of the convergence rate of M values for L-BFGS-B and L-BFGS-B-PC

is given in Figure 3.10. Results for SPS are also provided. As shown in the plot,

both L-BFGS-B and L-BFGS-B-PC achieved convergence rates that were several

times faster than SPS. By introducing a preconditioner, the proposed L-BFGS-B-

PC shows the ability to converge rapidly compared to L-BFGS-B. Although only

plots from one simulation condition are provided, similar behaviour was observed

for all data and reconstruction configurations in this chapter.



3.7. Performance comparison between L-BFGS-B & L-BFGS-B-PC 68

Figure 3.8: A slice of the data with 261 M counts (TBR = 0.74) reconstructed by L-BFGS-
B (left column) and L-BFGS-B-PC (right column) at the 5th (first row), 10th

(second row) and 15th (third row) iteration.
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Figure 3.9: A slice of images that achieves convergence of M values for L-BFGS-B (at the
44th iteration) (top-left) and L-BFGS-B-PC (at the 24th iteration) (top-right).
The converged image from SPS is also shown for comparison (bottom-left).
Profiles along the central row of all images are also provided (bottom-right).
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Figure 3.10: A comparison of the convergence rate of M values for SPS, L-BFGS-B and
L-BFGS-B-PC with respect to the total projection operations.
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Figure 3.11: M values plotted against the total projection operations.

3.7.3 Convergence dependence on different factors

Assessments with respect to penalty type, penalty strength, noise level and true-to-

background ratio were then performed to investigate the performance consistency

of the algorithms.

3.7.3.1 Penalty type, penalty strength & noise level

Simulated data with Stot = 52 M, 261 M and 1305 M for the XCAT phantom (repre-

senting high, medium and low noise level) were reconstructed with L-BFGS-B and

L-BFGS-B-PC with both β = 4 and β = 20 to investigate the effect of noise levels

and penalty strength. The smoothing QP or edge preserving LP penalty functions

were used for evaluating the performance dependence on the penalty type.

An example comparison of the convergence rate of M values for L-BFGS-B

and L-BFGS-B-PC is given in Figure 3.11 using the dataset of 261 M total counts

and the penalty strength β = 20. In addition to achieving superior convergence

rate of M value to L-BFGS-B, the proposed L-BFGS-B-PC also shows extremely

small difference in performance when QP or LP was used. Consistent results were

obtained for other simulated conditions.

For each image reconstruction and data simulation condition, Table 3.2 lists

the required number of projection operations for achieving convergence according
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Table 3.2: The required number of projection operations and iterations for achieving con-
vergence of M values for different penalty types, penalty strengths and noise
levels.

L-BFGS-B L-BFGS-B-PC

QP
β = 4

162 / 132 / 821 94 / 64 / 44
(79 / 64 / 40)2 (45 / 29 / 20)

β = 20
122 / 92 / 72 64 / 54 / 44
(59 / 44 / 35) (30 / 24 / 20)

LP
β = 4

552 / 182 / 132 94 / 84 / 64
(274 / 89 / 65) (45 / 40 / 30)

β = 20
182 / 112 / 92 74 / 54 / 84
(89 / 54 / 44) (35 / 25 / 39)

1 Values listed from left to right and separated by
a slash are the required numbers of projection op-
erations for problems with noise level from high to
low.
2 Values listed in parentheses are the corresponding
number of iterations.

to (3.13). Values for simulation conditions with noise level from high to low are

shown from left to right and separated by a slash. The corresponding number of

iterations was also listed in parentheses. Except for the low noise data reconstructed

using L-BFGS-B-PC with LP and β = 20 (the possible cause is discussed in Section

3.8), both algorithms generally required more operations (or iterations) to satisfy the

convergence criterion as the noise level was increased or the penalty strength was

decreased. Note that reconstructing with LP led to a slower convergence rate than

when using QP (with the same β ).

3.7.3.2 Background levels

The data for the XCAT phantom simulating different background levels in both

groups of fixed Stot and fixed number of Strue were used to study the influence of the

background on the convergence rate. The results were compared with those from

the data with Stot = 261 M counts and TBR = 0.74 (Strue = 111.2 M and Sbg = 149.8

M). Since the dependence on penalty type and strength were included above, the

data were reconstructed with only QP and β = 4 for both algorithms. The conver-

gence rate was evaluated by plotting M values against the total projection operations

(Figure. 3.12) and by listing the required number of projection operations to reach
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Table 3.3: The required numbers of projection operations and iterations for achieving con-
vergence of M values for data with different Stot, Strue and background levels.

L-BFGS-B L-BFGS-B-PC
Stot = 261 M, TBR = 0.74 132 (64)1 64 (29)
Stot = 261 M, TBR = 3.71 132 (65) 64 (31)
Stot = 261 M, TBR = 0.15 142 (70) 64 (31)

Stot = 141.2 M, TBR = 3.71 272 (135) 84 (39)
Stot = 860.4 M, TBR = 0.15 92 (46) 44 (21)

1 The required numbers of projection operations and the cor-
responding number of iterations for each reconstruction are
listed together with the latter in parentheses.

the convergence of M values (Table 3.3). The former shows the convergence rate

in early iterations while the latter quantifies this at late iterations. For data with the

same Stot, convergence rate is observed to be higher in early iterations for higher

TBR values (i.e., the more true events) (Figure 3.12, top). However, an opposite

trend is obtained when Stot is increased with the background level. The presence of

the background helps the convergence rate in early iterations when the same number

of Strue are collected (Figure 3.12, bottom).

Considering the convergence rate at later iterations, we found that data with

the same Stot can reach the criterion (3.13) at almost the same iteration, regardless

of the change in the background level. For data with a fixed number of Strue but

increasing TBR, more iterations are needed to achieve the convergence of M values

(Table 3.3). Despite the observed dependence on various factors, L-BFGS-B-PC

shows a relatively consistent performance and outperforms L-BFGS-B.

3.7.4 Demonstration with patient data

Finally, the feasibility of applying both algorithms in a clinical context was assessed

on three patient datasets. Again, QP was used as the penalty function with a fixed

β = 20. A coronal view of one patient dataset from each algorithm at the iteration

that achieves criterion (3.13) are shown in Figure 3.13 as an example. Profiles

along the central slice of both images are also provided. As in the simulation study,

the algorithms are able to converge to visually identical images. This was also

the case for the other two patient datasets (not shown). Figure 3.14 shows the M
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Figure 3.12: M values plotted against the total projection operations for data with a fixed
number of Stot (top) and data with a fixed number of Strue (bottom) but different
background levels.
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Figure 3.13: A coronal view of images for L-BFGS-B at the 260th iteration (top) and L-
BFGS-B-PC at the 35th iteration (middle) from one patient data. Profiles along
the central slice of both images are also provided (bottom).

Table 3.4: The required projection and iteration numbers for achieving convergence of M
values for three patient datasets.

L-BFGS-B L-BFGS-B-PC
Stot = 181 M 662 (330) 74 (36)
Stot = 257 M 752 (375) 94 (45)
Stot = 355 M 522 (260) 74 (35)

values plotted against the total projection operations for each algorithm. Faster

initial convergence is achieved for data with higher Stot, which is similar to what

was observed in Table 3.2. The required projection operations for achieving the

convergence of M values are listed in Table 3.4. Based on the results in Figure 3.14

and Table 3.4, L-BFGS-B-PC shows faster convergence rate than L-BFGS-B in all

cases and its performance is much less sensitive to noise level.

3.8 Discussion
The feasibility of using L-BFGS-B and L-BFGS-B-PC in PML reconstruction prob-

lems in ET is demonstrated in this study. Both L-BFGS-B and L-BFGS-B-PC are

able to converge to visually and numerically identical solutions as SPS does (Fig-

ure 3.9), but with different speeds. For the evaluation of the computational demand,
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Figure 3.14: M values plotted against the total projection operations for all patient data.

we used the total projection operations instead of the computation time because

the algorithms were not implemented using the same programming language and

the projection operation is the time-limiting factor. For example, L-BFGS-B was

implemented in a combination of C, Fortran and MATLAB while SPS was imple-

mented in MATLAB but using the vendor provided projectors programmed in C.

Therefore, except for the visual comparison that requires results at certain itera-

tions (Figure 3.8, 3.9 and 3.14), plots and tables based on projection operations

were utilised to compare the computational demand between different algorithms.

In terms of memory demand, however, both L-BFGS-B and L-BFGS-B-PC require

more memory for storing the correction matrices used to represent BBBt compared to

SPS. The required extra memory is approximately twice the product of the total

number of voxels J and the maintained history length m (see Appendix C for more

information). As a precomputed preconditioner has to be stored as well for the pro-

posed L-BFGS-B-PC, it uses slightly more memory than L-BFGS-B. Since the bias

of penalised image reconstruction algorithms is determined by the applied penalty

and its weight over the whole objective function, the performance comparison in

accuracy can vary with the selected datasets and reconstruction conditions. There-

fore, we did not measure the absolute accuracy for simulation studies where the true
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solutions were known in this work.

In Section 3.7.2, the convergence rate of L-BFGS-B and L-BFGS-B-PC was

also compared with SPS [72]. We found that both L-BFGS based algorithms

showed the ability to converge over 100 times faster than SPS in terms of M values.

Although the convergence rate of SPS can be further improved by using ordered

subsets, its performance depends on the relaxation parameter. This makes the com-

parison of the convergence rate difficult, especially at late iterations. Therefore,

SPS was not included for further comparison in this study.

In this study, the penalty strength β was selected based on an initial inves-

tigation, where the reconstructed image was visually compared with respect to a

series of increasing strengths from 1 to 20 (not shown). According to the apparent-

ness of the smoothing or edge preserving properties of the reconstructed image, we

chose β = 4 and β = 20 as the weak and strong penalty strengths, respectively. The

dependence of the convergence rate of L-BFGS-B and L-BFGS-B-PC on penalty

strength as well as penalty type and noise level was assessed with simulated data in

Section 3.7.3.1. We observed that faster convergence rate was achieved generally

with a strong penalty strength, smoothing prior and low noise level data for both

algorithms (Table 3.2). In terms of convergence rate of M values, the proposed L-

BFGS-B-PC outperformed L-BFGS-B for all datasets that have been evaluated. Its

performance was also less sensitive to the change of penalty strength, penalty type

and data noise level. In particular, L-BFGS-B-PC achieved convergence within 100

projection operations for all simulations, even for the noisy dataset (i.e., the sim-

ulated data with Stot = 52 M). The results suggest that the proposed algorithm can

even be used in cases where the noise level is high, such as in gated or dynamic

studies.

As observed in the top plot of Figure 3.12, the change in background level for

data with the same Stot can affect the convergence rate in early iterations. From

the plot, this can be explained at least partially by the fact that the initial OS-EM

image was further away from the final solution for a higher background. Other

algorithms, less sensitive to TBR for initialisation, might decrease this effect. In
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the case where we fixed Strue but changed the number of background events, both

L-BFGS-B and L-BFGS-B-PC were able to achieve a faster convergence rate in

early (Figure 3.12, bottom) and late iterations (Table 3.3) as TBR decreased. As the

behaviour is somewhat counter-intuitive, investigations for the possible causes are

required. Despite the performance dependence on those factors, at later iterations,

the proposed L-BFGS-B-PC is more consistent compared to L-BFGS-B (Table 3.2

and Table 3.3).

For the patient data study, the dataset with the highest Stot achieved the fastest

convergence rate for both L-BFGS-B and L-BFGS-B-PC at late iterations, consis-

tent with what has been observed from the simulation study. However, the slowest

convergence rate of M values was observed for the data with medium Stot. Since

the performance could be affected by many factors, such as patient size and scatter

fraction, a more comprehensive evaluation with more patients would be necessary.

Recall that the number of projection operations includes both the forward and

back-projections in the combined OS-EM and L-BFGS, and the line search. As

shown in the tables, the number of projection operations for achieving the conver-

gence criterion is only slightly larger than twice the number of iterations for both

algorithms. This means that the line search subroutine did not involve many pro-

jections and so required minimum computational burden. In other words, the initial

step length satisfied the WCs (3.4) and (3.5) for almost every iteration. As men-

tioned in Section 3.4, both algorithms initialise the line search with a step length of 1

after the first iteration. With this step length, the algorithms make a direct approach

from the current estimate to the local solution of (3.6) as described in Section 3.2.2

with ddd†
t = fff †− fff t . The backtracking of the embedded line search takes place only

when the algorithm is about to converge. To find a smaller step length, a certain de-

creasing pattern predefined by the backtracking algorithm is considered. However,

depending on the adopted decrease scheme, the backtracking might not be able to

find the step length that minimises the objective function for the reconstruction al-

gorithm at the current estimate. This might be the cause of the unexpected slow

convergence rate observed in Table 3.2 for the last entry (i.e., the required projec-
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tion operations for achieving the convergence of M values for the low noise data

reconstructed by L-BFGS-B-PC with LP and β = 20). Further optimisation of the

line search is beyond the scope of this study.

In the implementation of L-BFGS-B and L-BFGS-B-PC, the iterative process

is terminated automatically when no step length α? > 0 that satisfies WCs can

be found in 20 trials of backtracking. Although not shown, the resulting images

from both algorithms at the termination point were compared with that from SPS at

15000th iteration for all reconstructions performed in this study. The image recon-

structed by L-BFGS-B or L-BFGS-B-PC was visually identical to that from SPS

and the corresponding M value was even smaller than what was defined for the

practical convergence (i.e., 0.01). This suggests that the resulting image at the ter-

mination point of both algorithms could be a reasonable substitution for fff c in (3.12)

when the converged image from SPS at high iteration is not available. Therefore,

we have used this a stopping criterion in the next chapter.

The primary motivation of incorporating a preconditioner into L-BFGS-B is to

have an initial estimate of the second derivative associated with the problem. By

utilising the extra information from the start, L-BFGS-B-PC is able to solve the re-

construction problem rapidly and shows consistent performance for different data

conditions and reconstruction configurations. Although the current study concen-

trated on L-BFGS-B, the strategy could be applied to other algorithms as well.

The preconditioner (3.9) or (3.10) was used in this study. Additional informa-

tion will be provided by BBBt after a few iterations and the influence of the precon-

ditioner will become less significant. This implies that the preconditioner does not

need to be a precise approximation of the square root of the Hessian. Therefore,

the algorithm should be able to benefit from other fixed diagonal approximations of

the square root of the Hessian. For example, by expressing ML-EM in a gradient

descent form, a diagonal matrix with elements equal to a normalized version of the

current estimate was obtained in [90]. This was used as motivation for using this

diagonal matrix as a preconditioner to improve the convergence rate of a conjugate

gradient algorithm [91]. In that paper, the preconditioner was updated at each itera-
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tion. However, in order for L-BFGS-B to benefit from the previous iterations when

constructing BBBt , the current estimate can be replaced by the initial image as for the

proposed preconditioner so that the preconditioner becomes pre-computable.

Depending on the application, 2 to 10 full iterations of OS-EM with 24 to

32 subsets are often used for PET image reconstruction in contemporary clinical

practice. The reconstruction process is terminated early to control the noise am-

plification as iterations increase at the cost of quantitative accuracy and reliability.

The computational demand is equivalent to 4 to 20 projection operations and the

required memory is the same as the length of the image vector J. By comparison,

L-BFGS-B and the proposed L-BFGS-B-PC with current settings require at least 10

times larger memory than that for OS-EM for storing the correction matrices and

the preconditioner. Based on the results shown in this chapter, the computational

demand for L-BFGS-B-PC can be around 5 to 25 times higher than that for OS-EM

when images at the practical convergence are desirable. The computational cost for

L-BFGS-B can be as high as 200 times of that for OS-EM if achieving the practi-

cal convergence is necessary. Although the increase of memory and computational

burden has implications to the workflow and economics of the procedure in clinic,

both better image quality in terms of noise regularisation and more reliable quanti-

tative results can be expected when either L-BFGS-B or L-BFGS-B-PC is applied

and sufficient projection operations are allowed.

In this chapter, QP and LP were used as the penalty functions since both are

convex and twice differentiable. This supports the use of L-BFGS-B, which ap-

proximates the local estimate of the second derivative of a function by differences

of first derivatives. In the case where the function being minimised is differentiable

but not twice differentiable at some point (e.g. the Huber functional [92]), it is likely

that the L-BFGS-B algorithm will have difficulty. However, this issue is beyond the

scope of this study. The use of the proposed L-BFGS-B-PC with a convex and twice

differentiable anatomical prior will be explored in next chapter.
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3.9 Conclusions
The performance of L-BFGS-B for penalised reconstruction problems in ET is in-

vestigated with simulated and real patient data in this study. Its convergence rate

can be considerably improved by introducing a diagonally-scaled preconditioner

(L-BFGS-B-PC), combined with good initialisation and the modification of the first

line search. Since the proposed preconditioner can be precomputed, the overall

computational demand of L-BFGS-B-PC is similar to that of L-BFGS-B. In ad-

dition to showing faster convergence rate than L-BFGS-B, the performance of L-

BFGS-B-PC, in terms of the image-based metric M, is less sensitive to penalty type,

penalty strength, data noise level and background level. These encouraging results

indicate the potential usefulness of L-BFGS-B-PC for achieving high quantitative

accuracy with acceptable reconstruction time. As L-BFGS-B-PC converges faster

than other algorithms investigated here, in the case of SPS substantially faster, it

will be used as the reconstruction algorithm in the rest of the thesis.



Chapter 4

A spatially-variant penalty strength

with anatomical priors for PML

reconstruction in ET

In this chapter, the use of the proposed L-BFGS-B-PC with an anatomical prior to

achieve both fast convergence rate and good image quality is explored. To further

improve its quantitative consistency, a spatially-variant penalty strength is incorpo-

rated. The potential benefits of using the method with regards to algorithm perfor-

mance are studied as well. A brief description of the method is addressed in Section

4.2, followed by evaluations using digital phantoms and a real patient dataset with

inserted lesions. Discussion and conclusions are provided based on the results.

4.1 Introduction
As addressed in Section 2.3.2.2, the use of an image reconstruction algorithm based

on PML is one of the strategies to control noise amplification as iterations increase

[1, 37, 69]. Desired properties such as sharp edges and smoothness in uniform re-

gions can also be encouraged by appropriate choice of the penalty function [42, 43].

However, the trade-off between noise and resolution in reconstructed images can

vary with the individual dataset [93], making the tuning of the weight between the

likelihood term and the penalty term of the objective function difficult. In addi-

tion, the effective penalty strength at each voxel is determined by its activity level,
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as well as that of the surrounding voxels [94]. This makes visual comparison and

quantitative analysis for regions with different activity levels or at different locations

difficult even for lesions in the same image.

These issues have been studied extensively for quadratic priors, and analytical

predictions of image resolution and variance are available [94, 95, 96, 97, 98]. The

dependence of lesion interpretation on location, surrounding object and therefore

the individual can be largely eliminated by modifying the weights of the penalty

function using analytical models [94, 96, 98, 99, 100, 101, 102]. Moreover, since

the reconstruction properties have become almost object independent, one can tab-

ulate the relationship between the overall penalty weight and the corresponding res-

olution by performing reconstructions using a set of Monte Carlo (MC) simulated

or experimental data [94].

In contrast to the large literature on quadratic penalisation, limited studies exist

for edge-preserving priors. These priors aim to encourage high resolution at edges

and smoothness in uniform regions. To be able to predict local resolution (and vari-

ance), the analytical models proposed initially for quadratic penalties were further

generalised for non-quadratic ones in [103]. The local resolution was character-

ized using the local perturbation response (LPR). Instead of trying to achieve uni-

form resolution, the authors of [103] proposed a similar modification of the penalty

weights to obtain uniform LPR across the FOV for lesions having similar local

features. Since the local contrast of the “reconstructed” lesion, as determined by

LPR, is one of the factors that affects visual comparison and quantitative accuracy

of the lesion [104, 105], reducing the dependence of LPR on location or surround-

ings could help to improve consistency and reliability in many applications. For

example, it could benefit PET 18F-FDG scans for treatment response evaluation

[106, 107, 108] or gross tumour volume delineation [109, 110]. Since the modi-

fication is essentially a spatial normalisation method for the penalty function, it is

referred to as a spatially-variant penalty strength in this study.
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4.2 Spatially-variant penalisation

In [103], the use of the modified penalty function was validated with an edge-

preserving Huber prior using 2-D MC simulations. However, there is increased in-

terest in priors using anatomical information to tune local properties of the penalty.

This chapter extends the theory developed in [103] to a wider class of penalty func-

tions such that it can be applied to any anatomical priors defined in a given neigh-

bourhood structure. To adapt the modification to 3-D PET reconstruction, a dif-

ferent type of spatially-variant penalisation scheme is proposed in Section 4.2.2.

Further approximation for reducing the sensitivity of the scheme to data noise level

is made in this study as well.

4.2.1 Generic penalty function

To extend the application to a wider range of penalty functions, this study focuses

on penalty function R of a generic form:

R( fff ) = ∑
j

φ j( fff ) , (4.1)

where fff = [ f1, . . . , fJ]
> ∈ RJ is the activity image and each φ j( fff ) only depends

on f j and voxels in a given neighbourhood N j of voxel j. Such penalty func-

tions include standard priors of the form φ j( fff ) = ∑k∈N j ϕ( f j− fk) as well as local

anatomical priors such as the Bowsher prior [111] or the Parallel Level Sets (PLS)

prior [58]. Since PLS has shown promising results in literature [58] and its convex-

ity that facilitates numerical optimisation is well-established, it is chosen to be the

representative anatomical prior in this study. Using the generic expression in (4.1),

PLS can be rewritten as:

φ j( fff |zzz) =
√

ε2 +‖ [∇ fff ] j ‖2
2−〈[∇ fff ] j , [ξξξ ] j〉

2
,

[ξξξ ] j :=
[∇zzz] j√

‖ [∇zzz] j ‖2
2 +η2

, ε and η > 0 , (4.2)
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where ∇ is the gradient operator, 〈·, ·〉 is the Euclidean scaler product, zzz =

[z1, . . . ,zJ]
> ∈ RJ is the anatomical image and ‖ · ‖2 denotes the `2-norm. Its edge

preserving property is modulated by the pair of parameters (ε,η) [58].

4.2.2 Linearised local perturbation response

The theoretical description of the image resolution proposed in [103] for non-

quadratically penalised image reconstruction is summarised in this section. By fur-

ther exploring the property of the Fisher information matrix, a different type of the

spatially-variant penalty strength suitable for 3-D PET reconstruction is derived. To

reduce its sensitivity to data noise level, an approximation that avoids calculating

the inverse of the measured data is also proposed.

Let fff true be a “true” activity image consisting of a background fff b and a signal

of interest fff s:

fff true = fff b + fff s . (4.3)

One way to quantify resolution properties around the signal fff s is the local pertur-

bation response (LPR) [103]:

¯̂fff s , E[ f̂ff true]−E[ f̂ff b], (4.4)

where E[ f̂ff true] and E[ f̂ff b] are the mean reconstructed images for the noisy measure-

ments with and without the presence of the signal. For reasonably high signal-to-

noise ratio (SNR), the mean perturbation ¯̂fff s defined in (4.4) can be approximated

by the linearised LPR (LLPR) [103]:

f̆ff s , f̆ff true− f̆ff b, (4.5)

where

f̆ff true , f̂ff (ḡgg( fff true)) and f̆ff b , f̂ff (ḡgg( fff b)) . (4.6)

Given ḡgg = [g1, . . . ,gI]
> ∈RI the noiseless measurement, f̆ff true and f̆ff b are the noise-

less estimates when the signal is present and absent, respectively. This approxima-

tion is based on the assumption that the applied image reconstruction algorithm is
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approximately linear for high SNR. With suitable Taylor expansions, the relation-

ship between the LLPR f̆ff s and the true perturbation fff s can be described as:

[
FFF( f̆ff b)+βΩΩΩ( f̆ff b; f̆ff s)

]
f̆ff s ≈ FFF( f̆ff b) fff s , (4.7)

where FFF( fff ) ∈ RJ×J is the Fisher information matrix for estimating fff

FFF( fff ), AAA>diag
{

1
ḡgg( fff )

}
AAA (4.8)

with diag{·} an operator that constructs a diagonal matrix from a vector and AAA ∈

RI×J the system matrix. In [103], ΩΩΩ( f̆ff b; f̆ff s) ∈ RJ×J is defined as:

ΩΩΩ( f̆ff b; f̆ff s),
∫ 1

0
∇

2R( f̆ff b + τ f̆ff s)dτ (4.9)

such that

ΩΩΩ( f̆ff b; f̆ff s) f̆ff s = ∇R( f̆ff b + f̆ff s)−∇R( f̆ff b) . (4.10)

The notation ∇2 represents the Hessian operator.

Although FFF( fff ) is a non-diagonal matrix, it is concentrated about its diagonal.

The image of each row (or column) vector of FFF( fff ) is assumed to have a similar

shape (i.e. 1/r and 1/r2 blurring kernel for 2D and 3D PET acquisition, respec-

tively) and its peak centre value is approximatively proportional to the sum of the

image. The value depends on the activity distribution and the spatial variations in

sensitivity for a shift-variant system. To investigate the spatial variance, it is useful

to define an alternative matrix that separates FFF( fff ) into a data dependent part κκκ( fff )

and a data independent part FFF0( fff ):

FFF0( fff ), diag{κκκ( fff )}−1FFF( fff )diag{κκκ( fff )}−1 , (4.11)

where κκκ( fff ) is chosen such that FFF0( fff ) is an approximately shift-invariant matrix,

desirable for 3D PET reconstruction. For example, the following κκκ( fff )1 was used

1In the notation of Qi & Leahy [98], this is κ/ν .
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in [98] in the case where detector blurring is not modelled:

κ j( fff ),
√

∑
i

A2
i, j/ḡi( fff ) , ∀ j = 1, . . . ,J . (4.12)

This choice leads to an approximately shift-invariant FFF0(xxx) with diagonal elements

being 1.

As κ j( fff ) varies slowly with j, the following simplification of (4.11) is valid

around voxel j:

FFF0( fff )eee j ≈ κ
−2
j ( fff )FFF( fff )eee j (4.13)

where eee j is the j-th unit vector of length J. With (4.13) and assuming that f̆ff s is

concentrated on voxel l, (4.7) can be further approximated by:[
FFF0( f̆ff b)+

β

κ2
l ( f̆ff b)

ΩΩΩ( f̆ff b; f̆ff s)

]
f̆ff s ≈ FFF0( f̆ff b) fff s . (4.14)

Inspired by the “precomputed denominator” in [59], the property of FFF( fff ) is

further explored and a different type of κκκ( fff ) using the square root of the row-sums

of FFF( fff ) is chosen. In matrix notation:

κκκ( fff ),
√

FFF( fff )111 =

√
AAA>diag

{
1

ḡgg( fff )

}
AAA,111 , (4.15)

where 111 is a vector of ones. Note that this type of κκκ( fff ) is computationally efficient

as it requires only forward and back-projection operations. Substituting (4.15) into

(4.13), the row-sums of FFF0( fff ) will be approximately equal to 1:

FFF0( fff )111≈ diag{κκκ( fff )}−2FFF( fff )111≈ 111 . (4.16)

In other words, this type of κκκ( fff ) also leads to a shift-invariant FFF0( fff ) for 3-D PET

reconstruction as the image of each row (or column) vector of FFF0( fff ) would have a

similar shape and peak centre value.

Since κκκ( fff ) in (4.15) is calculated with the mean or noiseless measurement
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ḡgg( fff ) which is unavailable in practice, a plug-in method that substitutes ḡgg( fff ) by the

noisy measurement ggg was introduced in [103]:

κ̃κκ ,

√
AAA>diag

{
1
ggg

}
AAA,111 , (4.17)

However, as it requires a backprojection of the inverse of the measured data, its

performance is sensitive to the noise level. The following approximation is therefore

proposed in this study:

κ̂κκ ,

√
AAA>diag

{
ggg

ĝgg2( fff init)

}
AAA111 , (4.18)

ĝgg( fff init) = AAA fff init +nnn

where fff init is the initial image and nnn= [n1, . . . ,nI]
> ∈RI is the expected background

events, including randoms and scatter. As AAA and AAA> are smoothing operators that

reduce the noise in fff init and ggg, both κ̃κκ and κ̂κκ are reasonable approximations of κκκ( fff )

defined in (4.15) when the initial image is close to the solution and the noise level

of data ggg is reasonably low.

4.2.3 Modified prior for data independent LLPR

The dependence of LLPR on data in PML reconstructions is due to the presence of

κ2
l ( f̆ff b) in (4.14). Several approaches have been proposed to modify R to eliminate

the data-dependency for priors of the form φ j( fff ) = ∑k∈N j ϕ( f j − fk) [94, 103].

This study proposes the following modification for priors of the more general form

(4.1):

R̃( fff ) = ∑
j

κ̂
2
j φ j( fff ) . (4.19)

Given Ol a neighbourhood of voxel l containing the non-zero indices of the corre-

sponding LLPR and f̃s the LLPR using R̃, (4.10) can be rewritten as:

Ω̃ΩΩ( f̆ff b; f̃ff s) f̃ff s = ∑
j∈Ol

κ̂
2
j ccc j( f̆ff b; f̃ff s) (4.20)
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where Ω̃ΩΩ is defined as in (4.9) by replacing R with R̃ and

ccc j( f̆ff b; f̃ff s) = ∇φ j( f̆ff b + f̃ff s)−∇φ j( f̆ff b) .

Since ccc j( f̆ff b; f̃ff s) has non-zero entries [ccc j( f̆ff b; f̃ff s)]m only for m in the neighbourhood

of l and κ̂l varies slowly with location, (4.20) is further approximated by:

Ω̃ΩΩ( f̆ff b; f̃ff s) f̃ff s ≈ κ̂
2
l ∑

j∈Ol

ccc j( f̆ff b; f̃ff s)

≈ κ̂
2
l ΩΩΩ( f̆ff b; f̃ff s) f̃ff s . (4.21)

With κl( f̆ff b)≈ κ̂l around l, substituting (4.21) into (4.14) gives:

[
FFF0( f̆ff b)+β Ω̃ΩΩ( f̆ff b; f̃ff s)

]
f̃ff s ≈ FFF0( f̆ff b) fff s , (4.22)

This result shows that the modified penalty R̃ is able to eliminate the LLPR depen-

dence on data. Note that it still depends on the local properties introduced by the

penalty.

4.3 Algorithm implementation
The modified penalty function (4.19) with the spatially-variant penalty strength

(4.18) was incorporated into a fast convergent reconstruction algorithm, L-BFGS-

B-PC, which was proposed in Section 3.3 [44, 112, 113]. The algorithm performed

L-BFGS-B [74, 78] in a transformed coordinate system to circumvent its poten-

tial slow convergence and sensitivity to global scale factors. As addressed in Sec-

tion 3.3.1, the transformation matrix (or preconditioner) DDD can be chosen to be the

square root of a diagonal approximation of the Hessian of the objective function

Φ, which consists of the Hessian of the likelihood function (2.11) and the Hessian

of the penalty function (4.1). Since (4.18) is also related to a diagonal approxima-

tion of the Hessian of (2.11), it has been used to construct DDD to reduce the total

computational burden. As it is not necessary that DDD is a precise approximation of

the Hessian of Φ [113] (see Section 3.8 for more information), the Hessian of the
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penalty function was further replaced by a small constant ζ for simplicity and to

avoid division by zero problem. The transformation can therefore be described as:

fff ′ = DDD fff , DDD = diag
{

κ̂κκ
2 +ζ

} 1
2

, (4.23)

where ζ = 10−4 in this study.

An update at each iteration is then found along a search direction ddd with the

transformed image fff ′:

fff ′t+1 = fff ′t +α
?dddt , (4.24)

where α? is the step length and dddt = −BBBt∇Φ′( fff ′t) with BBBt , an approximation of

the inverse of the Hessian of Φ at fff ′t , constructed by L-BFGS-B. Here ∇Φ′( fff ′t) is

the transformed gradient for Φ at fff ′t . In this section, the subscript t indicates the

iteration number for compactness. To ensure convergence and sufficient progress,

α? is generally obtained by performing a backtracking algorithm in which a series

of gradually decreasing α from an initial value α init ≤ 1 are tested until the Wolfe

conditions are met:

Φ
′( fff ′t +αdddt)≤Φ

′( fff ′t)+λ1α∇Φ
′( fff ′t)

>dddt (4.25)

‖ ∇Φ
′( fff ′t +αdddt)

>dddt ‖2 ≤ λ2 ‖ ∇Φ
′( fff ′t)

>dddt ‖2 , (4.26)

where Φ′( fff ′t) = Φ( fff t) and 0 < λ1 < λ2 < 1. As in [73], λ1 and λ2 were set to

10−4 and 0.9, respectively. The algorithm was stopped if no step length α? > 0 that

satisfies the Wolfe conditions can be found in 20 trials of backtracking. This stop-

ping criterion has been evaluated in Chapter 3 [113]. Detailed information about

the L-BFGS-B-PC implementation were presented in Chapter 3.

Since both the objective function and its gradient have to be computed for

each candidate α , extra forward and back-projection operations are needed for the

backtracking.
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4.4 Data

In this study, the performance of the anatomical prior, PLS, with and without the

new approximation of κκκ(xxx) in (4.19) is investigated. The potential of applying the

modified PLS to improve the quantitative consistency and algorithm convergence

rate are investigated with digital phantoms. A patient dataset with inserted pseudo

lesions is also used as an example reconstruction closer to the clinical context.

4.4.1 Digital disc phantom

To demonstrate that the uniformity of the local perturbation for lesions in different

surroundings can be improved by applying the modified PLS, a 2-D disc phantom

with a sphere (value = 3) inserted right at the centre of a large hot (value = 5) or

cold (value = 1) uniform region was used. The phantom was a 111× 111 matrix

with voxel size of 2.397× 2.397 mm2 and the diameter of the sphere was 21.573

mm. An attenuation map (µµµ) was also used to provide anatomical information,

consisting of 0.096 and 0.172 cm−1 for the feature and the surrounding matter,

respectively. Figure 4.1 shows the phantom with a high activity surrounding and the

corresponding attenuation map as an example. Note that, relative to the surrounding

region, the sphere had the same absolute activity difference and, hence, the effect

of PLS would be the same for the spheres in both cold and hot surroundings.

The projection data were generated by using STIR [88] projectors to simu-

late data from a GE Discovery STE in 2D acquisition mode, without considering

the Poisson noise. Other physical effects, such as attenuation and system blurring

(modelled as smoothing in image space with full width at half maximum (FWHM)

= 5.2 mm in tangential and radial directions), were simulated. A uniform projection

with a constant intensity was added to the generated data to simulate the background

events. It is equivalent to 90% and 64% of the total prompts for the phantom with

cold and hot surroundings. For analysis purposes (see Section 4.5.2 for more infor-

mation), data generated using the same phantom but with no sphere at the centre of

both activity and anatomical images were also simulated.
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Figure 4.1: The activity distribution of the 2-D disc phantom with a high activity surround-
ing (left) and the corresponding attenuation map (right).

4.4.2 Digital XCAT phantom

The more realistic XCAT phantom [87] was used to generate data representing typ-

ical 18F-FDG scans in the thorax. The resulting volume was of size 152×152×47

with voxel size 3.125 mm in all directions. The phantom was rescaled to have voxel

intensities between 0 to 2.

To evaluate the dependence of local perturbation on location, 6 hot lesions with

diameter of 9.375× 9.375× 9.375 mm3 were inserted in different slices (see Fig-

ure 4.2). None of the lesions were in the central slice and 2 of them were in the

liver. The uptake of the liver was either high (value = 1.6) or low (value = 0.4) to

simulate change of surroundings for lesions in the liver. Each lesion had the same

absolute difference to its surrounding in both activity (difference = 0.8) and anatom-

ical images (difference = 20 Hounsfield units (HU)) hence the same influence of the

anatomical prior. As lesions in liver would have a similar linear attenuation coeffi-

cient to liver, our simulations roughly correspond to using CT with injected contrast

to provide anatomical information. Note that all lesions in the activity image were

exactly aligned with those in the anatomical image. Figure 4.2 shows the XCAT

phantom with high liver uptake and its corresponding contrast enhanced CT image

as an example. The phantom was forward projected using vendor supplied software

into sinograms simulating data from the GE Discovery STE in 3-D acquisition. The

background events were simulated by adding a constant value to the generated sino-

grams. The amount of background events was equivalent to 56% and 55% of total
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Figure 4.2: The central coronal view of the XCAT phantom with high liver uptake (top)
and the corresponding contrast enhanced CT image used to provide anatomical
information (bottom).

prompts for phantom with low and high liver uptake, respectively. Similar to the

disc phantom, Poisson noise was not considered and the phantom with and without

lesions was used to generate datasets for analysis purposes.

The phantom with high liver uptake was also used for investigating the influ-

ence of the modified PLS on the performance of L-BFGS-B-PC with respect to

different noise and background levels. These factors had been proven to influence

the convergence rate of L-BFGS-B-PC when using non-anatomical priors with spa-

tially invariant weights in the previous chapter. For assessing effects of the noise

level, three datasets (G0) with total counts Stot of 50 M, 250 M and 1252 M were

generated. The Poisson noise model was used. The true-to-background ratio (TBR)

for each of them was fixed at 0.6. The possible influence of background events was

studied using four more datasets, which were divided into two groups. For the first

group (G1), each dataset had the same total counts as the data representing medium

noise level, i.e., Stot = 250 M, but with 5 times lower or higher TBR. For data in

the second group (G2), we kept Strue the same as that in the data with Stot = 250 M

counts, but changed Sbg such that it was 5 times lower or higher. Note that these

two groups had identical TBR for the same background level: TBR = 0.12 for the

high background data and TBR = 3 for the low background data. A summary of

the simulated data representing different noise and background levels can be found

in Table 4.1. All simulations took into account the attenuation effect and system

blurring using FWHM = 5.2 mm in tangential and radial directions and 5.7 mm in

the trans-axial direction.
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Table 4.1: A summary of the simulated data for evaluating the influence of the background.

Strue Sbg Stot

G0
TBR = 0.6 19 M 31 M 50 M
TBR = 0.6 94 M 156 M 250 M
TBR = 0.6 469 M 783 M 1252 M

G1
TBR = 3 187 M 63 M 250 M

TBR = 0.12 27 M 223 M 250 M

G2
TBR = 3 94 M 31 M 125 M

TBR = 0.12 94 M 783 M 877 M

4.4.3 Patient data

A patient dataset of the thorax region acquired on the GE Discovery STE PET/CT

scanner was used for this retrospective study. The patient was injected with

315 MBq of 18F-FDG approximately 1 hour before the scan started. The acqui-

sition included a cine-CT scan (140 kVp, 60 mA, 4 s duration, 0.5 s rotation period,

0.45 s time between reconstructed images, 9 bed positions, 8 axial slices per bed

position), followed by a PET scan in fully 3-D mode. The total number of counts in

the PET data was Stot = 219M. Since the true lesion value and location are unknown,

three pseudo lesions (two in the liver and one in the right lung of the patient, none

of these in the central slice) with diameter of 9.375 mm were forward projected,

and attenuated using vendor-provided software and added to the measured data for

quantitative evaluation. Poisson noise was considered during data simulation. The

difference between each pseudo lesion and its surroundings was 0.8 MBq/cc. The

corresponding contrast enhanced CT with lesions inserted at the same locations was

simulated from the average cine-CT to provide anatomical information. Based on

the results in [114, 115, 116], an absolute difference of 150 HU to the surroundings

was assigned to all pseudo lesions in the simulated enhanced CT image. The atten-

uation change induced by the inserted lesions was ignored. The vendor-provided

software was also used for binning the PET data into sinograms and modelling the

detection efficiency, attenuation, scatter and randoms.
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4.5 Evaluation
The reconstruction conditions for all datasets are described in this section. In ad-

dition, two metrics of reconstruction algorithm performance: one to measure the

improvement of consistency in lesion quantification and one to assess algorithm

convergence rate are introduced. The former is mainly evaluated with respect to

different surroundings and locations, while the latter is studied using simulations

representing different noise and background levels.

4.5.1 Reconstruction conditions

Based on our previous study (see Section 3.6.3 for more information), L-BFGS-

B-PC initialised by 1 full iteration of OS-EM with 35 subsets was adopted for

image reconstruction. The initial image was also used to calculate the spatially-

variant penalty strength κ̂κκ and the preconditioner DDD. Each dataset with and with-

out using the proposed κ̂κκ to modify PLS was reconstructed. For simulated data,

the reconstructed image had the same matrix size as the corresponding phantom.

The reconstructed voxel size was 3.125× 3.125 mm2 for the disc phantom and

3.947×3.947×3.27 mm3 for the XCAT phantom. The reconstructed image for the

patient datasets had 192×192×47 voxels with voxel size of 3.125×3.125×3.27

mm3. The system blurring was also modelled during reconstruction. To exclude the

dependence of the penalty function on the selection of parameters, the parameter

set (ε , η) in PLS was chosen according to the scale of the anatomical and activity

images, respectively. The strengths of ε and η were kept to 12.5% and 25% of

the intensity difference between the lesion and its surroundings in anatomical and

activity images for all reconstructions. Therefore, the set of parameters was (0.25,

0.019 cm−1) for the disc phantom, (0.1, 5 HU) for the XCAT phantom and (0.1,

37.5 HU) for the real patient data. A different global penalty strength β̂ = βκ̂2
0 was

defined for reconstructions without applying κ̂κκ , where κ̂0 represents the value at

the centre of κ̂κκ calculated with a reference dataset. Therefore, the effective penalty

strength at the image centre is identical in both reconstructions with and without us-

ing κ̂κκ when the reference dataset is considered. The influence of the global penalty

strength on quantification is discussed further in Section 4.7. For different evalua-
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tions, a different reference dataset was selected (see Section 4.6 for more informa-

tion). For reconstructions using κ̂κκ , the global penalty strength β was fixed at 1 for

the disc phantom and 10−3 for the noiseless XCAT datasets. A stronger β = 10−2

was chosen for data with noise, including the real patient data. The strength β

for each dataset was determined based on an initial investigation, where the recon-

structed image was visually compared with respect to a series of candidate strengths

(not shown). The evaluated set of strengths started from 10−4 and increased by a

factor of 10 to 101. Note that the selected strength for the disc phantom datasets

was much stronger than that for other datasets in this study.

4.5.2 Analysis methods

The potential benefits of using the modified PLS were investigated in terms of vi-

sual interpretation, local perturbation and algorithm convergence rate. To be able to

quantify the last two features, two metrics were adopted to measure the local con-

trast recovery ratio (CR) and the distance between the converged image and current

estimate (M). The latter was initially introduced in Section 3.7. Given the recon-

structed image with lesion(s) f̂ff
true

and that without lesion(s) f̂ff
bg

, the metrics are

defined as:

CR =
|ROImean( f̂ff

true
c − f̂ff

bg
c )|

True Contrast
×100%, (4.27)

Mt =

√√√√ 1
N
‖ f̂ff

true
t − f̂ff

true
c ‖2

2

mean( f̂ff
true
c )2

, (4.28)

where ROImean(·) is an operator that calculates the mean value of the ROI, “True

Contrast” is the assigned activity difference between the lesion and its background

and N is the number of voxels. The subscript t indicates the iteration number and c

denotes that the converged image of L-BFGS-B-PC is considered (see Section 4.3

for the definition of convergence of L-BFGS-B-PC). The ROIs were drawn in the

centre of the sphere or lesion with size of 9× 9 voxels for the disc phantom and

3× 3× 3 voxels for both the XCAT phantom and real patient data. Note that the

local perturbation was evaluated using noiseless data and the convergence rate was
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investigated using data representing different noise and background levels.

To further explore the performance of the algorithm with and without applying

the modified PLS, the required number of projection operations and the correspond-

ing iterations for achieving “practical” convergence were computed as well. As was

proposed in Section 3.7, the corresponding iteration number was determined by:

t?M = min{t : Mt ≤ 0.01} . (4.29)

4.6 Results
The differences between κκκ( fff ), κ̃κκ and κ̂κκ was evaluated using simulated datasets in

the presence and absence of noise. Quantitative evaluations for the local perturba-

tion was achieved by comparing the CR value of each sphere or lesion at conver-

gence. For quantifying the algorithm convergence rate, plots of the convergence

measure M against the total number of projection operations were used. One pro-

jection operation means a forward or back-projection of the full dataset. We chose

the number of projection operations instead of iterations as it takes into account the

extra computational demand induced by the backtracking algorithm. Fast decrease

of M values indicates fast convergence rate to the solution of the reconstruction

problem. The use of L-BFGS-B-PC with the modified PLS was then demonstrated

using a patient dataset.

4.6.1 Comparison between κ j( fff ), κ̃ j and κ̂ j

To demonstrate that the proposed κ̂κκ calculated with the suggested initialisation is

a reasonable approximation of κκκ( fff ), we first investigated the difference between

them using simulated noiseless datasets. Figure 4.3 shows both values for the cen-

tral coronal plane of the XCAT phantom with high liver uptake. Profiles along the

central point of each image are also provided. As illustrated in the figure, κ̂κκ is nearly

identical to κκκ( fff ). Although not shown, similar results were obtained for both the

disc phantom and XCAT phantom with low liver uptake.

The comparison between κ̃κκ and κ̂κκ was then conducted with a simulated dataset

for the XCAT phantom with high liver uptake as well but in the presence of noise.
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Figure 4.3: κ j( fff ) and κ̂ j values (left column, top and bottom images, respectively) for the
central coronal plane of the XCAT phantom with high liver uptake. Horizontal
and vertical profiles through the central point of each map are also provided
(right column, top and bottom profiles, respectively).

Figure 4.4: κ̃ j and κ̂ j values (left column, top and bottom images, respectively) for the
central coronal plane of the XCAT phantom with high liver uptake. Poisson
noise was considered and the total counts of the data was 250 M. Horizontal
and vertical profiles through the central point of each map are also provided
(right column, top and bottom profiles, respectively), compared with those of
κ j( fff ) calculated with the corresponding noiseless dataset.

The total counts of the data was 250 M. More detail regarding the data can be found

in Table 4.1. For each approximation of κκκ( fff ), the central coronal plane and profiles

along its central point are provided in Figure 4.4. Results were compared with

those from κκκ( fff ) calculated with the corresponding noiseless dataset. Although the

central coronal planes for both approximations are visually identical, profiles for κ̃κκ

and κ̂κκ are not the same. The former show higher values than those for κκκ( fff ), while

the latter are nearly indistinguishable from those for κκκ( fff ). The results support the

feasibility of using κ̂κκ , instead of κ̃κκ , as an alternative to κκκ( fff ).
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Table 4.2: CR values for sphere in different surroundings.

hot surrounding cold surrounding
with κ̂κκ 53 51

without κ̂κκ 41 54

4.6.2 Dependence of contrast ratio on surroundings & location

The same noiseless datasets for both digital phantoms were used to study the sen-

sitivity of CR to different surroundings and locations. The data generated using the

phantom with hot surroundings or high liver update was selected as the reference

dataset such that the global penalty strength was the same for both cases with dif-

ferent surrounding activities, regardless of the use of κ̂κκ or not. This is helpful in

evaluating the influence of applying a constant or spatially-variant penalty strength

to datasets for similar objects but with different activity distribution as currently

performed in clinical practice [117, 118]. Converged images for the disc phantom

are shown in Figure 4.5. The sphere has a relatively low visual contrast to hot sur-

roundings when κ̂κκ is not applied (Figure 4.5 (b)). However, the benefit of using κ̂κκ to

preserve visual contrast is less significant for the sphere in low activity surroundings

(Figure 4.5 (d)). The corresponding CR values are listed in Table 4.2 where a lower

sensitivity to the change of the surrounding activity is observed when κ̂κκ is applied.

Similar evaluations were performed using the XCAT phantom to investigate

the dependence of CR on different lesion locations. Figure 4.6 shows the central

coronal view of the converged images reconstructed with and without applying κ̂κκ

for the phantom with high liver uptake. The corresponding difference images are

also provided to assist the visual comparison. As shown in the figure, a relatively

uniform visual contrast for lesions at different locations is observed in reconstruc-

tions using κ̂κκ (Figure 4.6 (a) and (c)). When κ̂κκ is not applied (Figure 4.6 (b) and

(d)), the lesions near the end slices has a lower visual contrast (indicated with pur-

ple arrows). Although not shown, similar results were obtained for data simulated

with low liver uptake. CR values for each lesion under different data simulation and

reconstruction conditions are calculated and listed in Table 4.3. Consistent with the

visual comparison, the variation of the contrast recovery ratio in locations is reduced
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Figure 4.5: Converged images for the disc phantom with high (top row) or low (bottom
row) activity uptake in surroundings. Images reconstructed with and without
using κ̂κκ are presented in left and right columns, respectively. Note that the same
image scale [0, 5] is used for assisting the visual comparison.

Figure 4.6: Converged images reconstructed with (a) and without (b) using κ̂κκ for the XCAT
phantom having high liver uptake. The corresponding difference images are
given in (c) and (d), respectively.

when κ̂κκ is used. However, the influence of surrounding activity is not obvious for

the XCAT phantom as lesion 5 and 6 show similar CR values when the activity level

of their surroundings (liver) is changed, regardless of κ̂κκ being applied or not.
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Table 4.3: CR values for lesions at different locations.

1 2 3 4 5 6 mean± std

with κ̂κκ
HL1 91 87 89 90 92 88

89± 1.78
CL 91 88 89 90 88 86

without κ̂κκ
HL 95 93 95 96 89 59

88±13.35
CL 96 93 95 96 88 61

1 HL and CL stand for hot and cold liver uptake, respectively.

Table 4.4: Required projection and iteration numbers for achieving convergence of M val-
ues for datasets representing different noise levels.

with κ̂κκ without κ̂κκ

Stot = 50 M 82 (39) 412 (200)
Stot = 250 M 92 (45) 686 (334)
Stot = 1252 M 132 (65) 812 (398)

4.6.3 Dependence of convergence rate on noise & background

level

Simulated data with Stot = 50 M, 250 M and 1252 M, representing high, medium

and low noise levels, were reconstructed with and without using κ̂κκ to study the in-

fluence of the noise level. The κ̂κκ for the dataset with Stot = 250 M was chosen as

the reference. Figure 4.7 shows the central coronal view of the converged image

of each reconstruction. Noisier end slices of the reconstructed images are observed

when the modified PLS is applied compared to those without using κ̂κκ . The effect

becomes less apparent as the noise level of the data decreases. In addition to vi-

sual comparison, the performance of the algorithm was also evaluated by plotting

convergence estimates M against the total projection operations (Figure 4.8) and by

listing the required number of projection operations and iterations to achieve the

practical convergence defined in (4.29) (Table 4.4). The former illustrates the con-

vergence rate in early iterations while the latter gives an insight to late iterations.

The convergence rate is improved significantly when applying κ̂κκ . Moreover, it also

reduces the difference in convergence rate for data with different noise levels.

The effect of the background level on the performance of L-BFGS-B-PC with

and without using κ̂κκ was investigated with data in both groups of fixed Stot (G1) and

fixed Strue (G2). The results were compared to those from the data having medium
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Figure 4.7: Converged images reconstructed with (left column) and without (right column)
using κ̂κκ for the XCAT phantom with high liver uptake. From top to bottom row
are images for high, medium and low noise level. The scale for each image was
set according to the different scaling factors leading to different noise levels.

Figure 4.8: M values plotted against the total number of projection operations for datasets
representing different noise levels.
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Figure 4.9: Converged images reconstructed with (left column) and without (right column)
using κ̂κκ for data in G1. From top to bottom row are images for high, medium
and low TBR. The scale for each image was set according to the different scal-
ing factors leading to different number of true events.

Table 4.5: Required projection and iteration numbers for achieving practical convergence
of M values for datasets representing different background levels.

with κ̂κκ without κ̂κκ

G1
TBR = 3 82 (40) 644 (313)

TBR = 0.12 92 (43) 522 (251)

G2
TBR = 3 82 (40) 512 (253)

TBR = 0.12 142 (56) 624 (300)

noise and background level (Stot = 250 M, Strue = 94 M, Sbg = 156 M and TBR

= 0.6). The reference strength κ̂0 was also calculated with this dataset. For both

groups of data, the converged images are slightly more affected by noise when the

modified PLS is used (Figure 4.9 and 4.10). In terms of convergence rate, plots of

M values against the total number of projection operations for each dataset in both

groups are provided in Figure 4.11. The required number of projection operations

for achieving the practical convergence of M values are listed in Table 4.5. Based

on the results, the use of the spatially-variant penalty strength shows the ability to

improve not only the convergence speed in both early and late iterations but also the

consistency of the convergence rate among data with different background levels.
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Figure 4.10: Converged images reconstructed with (left column) and without (right col-
umn) using κ̂κκ for data in G2. From top to bottom row are images for high,
medium and low TBR.

Table 4.6: CR values for each pseudo lesion.

1 2 3 mean± std
with κ̂κκ 41 53 44 46±6.25

without κ̂κκ 55 49 17 40±20.43

Table 4.7: Required projection and iteration numbers for achieving practical convergence
of M values for the patient dataset with lesions.

with κ̂κκ without κ̂κκ

Stot = 219 M 42 (20) 262 (129)

4.6.4 Demonstration with patient data

Figure 4.12 shows the coronal plane through the centre of the inserted lesions for

both reconstructions with and without using κ̂κκ for the patient data. A relatively uni-

form visual contrast for lesions at different locations is observed when κ̂κκ is avail-

able. CR values for all lesions in both reconstruction conditions are listed in Ta-

ble 4.6. Consistent with the visual comparison, a smaller variation in the contrast

recovery ratio is obtained for data reconstructed using κ̂κκ . The required number

of projection operations for achieving the practical convergence (4.29) is also pro-

vided in Table 4.7. Again, the convergence rate of the reconstruction algorithm is

substantially improved when using κ̂κκ .
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Figure 4.11: M values plotted against the total number of projection operations for data sets
in G1 (top) and G2 (bottom).
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Figure 4.12: Converged images reconstructed with (top) and without (bottom) using κ̂κκ for
the patient dataset with inserted pseudo lesions. The lesions are marked from
1 to 3 as illustrated in the top image.

4.7 Discussion
This study demonstrates the feasibility of using the spatially-variant penalty

strength κ̂κκ with an anatomical penalty to improve the uniformity of contrast (and

LPR) for lesions in different surroundings or at different locations. Its potential

benefits to the convergence rate and convergence consistency are also explored with

a previously proposed reconstruction algorithm, L-BFGS-B-PC.

Although the performance of the proposed κ̂κκ can be influenced by the initial

image, we have demonstrated that the difference between κκκ( fff ) and κ̂κκ is small with

the suggested initial condition (1 full iteration of OS-EM with 35 subsets) (Fig-

ure 4.3) using noiseless datasets. As other “plug-in” methods have been suggested

to substitute ḡgg( fff ) in (4.15) by the noisy measurement [103], the difference was also

compared with one noisy dataset with total counts of 250 M and the results were es-

sentially the same (Figure 4.4). Given the proposed κ̂κκ does not require the collected

data to be inverted, it has no potential division-by-zero problem compared to the

“plug-in” methods. Moreover, since κ̂κκ was reused to construct the transformation

matrix in L-BFGS-B-PC, no additional computation was required. The computa-

tional efficiency combined with reduced sensitivity to noise make the proposed κ̂κκ

a practical substitution for κκκ( fff ). However, as the SNR of the noisy dataset used

for the comparison was reasonably high, further investigations on the highest limit

of data noise level for applying κ̂κκ to improve the uniformity of local contrast and

algorithm performance are necessary.
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When the preconditioner DDD was constructed, the spatially-variant penalty

strength κ̂κκ was reused and the Hessian of the penalty function was replaced with

a small constant ζ = 10−4. This approximation of the Hessian of the objective

function is suboptimal for large β and the convergence rate of the algorithm might

become slow. Since a relatively small β was chosen for the reconstructions used

for performance evaluation (i.e., reconstructions for the XCAT phantom and patient

dataset), this approximation is reasonable in this study. For future investigation on

convergence rate with large β , it would be helpful to take into account the strength

of β while constructing DDD.

As discussed in [103], the dependence of the local perturbation on surrounding

activity can be explained using the analytical model defined in (4.14). For any voxel

j in the image, the local perturbation around j depends on the strength of κ j( f̆ff b).

When the activity level of f̆ff b is high around j, the number of rays crossing through

the voxel would be large, leading to a small κ j( f̆ff b) hence a strong smoothness

over features around j. For reasonable penalty strengths, the use of PLS should

help to achieve high CR values as it is designed to prevent smoothing across the

anatomical boundaries that correspond with edges in activity images. However,

to demonstrate the dependence of quantification consistency on surroundings, an

unrealistically high β = 1 was used for the disc phantom. The strong smoothness

across the boundaries leads to a redistribution of the activity. Therefore, the CR

values for the disc phantom were only around 50% in this study (Table 4.2). The

dependence of the contrast recovery on surroundings was not obvious for the XCAT

phantom (lesions 5 and 6 in Table 4.3). This is because the selected penalty strength

was reasonable, judging from the small differences in CR values for lesions 5 and 6

in high and low liver uptake.

In fact, for a uniform activity distribution with homogeneous attenuation effect,

κ j( f̆ff b) can be interpreted as an index of the spatial variations in sensitivity. Using

the spatially-variant penalty strength to modify PLS is therefore roughly equivalent

to applying sensitivity compensation across the FOV. This explains the low CR value

for the lesion at end slices when κ̂κκ was not used (lesion 6 in Table 4.3). In the case of
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applying κ̂κκ in the presence of Poisson noise and edge information, there would be a

trade-off between the image noise level and the uniformity of LPR across the FOV,

especially for lesions at end slices. Fortunately, as multiple bed positions are often

used in clinical practice, the increased noise level of end slices can be compensated

by averaging across neighbouring bed positions.

Regardless of the use of κ̂κκ , the LPR is always affected by the local property

of the object introduced by the penalty function. It varies with the global strength

β that controls the influence of the penalty over whole objective function and pa-

rameters that determine the weight of the edge information in the anatomical or

functional image. For example, since β used for the patient dataset (β = 10−2) was

stronger than that for noiseless data generated using the XCAT phantom (β = 10−3),

a lower CR value was observed for lesions in the patient dataset (Table 4.3 and 4.6).

The XCAT phantom was simulated such that it had a similar activity distribution to

the patient data in the thorax region and the set of parameters, (ε,η), in PLS were

scaled accordingly to enforce similar local effect in both reconstructions. When the

same β is chosen, lesions in the patient data are able to converge to similar CR val-

ues as those in the XCAT phantom (not shown). However, the reconstructed image

becomes noisy due to the reduction of the penalty strength. The main motivation

of rescaling ε and η in PLS according to the scale of the functional and anatomical

images is to have a similar local influence from the penalty function for different

datasets. In this way, the comparison of CR values depends mainly on the global

parameter β and the use of the spatially-variant penalty strength κ̂κκ . As the smooth-

ness enforced by PLS in a uniform region (or also across the boundary when β is

large) is modulated by ε and η , the benefit of using κ̂κκ might be affected by these

two parameters. This means that the redistribution of the activity across the bound-

aries for large β might be less severe with small ε such that using κ̂κκ would be less

beneficial. However, discussions on the dependence of the quantitative accuracy

and image quality on parameters that control the global strength of the penalty or

the strength of the local information are beyond the scope of this study.

The convergence rate of the algorithm can be improved significantly (Fig. 4.8
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and 4.11) when κ̂κκ is applied. Moreover, the variability of the algorithm perfor-

mance for different datasets is reduced. As shown in Table 4.4 and 4.5, all data

representing different noise and background levels show the ability to achieve prac-

tical convergence in 150 projection operations. This implies that a more reliable

quantitative comparison among different datasets can be obtained if a fixed number

of projection operations is chosen.

For the XCAT phantom and patient dataset, simulated contrast enhanced CT

images were used to provide anatomical information. This could have wide-ranging

implications to the work-flow and economics of the procedure in clinical use. The

overall radiation dose received by the patient can also be increased due to the addi-

tional contrast enhanced CT scan. Although this might not be an issue for lesions

involving density change as the attenuation map can be used to provide the corre-

sponding anatomical information, the potential benefits and limitations of applying

the proposed strategy in clinical practice should be considered.

4.8 Conclusions
In this study, the use of a spatially-variant penalty strength with a convex anatomi-

cal penalty function to reduce the dependence of local perturbation on surrounding

activity and location has been demonstrated. The proposed weighting scheme for

the penalisation can be precomputed. Moreover, when using L-BFGS-B-PC, the

weights can be reused for constructing the preconditioner such that the overall com-

putational demand remains unchanged. Based on the results for simulated data, the

effective convergence rate of M values is considerably improved when the spatially-

variant penalisation is applied. Moreover, the variation of the convergence rate for

different data noise and background levels is largely reduced when the weighting is

taken into account. The idea is further demonstrated using a real patient dataset with

inserted pseudo lesions in different slices. Consistent with the simulation results,

significant improvement in quantitative consistency and algorithm performance is

observed.



Chapter 5

Approaches for joint misalignment

estimation and PML reconstruction

using anatomical priors in ET

In the previous chapter, the anatomical information is assumed to be exactly aligned

with the activity distribution. To take into account the potential misalignment be-

tween the functional and anatomical images, two approaches that perform alternat-

ing misalignment estimation and image reconstruction are proposed in this chapter.

Both methods are evaluated using simulated data with respect to different factors,

such as algorithm workflow and initialisation.

5.1 Introduction
PML image reconstruction using penalties derived from anatomical images, such

as CT or MR images, has been shown to be effective in improving object delin-

eation and reducing quantitative error in many studies [38, 44, 45, 46, 47, 48, 49,

50, 51, 68]. However, to utilise the structural information without incurring arte-

facts, a good alignment between the anatomical and functional images is essen-

tial [48, 51, 119, 56]. This is challenging in practice because these images are

most likely obtained separately or sequentially. Even with a multimodality scanner

that performs simultaneous acquisition (e.g. Siemens mMR system and GE Signa

PET/MR), good alignment between the acquisitions is still difficult to achieve due
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to the different time scales of the scans. In particular, for the misalignment involving

object deformation, for instance due to respiration, the assumption is even harder to

satisfy. To take into account the mismatch in regions interfered by non-rigid mo-

tion, accurate image segmentation and co-registration (which are both difficult and

time consuming) are often required [120, 121].

In many cases, anatomical information can be derived from the attenuation

image. Since the literature on the misalignment issue between a priori anatomical

information and the functional information is quite limited, we instead seek ideas

from a similar but previously studied problem in thoracic PET imaging, in which a

potentially misaligned CT or MR-derived attenuation map is used for the attenua-

tion correction. Although these methods are intended to be used for having a better

attenuation corrected image from emission data, they offer insights into resolving

the misalignment between the anatomical attenuation map and the functional emis-

sion image. As for PML image reconstruction using anatomical priors, the mis-

alignment induced by patient respiratory degrades resolution of the reconstructed

image and introduces artefacts where large movement or deformation of organs is

observed [122, 123].

This chapter will concentrate on imaging of the thorax, where respiratory mo-

tion is a known problem [124]. One strategy to tackle the respiratory motion is

to sort the acquired data from both modalities into several gates where no motion

is assumed in each of them. The gated data are then paired up according to their

breathing phases estimated from the data themselves or an external tracking system

[125]. In addition to reconstructing these gated data pairs individually and then reg-

istering them to a reference respiratory phase [126], one can also incorporate the

corresponding attenuation information into the 4-dimensional (4-D) reconstruction

algorithms [127, 128]. However, as these methods rely on regular and consistent

breathing pattern during both scans [129], they are not able to cope with the residual

misalignment caused by irregular breathing or other general motion of the patient.

Moreover, they imply the need of special scans to obtain the gated anatomical infor-

mation. This can increase patient total dose or prolong the overall examining time,
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depending on the applied anatomical imaging modality. To adapt to irregular breath-

ing patterns, another strategy applies individual motion model to deform the input

attenuation map [130]. The model can be derived from other imaging data, such

as dynamic CT and MR [131], as well as the non-attenuation corrected PET [132].

However, the former approach has the potential problem of propagating the error in

the model estimation to the final reconstructed image, while the latter shows the de-

pendence of the performance on the tracer distribution and data statistics. The other

way around these issues is to use population-based deformation models [133, 134].

However, in addition to the need of being combined with other approaches, they

have not been convincingly shown to work in practice [130]. The application of

applying an individual model to PML image reconstruction using anatomical priors

therefore faces similar challenges.

Algorithms that allow simultaneous estimation of the activity distribution and

the corresponding attenuation map from the respiratory gated PET data have been

proposed [135, 136] in recent years. These methods do not rely on assumptions

about the breathing cycle or a pre-estimated motion model. Therefore, they have the

potential to be applied to different misalignment problems without suffering from

the error propagation issue. However, since the problem is very ill-conditioned,

some a priori knowledge about the intensity distribution of the attenuation map is

required. This can compromise the benefit of using anatomical information during

the image reconstruction as the intensity is restricted to several values and most of

the anatomical details are lost. Besides, severe cross-talk between the estimated

activity and attenuation map is observed in non-TOF PET. Although the artefact

can be eliminated when TOF data is available, the a priori knowledge about the

intensity distribution is still necessary [136].

In contrast to seeking the attenuation map aligned with the emission image, a

different joint estimation algorithm incorporates a warp matrix that deforms both the

activity distribution and the attenuation map into the objective function [137, 138].

By optimising the objective function using an alternating process between motion

estimation and image reconstruction, the motion compensation and attenuation cor-
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rection are achieved simultaneously. The optimisation can be applied to both non-

TOF and TOF data [139] without incurring artefacts but with a significantly im-

proved convergence rate when TOF data is available. The algorithm uses a smooth-

ing penalty function on the motion field to help the convergence rate of the motion

estimation. The a priori knowledge of the attenuation distribution is not necessary

any more. This study motivates our idea of applying the warp matrix to an anatom-

ical prior, such as the previously mentioned PLS (see Section 2.3.2.2). Extending

on the existing method, two approaches that account for the misalignment between

the functional and anatomical images by incorporating the warp matrix into the pe-

nalised objective function are proposed in Section 5.3. As a special case of the

application, we will only study the alignment of one PET position with a single CT

derived attenuation map, which is also used to provide anatomical information.

5.2 Objective function without considering the po-

tential misalignment

In this section, the objective function for penalised image reconstruction us-

ing anatomical priors without considering the potential misalignment between

the anatomical and emission information (see Section 2.3.2.2) is briefly sum-

marised. Given the emission image fff = [ f1, . . . , fJ]
> ∈ RJ , the anatomical image

zzz = [z1, . . . ,zJ]
> ∈ RJ and the measured data ggg = [g1, . . . ,gI]

> ∈ RI , the objective

function can be written as:

Φ( fff ) =−L( fff ,ggg)+βR( fff |zzz) , (5.1)

where L is the log-likelihood and R is the penalty function with a parameter β

controlling its strength. As in the previous chapter, the modified PLS in (4.19) is

chosen as a representative anatomical prior for achieving both good image quality
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and uniform local contrast in this study:

R( fff |zzz) = ∑
j

κ
2
j

√
ε2 +‖ [∇ fff ] j ‖2

2−〈[∇ fff ] j , [ξξξ ] j〉
2
,

κκκ =

[
AAA>diag

{
ggg

(AAA fff init +nnn)2

}
AAA111
] 1

2

,

[ξξξ ] j :=
[∇zzz] j√

‖ [∇zzz] j ‖2
2 +η2

, ε and η > 0 (5.2)

where AAA ∈ RI×J represents the system matrix, nnn ∈ RI is the expected background

events vector, 111 is a vector of ones and fff init is the initial image. The edge preserving

property of PLS is modulated by the pair of parameters (ε,η). The notation ∇ is

the gradient operator, 〈·, ·〉 is the Euclidean scalar product and ‖ · ‖2 denotes the

`2-norm.

5.3 Objective function considering the potential mis-

alignment

Two approaches that account for the misalignment between the functional and

anatomical images in penalised image reconstruction using anatomical priors are

proposed in this section. Both approaches are based on a joint motion estimation

and image reconstruction method proposed recently for dealing with the mismatch

between the attenuation map and the PET image in respiratory gated PET/CT [137].

Instead of applying a quadratic penalty function to enforce smoothness on the re-

constructed activity images as in [137], an anatomical penalty calculated with the

attenuation map is employed to improve the image quality in this study. The main

difference between these two approaches is that the first approach Φ1 (Approach I)

deforms the anatomical image (i.e. the attenuation map) to align it with the func-

tional image, while the second approach Φ2 (Approach II) deforms both images to

align them with the measured data. As in [137], we use uniform cubic B-splines

for image interpolation and deformation, which will be briefly reviewed first. A

description of the uniform cubic B-splines is given in Appendix D. Despite the use
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of an anatomical prior, Approach II is quite similar to the method introduced in

[137] and Approach I is essentially a simplified algorithm to Approach II. We also

modified Approach II to impose positivity on image values as opposed to B-spline

coefficients.

5.3.1 Image interpolation and deformation based on cubic B-

splines

Assume a continuous image function s can be represented as a linear combination

of basis functions centred on a voxel grid C = {rrrk, k = 1, . . . , N} that coincides

with the voxel centres (see Figure 5.1 for an example in 2-D):

s(rrr) =
N

∑
k=1

skB(
rrr− rrrk

σ1
) , (5.3)

where sk is the B-spline coefficient of the basis function centred on voxel k,

rrr = (x,y,z) is the index vector in the 3-D Cartesian coordinate system, B(rrr) =

b(x)b(y)b(z) is an interpolating function based on the cubic B-splines b and σ1

represents the voxel-spacing. The discretised image can therefore be represented as

a collection of the B-spline coefficients ṡss = (s j)
N
j=1. Note that the cubic B-splines

are non-zero at several nodes. Therefore, the B-spline coefficients are not identical

to the image values at the grid nodes. The deformation of ṡss is then achieved by de-

forming the continuous image function s followed by a re-sampling on C for every

voxel j:

[WWWsss] j =
N

∑
k=1

skB(
ν(rrr j)− rrrk

σ1
) , (5.4)

where WWW is a square matrix with each element [WWW ] j,k , B(ν(rrr j)−rrrk
σ1

) and ν is the

warping function. Given C̃ = {r̃rrl, l = 1, . . . , Q} a uniform sub-grid of C with Q

grid nodes, the function νθ can be parametrised by a collection of the deformation
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Figure 5.1: Example of representing a 2-D image function s using basis functions.

coefficients θθθ = (θθθ x, θθθ
y, θθθ

z):

νθ (rrr), rrr+



Q

∑
l=1

θ
x
l B(

rrr− r̃rrl

σ2
)

Q

∑
l=1

θ
y
l B(

rrr− r̃rrl

σ2
)

Q

∑
l=1

θ
z
l B(

rrr− r̃rrl

σ2
)


=


ν

x(rrr)

ν
y(rrr)

ν
z(rrr)

 (5.5)

where σ2 is the distance between two grid nodes.

5.3.2 Approach I

The first approach optimises an objective function Φ1 that considers the deformed

anatomical image. Assume the attenuation map µµµ , represented as a collection of

the B-spline coefficients µ̇µµ = (µ j)
N
j=1, is used to provide anatomical information as

well, Φ1 is given by:

Φ1( fff , µ̇µµ,θθθ) =−L( fff ,ggg,WWW µ̇µµ)+βR( fff |WWW µ̇µµ)+ γQP(θθθ) , (5.6)

where QP(θθθ) is a quadratic penalty on the deformation coefficients for reducing

the influence of noise and γ is a constant that controls its strength. Note that the
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misalignment between µµµ and fff affects the optimisation through the attenuation

correction in the log-likelihood L and the incorporated anatomical penalty R as both

functions use the warped attenuation map WWW µ̇µµ as inputs. Since this approach does

not require deforming the activity image, fff in (5.6) represents a vector of image

values. The positivity constraint on fff can therefore be achieved by performing

constrained image reconstruction. In contrast, the attenuation map is represented as

a collection of coefficients µ̇µµ for image warping using B-splines. This could lead

to negative values in WWW µ̇µµ as we are optimising the B-spline coefficients. However,

since small negative values in WWW µ̇µµ would become attenuation factors very close

to one, they have been left unchanged in this study. Although the deformation of

the attenuation map implies the change of the scatter distribution, the estimated

background events are fixed during the optimisation process for simplicity. The

warped attenuation map should be in the same space as the activity image when the

objective function in (5.6) is optimised.

5.3.3 Approach II

Instead of seeking to align the warped attenuation map with the reconstructed activ-

ity image, the second approach deforms both the anatomical and functional images

in order to obtain an estimate that optimises the objective function Φ2:

Φ2( ḟff , µ̇µµ,θθθ) =−L(WWW ḟff ,ggg,WWW µ̇µµ)+βR( fff |µµµ)+ γQP(θθθ)+δE(WWW ḟff ) , (5.7)

where

E(sss) =
N′

∑
n=1

min(0, s(νθ (r̂rrn)))
2 (5.8)

is a barrier function that penalises negative values in WWW ḟff [140]. Given Ĉ= {r̂rrn, n =

1, . . . , N′} a finer grid that contains a finite number of uniformly spaced locations in

each interval of two grid nodes in the voxel grid C, the function computes the spline

values (i.e., the image values) centred on the finer grid and penalises the square of

any negatives. The strength of E is determined by the parameter δ . In this study,

we defined the distance between two adjacent locations in Ĉ equal to one quarter

of the grid spacing used for the image. Although the log-likelihood requires the
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warped emission and anatomical images as inputs, the penalty function is calcu-

lated with the image value of the non-warped ones. Since the motivation of using

an anatomical prior is to encourage edges in the emission image corresponding to

those in the anatomical one, finding common edges in the warped or non-warped

images is essentially a similar optimisation problem. In other words, calculating

the anatomical penalty function with WWW ḟff and WWW µ̇µµ should lead to the same solution.

When the objective function in (5.7) is optimised, both the emission and anatomical

images will be aligned to a virtual space where the corresponding estimated data is

very close to the measured one.

5.4 Algorithm implementation

The optimisation of both approaches is implemented as an alternating process that

includes a misalignment estimation subroutine and a penalised image reconstruc-

tion subroutine. Pseudo-code that summarises the implementation can be found in

Algorithm 3. The workflow is defined by the number of inner iterations (InnerIter1

and InnerIter2 in Algorithm 3) for these two subroutines and the number of outer

iterations (OuterIter in Algorithm 3) that controls the repetition of the alternating

process. We applied L-BFGS for unconstrained optimisation (misalignment esti-

mation in both approaches and image reconstruction in the second approach) and

L-BFGS-B [74] for the positivity constrained image reconstruction in Approach I

(see Section 3.2 for more information regarding the optimisation algorithms). To

improve the convergence rate of the penalised image reconstruction, a precondi-

tioner proposed in (4.23) was also incorporated into both approaches [113]. OS-

EM is used to reconstruct the initial activity image fff 0 of the whole process. The

misalignment estimation is then initialised by fff 0 and the attenuation map µµµ . The

implementation of the misalignment estimation employed in this study was origi-

nally proposed in [137]. Every time the misalignment estimation is done, a new

initial image fff InitInner for the penalised image reconstruction is recomputed using

OS-EM, taking into account the current estimated misalignment. The spatially vari-

ant penalty strength κκκ is recomputed at every outer iteration as well.
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Algorithm 3: Pseudo-code for the alternating process
Input: Data ggg, attenuation map µµµ and strength of each penalty function (i.e., the

set of parameters (β ,γ) for Approach I and (β ,γ,δ ) for Approach II
Output: Estimated tracer distribution fff and B-spline deformation coefficient θθθ

Φ←Φ1(β ,γ) or Φ2(β ,γ,δ );
∇Φ← ∇Φ;
θθθ 0← 000 ;
fff 0← OS-EM(ggg,µµµ,θθθ 0) ;
for t = 0, . . . ,OuterIter−1 do

misalignment estimation;
θθθ t+1← L-BFGS(ggg, fff t ,µµµ,Φ,∇Φ,θθθ t , InnerIter1);
image reconstruction;
fff InitInner← OS-EM(ggg,µµµ,θθθ t+1) ;
κκκ ← [AAA>diag{ ggg

(AAA fff InitInner+nnn)2 }AAA111]
1
2 ;

DDD← diag{κκκ2 +10−4} 1
2 ;

fff ← DDD fff InitInner ;
Define Φ̃ : uuu 7→Φ(DDD−1uuu) ;
Define ∇Φ̃ : uuu 7→ DDD−1

∇Φ(DDD−1uuu) ;
if Approach I then

fff InnerIter2← L-BFGS-B(ggg, fff ,Φ̃,∇Φ̃,θθθ t+1, InnerIter2) ;
else

fff InnerIter2← L-BFGS(ggg, fff ,Φ̃,∇Φ̃,θθθ t+1, InnerIter2) ;
end
fff t+1← DDD−1 fff InnerIter2 ;

end

5.5 Data
Two XCAT phantoms representing different respiratory phases and the correspond-

ing µµµ maps (Figure 5.2) were produced to simulate different PET positions. Both

phantoms were a 128× 128× 47 matrix with voxel size of 3.906 mm in all direc-

tions. The set of images at end inspiration was used to generate data similar to

that from a GE Discovery STE in 3-D non-TOF acquisition mode. The number of

projection angles has been down sampled from 280 to 140 to accelerate the compu-

tation. Both approaches were initially evaluated with a noiseless dataset. To further

assess their performance in the presence of noise, a dataset with total counts of

161 M was also simulated using the Poisson noise model. Note that all simulations

took into account the attenuation effect and system blurring using FWHM = 5.2 mm

in tangential and radial directions and 5.7 mm in trans-axial direction. To simulate

the misalignment between functional and anatomical images, the attenuation map
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Figure 5.2: The central coronal view of the XCAT phantoms representing end inspiration
(top left) and expiration (top right). The corresponding µµµ maps are also pro-
vided (bottom).

at end expiration was used as the initial input for both attenuation correction and

misalignment estimation.

5.6 Evaluation
The general reconstruction conditions are given in this section. Both approaches

should be able to find a warped attenuation map similar to that used for data gener-

ation (i.e., µµµ at end inspiration). Therefore, the evaluation is focused on the perfor-

mance of the misalignment subroutine of each approach.

5.6.1 Reconstruction conditions

The selection of each penalty strength was based on an initial investigation, where

the difference between the warped and target µµµ maps at OuterIter = 30 was visually

compared with respect to a given set of candidate strengths (not shown). We studied

the strength of one penalty at a time using the noiseless dataset and the value from

the set giving the best visual alignment was recorded. Table 5.1 lists the candidate

strengths for each penalty and approach in this study. As a result, for the noiseless

dataset, the set of parameters that determines the strength of each penalty function

was (β ,γ) = (7×10−3,10−4) for Φ1 and (β ,γ,δ ) = (7×10−3,10−4,10−1) for Φ2.

A stronger β = 2×10−1, roughly equivalent to β for the noiseless dataset times the

change of the image scale (30 times larger), was chosen when the data with noise

was considered for both approaches. The strength of other penalty function(s) re-

mained the same as for the noiseless dataset. The parameter pair (ε , η) in PLS was
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Table 5.1: Candidate strengths for each penalty function and approach.

β γ δ

Approach I [7×10−4,7×10−3,7×10−2] [10−2,10−4,10−6] N/A
Approach II [7×10−4,7×10−3,7×10−2] [10−2,10−4,10−6] [10−1,10−2,10−3]

Figure 5.3: The central coronal view of the difference image between the input and target
µµµ maps.

fixed at (10−1, 10−2). The distance between two grid nodes for the deformation

model was 6 voxels. The alternating process as well as the image reconstruction

subroutine at every outer iteration were initialised by one full iteration of OS-EM

with 14 subsets if not explicitly stated otherwise. Up to 100 outer iterations were

used for both approaches. Each reconstructed activity image and the warped attenu-

ation map had 128×128×47 voxels with voxel size of 4.687×4.687×3.27 mm3.

5.6.2 Analysis methods

The difference image between the warped and target µµµ maps at a given outer it-

eration was used to evaluate the performance of the misalignment subroutine. To

be able to quantify the performance, the root-mean-square errors (RMSE) was cal-

culated with the difference images and plotted against the outer iteration numbers.

As the lungs are the main target of the respiratory motion alignment, a mask was

applied to the difference images and the RMSE was computed only in the lungs as

well to reflect the misalignment estimation of small structures of the lungs. Fig-

ure 5.3 shows the central coronal view of the difference image between the target

and input µµµ maps to give an idea regarding the simulated misalignment at OuterIter

= 0.
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5.7 Initial investigation
The alternating optimisation process has many parameters which must be speci-

fied. To find reasonable settings for the parameters in both approaches, their per-

formance of misalignment estimation was initially evaluated using the noiseless

dataset. We started with finding the workflow that provides satisfactory results for

both approaches such that the performance evaluation was conducted at a given

outer iteration with the same number of iterations for each subroutine. The influ-

ence of incorporating the anatomical prior, PLS, on misalignment estimation was

studied by substituting the µµµ map at end expiration with a uniform image when

calculating PLS, therefore it is equivalent to using a (smooth) TV prior. To inves-

tigate if taking into account the anatomical prior in the initialisation of the whole

process is beneficial, the optimisation process was also initialised from one full iter-

ation of OS-EM with 14 subsets, followed by different iterations of L-BFGS-B-PC.

The anatomical prior in L-BFGS-B-PC was again calculated with the µµµ map at end

expiration.

5.7.1 Workflow optimisation

A two-part study was conducted to find the workflow in common for both ap-

proaches. In the first part of the study, we used 1 inner iteration for the misalignment

estimation and explored the minimum iterations required for the image reconstruc-

tion subroutine to obtain satisfactory results. The studied inner iteration numbers

for the image reconstruction subroutine were 1, 5, 10 and 20 (InnerIter2 = 1, 5, 10

and 20). We then fixed the iteration number for the image reconstruction to the limit

found in the first part and increased the number of iterations for the misalignment

estimation from 1 to 5, 15 or 30 (InnerIter1 = 1, 5, 15 and 30) to assess if the per-

formance of the misalignment estimation can be improved by using a higher inner

iteration number. The number of outer iterations that controls the repetition of the

alternating process was fixed at 100 (OuterIter = 100) such that the workflow was

determined by the selected inner iteration number for each subroutine to reduce the

number of parameters to investigate.

For the first sub-study where the inner iteration number for the misalignment



5.7. Initial investigation 122

Figure 5.4: The central coronal view of the difference images between the target and WWW µ̇µµ

maps for Approach I (left column) and (right column) Approach II at 100 outer
iteration. The applied workflows were 1 inner iteration for the misalignment
estimation and 1 (top row), 5 (second row), 10 (third row) and 20 (bottom row)
inner iterations for the image reconstruction.

estimation was fixed at 1, the central coronal view of the difference images between

the warped and target µµµ maps at OuterIter = 100 are shown in Figure 5.4. For

both approaches, using InnerIter2 = 1 was problematic, resulting in severe distor-

tion of structures in the warped µµµ map (Figure 5.4, top row). Satisfactory results

were obtained with Approach I when InnerIter2 = 5 or 10 was chosen (Figure 5.4,

left column, second and third rows). However, when a higher InnerIter2 = 20 was

applied, the misalignment around the diaphragm (Figure 5.4, left column, bottom

row) was still observed after 100 outer iterations. In contrast to Approach I, the

performance of the misalignment estimation of Approach II was improved as In-

nerIter2 increased (Figure 5.4, right column). When InnerIter2 ≥ 10 was used, the

algorithm was able to realign the input µµµ map to the target one at OuterIter = 100.

Interestingly, some observations based on the overall RMSE contradicted the

visual comparison (Figure 5.5, top row). For example, the plots of the overall

RMSE for Approach I with InnerIter2 = 10 and 20 seemed to have the same value

at OuterIter = 100 (Figure 5.5, top left). In addition, the lowest overall RMSE at
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Figure 5.5: The overall RMSE (top row) and the RMSE in the lungs (bottom row) plotted
against the outer iteration numbers for Approach I (first column) and II (second
column). The applied workflows were 1 inner iteration for the misalignment
estimation and 1, 5, 10 or 20 inner iterations for the image reconstruction.

OuterIter = 100 was achieved by the workflow with InnerIter2 = 5 and 10 for Ap-

proach I and II, respectively (Figure 5.5, top row). The RMSE in the lungs was

more consistent with the visual observation from the difference images. As shown

in the bottom row of Figure 5.5, for both approaches, the RMSE in the lungs tended

to reach a higher error when InnerIter2 = 1 was used. The value at OuterIter =

100 decreased as InnerIter2 increased, except for the workflow with InnerIter2 =

20 for Approach I. In terms of the convergence rate, except for the workflow with

InnerIter2 = 1, Approach II was able to reach a relatively stable overall RMSE and

RMSE in the lungs after 60 outer iterations. Although Approach I showed the abil-

ity to achieve a stable overall RMSE after 60 outer iterations for workflow with

InnerIter2 > 1 as well, it required more than 100 outer iterations to reach a stable

RMSE in the lungs for all evaluated workflows with different numbers of InnerIter2.
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Figure 5.6: The central coronal view of the difference images between the target and WWW µ̇µµ

maps for Approach I (left column) and (right column) Approach II after 100
outer iterations. The applied workflows were 10 inner iteration for the image
reconstruction and 1 (top row), 5 (second row), 15 (third row) and 30 (bottom
row) inner iterations for the misalignment estimation.

Since both approaches provided visually and numerically good results when

InnerIter2 = 10 was used, we defined InnerIter2 = 10 as the best number of iterations

for the image reconstruction subroutine and increased the iteration number used in

the misalignment estimation subroutine. Figure 5.6 shows the central coronal view

of the difference image between the warped and target µµµ maps for both approaches

with various InnerIter1 but a fixed InnerIter2 = 10. The misalignment around the

diaphragm region became apparent for Approach I at OuterIter = 100 as InnerIter1

> 1 was chosen (Figure 5.6, left column). For Approach II, however, the difference

images at OuterIter = 100 were visually identical, regardless of the number of the

applied InnerIter1 (Figure 5.6, right column).

The RMSE in the lungs for Approach I and II with different InnerIter1 plotted

against the outer iteration numbers are given in Figure 5.7. We omitted evaluations

based on the overall RMSE in the rest of the chapter as we were more interested

in the alignment of small structures of the lungs for respiratory motion estimation.

Consistent with the visual comparison, for the first approach, the smallest RMSE
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Figure 5.7: The RMSE in the lungs plotted against the outer iteration numbers for Ap-
proach I (left) and II (right). The applied workflows were 10 inner iteration for
the image reconstruction and 1, 5, 15 or 30 inner iterations for the misalignment
estimation.

in the lungs at OuterIter = 100 was achieved by the workflow with InnerIter1 =

1. When Approach II was adopted, all workflows with different InnerIter1 set-

tings were able to achieve a similar RMSE in the lungs at OuterIter = 100. The

convergence rate of the misalignment estimation of Approach II was improved as

InnerIter1 increased. However, the performance of Approach I in terms of the con-

vergence rate of the RMSE in the lungs seemed insensitive to the change of the

inner iteration number for the misalignment estimation when the applied InnerIter1

was larger than 1.

Based on the results shown in this section, 1 iteration of misalignment estima-

tion (InnerIter1 = 1), followed by 10 iterations of image reconstruction (InnerIter2

= 10) was defined as the workflow that provides satisfactory results for these two

approaches when the noiseless dataset is considered. The corresponding central

coronal view of the reconstructed functional images and the warped attenuation

maps at OuterIter = 100 are provided in the top rows of Figure 5.8 and 5.9, re-

spectively. The optimisation with the same settings but using the target µµµ map as

the input was also performed for both approaches. The bottom rows of Figure 5.8

and 5.9 shows the reconstructed images and the deformed attenuation maps for the

aligned functional and anatomical information. Due to the implied interpolation of

image warping and re-sampling using B-splines, all images in Figure 5.8 were visu-

ally similar to the target activity image but somewhat smoother. Regardless of the
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Figure 5.8: The central coronal view of the activity images at 100 outer iteration for Ap-
proach I (left column) and II (right column) with (top row) and without (bottom
row) using the misaligned anatomical information. The applied workflow was
1 inner iteration for the misalignment estimation and 10 inner iterations for the
image reconstruction.

Figure 5.9: The central coronal view of the warped attenuation maps at 100 outer iteration
for Approach I (left column) and II (right column) with (top row) and with-
out (bottom row) using the misaligned anatomical information. The applied
workflow was 1 inner iteration for the misalignment estimation and 10 inner
iterations for the image reconstruction.

applied approach and the alignment of the functional and anatomical images, the

warped attenuation maps shown in Figure 5.9 were visually identical and very close

to the target one. As an initial investigation, the applied outer iteration number was

fixed at 100 throughout this chapter, although it was not sufficient for Approach I to

achieve a stable RMSE in the lungs.

5.7.2 Influence of incorporating anatomical priors on misalign-

ment estimation

To investigate whether the use of an anatomical prior is beneficial for either ap-

proaches, reconstructions without considering any structural information were per-

formed as well. This was achieved by substituting the anatomical image (i.e., atten-
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uation map) with a uniform image when calculating the penalty function. Note that

the misaligned µµµ map was still used for the attenuation correction. The performance

of both approaches with and without considering anatomical information was eval-

uated using the difference image between the warped and target µµµ maps and the

RMSE in the lungs. The workflow found in the previous section was applied in all

reconstructions.

As observed in the central coronal view of the difference images at OuterIter =

100 (Figure 5.10 and 5.11, bottom row), both Approach I and II were able to esti-

mate the misalignment and warp the input attenuation map accordingly, regardless

of the presence of the structural information. However, in terms of the convergence

rate, these two approaches had different responses to the use of the anatomical in-

formation. For the first approach, incorporating the structural information degraded

the convergence rate of the misalignment estimation. The central coronal view of

the difference images at OuterIter = 20 and 60 for the reconstructions without using

anatomical information showed less apparent misalignment around the diaphragm

region compared to those for the reconstructions considering the anatomical infor-

mation (Figure 5.10, top and second rows). By contrast, Approach II was able to

achieve a faster convergence rate when the additional structural information was

available (Figure 5.11, top and second rows). These observations were further

demonstrated by the RMSE in the lungs plotted against the outer iteration num-

bers (Figure 5.12). When the anatomical information was considered, Approach II

reached a stable RMSE in the lungs after around 60 outer iterations, while Approach

I required more than 80 outer iterations to achieve that.

5.7.3 Influence of incorporating anatomical priors in initialisa-

tion on misalignment estimation

For both Approach I and II, the alternating process was initialised from one full

iteration of OS-EM with 14 subsets, which did not take into account the anatomical

information. As we have demonstrated that the presence of the anatomical details

can affect the performance, we then substituted the initialisation of the whole pro-

cess with one iteration of OS-EM (with 14 subsets), followed by 5 or 10 iterations
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Figure 5.10: The central coronal view of the difference images between the target and WWW µ̇µµ

maps for Approach I at 20 (top row), 60 (second row) and 100 (bottom row)
outer iteration. The results for the reconstructions without and with consider-
ing the anatomical information are shown in the left and right column, respec-
tively.

Figure 5.11: The central coronal view of the difference images between the target and WWW µ̇µµ

maps for Approach II at 20 (top row), 60 (second row) and 100 (bottom row)
outer iteration. The results for the reconstructions without and with consider-
ing the anatomical information are shown in the left and right column, respec-
tively.
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Figure 5.12: The RMSE in the lungs plotted against the outer iteration numbers for Ap-
proach I (left) and II (right) without and with considering the anatomical in-
formation.

of L-BFGS-B-PC to introduce the structural information into the initial activity im-

age. After the initialisation, the workflow from Section 5.7.1 (1 iteration for the

misalignment estimation subroutine and 10 iterations for the penalised image re-

construction subroutine) was applied to the alternating process. Note that the image

reconstruction subroutine was still initialised from one iteration of OS-EM with 14

subsets at every outer iteration.

The sensitivity of both approaches to different initialisations was evaluated

using the difference image between the warped and target µµµ maps (Figure 5.13) and

the RMSE in the lungs plotted against the outer iteration numbers (Figure 5.14). For

each approach, the difference images at OuterIter = 100 were visually identical and

the plots of RMSE in the lungs were almost on top of each other for different initial

conditions. Based on these results, we conclude that both Approach I and II were

not sensitive to the initial activity image for the alternating process when the above

workflow was applied.

5.8 Preliminary investigation on noisy data

The workflow giving satisfactory results for both approaches found with the noise-

less dataset was further investigated on the noisy dataset. Recall that a stronger

strength β = 2× 10−1 was used for the anatomical penalty function in the pres-

ence of noise. As the convergence rate of L-BFGS-B-PC varies with the strength of
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Figure 5.13: The central coronal view of the difference images between the target and WWW µ̇µµ

maps for Approach I (left) and II (right) at 100 outer iteration. The results for
the alternating process initialising from 1 full iteration of OS-EM, followed
by 5 or 10 iterations of L-BFGS-B-PC are shown in the top and bottom rows,
respectively.

Figure 5.14: The RMSE in the lungs plotted against the outer iteration numbers for Ap-
proach I (left) and II (right) with different initialisations.

the penalty function and data noise level (see Section 3.7.3.1), the alternating pro-

cess was also performed with a higher InnerIter2 = 20 or 40 for both approaches.

The number of inner iterations for the misalignment subroutine was kept the same

(InnerIter1 = 1) as well as the number of outer iterations (OuterIter = 100).

Figure 5.15 shows the central coronal view of the difference image between

the warped and target µµµ maps for each reconstruction condition at OuterIter = 100.

As observed in the figure, the first approach still suffered from the misalignment

issue at 100 outer iteration when InnerIter2 = 10 or 20 were applied (Figure 5.15,

left column, top and second images). Consistent with the results for the noiseless

dataset (Figure 5.4), the performance of the misalignment estimation of the sec-

ond approach was less sensitive to the applied number of InnerIter2. Note that the
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Figure 5.15: The central coronal view of the difference images between the target and WWW µ̇µµ

maps for Approach I (left column) and (right column) Approach II at 100 outer
iteration. The applied workflows were 1 inner iteration for the misalignment
estimation and 10 (top row), 20 (middle row), 40 (bottom row) inner iterations
for the image reconstruction.

alignment of the contour of the object was improved as InnerIter2 increased for

both approaches. The RMSE in the lungs plotted against the outer iteration num-

bers support our observations from the difference images (Figure 5.16). Moreover,

Approach II converged faster than Approach I for all evaluated workflows. The

corresponding reconstructed functional images and the warped attenuation maps

for InnerIter2 = 40 were also provided in Figure 5.17. As shown in the top row,

the reconstructed activity images are smoother than the target one due to the im-

plied interpolation and the use of a stronger penalty strength. These two approaches

were able to achieve visually identical warped attenuation maps with the applied

workflow. However, residual misalignment in the lungs was still observed for both

approaches at OuterIter = 100 (Figure 5.17, bottom row).

5.9 Discussion
The potential misalignment between functional and anatomical images is the main

concern for incorporating an anatomical prior into image reconstruction. Expand-

ing on the algorithm proposed in [137], two approaches that perform alternating

misalignment estimation and penalised image reconstruction using anatomical pri-

ors are proposed. In this study, we used the µµµ map for attenuation correction and
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Figure 5.16: The RMSE in the lungs plotted against the outer iteration numbers for Ap-
proach I (left) and II (right). The applied workflows were 1 inner iteration for
the misalignment estimation and 10, 20 or 40 inner iterations for the image
reconstruction.

Figure 5.17: The central coronal view of the activity images for Approach I (left) and
(right) Approach II at 100 outer iteration (top row). The corresponding warped
attenuation maps are also provided (bottom row). The applied workflows were
1 inner iteration for the misalignment estimation and 40 inner iterations for the
image reconstruction.

anatomical prior calculation. Therefore, the optimisation was influenced by the mis-

alignment through the attenuation correction and the incorporated penalty function.

We have demonstrated that both approaches are able to estimate the misalignment

and warp the anatomical image accordingly, but with a different convergence rate,

depending on the applied workflow and if the anatomical information is included as

a prior. Since the deformation of the attenuation map will lead to a different scatter

distribution, the estimated background events should be updated accordingly dur-

ing the optimisation. However, the effect was assumed to be small and ignored for

simplicity in current study. To achieve accurate quantification, performing active

scatter correction based on the update of the estimated background events might be
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necessary. In practice, this could be done by re-estimating the scatter after a number

of iterations of the current algorithm.

The same as in [137], we have chosen to use the uniform cubic B-splines to

model the image deformation. As no priori knowledge regarding the misalignment

is required, it should be able to adapt to various misalignment scenarios caused

by different types of motion effect. However, due to the implied interpolation, it

also leads to a smooth deformation field which might not be able to accurately

model sliding motion, such as the pleural sliding on the inside of the ribcage. To

improve the accuracy of the misalignment estimation and make maximum use of

the anatomical information, investigating other differentiable deformation models

specific to different applications should be included in future work. However, as

long as the deformation field would be parametrisable using a linear sum of basis-

functions, the methods of this work would be applicable.

The evaluation in this study was focused on the performance of the misalign-

ment estimation of each approach. The central coronal view of the difference image

between the warped and target µµµ maps at different outer iterations were used for vi-

sual comparison. For quantitative assessment, the overall RMSE and RMSE in the

lungs were calculated with the difference images and plotted against the number

of outer iterations. We found that some observations based on the overall RMSE

did not agree with the visual comparison. This might be because the overall RMSE

takes into account the residual misalignment around the object contour, which is

affected by the applied number of inner iterations for the image reconstruction sub-

routine (Figure 5.4 and 5.15). As the alignment of small structures in the lungs

is the main target for respiratory motion estimation, most results were compared

in terms of RMSE in the lungs only. Since the objective functions of these two

approaches are not comparable, seeking metrics that measure the “practical” con-

vergence would be helpful in demonstrating the convergence of the algorithms.

As an initial investigation, the maximum outer iteration number that controls

the repetition of the alternating process was set to 100 to reduce the number of pa-

rameters to optimise. Therefore, the workflow of both approaches was determined
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by the number of iterations for the misalignment estimation (InnerIter1) and image

reconstruction (InnerIter2) subroutines. To study how the change of the workflow

influences the performance of the proposed approaches, initial evaluations on noise-

less datasets were conducted in Section 5.7.1. As shown in the left column of Fig-

ure 5.4 and 5.6, satisfactory visual alignment was obtained at 100 outer iterations

when InnerIter1 = 1 and InnerIter2 = 5 or 10 were chosen for the first approach,

although the corresponding RMSE in the lungs indicated that a higher number of

outer iterations was required for achieving a stable value (Figure 5.5 and 5.7, left).

The use of a larger InnerIter1 or InnerIter2 slowed down convergence rate of the

misalignment estimation. When a sufficient number of iterations for the image

reconstruction subroutine was applied (InnerIter2 ≥ 10), Approach II showed the

ability to achieve a good alignment in 60 outer iterations (Figure 5.5 and 5.7, right).

Its performance in terms of convergence rate was improved as InnerIter1 or Inner-

Iter2 increased. In general, Approach II was less sensitive to the change of work-

flow compared to Approach I. For a given workflow, Approach II outperformed

Approach I as it required less outer iterations to achieve a reasonable result. In this

study, the performance was evaluated at given outer iterations. Since one iteration

of motion estimation is computationally more expensive than one iteration of im-

age reconstruction, a workflow (1 iteration of misalignment estimation, followed

by 10 iterations of image reconstruction) that gave good results for both approaches

was sought to be able to compare their performance. Further improvement in con-

vergence rate can be expected by optimising the workflow specifically for each

approach. A measure that reflects the computational demand of each approach is

therefore required.

The use of the anatomical penalty function improved the convergence rate of

the misalignment estimation for Approach II but slowed it down for Approach I

(Figure 5.10 and 5.11). To study the response of the proposed approaches to ini-

tialisations considering the anatomical information, the initial activity image for the

whole alternating process was also reconstructed with one full iteration of OS-EM,

followed by a few iterations of L-BFGS-B-PC with an anatomical prior, PLS. With
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the workflow found in Section 5.7.1, both approaches showed similar performance

to that using one iteration of OS-EM alone for initialisation (Figure 5.13 and 5.14).

Given OS-EM is computationally efficient and easy to implement, one iteration of

OS-EM with 14 subsets was therefore chosen as the initial condition for the alter-

nating process in all other reconstructions in this study.

The workflow found in Section 5.7.1 with noiseless data was further investi-

gated on one noisy dataset. Based on the result shown in Figure 5.15, both ap-

proaches required a higher number of iterations for the image reconstruction sub-

routine (InnerIter2 ≥ 40) to achieve good results in 100 outer iterations. Since the

strength of the anatomical penalty function was increased in order to regularise

noise as well, it is hard to attribute the cause to the presence of noise or the change

of penalty strength. The observation also implies that the required number of Inner-

Iter2 should be optimised according to these factors. Although further investigation

on data representing different noise levels and reconstructed with different condi-

tions is necessary, we found that using the workflow with InnerIter1 = 1 and Inner-

Iter2 = 40 should be sufficient for all simulations applying either approach in this

study. Consistent with results for the noiseless dataset, Approach II showed lower

sensitivity to the change of workflow and outperformed Approach I in terms of the

convergence rate of misalignment estimation (Figure 5.16). For all evaluated work-

flows with different numbers of InnerIter2, it was able to achieve a stable RMSE in

the lungs in 60 outer iterations.

For both approaches, the strength of each penalty function was chosen based

on the performance of the misalignment estimation. However, together with the im-

plied interpolation of image warping and re-sampling using B-splines, the selected

penalty strengths have led to over-smoothed functional images. In the current in-

vestigation, we focused on the visual and numerical differences between the warped

and target µµµ maps, evaluations on the reconstructed activity images were not in-

cluded. The over-smoothing in the reconstructed activity image can be overcome

by running a final image reconstruction with settings optimised for the estimation

of the functional image. Note that in the case of a single gate, this can be done by
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running the final reconstruction using the warped attenuation map at the last outer

iteration with a proper penalty strength for both approaches. However, for multi-

ple gated datasets, the warp matrix WWW should be incorporated into the final image

reconstruction for Approach II.

In this study, the feasibility of applying the proposed approaches to estimate

the misalignment in PML image reconstruction using anatomical priors was demon-

strated with one gate of non-TOF PET data in which no motion was assumed. The

motivation of incorporating an anatomical penalty is to improve the visual appear-

ance and quantification of the reconstructed activity image by utilising the addi-

tional anatomical information. It should be able to introduce smoothness in uniform

regions and sharpen edges observed in both functional and anatomical images. The

more and stronger the common edges are, the sharper reconstructed images can

be achieved. Therefore, applying anatomical priors to non-gated PET data is not

beneficial as there will be substantial motion over the acquisition, leading to an

overall smoothness across boundaries of the object. In the current study, we have

adapted the strategy often used in CT or MR derived attenuation correction that

down-samples the anatomical image to match the resolution of PET and surrenders

the structural details carried by the high-resolution anatomical image. However,

based on the evaluation shown in [141], a sharper reconstructed activity image can

be expected by reconstructing the PET image at the same voxel size as the anatomi-

cal image instead and exploring the common edges in the resolution of the anatom-

ical one. The benefit of using TOF data to misalignment estimation was studied in

[139] where a similar algorithm was applied to obtain reconstructed activity images

with aligned attenuation correction. As Approach I and II are extensions of that

algorithm, practical convergence of misalignment estimation in less outer iterations

can be expected when TOF data is available. Moreover, by exploring the similarity

between gates and utilising the whole data statistics, the misalignment estimation

of both approaches should also be able to benefit from multiple gates of data.
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5.10 Conclusions
Two approaches for solving the potential misalignment between the functional and

anatomical images in penalised image reconstruction using anatomical priors have

been proposed in this study. The main difference between them is that the first

approach deforms the anatomical image to align it with the functional one, while the

second approach deforms both images to align them with the measured data. Both

approaches were implemented using alternation between misalignment estimation

and image reconstruction. The results demonstrated that both methods are able to

estimate the misalignment and deform the anatomical image accordingly when a

proper workflow for the alternating optimisation is applied. Moreover, the second

approach shows the ability to converge to the correct alignment faster than the first

approach and is less sensitive to variations in the workflow. These encouraging

results indicate that it is possible to align functional and anatomical information,

enabling the use of anatomical priors in practice.



Chapter 6

General Conclusions

With the increased interest in quantitative analysis in emission tomography (ET),

reconstruction algorithms that provide both good image quality and accurate inten-

sity values are desirable. Due to the ability of taking into account the statistical

nature of the data, iterative algorithms have become the method of choice for the

state-of-the-art imaging systems. However, as image properties such as resolution

and noise are functions of iterations, the visual appearance and quantitative accu-

racy vary with iterations when the applied algorithm has not converged yet. In

fact, the image properties also change between individuals and lesions with differ-

ent local features. To ensure predictable run-time in a clinical environment, image

reconstruction algorithms, independent of as many factors as possible, are therefore

preferable. The applied algorithm should also show fast convergence rate to avoid

compromising patient throughput. Since using anatomical priors to improve image

quality and quantitative accuracy has shown promise in literature, the algorithm is

expected to be capable of incorporating anatomical information as well.

The aim of this thesis was to improve the quantitative consistency of ET by

investigating the use of advanced optimisation algorithms for penalised image re-

construction. The proposed algorithms have shown the potential to achieve practical

feasibility in time as well as consistent performance in convergence rate and local

response. The algorithms are also capable of incorporating anatomical information.

Taking into account the potential misalignment between the activity and anatomical

images, two approaches that perform alternating misalignment estimation and pe-
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nalised image reconstruction were proposed. The evaluation of the proposed strate-

gies and algorithms had been concentrated on PET data. The main conclusions and

contributions of the study are highlighted in this chapter, followed by a discussion

of potential future work. The publications that have arisen from this work and from

collaborations with other researchers are also listed.

6.1 Summary of main conclusions

To achieve practical processing time, a fast convergent quasi-Newton algorithm, L-

BFGS-B-PC, was proposed in Chapter 3. This algorithm was based on the standard

L-BFGS-B algorithm but we incorporated a preconditioner specific to ET. Since

the proposed preconditioner could be precomputed, the computational cost of L-

BFGS-B-PC per iteration was similar to that of L-BFGS-B. The performance of

L-BFGS-B-PC was evaluated using both simulations and three patient datasets. In

addition to achieving over 100 times faster convergence rate than SPS, a previously

published algorithm for penalised image reconstruction, its performance in terms of

run-time was also less sensitive to various factors, such as the noise level, penalty

type, penalty strength and background level, compared to the non-preconditioned

L-BFGS-B. Although the current work concentrated on L-BFGS-B, the proposed

strategy of introducing a preconditioner based on knowledge of the ET objective

function could be applied to other optimisation algorithms as well.

To be able to improve the image quality and quantitative consistency, an

anatomical penalty function was then incorporated with a spatially-variant penalty

strength in Chapter 4. The weighting scheme was previously proposed for quadratic

priors and then generalised the non-quadratic ones in the literature. In Chapter 4,

the theory was further extended to a wider class of penalty functions such that it

could be applied to any anatomical prior that utilises local properties within a pre-

defined neighbourhood structure. In addition, we introduced a different type of

weighting scheme which is suitable for 3-D PET reconstruction and can be easily

precomputed. As the weighting was also reused to construct the preconditioner in

L-BFGS-B-PC, the overall computational demand remained virtually unchanged.
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The proposed weighting scheme was evaluated with an anatomical prior based on

Parallel Level Sets (PLS). Since PLS had shown promising results in literature and

its convexity that facilitates numerical optimisation is well-established, it was cho-

sen as the representative anatomical penalty in this thesis. Based on results for

various simulations and data from one patient with inserted pseudo lesions, the

spatially-variant penalty reduced the quantitative dependence on the surrounding

activity and location. Moreover, substantial improvement in convergence rate and

its consistency was also observed.

As the use of anatomical penalties in practice could be limited by the poten-

tial misalignment between the functional and anatomical images, two approaches

that perform alternating misalignment estimation and penalised image reconstruc-

tion using anatomical priors were proposed in Chapter 5. Both approaches were

based on a joint motion estimation and image reconstruction method proposed re-

cently for dealing with the mismatch between the attenuation map and the PET

image in respiratory gated PET/CT. Expanding on our previous work, L-BFGS-B-

PC using PLS with the spatially-variant penalty strength was used for the image

reconstruction. In terms of the misalignment compensation, the first approach de-

formed the anatomical image to align it with the functional one while the second

approach deforms both images to align them with the measured data. Preliminary

results for non-TOF data simulations demonstrated that both methods were able to

estimate the misalignment and deform the anatomical image accordingly when a

proper workflow for the alternating optimisation was applied. The second approach

also showed the ability to converge to the correct alignment faster than the first one,

and with less dependence on the algorithm workflow. Both methods were further

evaluated with a simulated noisy dataset. In the presence of noise, a higher iteration

number for the image reconstruction subroutine was required to obtain satisfactory

results.
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6.2 Original contributions
The main contributions provided by the author among the research presented in this

thesis are summarised below.

6.2.1 Algorithm development

• Derivation and evaluation of the precomputed preconditioner proposed for

L-BFGS-B-PC.

• Evaluation and modification of the initial step length of the line search sub-

routine of L-BFGS-B.

• Evaluation of the performance of SPS, L-BFGS-B and L-BFGS-B-PC.

• Generalisation of the use of the spatially-variant penalty strength to a wider

class of edge preserving penalty functions.

• Exploration of the improvement in algorithm convergence rate and conver-

gence consistency when using the spatially-variant penalty strength.

• Development of the two approaches for alternating misalignment estimation

and penalised image reconstruction including anatomical priors based on a

previously proposed joint reconstruction algorithm.

• Evaluation of the performance dependence of these approaches on workflows

and initialisations.

6.2.2 Algorithm implementation

• Integration of the L-BFGS-B implementation provided by other experts with

projectors and penalty functions implemented in STIR and the GE proprietary

PET Toolbox via MATLAB.

• Implementation of the proposed preconditioner and the transformed objective

function and its gradient for L-BFGS-B-PC along with the modification to the

line search subroutine of L-BFGS-B.

• Implementation of SPS.
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• Implementation of PLS and its gradient for both 2-D and 3-D penalised image

reconstruction.

• Implementation of the proposed spatially-variant penalty strength.

• Implementation of the two approaches for alternating misalignment estima-

tion and penalised image reconstruction including anatomical priors based on

a previously work from Dr. Alexandre Bousse.

6.3 Suggested future work
We have proposed a preconditioned image reconstruction algorithm, L-BFGS-B-

PC, that shows much faster convergence rate than SPS and also faster than the

non-preconditioned L-BFGS-B. To improve the image quality and quantitative con-

sistency, an anatomical penalty function with a spatially-variant penalty strength

was further incorporated into the proposed algorithm. The potential misalignment

between functional and anatomical images were taken into account and two ap-

proaches that perform alternating misalignment estimation and penalised image re-

construction were proposed. To be able to prototype these ideas, implementations

used in this study are not optimised yet. For example, as mentioned in Section 3.8,

the L-BFGS-B was implemented in a combination of C, Fortran and MATLAB.

Moreover, we have been using functions with MATLAB interfaces provided by the

scanner manufacturer or other experts. By optimising the implementation of the

proposed algorithms using the same programming language on a single platform,

their performance in terms of the required memory or computation time can be

improved. To enable evaluation on a wider dataset, it would also be useful to in-

corporate the implementation into open source distributions, such as Software for

Tomographic Image Reconstruction (STIR) [88].

The algorithms or strategies proposed in this thesis have been demonstrated

with simulated and a few patient datasets. Clearly, a thorough validation with more

real data is required to demonstrate usefulness in future applications in the clinic. In

addition, as the algorithm performance and the quantitative accuracy can be affected

by the penalty strength and other parameters that determine the edge-preserving
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property of the penalty (e.g., ε and η in PLS), future work should also include

parameter optimisation with respect to different applications. As the optimisation

problem becomes less ill-conditioned when TOF data is available, we also expect

the performance of the proposed methods can be further improved with TOF data.

Recall that L-BFGS-B initialises the line search with a step length of 1 after

the first iteration. With this step length, the algorithm makes a direct approach to

the local solution as described in Section 3.2.2. The backtracking of the embedded

line search takes place only when the algorithm is about to converge and a smaller

step length is obtained by following a predefined decreasing pattern. However,

depending on the adopted decreasing scheme, the backtracking might not be able

to find the step length that minimises the objective function at the current estimate,

leading to an unexpected slow convergence rate. By substituting this generic line

search with other more sophisticated ones in the literature [142, 143], the algorithm

performance might be speeded up even more. This can also benefit other algorithms

based on L-BFGS-B in this thesis, for example, the fast convergent algorithm L-

BFGS-B-PC presented in Chapter 3 and the image reconstruction subroutine of the

joint optimisation approaches presented in Chapter 5.

As discussed in Section 3.8, other image reconstruction algorithms should be

able to benefit from preconditioning as well. In addition to applying the proposed

preconditioner to different reconstruction algorithms, one can also explore the use of

other fixed diagonal preconditioners. For example, by expressing ML-EM in a gra-

dient descent form, a diagonal matrix with elements equal to a normalised version

of the current estimate can be obtained. The matrix was used as a preconditioner

to improve the convergence rate of a conjugate gradient algorithm in [91]. We can

then replace the current estimate by the initial image so that it can be precomputed.

One of the motivations of applying penalised image reconstruction is to regu-

larise noise propagation when iterations increase. In order to obtain uniform local

perturbation response (i.e., uniform local contrast), independent of lesion surround-

ings and location, a spatially-variant penalty strength was used to modify the applied

penalty function in Chapter 4. The benefit of using the modified prior in quantitative
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consistency has been demonstrated with noiseless datasets. However, as changes in

the local resolution will influence the noise, bias and variance analysis using noise

realisations is required for understanding the effect of the spatially-variant penalisa-

tion on overall resolution and noise trade-off. In Chapter 4, the proposed algorithm,

L-BFGS-B-PC, was used as the representative reconstruction method. To be able

to generalise the application of the spatially-variant penalty strength for improv-

ing convergence rate and its consistency, further demonstration of the strategy with

other penalised reconstruction algorithms is necessary.

In Chapter 5, two approaches that take into account the potential misalignment

between functional and anatomical images were proposed. The algorithms have

been evaluated using simulated data with respect to different workflows, initialisa-

tions and the use of the PLS anatomical prior. Both approaches showed the ability

to estimate the mismatch and warp the anatomical image accordingly. Although the

current study simulated the misalignment between a single functional and anatomi-

cal imaging position, the proposed approaches should be able to be applied to mul-

tiple gated datasets with small modifications. To investigate the effectiveness of

applying the proposed approaches in improving quantitative accuracy, evaluations

using phantoms with inserted features or patient datasets with pseudo-lesions should

also be included. In our current work, we assumed that the attenuation correction

and anatomical image used for PLS were the same. However, the algorithms can

be easily generalised to other user cases where the anatomical image is independent

of the attenuation image. One particular case of this might be reconstructions of

PET/CT data using an anatomical prior calculated with MR images.

Throughout Chapter 4 and 5, PLS was used as the representative anatomical

prior. To demonstrate that the algorithms and strategies presented in this thesis can

be generalised to a wider range of priors, evaluations based on reconstructions ap-

plying different edge preserving penalty functions can be useful. While most of the

work here is done using PET examples and PET data, the results, with appropriate

validation and possible reparameterisation, should also apply to SPECT imaging,

where the fundamental theory for image reconstruction is very similar.
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Appendix A

The Separable Paraboloidal

Surrogate (SPS) algorithm

In [72], SPS was proposed for penalised image reconstruction. Ignoring the non-

negativity constraint on fff , the image update scheme of the algorithm can be sum-

marised as follows with ∇Φ the gradient of the objective function given in (2.12):

fff t+1 = fff t− D̂DD
2
t ∇Φ( fff t) (A.1)

D̂DDt = diag
{

AAA>XXX tAAA1+βRϕ( fff t)1
}− 1

2

where D̂DDt can be interpreted as a square root of a diagonal approximation of HHH−1,

Rϕ(x) = ∇R(x)/x provides the second order information of the penalty function R

of the form in (2.14) with the potential function ϕ and XXX t is a vector with the same

length as the measured data ggg. Given the current estimate data ĝggt = AAA fff t +nnn, XXX t can

be computed by:

[XXX t ]i =


[
2Φi(0)−Φi([ĝggt ]i)+∇Φi([ĝggt ]i)[ĝggt ]i

[ĝggt ]
2
i

]
if [ĝggt ]i > 0

∇2Φi(0) if [ĝggt ]i = 0
(A.2)

Note that as D̂DDt has to be updated at every iteration, leading to expensive compu-

tation, practical applications of SPS are limited. However, SPS has been shown to

converge to the PML solution.
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Relaxed Ordered Subsets SPS

(OS-SPS)

To circumvent the high computational demand, the authors in [72] also proved the

feasibility of applying the OS scheme and a precomputed denominator (OS-SPS).

However, as for OS-EM method, OS-SPS suffers from the limit-cycle problem and

requires a relaxation parameter to preserve convergence [59]. Ignoring the non-

negativity constraint on fff , the update scheme of the relaxed OS-SPS can be ex-

pressed by:

fff t+1 = fff t−αtD̃DD
2
∇Φ( fff t), αt =

σ

1+ tγ
and (B.1)

D̃DD = diag
{

AAA>diag
{

1
ggg

}
AAA1+β∇

2R( fff t)1
}− 1

2

where D̃DD can be interpreted as a square root of a diagonal approximation of HHH−1 and

αt is the relaxation parameter. Although the algorithm can cope with ordered sub-

sets, the update equation (B.1) has been written without subsets for simplicity. The

decrease in αt has to be chosen to satisfy certain conditions for convergence. The

given scheme satisfies those conditions if the constants σ and γ are > 0. However,

choosing optimal σ and γ for fast convergence is an unsolved problem.
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Construction of the approximation of

the inverse of the Hessian using a

pair of correction matrices

This section describes the ApproxInvHess step in Algorithm 1. At every iteration t,

the corresponding correction matrices consisting of gradient information in the last

m iterations are expressed as follows:

SSSt = [ssst−m, . . . ,ssst−1], YYY t = [yyyt−m, . . . ,yyyt−1] (C.1)

where ssst = fff t+1− fff t and yyyt = ∇Φ( fff t+1)−∇Φ( fff t). These matrices can be used to

find the second order behaviour of the objective function and therefore to calculate

approximations of the Hessian. Based on the compact representations described in

[84], the approximation of HHH−1 at iteration t can be written as follows:

BBBt ≡
1
Q

III +W̄WW tM̄MMtW̄WW
>
t (C.2)
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where
W̄WW t ≡

[
1
QYYY t SSSt

]
,

M̄MMt ≡

 000 −RRR−1
t

−RRR−>t RRR−>t (VVV t +
1
QYYY>t YYY tRRR−1

t )

 ,
[RRRt ]kl =

 sss>t−m−1+kyyyt−m−1+l if k ≤ l

000 otherwise

with VVV t = Diag[sss>t−myyyt−m, . . . ,sss
>
t−1yyyt−1], k, l = 1, . . . ,m and Q is a constant [74].

The representation of BBBt is efficient in terms of memory and computation time as

W̄WW t is a J× 2m matrix and M̄MMt is 2m× 2m, where J is the number of voxels and

m = 5 in this study. In practice, the algorithm does not compute and store BBBt di-

rectly. Instead, it uses the correction matrices so that the product BBBt∇Φ( fff t) can be

calculated efficiently by applying the unrolling technique described in [84].

To initialise the construction of BBB1, the current implementation performs gra-

dient descent at the first iteration to find the first pair of correction vectors, SSS1 = [sss0]

and YYY 1 = [yyy0]. For iteration t < m, the corresponding BBBt is calculated with only t

pairs of gradient information.
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Uniform cubic basis splines

(B-splines)

The main structure of a cubic B-spline is summarised below. More information can

be found in [144]. A cubic B-spline is a piecewise polynomial function consisting

of four segments (Figure D.1):

b0(u) =
1
6
(1−3u+3u2−u3)

b1(u) =
1
6
(4−6u2 +3u3)

b2(u) =
1
6
(1+3u+3u23u3)

b3(u) =
1
6

u3 .

Combining segments of these cubic functions in the interval u = [0, 1], a positive,

symmetric and continuously differentiable basis function is obtained (Figure D.2).

In Chapter 5, the image function is represented as a linear combination of basis

functions centred on a equally-spaced grid that coincides with the voxel centres. In

other words, it is represented as a series of uniformly distributed cubic B-splines.
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Figure D.1: Plots of the segments.

Figure D.2: Example of a basis function.



Bibliography

[1] A. Alessio and P. Kinahan. PET image reconstruction, volume 1. Amsterdam

Elsevier, 2nd edition, 2006.

[2] D. L. Bailey and K. P. Willowson. An evidence-based review of quantitative

SPECT imaging and potential clinical applications. J Nucl. Med., 54(1):83–

9, 2013.

[3] J. Y. Y. Ngeow, R. H. H. Quek, D. C. E. Ng, S. W. Hee, M. Tao, L. C. Lim,

Y. H. Tan, and S. T. Lim. High SUV uptake on FDG-PET/CT predicts for an

aggressive B-cell lymphoma in a prospective study of primary FDG-PET/CT

staging in lymphoma. Annals of Oncology, 20(9):1543–7, 2009.

[4] B. Bai, J. Bading, and P. S Conti. Tumor quantification in clinical positron

emission tomography. Theranostics, 3(10):787–801, 2013.

[5] R. Kumar, D. Halanaik, and A. Malhotra. Clinical applications of positron

emission tomography-computed tomography in oncology. Indian J. Cancer,

47(2):100–19, 2010.

[6] E. Quak, A. CM van de Luijtgaarden, L.-F. de Geus-Oei, W. TA van der

Graaf, and W. JG Oyen. Clinical applications of positron emission tomogra-

phy in sarcoma management. Expert Rev. Anticancer Ther., 11(2):195–204,

2011.

[7] Y. F. Tai and P. Piccini. Applications of positron emission tomography (PET)

in neurology. J Neurol. Neurosurg Psychiatry, 75(5):669–76, 2004.



Bibliography 154

[8] K. A. Driver, A. E. Atchley, P. Kaul, and S. Borges-Neto. Single photon

emission computed tomography myocardial imaging: clinical applications

and future directions. Minerva Cardioangiol., 57(3):333–347, 2009.

[9] M. D. Devous Sr. Single-photon emission computed tomography in neu-

rotherapeutics. NeuroRx., 2(3):237–49, 2005.

[10] D. J. Smith and J. T. Cavanagh. The use of single photon emission computed

tomography in depressive disorders. Nucl. Med. Commun., 26(3):197–203,

2005.

[11] I. Khalkhali, J. K. Baum, J. Villanueva-Meyer, S. L. Edell, L. G. Hanelin,

C. E. Lugo, R. Taillefer, L. M. Freeman, C. E. Neal, A. M. Scheff, J. L.

Connolly, S. J. Schnitt, M. J. Houlihan, J. S. Sampalis, and S. B. Haber.
99mTc Sestamibi breast imaging for the examination of patients with dense

and fatty breasts: multicenter study. Radiology, 222(1):149–55, 2002.

[12] B. G. M. Durie, A. D. Waxman, A. D’Agnolo, and C. M. Williams.

Whole-body 18F-FDG PET identifies high-risk Myeloma. J Nucl. Med.,

43(11):1457–63, 2002.

[13] G. A. Beller. Myocardial perfusion imaging with Thallium-201. J Nucl.

Med., 35(40):674–80, 1994.

[14] M. Fiechter, J. R. Ghadri, C. Gebhard, T. A. Fuchs, A. P. Pazhenkottil, R. N.

Nkoulou, B. A. Herzog, C. A. Wyss, O. Gaemperli, and P. A. Kaufmann.

Diagnostic value of 13N-Ammonia myocardial perfusion PET: added value

of myocardial flow reserve. J Nucl. Med., 53(8):1230–4, 2012.

[15] M. B. Imran, R. Kawashima, S. Awata, K. Sato, S. Kinomura, S. Ono,

M. Sato, and H. Fukuda. Tc-99m HMPAO SPECT in the evaluation of

Alzheimer’s disease: correlation between neuropsychiatric evaluation and

CBF images. J Neurol. Neurosurg. Psychiatry, 66(2):228–32, 1999.



Bibliography 155

[16] D. A. Wolk, Z. Zhang, S. Boudhar, C. M. Clark, M. J. Pontecorvo, and S. E.

Arnold. Amyloid imaging in Alzheimer’s disease: comparison of Florbe-

tapir and Pittsburgh Compound-B positron emission tomography. J Neurol.

Neurosurg. Psychiatry, 83(9):923–6, 2012.

[17] P. P. Bruyant. Analytic and iterative reconstruction algorithms in SPECT. J

Nucl. Med., 43(10):1343–58, 2002.

[18] S. N. Histed, M. L. Lindenberg, E. Mena, B. Turkbey, P. L. Choyke, and

K. A. Kurdziel. Review of functional/anatomic imaging in oncology. Nucl.

Med. Commun., 33(4):349–61, 2012.

[19] A. H. Maurer. Combined imaging modalities: PET/CT and SPECT/CT.

Health Phys., 95(5):571–6, 2008.

[20] D. W. Townsend. Multimodality imaging of structure and function. Phys.

Med. Biol., 53(4):R1–R39, 2008.

[21] G. Wagenknecht, H.-J. Kaiser, F. M. Mottaghy, and H. Herzog. MRI for

attenuation correction in PET: methods and challenges. Semin. Nucl. Med.,

26(1):99–113, 2013.

[22] J. P. J. Carneya and D. W. Townsend. Method for transforming CT images

for attenuation correction in PET/CT imaging. Med. Phys., 33(4):976–83,

2006.

[23] S. E. Jung, J. M. Lee, S. E. Rha, J. Y. Byun, J. I. Jung, and S. T. Hahn. CT

and MR imaging of ovarian tumors with emphasis on differential diagnosis.

RadioGraphics, 22(6):1305–25, 2002.

[24] W. R. Webb, C. Gatsonis, E. A. Zerhouni, R. T. Heelan, G. M. Glazer,

I. R. Francis, and B. J. McNeil. CT and MR imaging in staging non-small

cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology

Group. Radiology, 178(3):705–13, 1991.



Bibliography 156

[25] C. Dromain, T. de Baere, D. Elias, V. Kuoch, M. Ducreux, V. Boige,

P. Petrow, A. Roche, and R. Sigal. Hepatic tumors treated with percuta-

neous radio-frequency ablation: CT and MR imaging follow-up. Radiology,

223(1):255–62, 2002.

[26] R. K. T. Haken, A. F. Thornton Jr., H. M. Sandler, M. L. LaVigne, D. J. Quint,

B. A. Fraass, M. L. Kessler, and D. L. McShan. A quantitative assessment

of the addition of MRI to CT-based, 3-D treatment planning of brain tumors.

Radiology, 25(2):121–33, 1992.
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